1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * In-Memory Collection (IMC) Performance Monitor counter support.
4 *
5 * Copyright (C) 2017 Madhavan Srinivasan, IBM Corporation.
6 *           (C) 2017 Anju T Sudhakar, IBM Corporation.
7 *           (C) 2017 Hemant K Shaw, IBM Corporation.
8 */
9#include <linux/of.h>
10#include <linux/perf_event.h>
11#include <linux/slab.h>
12#include <asm/opal.h>
13#include <asm/imc-pmu.h>
14#include <asm/cputhreads.h>
15#include <asm/smp.h>
16#include <linux/string.h>
17#include <linux/spinlock.h>
18
19/* Nest IMC data structures and variables */
20
21/*
22 * Used to avoid races in counting the nest-pmu units during hotplug
23 * register and unregister
24 */
25static DEFINE_MUTEX(nest_init_lock);
26static DEFINE_PER_CPU(struct imc_pmu_ref *, local_nest_imc_refc);
27static struct imc_pmu **per_nest_pmu_arr;
28static cpumask_t nest_imc_cpumask;
29static struct imc_pmu_ref *nest_imc_refc;
30static int nest_pmus;
31
32/* Core IMC data structures and variables */
33
34static cpumask_t core_imc_cpumask;
35static struct imc_pmu_ref *core_imc_refc;
36static struct imc_pmu *core_imc_pmu;
37
38/* Thread IMC data structures and variables */
39
40static DEFINE_PER_CPU(u64 *, thread_imc_mem);
41static struct imc_pmu *thread_imc_pmu;
42static int thread_imc_mem_size;
43
44/* Trace IMC data structures */
45static DEFINE_PER_CPU(u64 *, trace_imc_mem);
46static struct imc_pmu_ref *trace_imc_refc;
47static int trace_imc_mem_size;
48
49/*
50 * Global data structure used to avoid races between thread,
51 * core and trace-imc
52 */
53static struct imc_pmu_ref imc_global_refc = {
54	.lock = __SPIN_LOCK_UNLOCKED(imc_global_refc.lock),
55	.id = 0,
56	.refc = 0,
57};
58
59static struct imc_pmu *imc_event_to_pmu(struct perf_event *event)
60{
61	return container_of(event->pmu, struct imc_pmu, pmu);
62}
63
64PMU_FORMAT_ATTR(event, "config:0-61");
65PMU_FORMAT_ATTR(offset, "config:0-31");
66PMU_FORMAT_ATTR(rvalue, "config:32");
67PMU_FORMAT_ATTR(mode, "config:33-40");
68static struct attribute *imc_format_attrs[] = {
69	&format_attr_event.attr,
70	&format_attr_offset.attr,
71	&format_attr_rvalue.attr,
72	&format_attr_mode.attr,
73	NULL,
74};
75
76static const struct attribute_group imc_format_group = {
77	.name = "format",
78	.attrs = imc_format_attrs,
79};
80
81/* Format attribute for imc trace-mode */
82PMU_FORMAT_ATTR(cpmc_reserved, "config:0-19");
83PMU_FORMAT_ATTR(cpmc_event, "config:20-27");
84PMU_FORMAT_ATTR(cpmc_samplesel, "config:28-29");
85PMU_FORMAT_ATTR(cpmc_load, "config:30-61");
86static struct attribute *trace_imc_format_attrs[] = {
87	&format_attr_event.attr,
88	&format_attr_cpmc_reserved.attr,
89	&format_attr_cpmc_event.attr,
90	&format_attr_cpmc_samplesel.attr,
91	&format_attr_cpmc_load.attr,
92	NULL,
93};
94
95static const struct attribute_group trace_imc_format_group = {
96.name = "format",
97.attrs = trace_imc_format_attrs,
98};
99
100/* Get the cpumask printed to a buffer "buf" */
101static ssize_t imc_pmu_cpumask_get_attr(struct device *dev,
102					struct device_attribute *attr,
103					char *buf)
104{
105	struct pmu *pmu = dev_get_drvdata(dev);
106	struct imc_pmu *imc_pmu = container_of(pmu, struct imc_pmu, pmu);
107	cpumask_t *active_mask;
108
109	switch(imc_pmu->domain){
110	case IMC_DOMAIN_NEST:
111		active_mask = &nest_imc_cpumask;
112		break;
113	case IMC_DOMAIN_CORE:
114		active_mask = &core_imc_cpumask;
115		break;
116	default:
117		return 0;
118	}
119
120	return cpumap_print_to_pagebuf(true, buf, active_mask);
121}
122
123static DEVICE_ATTR(cpumask, S_IRUGO, imc_pmu_cpumask_get_attr, NULL);
124
125static struct attribute *imc_pmu_cpumask_attrs[] = {
126	&dev_attr_cpumask.attr,
127	NULL,
128};
129
130static const struct attribute_group imc_pmu_cpumask_attr_group = {
131	.attrs = imc_pmu_cpumask_attrs,
132};
133
134/* device_str_attr_create : Populate event "name" and string "str" in attribute */
135static struct attribute *device_str_attr_create(const char *name, const char *str)
136{
137	struct perf_pmu_events_attr *attr;
138
139	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
140	if (!attr)
141		return NULL;
142	sysfs_attr_init(&attr->attr.attr);
143
144	attr->event_str = str;
145	attr->attr.attr.name = name;
146	attr->attr.attr.mode = 0444;
147	attr->attr.show = perf_event_sysfs_show;
148
149	return &attr->attr.attr;
150}
151
152static int imc_parse_event(struct device_node *np, const char *scale,
153				  const char *unit, const char *prefix,
154				  u32 base, struct imc_events *event)
155{
156	const char *s;
157	u32 reg;
158
159	if (of_property_read_u32(np, "reg", &reg))
160		goto error;
161	/* Add the base_reg value to the "reg" */
162	event->value = base + reg;
163
164	if (of_property_read_string(np, "event-name", &s))
165		goto error;
166
167	event->name = kasprintf(GFP_KERNEL, "%s%s", prefix, s);
168	if (!event->name)
169		goto error;
170
171	if (of_property_read_string(np, "scale", &s))
172		s = scale;
173
174	if (s) {
175		event->scale = kstrdup(s, GFP_KERNEL);
176		if (!event->scale)
177			goto error;
178	}
179
180	if (of_property_read_string(np, "unit", &s))
181		s = unit;
182
183	if (s) {
184		event->unit = kstrdup(s, GFP_KERNEL);
185		if (!event->unit)
186			goto error;
187	}
188
189	return 0;
190error:
191	kfree(event->unit);
192	kfree(event->scale);
193	kfree(event->name);
194	return -EINVAL;
195}
196
197/*
198 * imc_free_events: Function to cleanup the events list, having
199 * 		    "nr_entries".
