1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *  PS3 address space management.
4 *
5 *  Copyright (C) 2006 Sony Computer Entertainment Inc.
6 *  Copyright 2006 Sony Corp.
7 */
8
9#include <linux/dma-mapping.h>
10#include <linux/kernel.h>
11#include <linux/export.h>
12#include <linux/memblock.h>
13#include <linux/slab.h>
14
15#include <asm/cell-regs.h>
16#include <asm/firmware.h>
17#include <asm/udbg.h>
18#include <asm/lv1call.h>
19#include <asm/setup.h>
20
21#include "platform.h"
22
23#if defined(DEBUG)
24#define DBG udbg_printf
25#else
26#define DBG pr_devel
27#endif
28
29enum {
30#if defined(CONFIG_PS3_DYNAMIC_DMA)
31	USE_DYNAMIC_DMA = 1,
32#else
33	USE_DYNAMIC_DMA = 0,
34#endif
35};
36
37enum {
38	PAGE_SHIFT_4K = 12U,
39	PAGE_SHIFT_64K = 16U,
40	PAGE_SHIFT_16M = 24U,
41};
42
43static unsigned long __init make_page_sizes(unsigned long a, unsigned long b)
44{
45	return (a << 56) | (b << 48);
46}
47
48enum {
49	ALLOCATE_MEMORY_TRY_ALT_UNIT = 0X04,
50	ALLOCATE_MEMORY_ADDR_ZERO = 0X08,
51};
52
53/* valid htab sizes are {18,19,20} = 256K, 512K, 1M */
54
55enum {
56	HTAB_SIZE_MAX = 20U, /* HV limit of 1MB */
57	HTAB_SIZE_MIN = 18U, /* CPU limit of 256KB */
58};
59
60/*============================================================================*/
61/* virtual address space routines                                             */
62/*============================================================================*/
63
64/**
65 * struct mem_region - memory region structure
66 * @base: base address
67 * @size: size in bytes
68 * @offset: difference between base and rm.size
69 * @destroy: flag if region should be destroyed upon shutdown
70 */
71
72struct mem_region {
73	u64 base;
74	u64 size;
75	unsigned long offset;
76	int destroy;
77};
78
79/**
80 * struct map - address space state variables holder
81 * @total: total memory available as reported by HV
82 * @vas_id - HV virtual address space id
83 * @htab_size: htab size in bytes
84 *
85 * The HV virtual address space (vas) allows for hotplug memory regions.
86 * Memory regions can be created and destroyed in the vas at runtime.
87 * @rm: real mode (bootmem) region
88 * @r1: highmem region(s)
89 *
90 * ps3 addresses
91 * virt_addr: a cpu 'translated' effective address
92 * phys_addr: an address in what Linux thinks is the physical address space
93 * lpar_addr: an address in the HV virtual address space
94 * bus_addr: an io controller 'translated' address on a device bus
95 */
96
97struct map {
98	u64 total;
99	u64 vas_id;
100	u64 htab_size;
101	struct mem_region rm;
102	struct mem_region r1;
103};
104
105#define debug_dump_map(x) _debug_dump_map(x, __func__, __LINE__)
106static void __maybe_unused _debug_dump_map(const struct map *m,
107	const char *func, int line)
108{
109	DBG("%s:%d: map.total     = %llxh\n", func, line, m->total);
110	DBG("%s:%d: map.rm.size   = %llxh\n", func, line, m->rm.size);
111	DBG("%s:%d: map.vas_id    = %llu\n", func, line, m->vas_id);
112	DBG("%s:%d: map.htab_size = %llxh\n", func, line, m->htab_size);
113	DBG("%s:%d: map.r1.base   = %llxh\n", func, line, m->r1.base);
114	DBG("%s:%d: map.r1.offset = %lxh\n", func, line, m->r1.offset);
115	DBG("%s:%d: map.r1.size   = %llxh\n", func, line, m->r1.size);
116}
117
118static struct map map;
119
120/**
121 * ps3_mm_phys_to_lpar - translate a linux physical address to lpar address
122 * @phys_addr: linux physical address
123 */
124
125unsigned long ps3_mm_phys_to_lpar(unsigned long phys_addr)
126{
127	BUG_ON(is_kernel_addr(phys_addr));
128	return (phys_addr < map.rm.size || phys_addr >= map.total)
129		? phys_addr : phys_addr + map.r1.offset;
130}
131
132EXPORT_SYMBOL(ps3_mm_phys_to_lpar);
133
134/**
135 * ps3_mm_vas_create - create the virtual address space
136 */
137
138void __init ps3_mm_vas_create(unsigned long* htab_size)
139{
140	int result;
141	u64 start_address;
142	u64 size;
143	u64 access_right;
144	u64 max_page_size;
145	u64 flags;
146
147	result = lv1_query_logical_partition_address_region_info(0,
148		&start_address, &size, &access_right, &max_page_size,
149		&flags);
150
151	if (result) {
152		DBG("%s:%d: lv1_query_logical_partition_address_region_info "
153			"failed: %s\n", __func__, __LINE__,
154			ps3_result(result));
155		goto fail;
156	}
157
158	if (max_page_size < PAGE_SHIFT_16M) {
159		DBG("%s:%d: bad max_page_size %llxh\n", __func__, __LINE__,
160			max_page_size);
161		goto fail;
162	}
163
164	BUILD_BUG_ON(CONFIG_PS3_HTAB_SIZE > HTAB_SIZE_MAX);
165	BUILD_BUG_ON(CONFIG_PS3_HTAB_SIZE < HTAB_SIZE_MIN);
166
167	result = lv1_construct_virtual_address_space(CONFIG_PS3_HTAB_SIZE,
168			2, make_page_sizes(PAGE_SHIFT_16M, PAGE_SHIFT_64K),
169			&map.vas_id, &map.htab_size);
170
171	if (result) {
172		DBG("%s:%d: lv1_construct_virtual_address_space failed: %s\n",
173			__func__, __LINE__, ps3_result(result));
174		goto fail;
175	}
176
177	result = lv1_select_virtual_address_space(map.vas_id);
178
179	if (result) {
180		DBG("%s:%d: lv1_select_virtual_address_space failed: %s\n",
181			__func__, __LINE__, ps3_result(result));
182		goto fail;
183	}
184
185	*htab_size = map.htab_size;
186
187	debug_dump_map(&map);
188
189	return;
190
191fail:
192	panic("ps3_mm_vas_create failed");
193}
194
195/**
196 * ps3_mm_vas_destroy -
197 *
198 * called during kexec sequence with MMU off.