200 */
201static void imc_free_events(struct imc_events *events, int nr_entries)
202{
203	int i;
204
205	/* Nothing to clean, return */
206	if (!events)
207		return;
208	for (i = 0; i < nr_entries; i++) {
209		kfree(events[i].unit);
210		kfree(events[i].scale);
211		kfree(events[i].name);
212	}
213
214	kfree(events);
215}
216
217/*
218 * update_events_in_group: Update the "events" information in an attr_group
219 *                         and assign the attr_group to the pmu "pmu".
220 */
221static int update_events_in_group(struct device_node *node, struct imc_pmu *pmu)
222{
223	struct attribute_group *attr_group;
224	struct attribute **attrs, *dev_str;
225	struct device_node *np, *pmu_events;
226	u32 handle, base_reg;
227	int i = 0, j = 0, ct, ret;
228	const char *prefix, *g_scale, *g_unit;
229	const char *ev_val_str, *ev_scale_str, *ev_unit_str;
230
231	if (!of_property_read_u32(node, "events", &handle))
232		pmu_events = of_find_node_by_phandle(handle);
233	else
234		return 0;
235
236	/* Did not find any node with a given phandle */
237	if (!pmu_events)
238		return 0;
239
240	/* Get a count of number of child nodes */
241	ct = of_get_child_count(pmu_events);
242
243	/* Get the event prefix */
244	if (of_property_read_string(node, "events-prefix", &prefix)) {
245		of_node_put(pmu_events);
246		return 0;
247	}
248
249	/* Get a global unit and scale data if available */
250	if (of_property_read_string(node, "scale", &g_scale))
251		g_scale = NULL;
252
253	if (of_property_read_string(node, "unit", &g_unit))
254		g_unit = NULL;
255
256	/* "reg" property gives out the base offset of the counters data */
257	of_property_read_u32(node, "reg", &base_reg);
258
259	/* Allocate memory for the events */
260	pmu->events = kcalloc(ct, sizeof(struct imc_events), GFP_KERNEL);
261	if (!pmu->events) {
262		of_node_put(pmu_events);
263		return -ENOMEM;
264	}
265
266	ct = 0;
267	/* Parse the events and update the struct */
268	for_each_child_of_node(pmu_events, np) {
269		ret = imc_parse_event(np, g_scale, g_unit, prefix, base_reg, &pmu->events[ct]);
270		if (!ret)
271			ct++;
272	}
273
274	of_node_put(pmu_events);
275
276	/* Allocate memory for attribute group */
277	attr_group = kzalloc(sizeof(*attr_group), GFP_KERNEL);
278	if (!attr_group) {
279		imc_free_events(pmu->events, ct);
280		return -ENOMEM;
281	}
282
283	/*
284	 * Allocate memory for attributes.
285	 * Since we have count of events for this pmu, we also allocate
286	 * memory for the scale and unit attribute for now.
287	 * "ct" has the total event structs added from the events-parent node.
288	 * So allocate three times the "ct" (this includes event, event_scale and
289	 * event_unit).
290	 */
291	attrs = kcalloc(((ct * 3) + 1), sizeof(struct attribute *), GFP_KERNEL);
292	if (!attrs) {
293		kfree(attr_group);
294		imc_free_events(pmu->events, ct);
295		return -ENOMEM;
296	}
297
298	attr_group->name = "events";
299	attr_group->attrs = attrs;
300	do {
301		ev_val_str = kasprintf(GFP_KERNEL, "event=0x%x", pmu->events[i].value);
302		if (!ev_val_str)
303			continue;
304		dev_str = device_str_attr_create(pmu->events[i].name, ev_val_str);
305		if (!dev_str)
306			continue;
307
308		attrs[j++] = dev_str;
309		if (pmu->events[i].scale) {
310			ev_scale_str = kasprintf(GFP_KERNEL, "%s.scale", pmu->events[i].name);
311			if (!ev_scale_str)
312				continue;
313			dev_str = device_str_attr_create(ev_scale_str, pmu->events[i].scale);
314			if (!dev_str)
315				continue;
316
317			attrs[j++] = dev_str;
318		}
319
320		if (pmu->events[i].unit) {
321			ev_unit_str = kasprintf(GFP_KERNEL, "%s.unit", pmu->events[i].name);
322			if (!ev_unit_str)
323				continue;
324			dev_str = device_str_attr_create(ev_unit_str, pmu->events[i].unit);
325			if (!dev_str)
326				continue;
327
328			attrs[j++] = dev_str;
329		}
330	} while (++i < ct);
331
332	/* Save the event attribute */
333	pmu->attr_groups[IMC_EVENT_ATTR] = attr_group;
334
335	return 0;
336}
337
338/* get_nest_pmu_ref: Return the imc_pmu_ref struct for the given node */
339static struct imc_pmu_ref *get_nest_pmu_ref(int cpu)
340{
341	return per_cpu(local_nest_imc_refc, cpu);
342}
343
344static void nest_change_cpu_context(int old_cpu, int new_cpu)
345{
346	struct imc_pmu **pn = per_nest_pmu_arr;
347
348	if (old_cpu < 0 || new_cpu < 0)
349		return;
350
351	while (*pn) {
352		perf_pmu_migrate_context(&(*pn)->pmu, old_cpu, new_cpu);
353		pn++;
354	}
355}
356
357static int ppc_nest_imc_cpu_offline(unsigned int cpu)
358{
359	int nid, target = -1;
360	const struct cpumask *l_cpumask;
361	struct imc_pmu_ref *ref;
362
363	/*
364	 * Check in the designated list for this cpu. Dont bother
365	 * if not one of them.
366	 */
367	if (!cpumask_test_and_clear_cpu(cpu, &nest_imc_cpumask))
368		return 0;
369
370	/*
371	 * Check whether nest_imc is registered. We could end up here if the
372	 * cpuhotplug callback registration fails. i.e, callback invokes the
373	 * offline path for all successfully registered nodes. At this stage,
374	 * nest_imc pmu will not be registered and we should return here.
375	 *
376	 * We return with a zero since this is not an offline failure. And
377	 * cpuhp_setup_state() returns the actual failure reason to the caller,
378	 * which in turn will call the cleanup routine.
379	 */
380	if (!nest_pmus)
381		return 0;
382
383	/*
384	 * Now that this cpu is one of the designated,
385	 * find a next cpu a) which is online and b) in same chip.
386	 */
387	nid = cpu_to_node(cpu);
388	l_cpumask = cpumask_of_node(nid);
389	target = cpumask_last(l_cpumask);
390
391	/*
392	 * If this(target) is the last cpu in the cpumask for this chip,
393	 * check for any possible online cpu in the chip.
394	 */
395	if (unlikely(target == cpu))
396		target = cpumask_any_but(l_cpumask, cpu);
397
398	/*
399	 * Update the cpumask with the target cpu and
400	 * migrate the context if needed
401	 */
402	if (target >= 0 && target < nr_cpu_ids) {
403		cpumask_set_cpu(target, &nest_imc_cpumask);
404		nest_change_cpu_context(cpu, target);
405	} else {
406		opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
407				       get_hard_smp_processor_id(cpu));
408		/*
409		 * If this is the last cpu in this chip then, skip the reference
410		 * count lock and make the reference count on this chip zero.
411		 */
412		ref = get_nest_pmu_ref(cpu);
413		if (!ref)
414			return -EINVAL;
415
416		ref->refc = 0;
417	}
418	return 0;
419}
420
421static int ppc_nest_imc_cpu_online(unsigned int cpu)
422{
423	const struct cpumask *l_cpumask;
424	static struct cpumask tmp_mask;
425	int res;
426
427	/* Get the cpumask of this node */
428	l_cpumask = cpumask_of_node(cpu_to_node(cpu));
429
430	/*
431	 * If this is not the first online CPU on this node, then
432	 * just return.
433	 */
434	if (cpumask_and(&tmp_mask, l_cpumask, &nest_imc_cpumask))
435		return 0;
436
437	/*
438	 * If this is the first online cpu on this node
439	 * disable the nest counters by making an OPAL call.
440	 */
441	res = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
442				     get_hard_smp_processor_id(cpu));
443	if (res)
444		return res;
445
446	/* Make this CPU the designated target for counter collection */
447	cpumask_set_cpu(cpu, &nest_imc_cpumask);
448	return 0;
449}
450
451static int nest_pmu_cpumask_init(void)
452{
453	return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE,
454				 "perf/powerpc/imc:online",
455				 ppc_nest_imc_cpu_online,
456				 ppc_nest_imc_cpu_offline);
457}
458
459static void nest_imc_counters_release(struct perf_event *event)
460{
461	int rc, node_id;
462	struct imc_pmu_ref *ref;
463
464	if (event->cpu < 0)
465		return;
466
467	node_id = cpu_to_node(event->cpu);
468
469	/*
470	 * See if we need to disable the nest PMU.
471	 * If no events are currently in use, then we have to take a
472	 * lock to ensure that we don't race with another task doing
473	 * enable or disable the nest counters.
474	 */
475	ref = get_nest_pmu_ref(event->cpu);
476	if (!ref)
477		return;
478
479	/* Take the lock for this node and then decrement the reference count */
480	spin_lock(&ref->lock);
481	if (ref->refc == 0) {
482		/*
483		 * The scenario where this is true is, when perf session is
484		 * started, followed by offlining of all cpus in a given node.
485		 *
486		 * In the cpuhotplug offline path, ppc_nest_imc_cpu_offline()
487		 * function set the ref->count to zero, if the cpu which is
488		 * about to offline is the last cpu in a given node and make
489		 * an OPAL call to disable the engine in that node.
490		 *
491		 */
492		spin_unlock(&ref->lock);
493		return;
494	}
495	ref->refc--;
496	if (ref->refc == 0) {
497		rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
498					    get_hard_smp_processor_id(event->cpu));
499		if (rc) {
500			spin_unlock(&ref->lock);
501			pr_err("nest-imc: Unable to stop the counters for core %d\n", node_id);
502			return;
503		}
504	} else if (ref->refc < 0) {
505		WARN(1, "nest-imc: Invalid event reference count\n");
506		ref->refc = 0;
507	}
508	spin_unlock(&ref->lock);
509}
510
511static int nest_imc_event_init(struct perf_event *event)
512{
513	int chip_id, rc, node_id;
514	u32 l_config, config = event->attr.config;
515	struct imc_mem_info *pcni;
516	struct imc_pmu *pmu;
517	struct imc_pmu_ref *ref;
518	bool flag = false;
519
520	if (event->attr.type != event->pmu->type)
521		return -ENOENT;
522
523	/* Sampling not supported */
524	if (event->hw.sample_period)
525		return -EINVAL;
526
527	if (event->cpu < 0)
528		return -EINVAL;
529
530	pmu = imc_event_to_pmu(event);
531
532	/* Sanity check for config (event offset) */
533	if ((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)
534		return -EINVAL;
535
536	/*
537	 * Nest HW counter memory resides in a per-chip reserve-memory (HOMER).
538	 * Get the base memory address for this cpu.
539	 */
540	chip_id = cpu_to_chip_id(event->cpu);
541
542	/* Return, if chip_id is not valid */
543	if (chip_id < 0)
544		return -ENODEV;
545
546	pcni = pmu->mem_info;
547	do {
548		if (pcni->id == chip_id) {
549			flag = true;
550			break;
551		}
552		pcni++;
553	} while (pcni->vbase);
554
555	if (!flag)
556		return -ENODEV;
557
558	/*
559	 * Add the event offset to the base address.
560	 */
561	l_config = config & IMC_EVENT_OFFSET_MASK;
562	event->hw.event_base = (u64)pcni->vbase + l_config;
563	node_id = cpu_to_node(event->cpu);
564
565	/*
566	 * Get the imc_pmu_ref struct for this node.
567	 * Take the lock and then increment the count of nest pmu events inited.
568	 */
569	ref = get_nest_pmu_ref(event->cpu);
570	if (!ref)
571		return -EINVAL;
572
573	spin_lock(&ref->lock);
574	if (ref->refc == 0) {
575		rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_NEST,
576					     get_hard_smp_processor_id(event->cpu));
577		if (rc) {
578			spin_unlock(&ref->lock);
579			pr_err("nest-imc: Unable to start the counters for node %d\n",
580									node_id);
581			return rc;
582		}
583	}
584	++ref->refc;
585	spin_unlock(&ref->lock);
586
587	event->destroy = nest_imc_counters_release;
588	return 0;
589}
590
591/*
592 * core_imc_mem_init : Initializes memory for the current core.
593 *
594 * Uses alloc_pages_node() and uses the returned address as an argument to
595 * an opal call to configure the pdbar. The address sent as an argument is
596 * converted to physical address before the opal call is made. This is the
597 * base address at which the core imc counters are populated.
598 */
599static int core_imc_mem_init(int cpu, int size)
600{
601	int nid, rc = 0, core_id = (cpu / threads_per_core);
602	struct imc_mem_info *mem_info;
603	struct page *page;
604
605	/*
606	 * alloc_pages_node() will allocate memory for core in the
607	 * local node only.