199 */
200
201notrace void ps3_mm_vas_destroy(void)
202{
203	int result;
204
205	if (map.vas_id) {
206		result = lv1_select_virtual_address_space(0);
207		result += lv1_destruct_virtual_address_space(map.vas_id);
208
209		if (result) {
210			lv1_panic(0);
211		}
212
213		map.vas_id = 0;
214	}
215}
216
217static int __init ps3_mm_get_repository_highmem(struct mem_region *r)
218{
219	int result;
220
221	/* Assume a single highmem region. */
222
223	result = ps3_repository_read_highmem_info(0, &r->base, &r->size);
224
225	if (result)
226		goto zero_region;
227
228	if (!r->base || !r->size) {
229		result = -1;
230		goto zero_region;
231	}
232
233	r->offset = r->base - map.rm.size;
234
235	DBG("%s:%d: Found high region in repository: %llxh %llxh\n",
236	    __func__, __LINE__, r->base, r->size);
237
238	return 0;
239
240zero_region:
241	DBG("%s:%d: No high region in repository.\n", __func__, __LINE__);
242
243	r->size = r->base = r->offset = 0;
244	return result;
245}
246
247static int ps3_mm_set_repository_highmem(const struct mem_region *r)
248{
249	/* Assume a single highmem region. */
250
251	return r ? ps3_repository_write_highmem_info(0, r->base, r->size) :
252		ps3_repository_write_highmem_info(0, 0, 0);
253}
254
255/**
256 * ps3_mm_region_create - create a memory region in the vas
257 * @r: pointer to a struct mem_region to accept initialized values
258 * @size: requested region size
259 *
260 * This implementation creates the region with the vas large page size.
261 * @size is rounded down to a multiple of the vas large page size.
262 */
263
264static int ps3_mm_region_create(struct mem_region *r, unsigned long size)
265{
266	int result;
267	u64 muid;
268
269	r->size = ALIGN_DOWN(size, 1 << PAGE_SHIFT_16M);
270
271	DBG("%s:%d requested  %lxh\n", __func__, __LINE__, size);
272	DBG("%s:%d actual     %llxh\n", __func__, __LINE__, r->size);
273	DBG("%s:%d difference %llxh (%lluMB)\n", __func__, __LINE__,
274		size - r->size, (size - r->size) / 1024 / 1024);
275
276	if (r->size == 0) {
277		DBG("%s:%d: size == 0\n", __func__, __LINE__);
278		result = -1;
279		goto zero_region;
280	}
281
282	result = lv1_allocate_memory(r->size, PAGE_SHIFT_16M, 0,
283		ALLOCATE_MEMORY_TRY_ALT_UNIT, &r->base, &muid);
284
285	if (result || r->base < map.rm.size) {
286		DBG("%s:%d: lv1_allocate_memory failed: %s\n",
287			__func__, __LINE__, ps3_result(result));
288		goto zero_region;
289	}
290
291	r->destroy = 1;
292	r->offset = r->base - map.rm.size;
293	return result;
294
295zero_region:
296	r->size = r->base = r->offset = 0;
297	return result;
298}
299
300/**
301 * ps3_mm_region_destroy - destroy a memory region
302 * @r: pointer to struct mem_region
303 */
304
305static void ps3_mm_region_destroy(struct mem_region *r)
306{
307	int result;
308
309	if (!r->destroy) {
310		return;
311	}
312
313	if (r->base) {
314		result = lv1_release_memory(r->base);
315
316		if (result) {
317			lv1_panic(0);
318		}
319
320		r->size = r->base = r->offset = 0;
321		map.total = map.rm.size;
322	}
323
324	ps3_mm_set_repository_highmem(NULL);
325}
326
327/*============================================================================*/
328/* dma routines                                                               */
329/*============================================================================*/
330
331/**
332 * dma_sb_lpar_to_bus - Translate an lpar address to ioc mapped bus address.
333 * @r: pointer to dma region structure
334 * @lpar_addr: HV lpar address
335 */
336
337static unsigned long dma_sb_lpar_to_bus(struct ps3_dma_region *r,
338	unsigned long lpar_addr)
339{
340	if (lpar_addr >= map.rm.size)
341		lpar_addr -= map.r1.offset;
342	BUG_ON(lpar_addr < r->offset);
343	BUG_ON(lpar_addr >= r->offset + r->len);
344	return r->bus_addr + lpar_addr - r->offset;
345}
346
347#define dma_dump_region(_a) _dma_dump_region(_a, __func__, __LINE__)
348static void  __maybe_unused _dma_dump_region(const struct ps3_dma_region *r,
349	const char *func, int line)
350{
351	DBG("%s:%d: dev        %llu:%llu\n", func, line, r->dev->bus_id,
352		r->dev->dev_id);
353	DBG("%s:%d: page_size  %u\n", func, line, r->page_size);
354	DBG("%s:%d: bus_addr   %lxh\n", func, line, r->bus_addr);
355	DBG("%s:%d: len        %lxh\n", func, line, r->len);
356	DBG("%s:%d: offset     %lxh\n", func, line, r->offset);
357}
358
359  /**
360 * dma_chunk - A chunk of dma pages mapped by the io controller.