608	 */
609	nid = cpu_to_node(cpu);
610	mem_info = &core_imc_pmu->mem_info[core_id];
611	mem_info->id = core_id;
612
613	/* We need only vbase for core counters */
614	page = alloc_pages_node(nid,
615				GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
616				__GFP_NOWARN, get_order(size));
617	if (!page)
618		return -ENOMEM;
619	mem_info->vbase = page_address(page);
620
621	core_imc_refc[core_id].id = core_id;
622	spin_lock_init(&core_imc_refc[core_id].lock);
623
624	rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_CORE,
625				__pa((void *)mem_info->vbase),
626				get_hard_smp_processor_id(cpu));
627	if (rc) {
628		free_pages((u64)mem_info->vbase, get_order(size));
629		mem_info->vbase = NULL;
630	}
631
632	return rc;
633}
634
635static bool is_core_imc_mem_inited(int cpu)
636{
637	struct imc_mem_info *mem_info;
638	int core_id = (cpu / threads_per_core);
639
640	mem_info = &core_imc_pmu->mem_info[core_id];
641	if (!mem_info->vbase)
642		return false;
643
644	return true;
645}
646
647static int ppc_core_imc_cpu_online(unsigned int cpu)
648{
649	const struct cpumask *l_cpumask;
650	static struct cpumask tmp_mask;
651	int ret = 0;
652
653	/* Get the cpumask for this core */
654	l_cpumask = cpu_sibling_mask(cpu);
655
656	/* If a cpu for this core is already set, then, don't do anything */
657	if (cpumask_and(&tmp_mask, l_cpumask, &core_imc_cpumask))
658		return 0;
659
660	if (!is_core_imc_mem_inited(cpu)) {
661		ret = core_imc_mem_init(cpu, core_imc_pmu->counter_mem_size);
662		if (ret) {
663			pr_info("core_imc memory allocation for cpu %d failed\n", cpu);
664			return ret;
665		}
666	}
667
668	/* set the cpu in the mask */
669	cpumask_set_cpu(cpu, &core_imc_cpumask);
670	return 0;
671}
672
673static int ppc_core_imc_cpu_offline(unsigned int cpu)
674{
675	unsigned int core_id;
676	int ncpu;
677	struct imc_pmu_ref *ref;
678
679	/*
680	 * clear this cpu out of the mask, if not present in the mask,
681	 * don't bother doing anything.
682	 */
683	if (!cpumask_test_and_clear_cpu(cpu, &core_imc_cpumask))
684		return 0;
685
686	/*
687	 * Check whether core_imc is registered. We could end up here
688	 * if the cpuhotplug callback registration fails. i.e, callback
689	 * invokes the offline path for all successfully registered cpus.
690	 * At this stage, core_imc pmu will not be registered and we
691	 * should return here.
692	 *
693	 * We return with a zero since this is not an offline failure.
694	 * And cpuhp_setup_state() returns the actual failure reason
695	 * to the caller, which inturn will call the cleanup routine.
696	 */
697	if (!core_imc_pmu->pmu.event_init)
698		return 0;
699
700	/* Find any online cpu in that core except the current "cpu" */
701	ncpu = cpumask_last(cpu_sibling_mask(cpu));
702
703	if (unlikely(ncpu == cpu))
704		ncpu = cpumask_any_but(cpu_sibling_mask(cpu), cpu);
705
706	if (ncpu >= 0 && ncpu < nr_cpu_ids) {
707		cpumask_set_cpu(ncpu, &core_imc_cpumask);
708		perf_pmu_migrate_context(&core_imc_pmu->pmu, cpu, ncpu);
709	} else {
710		/*
711		 * If this is the last cpu in this core then skip taking reference
712		 * count lock for this core and directly zero "refc" for this core.
713		 */
714		opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
715				       get_hard_smp_processor_id(cpu));
716		core_id = cpu / threads_per_core;
717		ref = &core_imc_refc[core_id];
718		if (!ref)
719			return -EINVAL;
720
721		ref->refc = 0;
722		/*
723		 * Reduce the global reference count, if this is the
724		 * last cpu in this core and core-imc event running
725		 * in this cpu.
726		 */
727		spin_lock(&imc_global_refc.lock);
728		if (imc_global_refc.id == IMC_DOMAIN_CORE)
729			imc_global_refc.refc--;
730
731		spin_unlock(&imc_global_refc.lock);
732	}
733	return 0;
734}
735
736static int core_imc_pmu_cpumask_init(void)
737{
738	return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE,
739				 "perf/powerpc/imc_core:online",
740				 ppc_core_imc_cpu_online,
741				 ppc_core_imc_cpu_offline);
742}
743
744static void reset_global_refc(struct perf_event *event)
745{
746		spin_lock(&imc_global_refc.lock);
747		imc_global_refc.refc--;
748
749		/*
750		 * If no other thread is running any
751		 * event for this domain(thread/core/trace),
752		 * set the global id to zero.
753		 */
754		if (imc_global_refc.refc <= 0) {
755			imc_global_refc.refc = 0;
756			imc_global_refc.id = 0;
757		}
758		spin_unlock(&imc_global_refc.lock);
759}
760
761static void core_imc_counters_release(struct perf_event *event)
762{
763	int rc, core_id;
764	struct imc_pmu_ref *ref;
765
766	if (event->cpu < 0)
767		return;
768	/*
769	 * See if we need to disable the IMC PMU.
770	 * If no events are currently in use, then we have to take a
771	 * lock to ensure that we don't race with another task doing
772	 * enable or disable the core counters.
773	 */
774	core_id = event->cpu / threads_per_core;
775
776	/* Take the lock and decrement the refernce count for this core */
777	ref = &core_imc_refc[core_id];
778	if (!ref)
779		return;
780
781	spin_lock(&ref->lock);
782	if (ref->refc == 0) {
783		/*
784		 * The scenario where this is true is, when perf session is
785		 * started, followed by offlining of all cpus in a given core.
786		 *
787		 * In the cpuhotplug offline path, ppc_core_imc_cpu_offline()
788		 * function set the ref->count to zero, if the cpu which is
789		 * about to offline is the last cpu in a given core and make
790		 * an OPAL call to disable the engine in that core.
791		 *
792		 */
793		spin_unlock(&ref->lock);
794		return;
795	}
796	ref->refc--;
797	if (ref->refc == 0) {
798		rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
799					    get_hard_smp_processor_id(event->cpu));
800		if (rc) {
801			spin_unlock(&ref->lock);
802			pr_err("IMC: Unable to stop the counters for core %d\n", core_id);
803			return;
804		}
805	} else if (ref->refc < 0) {
806		WARN(1, "core-imc: Invalid event reference count\n");
807		ref->refc = 0;
808	}
809	spin_unlock(&ref->lock);
810
811	reset_global_refc(event);
812}
813
814static int core_imc_event_init(struct perf_event *event)
815{
816	int core_id, rc;
817	u64 config = event->attr.config;
818	struct imc_mem_info *pcmi;
819	struct imc_pmu *pmu;
820	struct imc_pmu_ref *ref;
821
822	if (event->attr.type != event->pmu->type)
823		return -ENOENT;
824
825	/* Sampling not supported */
826	if (event->hw.sample_period)
827		return -EINVAL;
828
829	if (event->cpu < 0)
830		return -EINVAL;
831
832	event->hw.idx = -1;
833	pmu = imc_event_to_pmu(event);
834
835	/* Sanity check for config (event offset) */
836	if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
837		return -EINVAL;
838
839	if (!is_core_imc_mem_inited(event->cpu))
840		return -ENODEV;
841
842	core_id = event->cpu / threads_per_core;
843	pcmi = &core_imc_pmu->mem_info[core_id];
844	if ((!pcmi->vbase))
845		return -ENODEV;
846
847	ref = &core_imc_refc[core_id];
848	if (!ref)
849		return -EINVAL;
850
851	/*
852	 * Core pmu units are enabled only when it is used.
853	 * See if this is triggered for the first time.
854	 * If yes, take the lock and enable the core counters.
855	 * If not, just increment the count in core_imc_refc struct.
856	 */
857	spin_lock(&ref->lock);
858	if (ref->refc == 0) {
859		rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
860					     get_hard_smp_processor_id(event->cpu));
861		if (rc) {
862			spin_unlock(&ref->lock);
863			pr_err("core-imc: Unable to start the counters for core %d\n",
864									core_id);
865			return rc;
866		}
867	}
868	++ref->refc;
869	spin_unlock(&ref->lock);
870
871	/*
872	 * Since the system can run either in accumulation or trace-mode
873	 * of IMC at a time, core-imc events are allowed only if no other
874	 * trace/thread imc events are enabled/monitored.
875	 *
876	 * Take the global lock, and check the refc.id
877	 * to know whether any other trace/thread imc
878	 * events are running.
879	 */
880	spin_lock(&imc_global_refc.lock);
881	if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_CORE) {
882		/*
883		 * No other trace/thread imc events are running in
884		 * the system, so set the refc.id to core-imc.
885		 */
886		imc_global_refc.id = IMC_DOMAIN_CORE;
887		imc_global_refc.refc++;
888	} else {
889		spin_unlock(&imc_global_refc.lock);
890		return -EBUSY;
891	}
892	spin_unlock(&imc_global_refc.lock);
893
894	event->hw.event_base = (u64)pcmi->vbase + (config & IMC_EVENT_OFFSET_MASK);
895	event->destroy = core_imc_counters_release;
896	return 0;
897}
898
899/*
900 * Allocates a page of memory for each of the online cpus, and load
901 * LDBAR with 0.
902 * The physical base address of the page allocated for a cpu will be
903 * written to the LDBAR for that cpu, when the thread-imc event
904 * is added.
905 *
906 * LDBAR Register Layout:
907 *
908 *  0          4         8         12        16        20        24        28
909 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
910 *   | |       [   ]    [                   Counter Address [8:50]
911 *   | * Mode    |
912 *   |           * PB Scope
913 *   * Enable/Disable
914 *
915 *  32        36        40        44        48        52        56        60
916 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
917 *           Counter Address [8:50]              ]
918 *
919 */
920static int thread_imc_mem_alloc(int cpu_id, int size)
921{
922	u64 *local_mem = per_cpu(thread_imc_mem, cpu_id);
923	int nid = cpu_to_node(cpu_id);
924
925	if (!local_mem) {
926		struct page *page;
927		/*
928		 * This case could happen only once at start, since we dont
929		 * free the memory in cpu offline path.
930		 */
931		page = alloc_pages_node(nid,
932				  GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
933				  __GFP_NOWARN, get_order(size));
934		if (!page)
935			return -ENOMEM;
936		local_mem = page_address(page);
937
938		per_cpu(thread_imc_mem, cpu_id) = local_mem;
939	}
940
941	mtspr(SPRN_LDBAR, 0);
942	return 0;
943}
944
945static int ppc_thread_imc_cpu_online(unsigned int cpu)
946{
947	return thread_imc_mem_alloc(cpu, thread_imc_mem_size);
948}
949
950static int ppc_thread_imc_cpu_offline(unsigned int cpu)
951{
952	/*
953	 * Set the bit 0 of LDBAR to zero.
954	 *
955	 * If bit 0 of LDBAR is unset, it will stop posting
956	 * the counter data to memory.
957	 * For thread-imc, bit 0 of LDBAR will be set to 1 in the
958	 * event_add function. So reset this bit here, to stop the updates
959	 * to memory in the cpu_offline path.
960	 */
961	mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63))));
962
963	/* Reduce the refc if thread-imc event running on this cpu */
964	spin_lock(&imc_global_refc.lock);
965	if (imc_global_refc.id == IMC_DOMAIN_THREAD)
966		imc_global_refc.refc--;
967	spin_unlock(&imc_global_refc.lock);
968
969	return 0;
970}
971
972static int thread_imc_cpu_init(void)
973{
974	return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE,
975			  "perf/powerpc/imc_thread:online",
976			  ppc_thread_imc_cpu_online,
977			  ppc_thread_imc_cpu_offline);
978}
979
980static int thread_imc_event_init(struct perf_event *event)
981{
982	u32 config = event->attr.config;
983	struct task_struct *target;
984	struct imc_pmu *pmu;
985
986	if (event->attr.type != event->pmu->type)
987		return -ENOENT;
988
989	if (!perfmon_capable())
990		return -EACCES;
991
992	/* Sampling not supported */
993	if (event->hw.sample_period)
994		return -EINVAL;
995
996	event->hw.idx = -1;
997	pmu = imc_event_to_pmu(event);
998
999	/* Sanity check for config offset */
1000	if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
1001		return -EINVAL;
1002
1003	target = event->hw.target;
1004	if (!target)
1005		return -EINVAL;
1006
1007	spin_lock(&imc_global_refc.lock);
1008	/*
1009	 * Check if any other trace/core imc events are running in the
1010	 * system, if not set the global id to thread-imc.
1011	 */
1012	if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_THREAD) {
1013		imc_global_refc.id = IMC_DOMAIN_THREAD;
1014		imc_global_refc.refc++;
1015	} else {
1016		spin_unlock(&imc_global_refc.lock);
1017		return -EBUSY;
1018	}
1019	spin_unlock(&imc_global_refc.lock);
1020
1021	event->pmu->task_ctx_nr = perf_sw_context;
1022	event->destroy = reset_global_refc;
1023	return 0;
1024}
1025
1026static bool is_thread_imc_pmu(struct perf_event *event)
1027{
1028	if (!strncmp(event->pmu->name, "thread_imc", strlen("thread_imc")))
1029		return true;
1030
1031	return false;
1032}
1033
1034static __be64 *get_event_base_addr(struct perf_event *event)
1035{
1036	u64 addr;
1037
1038	if (is_thread_imc_pmu(event)) {
1039		addr = (u64)per_cpu(thread_imc_mem, smp_processor_id());
1040		return (__be64 *)(addr + (event->attr.config & IMC_EVENT_OFFSET_MASK));
1041	}
1042
1043	return (__be64 *)event->hw.event_base;
1044}
1045
1046static void thread_imc_pmu_start_txn(struct pmu *pmu,
1047				     unsigned int txn_flags)
1048{
1049	if (txn_flags & ~PERF_PMU_TXN_ADD)
1050		return;
1051	perf_pmu_disable(pmu);
1052}
1053
1054static void thread_imc_pmu_cancel_txn(struct pmu *pmu)
1055{
1056	perf_pmu_enable(pmu);
1057}
1058
1059static int thread_imc_pmu_commit_txn(struct pmu *pmu)
1060{
1061	perf_pmu_enable(pmu);
1062	return 0;
1063}
1064
1065static u64 imc_read_counter(struct perf_event *event)
1066{
1067	__be64 *addr;
1068	u64 data;
1069
1070	/*
1071	 * In-Memory Collection (IMC) counters are free flowing counters.