361 * @region - The dma region that owns this chunk.
362 * @lpar_addr: Starting lpar address of the area to map.
363 * @bus_addr: Starting ioc bus address of the area to map.
364 * @len: Length in bytes of the area to map.
365 * @link: A struct list_head used with struct ps3_dma_region.chunk_list, the
366 * list of all chunks owned by the region.
367 *
368 * This implementation uses a very simple dma page manager
369 * based on the dma_chunk structure.  This scheme assumes
370 * that all drivers use very well behaved dma ops.
371 */
372
373struct dma_chunk {
374	struct ps3_dma_region *region;
375	unsigned long lpar_addr;
376	unsigned long bus_addr;
377	unsigned long len;
378	struct list_head link;
379	unsigned int usage_count;
380};
381
382#define dma_dump_chunk(_a) _dma_dump_chunk(_a, __func__, __LINE__)
383static void _dma_dump_chunk (const struct dma_chunk* c, const char* func,
384	int line)
385{
386	DBG("%s:%d: r.dev        %llu:%llu\n", func, line,
387		c->region->dev->bus_id, c->region->dev->dev_id);
388	DBG("%s:%d: r.bus_addr   %lxh\n", func, line, c->region->bus_addr);
389	DBG("%s:%d: r.page_size  %u\n", func, line, c->region->page_size);
390	DBG("%s:%d: r.len        %lxh\n", func, line, c->region->len);
391	DBG("%s:%d: r.offset     %lxh\n", func, line, c->region->offset);
392	DBG("%s:%d: c.lpar_addr  %lxh\n", func, line, c->lpar_addr);
393	DBG("%s:%d: c.bus_addr   %lxh\n", func, line, c->bus_addr);
394	DBG("%s:%d: c.len        %lxh\n", func, line, c->len);
395}
396
397static struct dma_chunk * dma_find_chunk(struct ps3_dma_region *r,
398	unsigned long bus_addr, unsigned long len)
399{
400	struct dma_chunk *c;
401	unsigned long aligned_bus = ALIGN_DOWN(bus_addr, 1 << r->page_size);
402	unsigned long aligned_len = ALIGN(len+bus_addr-aligned_bus,
403					      1 << r->page_size);
404
405	list_for_each_entry(c, &r->chunk_list.head, link) {
406		/* intersection */
407		if (aligned_bus >= c->bus_addr &&
408		    aligned_bus + aligned_len <= c->bus_addr + c->len)
409			return c;
410
411		/* below */
412		if (aligned_bus + aligned_len <= c->bus_addr)
413			continue;
414
415		/* above */
416		if (aligned_bus >= c->bus_addr + c->len)
417			continue;
418
419		/* we don't handle the multi-chunk case for now */
420		dma_dump_chunk(c);
421		BUG();
422	}
423	return NULL;
424}
425
426static struct dma_chunk *dma_find_chunk_lpar(struct ps3_dma_region *r,
427	unsigned long lpar_addr, unsigned long len)
428{
429	struct dma_chunk *c;
430	unsigned long aligned_lpar = ALIGN_DOWN(lpar_addr, 1 << r->page_size);
431	unsigned long aligned_len = ALIGN(len + lpar_addr - aligned_lpar,
432					      1 << r->page_size);
433
434	list_for_each_entry(c, &r->chunk_list.head, link) {
435		/* intersection */
436		if (c->lpar_addr <= aligned_lpar &&
437		    aligned_lpar < c->lpar_addr + c->len) {
438			if (aligned_lpar + aligned_len <= c->lpar_addr + c->len)
439				return c;
440			else {
441				dma_dump_chunk(c);
442				BUG();
443			}
444		}
445		/* below */
446		if (aligned_lpar + aligned_len <= c->lpar_addr) {
447			continue;
448		}
449		/* above */
450		if (c->lpar_addr + c->len <= aligned_lpar) {
451			continue;
452		}
453	}
454	return NULL;
455}
456
457static int dma_sb_free_chunk(struct dma_chunk *c)
458{
459	int result = 0;
460
461	if (c->bus_addr) {
462		result = lv1_unmap_device_dma_region(c->region->dev->bus_id,
463			c->region->dev->dev_id, c->bus_addr, c->len);
464		BUG_ON(result);
465	}
466
467	kfree(c);
468	return result;
469}
470
471static int dma_ioc0_free_chunk(struct dma_chunk *c)
472{
473	int result = 0;
474	int iopage;
475	unsigned long offset;
476	struct ps3_dma_region *r = c->region;
477
478	DBG("%s:start\n", __func__);
479	for (iopage = 0; iopage < (c->len >> r->page_size); iopage++) {
480		offset = (1 << r->page_size) * iopage;
481		/* put INVALID entry */
482		result = lv1_put_iopte(0,
483				       c->bus_addr + offset,
484				       c->lpar_addr + offset,
485				       r->ioid,
486				       0);
487		DBG("%s: bus=%#lx, lpar=%#lx, ioid=%d\n", __func__,
488		    c->bus_addr + offset,
489		    c->lpar_addr + offset,
490		    r->ioid);
491
492		if (result) {
493			DBG("%s:%d: lv1_put_iopte failed: %s\n", __func__,
494			    __LINE__, ps3_result(result));
495		}
496	}
497	kfree(c);
498	DBG("%s:end\n", __func__);
499	return result;
500}
501
502/**
503 * dma_sb_map_pages - Maps dma pages into the io controller bus address space.