1072	 * So we take a snapshot of the counter value on enable and save it
1073	 * to calculate the delta at later stage to present the event counter
1074	 * value.
1075	 */
1076	addr = get_event_base_addr(event);
1077	data = be64_to_cpu(READ_ONCE(*addr));
1078	local64_set(&event->hw.prev_count, data);
1079
1080	return data;
1081}
1082
1083static void imc_event_update(struct perf_event *event)
1084{
1085	u64 counter_prev, counter_new, final_count;
1086
1087	counter_prev = local64_read(&event->hw.prev_count);
1088	counter_new = imc_read_counter(event);
1089	final_count = counter_new - counter_prev;
1090
1091	/* Update the delta to the event count */
1092	local64_add(final_count, &event->count);
1093}
1094
1095static void imc_event_start(struct perf_event *event, int flags)
1096{
1097	/*
1098	 * In Memory Counters are free flowing counters. HW or the microcode
1099	 * keeps adding to the counter offset in memory. To get event
1100	 * counter value, we snapshot the value here and we calculate
1101	 * delta at later point.
1102	 */
1103	imc_read_counter(event);
1104}
1105
1106static void imc_event_stop(struct perf_event *event, int flags)
1107{
1108	/*
1109	 * Take a snapshot and calculate the delta and update
1110	 * the event counter values.
1111	 */
1112	imc_event_update(event);
1113}
1114
1115static int imc_event_add(struct perf_event *event, int flags)
1116{
1117	if (flags & PERF_EF_START)
1118		imc_event_start(event, flags);
1119
1120	return 0;
1121}
1122
1123static int thread_imc_event_add(struct perf_event *event, int flags)
1124{
1125	int core_id;
1126	struct imc_pmu_ref *ref;
1127	u64 ldbar_value, *local_mem = per_cpu(thread_imc_mem, smp_processor_id());
1128
1129	if (flags & PERF_EF_START)
1130		imc_event_start(event, flags);
1131
1132	if (!is_core_imc_mem_inited(smp_processor_id()))
1133		return -EINVAL;
1134
1135	core_id = smp_processor_id() / threads_per_core;
1136	ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | THREAD_IMC_ENABLE;
1137	mtspr(SPRN_LDBAR, ldbar_value);
1138
1139	/*
1140	 * imc pmus are enabled only when it is used.
1141	 * See if this is triggered for the first time.
1142	 * If yes, take the lock and enable the counters.
1143	 * If not, just increment the count in ref count struct.
1144	 */
1145	ref = &core_imc_refc[core_id];
1146	if (!ref)
1147		return -EINVAL;
1148
1149	spin_lock(&ref->lock);
1150	if (ref->refc == 0) {
1151		if (opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
1152		    get_hard_smp_processor_id(smp_processor_id()))) {
1153			spin_unlock(&ref->lock);
1154			pr_err("thread-imc: Unable to start the counter\
1155				for core %d\n", core_id);
1156			return -EINVAL;
1157		}
1158	}
1159	++ref->refc;
1160	spin_unlock(&ref->lock);
1161	return 0;
1162}
1163
1164static void thread_imc_event_del(struct perf_event *event, int flags)
1165{
1166
1167	int core_id;
1168	struct imc_pmu_ref *ref;
1169
1170	core_id = smp_processor_id() / threads_per_core;
1171	ref = &core_imc_refc[core_id];
1172	if (!ref) {
1173		pr_debug("imc: Failed to get event reference count\n");
1174		return;
1175	}
1176
1177	spin_lock(&ref->lock);
1178	ref->refc--;
1179	if (ref->refc == 0) {
1180		if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
1181		    get_hard_smp_processor_id(smp_processor_id()))) {
1182			spin_unlock(&ref->lock);
1183			pr_err("thread-imc: Unable to stop the counters\
1184				for core %d\n", core_id);
1185			return;
1186		}
1187	} else if (ref->refc < 0) {
1188		ref->refc = 0;
1189	}
1190	spin_unlock(&ref->lock);
1191
1192	/* Set bit 0 of LDBAR to zero, to stop posting updates to memory */
1193	mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63))));
1194
1195	/*
1196	 * Take a snapshot and calculate the delta and update
1197	 * the event counter values.
1198	 */
1199	imc_event_update(event);
1200}
1201
1202/*
1203 * Allocate a page of memory for each cpu, and load LDBAR with 0.
1204 */
1205static int trace_imc_mem_alloc(int cpu_id, int size)
1206{
1207	u64 *local_mem = per_cpu(trace_imc_mem, cpu_id);
1208	int phys_id = cpu_to_node(cpu_id), rc = 0;
1209	int core_id = (cpu_id / threads_per_core);
1210
1211	if (!local_mem) {
1212		struct page *page;
1213
1214		page = alloc_pages_node(phys_id,
1215				GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
1216				__GFP_NOWARN, get_order(size));
1217		if (!page)
1218			return -ENOMEM;
1219		local_mem = page_address(page);
1220		per_cpu(trace_imc_mem, cpu_id) = local_mem;
1221
1222		/* Initialise the counters for trace mode */
1223		rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_TRACE, __pa((void *)local_mem),
1224					    get_hard_smp_processor_id(cpu_id));
1225		if (rc) {
1226			pr_info("IMC:opal init failed for trace imc\n");
1227			return rc;
1228		}
1229	}
1230
1231	trace_imc_refc[core_id].id = core_id;
1232	spin_lock_init(&trace_imc_refc[core_id].lock);
1233
1234	mtspr(SPRN_LDBAR, 0);
1235	return 0;
1236}
1237
1238static int ppc_trace_imc_cpu_online(unsigned int cpu)
1239{
1240	return trace_imc_mem_alloc(cpu, trace_imc_mem_size);
1241}
1242
1243static int ppc_trace_imc_cpu_offline(unsigned int cpu)
1244{
1245	/*
1246	 * No need to set bit 0 of LDBAR to zero, as
1247	 * it is set to zero for imc trace-mode
1248	 *
1249	 * Reduce the refc if any trace-imc event running
1250	 * on this cpu.
1251	 */
1252	spin_lock(&imc_global_refc.lock);
1253	if (imc_global_refc.id == IMC_DOMAIN_TRACE)
1254		imc_global_refc.refc--;
1255	spin_unlock(&imc_global_refc.lock);
1256
1257	return 0;
1258}
1259
1260static int trace_imc_cpu_init(void)
1261{
1262	return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE,
1263			  "perf/powerpc/imc_trace:online",
1264			  ppc_trace_imc_cpu_online,
1265			  ppc_trace_imc_cpu_offline);
1266}
1267
1268static u64 get_trace_imc_event_base_addr(void)
1269{
1270	return (u64)per_cpu(trace_imc_mem, smp_processor_id());
1271}
1272
1273/*
1274 * Function to parse trace-imc data obtained
1275 * and to prepare the perf sample.
1276 */
1277static int trace_imc_prepare_sample(struct trace_imc_data *mem,
1278				    struct perf_sample_data *data,
1279				    u64 *prev_tb,
1280				    struct perf_event_header *header,
1281				    struct perf_event *event)
1282{
1283	/* Sanity checks for a valid record */
1284	if (be64_to_cpu(READ_ONCE(mem->tb1)) > *prev_tb)
1285		*prev_tb = be64_to_cpu(READ_ONCE(mem->tb1));
1286	else
1287		return -EINVAL;
1288
1289	if ((be64_to_cpu(READ_ONCE(mem->tb1)) & IMC_TRACE_RECORD_TB1_MASK) !=
1290			 be64_to_cpu(READ_ONCE(mem->tb2)))
1291		return -EINVAL;
1292
1293	/* Prepare perf sample */
1294	data->ip =  be64_to_cpu(READ_ONCE(mem->ip));
1295	data->period = event->hw.last_period;
1296
1297	header->type = PERF_RECORD_SAMPLE;
1298	header->size = sizeof(*header) + event->header_size;
1299	header->misc = 0;
1300
1301	if (cpu_has_feature(CPU_FTR_ARCH_31)) {
1302		switch (IMC_TRACE_RECORD_VAL_HVPR(be64_to_cpu(READ_ONCE(mem->val)))) {
1303		case 0:/* when MSR HV and PR not set in the trace-record */
1304			header->misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1305			break;
1306		case 1: /* MSR HV is 0 and PR is 1 */
1307			header->misc |= PERF_RECORD_MISC_GUEST_USER;
1308			break;
1309		case 2: /* MSR HV is 1 and PR is 0 */
1310			header->misc |= PERF_RECORD_MISC_KERNEL;
1311			break;
1312		case 3: /* MSR HV is 1 and PR is 1 */
1313			header->misc |= PERF_RECORD_MISC_USER;
1314			break;
1315		default:
1316			pr_info("IMC: Unable to set the flag based on MSR bits\n");
1317			break;
1318		}
1319	} else {
1320		if (is_kernel_addr(data->ip))
1321			header->misc |= PERF_RECORD_MISC_KERNEL;
1322		else
1323			header->misc |= PERF_RECORD_MISC_USER;
1324	}
1325	perf_event_header__init_id(header, data, event);
1326
1327	return 0;
1328}
1329
1330static void dump_trace_imc_data(struct perf_event *event)
1331{
1332	struct trace_imc_data *mem;
1333	int i, ret;
1334	u64 prev_tb = 0;
1335
1336	mem = (struct trace_imc_data *)get_trace_imc_event_base_addr();
1337	for (i = 0; i < (trace_imc_mem_size / sizeof(struct trace_imc_data));
1338		i++, mem++) {
1339		struct perf_sample_data data;
1340		struct perf_event_header header;
1341
1342		ret = trace_imc_prepare_sample(mem, &data, &prev_tb, &header, event);
1343		if (ret) /* Exit, if not a valid record */
1344			break;
1345		else {
1346			/* If this is a valid record, create the sample */
1347			struct perf_output_handle handle;
1348
1349			if (perf_output_begin(&handle, &data, event, header.size))
1350				return;
1351
1352			perf_output_sample(&handle, &header, &data, event);
1353			perf_output_end(&handle);
1354		}
1355	}
1356}
1357
1358static int trace_imc_event_add(struct perf_event *event, int flags)
1359{
1360	int core_id = smp_processor_id() / threads_per_core;
1361	struct imc_pmu_ref *ref = NULL;
1362	u64 local_mem, ldbar_value;
1363
1364	/* Set trace-imc bit in ldbar and load ldbar with per-thread memory address */
1365	local_mem = get_trace_imc_event_base_addr();
1366	ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | TRACE_IMC_ENABLE;
1367
1368	/* trace-imc reference count */
1369	if (trace_imc_refc)
1370		ref = &trace_imc_refc[core_id];
1371	if (!ref) {
1372		pr_debug("imc: Failed to get the event reference count\n");
1373		return -EINVAL;
1374	}
1375
1376	mtspr(SPRN_LDBAR, ldbar_value);
1377	spin_lock(&ref->lock);
1378	if (ref->refc == 0) {
1379		if (opal_imc_counters_start(OPAL_IMC_COUNTERS_TRACE,
1380				get_hard_smp_processor_id(smp_processor_id()))) {
1381			spin_unlock(&ref->lock);
1382			pr_err("trace-imc: Unable to start the counters for core %d\n", core_id);
1383			return -EINVAL;
1384		}
1385	}
1386	++ref->refc;
1387	spin_unlock(&ref->lock);
1388	return 0;
1389}
1390
1391static void trace_imc_event_read(struct perf_event *event)
1392{
1393	return;
1394}
1395
1396static void trace_imc_event_stop(struct perf_event *event, int flags)
1397{
1398	u64 local_mem = get_trace_imc_event_base_addr();
1399	dump_trace_imc_data(event);
1400	memset((void *)local_mem, 0, sizeof(u64));
1401}
1402
1403static void trace_imc_event_start(struct perf_event *event, int flags)
1404{
1405	return;
1406}
1407
1408static void trace_imc_event_del(struct perf_event *event, int flags)
1409{
1410	int core_id = smp_processor_id() / threads_per_core;
1411	struct imc_pmu_ref *ref = NULL;
1412
1413	if (trace_imc_refc)
1414		ref = &trace_imc_refc[core_id];
1415	if (!ref) {
1416		pr_debug("imc: Failed to get event reference count\n");
1417		return;
1418	}
1419
1420	spin_lock(&ref->lock);
1421	ref->refc--;
1422	if (ref->refc == 0) {
1423		if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_TRACE,
1424				get_hard_smp_processor_id(smp_processor_id()))) {
1425			spin_unlock(&ref->lock);
1426			pr_err("trace-imc: Unable to stop the counters for core %d\n", core_id);
1427			return;
1428		}
1429	} else if (ref->refc < 0) {
1430		ref->refc = 0;
1431	}
1432	spin_unlock(&ref->lock);
1433
1434	trace_imc_event_stop(event, flags);
1435}
1436
1437static int trace_imc_event_init(struct perf_event *event)
1438{
1439	if (event->attr.type != event->pmu->type)
1440		return -ENOENT;
1441
1442	if (!perfmon_capable())
1443		return -EACCES;
1444
1445	/* Return if this is a couting event */
1446	if (event->attr.sample_period == 0)
1447		return -ENOENT;
1448
1449	/*
1450	 * Take the global lock, and make sure
1451	 * no other thread is running any core/thread imc
1452	 * events
1453	 */
1454	spin_lock(&imc_global_refc.lock);
1455	if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_TRACE) {
1456		/*
1457		 * No core/thread imc events are running in the
1458		 * system, so set the refc.id to trace-imc.