504 * @r: Pointer to a struct ps3_dma_region.
505 * @phys_addr: Starting physical address of the area to map.
506 * @len: Length in bytes of the area to map.
507 * c_out: A pointer to receive an allocated struct dma_chunk for this area.
508 *
509 * This is the lowest level dma mapping routine, and is the one that will
510 * make the HV call to add the pages into the io controller address space.
511 */
512
513static int dma_sb_map_pages(struct ps3_dma_region *r, unsigned long phys_addr,
514	    unsigned long len, struct dma_chunk **c_out, u64 iopte_flag)
515{
516	int result;
517	struct dma_chunk *c;
518
519	c = kzalloc(sizeof(*c), GFP_ATOMIC);
520	if (!c) {
521		result = -ENOMEM;
522		goto fail_alloc;
523	}
524
525	c->region = r;
526	c->lpar_addr = ps3_mm_phys_to_lpar(phys_addr);
527	c->bus_addr = dma_sb_lpar_to_bus(r, c->lpar_addr);
528	c->len = len;
529
530	BUG_ON(iopte_flag != 0xf800000000000000UL);
531	result = lv1_map_device_dma_region(c->region->dev->bus_id,
532					   c->region->dev->dev_id, c->lpar_addr,
533					   c->bus_addr, c->len, iopte_flag);
534	if (result) {
535		DBG("%s:%d: lv1_map_device_dma_region failed: %s\n",
536			__func__, __LINE__, ps3_result(result));
537		goto fail_map;
538	}
539
540	list_add(&c->link, &r->chunk_list.head);
541
542	*c_out = c;
543	return 0;
544
545fail_map:
546	kfree(c);
547fail_alloc:
548	*c_out = NULL;
549	DBG(" <- %s:%d\n", __func__, __LINE__);
550	return result;
551}
552
553static int dma_ioc0_map_pages(struct ps3_dma_region *r, unsigned long phys_addr,
554			      unsigned long len, struct dma_chunk **c_out,
555			      u64 iopte_flag)
556{
557	int result;
558	struct dma_chunk *c, *last;
559	int iopage, pages;
560	unsigned long offset;
561
562	DBG(KERN_ERR "%s: phy=%#lx, lpar%#lx, len=%#lx\n", __func__,
563	    phys_addr, ps3_mm_phys_to_lpar(phys_addr), len);
564	c = kzalloc(sizeof(*c), GFP_ATOMIC);
565	if (!c) {
566		result = -ENOMEM;
567		goto fail_alloc;
568	}
569
570	c->region = r;
571	c->len = len;
572	c->lpar_addr = ps3_mm_phys_to_lpar(phys_addr);
573	/* allocate IO address */
574	if (list_empty(&r->chunk_list.head)) {
575		/* first one */
576		c->bus_addr = r->bus_addr;
577	} else {
578		/* derive from last bus addr*/
579		last  = list_entry(r->chunk_list.head.next,
580				   struct dma_chunk, link);
581		c->bus_addr = last->bus_addr + last->len;
582		DBG("%s: last bus=%#lx, len=%#lx\n", __func__,
583		    last->bus_addr, last->len);
584	}
585
586	/* FIXME: check whether length exceeds region size */
587
588	/* build ioptes for the area */
589	pages = len >> r->page_size;
590	DBG("%s: pgsize=%#x len=%#lx pages=%#x iopteflag=%#llx\n", __func__,
591	    r->page_size, r->len, pages, iopte_flag);
592	for (iopage = 0; iopage < pages; iopage++) {
593		offset = (1 << r->page_size) * iopage;
594		result = lv1_put_iopte(0,
595				       c->bus_addr + offset,
596				       c->lpar_addr + offset,
597				       r->ioid,
598				       iopte_flag);
599		if (result) {
600			pr_warn("%s:%d: lv1_put_iopte failed: %s\n",
601				__func__, __LINE__, ps3_result(result));
602			goto fail_map;
603		}
604		DBG("%s: pg=%d bus=%#lx, lpar=%#lx, ioid=%#x\n", __func__,
605		    iopage, c->bus_addr + offset, c->lpar_addr + offset,
606		    r->ioid);
607	}
608
609	/* be sure that last allocated one is inserted at head */
610	list_add(&c->link, &r->chunk_list.head);
611
612	*c_out = c;
613	DBG("%s: end\n", __func__);
614	return 0;
615
616fail_map:
617	for (iopage--; 0 <= iopage; iopage--) {
618		lv1_put_iopte(0,
619			      c->bus_addr + offset,
620			      c->lpar_addr + offset,
621			      r->ioid,
622			      0);
623	}
624	kfree(c);
625fail_alloc:
626	*c_out = NULL;
627	return result;
628}
629
630/**
631 * dma_sb_region_create - Create a device dma region.
632 * @r: Pointer to a struct ps3_dma_region.
633 *
634 * This is the lowest level dma region create routine, and is the one that
635 * will make the HV call to create the region.
636 */
637
638static int dma_sb_region_create(struct ps3_dma_region *r)
639{
640	int result;
641	u64 bus_addr;
642
643	DBG(" -> %s:%d:\n", __func__, __LINE__);
644
645	BUG_ON(!r);
646
647	if (!r->dev->bus_id) {
648		pr_info("%s:%d: %llu:%llu no dma\n", __func__, __LINE__,
649			r->dev->bus_id, r->dev->dev_id);
650		return 0;
651	}
652
653	DBG("%s:%u: len = 0x%lx, page_size = %u, offset = 0x%lx\n", __func__,
654	    __LINE__, r->len, r->page_size, r->offset);
655
656	BUG_ON(!r->len);
657	BUG_ON(!r->page_size);
658	BUG_ON(!r->region_ops);
659
660	INIT_LIST_HEAD(&r->chunk_list.head);
661	spin_lock_init(&r->chunk_list.lock);
662
663	result = lv1_allocate_device_dma_region(r->dev->bus_id, r->dev->dev_id,
664		roundup_pow_of_two(r->len), r->page_size, r->region_type,
665		&bus_addr);
666	r->bus_addr = bus_addr;
667
668	if (result) {
669		DBG("%s:%d: lv1_allocate_device_dma_region failed: %s\n",
670			__func__, __LINE__, ps3_result(result));
671		r->len = r->bus_addr = 0;
672	}
673
674	return result;
675}
676
677static int dma_ioc0_region_create(struct ps3_dma_region *r)
678{
679	int result;
680	u64 bus_addr;
681
682	INIT_LIST_HEAD(&r->chunk_list.head);
683	spin_lock_init(&r->chunk_list.lock);
684
685	result = lv1_allocate_io_segment(0,
686					 r->len,
687					 r->page_size,
688					 &bus_addr);
689	r->bus_addr = bus_addr;
690	if (result) {
691		DBG("%s:%d: lv1_allocate_io_segment failed: %s\n",
692			__func__, __LINE__, ps3_result(result));
693		r->len = r->bus_addr = 0;
694	}
695	DBG("%s: len=%#lx, pg=%d, bus=%#lx\n", __func__,
696	    r->len, r->page_size, r->bus_addr);
697	return result;
698}
699
700/**
701 * dma_region_free - Free a device dma region.
702 * @r: Pointer to a struct ps3_dma_region.
703 *
704 * This is the lowest level dma region free routine, and is the one that
705 * will make the HV call to free the region.
706 */
707
708static int dma_sb_region_free(struct ps3_dma_region *r)
709{
710	int result;
711	struct dma_chunk *c;
712	struct dma_chunk *tmp;
713
714	BUG_ON(!r);
715
716	if (!r->dev->bus_id) {
717		pr_info("%s:%d: %llu:%llu no dma\n", __func__, __LINE__,
718			r->dev->bus_id, r->dev->dev_id);
719		return 0;
720	}
721
722	list_for_each_entry_safe(c, tmp, &r->chunk_list.head, link) {
723		list_del(&c->link);
724		dma_sb_free_chunk(c);
725	}
726
727	result = lv1_free_device_dma_region(r->dev->bus_id, r->dev->dev_id,
728		r->bus_addr);
729
730	if (result)
731		DBG("%s:%d: lv1_free_device_dma_region failed: %s\n",
732			__func__, __LINE__, ps3_result(result));
733
734	r->bus_addr = 0;
735
736	return result;
737}
738
739static int dma_ioc0_region_free(struct ps3_dma_region *r)
740{
741	int result;
742	struct dma_chunk *c, *n;
743
744	DBG("%s: start\n", __func__);
745	list_for_each_entry_safe(c, n, &r->chunk_list.head, link) {
746		list_del(&c->link);
747		dma_ioc0_free_chunk(c);
748	}
749
750	result = lv1_release_io_segment(0, r->bus_addr);
751
752	if (result)
753		DBG("%s:%d: lv1_free_device_dma_region failed: %s\n",
754			__func__, __LINE__, ps3_result(result));
755
756	r->bus_addr = 0;
757	DBG("%s: end\n", __func__);
758
759	return result;
760}
761
762/**
763 * dma_sb_map_area - Map an area of memory into a device dma region.
764 * @r: Pointer to a struct ps3_dma_region.
765 * @virt_addr: Starting virtual address of the area to map.
766 * @len: Length in bytes of the area to map.
767 * @bus_addr: A pointer to return the starting ioc bus address of the area to
768 * map.
769 *
770 * This is the common dma mapping routine.
771 */
772
773static int dma_sb_map_area(struct ps3_dma_region *r, unsigned long virt_addr,
774	   unsigned long len, dma_addr_t *bus_addr,
775	   u64 iopte_flag)
776{
777	int result;
778	unsigned long flags;
779	struct dma_chunk *c;
780	unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr)
781		: virt_addr;
782	unsigned long aligned_phys = ALIGN_DOWN(phys_addr, 1 << r->page_size);
783	unsigned long aligned_len = ALIGN(len + phys_addr - aligned_phys,
784					      1 << r->page_size);
785	*bus_addr = dma_sb_lpar_to_bus(r, ps3_mm_phys_to_lpar(phys_addr));
786
787	if (!USE_DYNAMIC_DMA) {
788		unsigned long lpar_addr = ps3_mm_phys_to_lpar(phys_addr);
789		DBG(" -> %s:%d\n", __func__, __LINE__);
790		DBG("%s:%d virt_addr %lxh\n", __func__, __LINE__,
791			virt_addr);
792		DBG("%s:%d phys_addr %lxh\n", __func__, __LINE__,
793			phys_addr);
794		DBG("%s:%d lpar_addr %lxh\n", __func__, __LINE__,
795			lpar_addr);
796		DBG("%s:%d len       %lxh\n", __func__, __LINE__, len);
797		DBG("%s:%d bus_addr  %llxh (%lxh)\n", __func__, __LINE__,
798		*bus_addr, len);
799	}
800
801	spin_lock_irqsave(&r->chunk_list.lock, flags);
802	c = dma_find_chunk(r, *bus_addr, len);
803
804	if (c) {
805		DBG("%s:%d: reusing mapped chunk", __func__, __LINE__);
806		dma_dump_chunk(c);
807		c->usage_count++;
808		spin_unlock_irqrestore(&r->chunk_list.lock, flags);
809		return 0;
810	}
811
812	result = dma_sb_map_pages(r, aligned_phys, aligned_len, &c, iopte_flag);
813
814	if (result) {
815		*bus_addr = 0;
816		DBG("%s:%d: dma_sb_map_pages failed (%d)\n",
817			__func__, __LINE__, result);
818		spin_unlock_irqrestore(&r->chunk_list.lock, flags);
819		return result;
820	}
821
822	c->usage_count = 1;
823
824	spin_unlock_irqrestore(&r->chunk_list.lock, flags);
825	return result;
826}
827
828static int dma_ioc0_map_area(struct ps3_dma_region *r, unsigned long virt_addr,
829	     unsigned long len, dma_addr_t *bus_addr,
830	     u64 iopte_flag)
831{
832	int result;
833	unsigned long flags;
834	struct dma_chunk *c;
835	unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr)
836		: virt_addr;
837	unsigned long aligned_phys = ALIGN_DOWN(phys_addr, 1 << r->page_size);
838	unsigned long aligned_len = ALIGN(len + phys_addr - aligned_phys,
839					      1 << r->page_size);
840
841	DBG(KERN_ERR "%s: vaddr=%#lx, len=%#lx\n", __func__,
842	    virt_addr, len);
843	DBG(KERN_ERR "%s: ph=%#lx a_ph=%#lx a_l=%#lx\n", __func__,
844	    phys_addr, aligned_phys, aligned_len);
845
846	spin_lock_irqsave(&r->chunk_list.lock, flags);
847	c = dma_find_chunk_lpar(r, ps3_mm_phys_to_lpar(phys_addr), len);
848
849	if (c) {
850		/* FIXME */
851		BUG();
852		*bus_addr = c->bus_addr + phys_addr - aligned_phys;
853		c->usage_count++;
854		spin_unlock_irqrestore(&r->chunk_list.lock, flags);
855		return 0;
856	}
857
858	result = dma_ioc0_map_pages(r, aligned_phys, aligned_len, &c,
859				    iopte_flag);
860
861	if (result) {
862		*bus_addr = 0;
863		DBG("%s:%d: dma_ioc0_map_pages failed (%d)\n",
864			__func__, __LINE__, result);
865		spin_unlock_irqrestore(&r->chunk_list.lock, flags);
866		return result;
867	}
868	*bus_addr = c->bus_addr + phys_addr - aligned_phys;
869	DBG("%s: va=%#lx pa=%#lx a_pa=%#lx bus=%#llx\n", __func__,
870	    virt_addr, phys_addr, aligned_phys, *bus_addr);
871	c->usage_count = 1;
872
873	spin_unlock_irqrestore(&r->chunk_list.lock, flags);
874	return result;
875}
876
877/**
878 * dma_sb_unmap_area - Unmap an area of memory from a device dma region.
879 * @r: Pointer to a struct ps3_dma_region.
880 * @bus_addr: The starting ioc bus address of the area to unmap.
881 * @len: Length in bytes of the area to unmap.
882 *
883 * This is the common dma unmap routine.
884 */
885
886static int dma_sb_unmap_area(struct ps3_dma_region *r, dma_addr_t bus_addr,
887	unsigned long len)
888{
889	unsigned long flags;
890	struct dma_chunk *c;
891
892	spin_lock_irqsave(&r->chunk_list.lock, flags);
893	c = dma_find_chunk(r, bus_addr, len);
894
895	if (!c) {
896		unsigned long aligned_bus = ALIGN_DOWN(bus_addr,
897			1 << r->page_size);
898		unsigned long aligned_len = ALIGN(len + bus_addr
899			- aligned_bus, 1 << r->page_size);
900		DBG("%s:%d: not found: bus_addr %llxh\n",
901			__func__, __LINE__, bus_addr);
902		DBG("%s:%d: not found: len %lxh\n",
903			__func__, __LINE__, len);
904		DBG("%s:%d: not found: aligned_bus %lxh\n",
905			__func__, __LINE__, aligned_bus);
906		DBG("%s:%d: not found: aligned_len %lxh\n",
907			__func__, __LINE__, aligned_len);
908		BUG();
909	}
910
911	c->usage_count--;
912
913	if (!c->usage_count) {
914		list_del(&c->link);
915		dma_sb_free_chunk(c);
916	}
917
918	spin_unlock_irqrestore(&r->chunk_list.lock, flags);
919	return 0;
920}
921
922static int dma_ioc0_unmap_area(struct ps3_dma_region *r,
923			dma_addr_t bus_addr, unsigned long len)
924{
925	unsigned long flags;
926	struct dma_chunk *c;
927
928	DBG("%s: start a=%#llx l=%#lx\n", __func__, bus_addr, len);
929	spin_lock_irqsave(&r->chunk_list.lock, flags);
930	c = dma_find_chunk(r, bus_addr, len);
931
932	if (!c) {
933		unsigned long aligned_bus = ALIGN_DOWN(bus_addr,
934							1 << r->page_size);
935		unsigned long aligned_len = ALIGN(len + bus_addr
936						      - aligned_bus,
937						      1 << r->page_size);
938		DBG("%s:%d: not found: bus_addr %llxh\n",
939		    __func__, __LINE__, bus_addr);
940		DBG("%s:%d: not found: len %lxh\n",
941		    __func__, __LINE__, len);
942		DBG("%s:%d: not found: aligned_bus %lxh\n",
943		    __func__, __LINE__, aligned_bus);
944		DBG("%s:%d: not found: aligned_len %lxh\n",
945		    __func__, __LINE__, aligned_len);
946		BUG();
947	}
948
949	c->usage_count--;
950
951	if (!c->usage_count) {
952		list_del(&c->link);
953		dma_ioc0_free_chunk(c);
954	}
955
956	spin_unlock_irqrestore(&r->chunk_list.lock, flags);
957	DBG("%s: end\n", __func__);
958	return 0;
959}
960
961/**
962 * dma_sb_region_create_linear - Setup a linear dma mapping for a device.
963 * @r: Pointer to a struct ps3_dma_region.
964 *
965 * This routine creates an HV dma region for the device and maps all available
966 * ram into the io controller bus address space.
967 */
968
969static int dma_sb_region_create_linear(struct ps3_dma_region *r)
970{
971	int result;
972	unsigned long virt_addr, len;
973	dma_addr_t tmp;
974
975	if (r->len > 16*1024*1024) {	/* FIXME: need proper fix */
976		/* force 16M dma pages for linear mapping */
977		if (r->page_size != PS3_DMA_16M) {
978			pr_info("%s:%d: forcing 16M pages for linear map\n",
979				__func__, __LINE__);
980			r->page_size = PS3_DMA_16M;
981			r->len = ALIGN(r->len, 1 << r->page_size);
982		}
983	}
984
985	result = dma_sb_region_create(r);
986	BUG_ON(result);
987
988	if (r->offset < map.rm.size) {
989		/* Map (part of) 1st RAM chunk */
990		virt_addr = map.rm.base + r->offset;
991		len = map.rm.size - r->offset;
992		if (len > r->len)
993			len = r->len;
994		result = dma_sb_map_area(r, virt_addr, len, &tmp,
995			CBE_IOPTE_PP_W | CBE_IOPTE_PP_R | CBE_IOPTE_SO_RW |
996			CBE_IOPTE_M);
997		BUG_ON(result);
998	}
999
1000	if (r->offset + r->len > map.rm.size) {
1001		/* Map (part of) 2nd RAM chunk */
1002		virt_addr = map.rm.size;
1003		len = r->len;
1004		if (r->offset >= map.rm.size)
1005			virt_addr += r->offset - map.rm.size;
1006		else
1007			len -= map.rm.size - r->offset;
1008		result = dma_sb_map_area(r, virt_addr, len, &tmp,
1009			CBE_IOPTE_PP_W | CBE_IOPTE_PP_R | CBE_IOPTE_SO_RW |
1010			CBE_IOPTE_M);
1011		BUG_ON(result);
1012	}
1013
1014	return result;
1015}
1016
1017/**
1018 * dma_sb_region_free_linear - Free a linear dma mapping for a device.
1019 * @r: Pointer to a struct ps3_dma_region.
1020 *
1021 * This routine will unmap all mapped areas and free the HV dma region.
1022 */
1023
1024static int dma_sb_region_free_linear(struct ps3_dma_region *r)
1025{
1026	int result;
1027	dma_addr_t bus_addr;
1028	unsigned long len, lpar_addr;
1029
1030	if (r->offset < map.rm.size) {
1031		/* Unmap (part of) 1st RAM chunk */
1032		lpar_addr = map.rm.base + r->offset;
1033		len = map.rm.size - r->offset;
1034		if (len > r->len)
1035			len = r->len;
1036		bus_addr = dma_sb_lpar_to_bus(r, lpar_addr);
1037		result = dma_sb_unmap_area(r, bus_addr, len);
1038		BUG_ON(result);
1039	}
1040
1041	if (r->offset + r->len > map.rm.size) {
1042		/* Unmap (part of) 2nd RAM chunk */
1043		lpar_addr = map.r1.base;
1044		len = r->len;
1045		if (r->offset >= map.rm.size)
1046			lpar_addr += r->offset - map.rm.size;
1047		else
1048			len -= map.rm.size - r->offset;
1049		bus_addr = dma_sb_lpar_to_bus(r, lpar_addr);
1050		result = dma_sb_unmap_area(r, bus_addr, len);
1051		BUG_ON(result);
1052	}
1053
1054	result = dma_sb_region_free(r);
1055	BUG_ON(result);
1056
1057	return result;
1058}
1059
1060/**
1061 * dma_sb_map_area_linear - Map an area of memory into a device dma region.
1062 * @r: Pointer to a struct ps3_dma_region.
1063 * @virt_addr: Starting virtual address of the area to map.
1064 * @len: Length in bytes of the area to map.
1065 * @bus_addr: A pointer to return the starting ioc bus address of the area to
1066 * map.
1067 *
1068 * This routine just returns the corresponding bus address.  Actual mapping
1069 * occurs in dma_region_create_linear().
1070 */
1071
1072static int dma_sb_map_area_linear(struct ps3_dma_region *r,
1073	unsigned long virt_addr, unsigned long len, dma_addr_t *bus_addr,
1074	u64 iopte_flag)
1075{
1076	unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr)
1077		: virt_addr;
1078	*bus_addr = dma_sb_lpar_to_bus(r, ps3_mm_phys_to_lpar(phys_addr));
1079	return 0;
1080}
1081
1082/**
1083 * dma_unmap_area_linear - Unmap an area of memory from a device dma region.
1084 * @r: Pointer to a struct ps3_dma_region.
1085 * @bus_addr: The starting ioc bus address of the area to unmap.
1086 * @len: Length in bytes of the area to unmap.
1087 *
1088 * This routine does nothing.  Unmapping occurs in dma_sb_region_free_linear().
1089 */
1090
1091static int dma_sb_unmap_area_linear(struct ps3_dma_region *r,
1092	dma_addr_t bus_addr, unsigned long len)
1093{
1094	return 0;
1095};
1096
1097static const struct ps3_dma_region_ops ps3_dma_sb_region_ops =  {
1098	.create = dma_sb_region_create,
1099	.free = dma_sb_region_free,
1100	.map = dma_sb_map_area,
1101	.unmap = dma_sb_unmap_area
1102};
1103
1104static const struct ps3_dma_region_ops ps3_dma_sb_region_linear_ops = {
1105	.create = dma_sb_region_create_linear,
1106	.free = dma_sb_region_free_linear,
1107	.map = dma_sb_map_area_linear,
1108	.unmap = dma_sb_unmap_area_linear
1109};
1110
1111static const struct ps3_dma_region_ops ps3_dma_ioc0_region_ops = {
1112	.create = dma_ioc0_region_create,
1113	.free = dma_ioc0_region_free,
1114	.map = dma_ioc0_map_area,
1115	.unmap = dma_ioc0_unmap_area
1116};
1117
1118int ps3_dma_region_init(struct ps3_system_bus_device *dev,
1119	struct ps3_dma_region *r, enum ps3_dma_page_size page_size,
1120	enum ps3_dma_region_type region_type, void *addr, unsigned long len)
1121{
1122	unsigned long lpar_addr;
1123	int result;
1124
1125	lpar_addr = addr ? ps3_mm_phys_to_lpar(__pa(addr)) : 0;
1126
1127	r->dev = dev;
1128	r->page_size = page_size;
1129	r->region_type = region_type;
1130	r->offset = lpar_addr;
1131	if (r->offset >= map.rm.size)
1132		r->offset -= map.r1.offset;
1133	r->len = len ? len : ALIGN(map.total, 1 << r->page_size);
1134
1135	dev->core.dma_mask = &r->dma_mask;
1136
1137	result = dma_set_mask_and_coherent(&dev->core, DMA_BIT_MASK(32));
1138
1139	if (result < 0) {
1140		dev_err(&dev->core, "%s:%d: dma_set_mask_and_coherent failed: %d\n",
1141			__func__, __LINE__, result);
1142		return result;
1143	}
1144
1145	switch (dev->dev_type) {
1146	case PS3_DEVICE_TYPE_SB:
1147		r->region_ops =  (USE_DYNAMIC_DMA)
1148			? &ps3_dma_sb_region_ops
1149			: &ps3_dma_sb_region_linear_ops;
1150		break;
1151	case PS3_DEVICE_TYPE_IOC0:
1152		r->region_ops = &ps3_dma_ioc0_region_ops;
1153		break;
1154	default:
1155		BUG();
1156		return -EINVAL;
1157	}
1158	return 0;
1159}
1160EXPORT_SYMBOL(ps3_dma_region_init);
1161
1162int ps3_dma_region_create(struct ps3_dma_region *r)
1163{
1164	BUG_ON(!r);
1165	BUG_ON(!r->region_ops);
1166	BUG_ON(!r->region_ops->create);
1167	return r->region_ops->create(r);
1168}
1169EXPORT_SYMBOL(ps3_dma_region_create);
1170
1171int ps3_dma_region_free(struct ps3_dma_region *r)
1172{
1173	BUG_ON(!r);
1174	BUG_ON(!r->region_ops);
1175	BUG_ON(!r->region_ops->free);
1176	return r->region_ops->free(r);
1177}
1178EXPORT_SYMBOL(ps3_dma_region_free);
1179
1180int ps3_dma_map(struct ps3_dma_region *r, unsigned long virt_addr,
1181	unsigned long len, dma_addr_t *bus_addr,
1182	u64 iopte_flag)
1183{
1184	return r->region_ops->map(r, virt_addr, len, bus_addr, iopte_flag);
1185}
1186
1187int ps3_dma_unmap(struct ps3_dma_region *r, dma_addr_t bus_addr,
1188	unsigned long len)
1189{
1190	return r->region_ops->unmap(r, bus_addr, len);
1191}
1192
1193/*============================================================================*/
1194/* system startup routines                                                    */
1195/*============================================================================*/
1196
1197/**
1198 * ps3_mm_init - initialize the address space state variables
1199 */
1200
1201void __init ps3_mm_init(void)
1202{
1203	int result;
1204
1205	DBG(" -> %s:%d\n", __func__, __LINE__);
1206
1207	result = ps3_repository_read_mm_info(&map.rm.base, &map.rm.size,
1208		&map.total);
1209
1210	if (result)
1211		panic("ps3_repository_read_mm_info() failed");
1212
1213	map.rm.offset = map.rm.base;
1214	map.vas_id = map.htab_size = 0;
1215
1216	/* this implementation assumes map.rm.base is zero */
1217
1218	BUG_ON(map.rm.base);
1219	BUG_ON(!map.rm.size);
1220
1221	/* Check if we got the highmem region from an earlier boot step */
1222
1223	if (ps3_mm_get_repository_highmem(&map.r1)) {
1224		result = ps3_mm_region_create(&map.r1, map.total - map.rm.size);
1225
1226		if (!result)
1227			ps3_mm_set_repository_highmem(&map.r1);
1228	}
1229
1230	/* correct map.total for the real total amount of memory we use */
1231	map.total = map.rm.size + map.r1.size;
1232
1233	if (!map.r1.size) {
1234		DBG("%s:%d: No highmem region found\n", __func__, __LINE__);
1235	} else {
1236		DBG("%s:%d: Adding highmem region: %llxh %llxh\n",
1237			__func__, __LINE__, map.rm.size,
1238			map.total - map.rm.size);
1239		memblock_add(map.rm.size, map.total - map.rm.size);
1240	}
1241
1242	DBG(" <- %s:%d\n", __func__, __LINE__);
1243}
1244
1245/**
1246 * ps3_mm_shutdown - final cleanup of address space
1247 *
1248 * called during kexec sequence with MMU off.
1249 */
1250
1251notrace void ps3_mm_shutdown(void)
1252{
1253	ps3_mm_region_destroy(&map.r1);
1254}
1255