1459		 */
1460		imc_global_refc.id = IMC_DOMAIN_TRACE;
1461		imc_global_refc.refc++;
1462	} else {
1463		spin_unlock(&imc_global_refc.lock);
1464		return -EBUSY;
1465	}
1466	spin_unlock(&imc_global_refc.lock);
1467
1468	event->hw.idx = -1;
1469
1470	/*
1471	 * There can only be a single PMU for perf_hw_context events which is assigned to
1472	 * core PMU. Hence use "perf_sw_context" for trace_imc.
1473	 */
1474	event->pmu->task_ctx_nr = perf_sw_context;
1475	event->destroy = reset_global_refc;
1476	return 0;
1477}
1478
1479/* update_pmu_ops : Populate the appropriate operations for "pmu" */
1480static int update_pmu_ops(struct imc_pmu *pmu)
1481{
1482	pmu->pmu.task_ctx_nr = perf_invalid_context;
1483	pmu->pmu.add = imc_event_add;
1484	pmu->pmu.del = imc_event_stop;
1485	pmu->pmu.start = imc_event_start;
1486	pmu->pmu.stop = imc_event_stop;
1487	pmu->pmu.read = imc_event_update;
1488	pmu->pmu.attr_groups = pmu->attr_groups;
1489	pmu->pmu.capabilities = PERF_PMU_CAP_NO_EXCLUDE;
1490	pmu->attr_groups[IMC_FORMAT_ATTR] = &imc_format_group;
1491
1492	switch (pmu->domain) {
1493	case IMC_DOMAIN_NEST:
1494		pmu->pmu.event_init = nest_imc_event_init;
1495		pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1496		break;
1497	case IMC_DOMAIN_CORE:
1498		pmu->pmu.event_init = core_imc_event_init;
1499		pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1500		break;
1501	case IMC_DOMAIN_THREAD:
1502		pmu->pmu.event_init = thread_imc_event_init;
1503		pmu->pmu.add = thread_imc_event_add;
1504		pmu->pmu.del = thread_imc_event_del;
1505		pmu->pmu.start_txn = thread_imc_pmu_start_txn;
1506		pmu->pmu.cancel_txn = thread_imc_pmu_cancel_txn;
1507		pmu->pmu.commit_txn = thread_imc_pmu_commit_txn;
1508		break;
1509	case IMC_DOMAIN_TRACE:
1510		pmu->pmu.event_init = trace_imc_event_init;
1511		pmu->pmu.add = trace_imc_event_add;
1512		pmu->pmu.del = trace_imc_event_del;
1513		pmu->pmu.start = trace_imc_event_start;
1514		pmu->pmu.stop = trace_imc_event_stop;
1515		pmu->pmu.read = trace_imc_event_read;
1516		pmu->attr_groups[IMC_FORMAT_ATTR] = &trace_imc_format_group;
1517		break;
1518	default:
1519		break;
1520	}
1521
1522	return 0;
1523}
1524
1525/* init_nest_pmu_ref: Initialize the imc_pmu_ref struct for all the nodes */
1526static int init_nest_pmu_ref(void)
1527{
1528	int nid, i, cpu;
1529
1530	nest_imc_refc = kcalloc(num_possible_nodes(), sizeof(*nest_imc_refc),
1531								GFP_KERNEL);
1532
1533	if (!nest_imc_refc)
1534		return -ENOMEM;
1535
1536	i = 0;
1537	for_each_node(nid) {
1538		/*
1539		 * Take the lock to avoid races while tracking the number of
1540		 * sessions using the chip's nest pmu units.
1541		 */
1542		spin_lock_init(&nest_imc_refc[i].lock);
1543
1544		/*
1545		 * Loop to init the "id" with the node_id. Variable "i" initialized to
1546		 * 0 and will be used as index to the array. "i" will not go off the
1547		 * end of the array since the "for_each_node" loops for "N_POSSIBLE"
1548		 * nodes only.
1549		 */
1550		nest_imc_refc[i++].id = nid;
1551	}
1552
1553	/*
1554	 * Loop to init the per_cpu "local_nest_imc_refc" with the proper
1555	 * "nest_imc_refc" index. This makes get_nest_pmu_ref() alot simple.
1556	 */
1557	for_each_possible_cpu(cpu) {
1558		nid = cpu_to_node(cpu);
1559		for (i = 0; i < num_possible_nodes(); i++) {
1560			if (nest_imc_refc[i].id == nid) {
1561				per_cpu(local_nest_imc_refc, cpu) = &nest_imc_refc[i];
1562				break;
1563			}
1564		}
1565	}
1566	return 0;
1567}
1568
1569static void cleanup_all_core_imc_memory(void)
1570{
1571	int i, nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1572	struct imc_mem_info *ptr = core_imc_pmu->mem_info;
1573	int size = core_imc_pmu->counter_mem_size;
1574
1575	/* mem_info will never be NULL */
1576	for (i = 0; i < nr_cores; i++) {
1577		if (ptr[i].vbase)
1578			free_pages((u64)ptr[i].vbase, get_order(size));
1579	}
1580
1581	kfree(ptr);
1582	kfree(core_imc_refc);
1583}
1584
1585static void thread_imc_ldbar_disable(void *dummy)
1586{
1587	/*
1588	 * By setting 0th bit of LDBAR to zero, we disable thread-imc
1589	 * updates to memory.
1590	 */
1591	mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63))));
1592}
1593
1594void thread_imc_disable(void)
1595{
1596	on_each_cpu(thread_imc_ldbar_disable, NULL, 1);
1597}
1598
1599static void cleanup_all_thread_imc_memory(void)
1600{
1601	int i, order = get_order(thread_imc_mem_size);
1602
1603	for_each_online_cpu(i) {
1604		if (per_cpu(thread_imc_mem, i))
1605			free_pages((u64)per_cpu(thread_imc_mem, i), order);
1606
1607	}
1608}
1609
1610static void cleanup_all_trace_imc_memory(void)
1611{
1612	int i, order = get_order(trace_imc_mem_size);
1613
1614	for_each_online_cpu(i) {
1615		if (per_cpu(trace_imc_mem, i))
1616			free_pages((u64)per_cpu(trace_imc_mem, i), order);
1617
1618	}
1619	kfree(trace_imc_refc);
1620}
1621
1622/* Function to free the attr_groups which are dynamically allocated */
1623static void imc_common_mem_free(struct imc_pmu *pmu_ptr)
1624{
1625	if (pmu_ptr->attr_groups[IMC_EVENT_ATTR])
1626		kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]->attrs);
1627	kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]);
1628}
1629
1630/*
1631 * Common function to unregister cpu hotplug callback and
1632 * free the memory.
1633 * TODO: Need to handle pmu unregistering, which will be
1634 * done in followup series.
1635 */
1636static void imc_common_cpuhp_mem_free(struct imc_pmu *pmu_ptr)
1637{
1638	if (pmu_ptr->domain == IMC_DOMAIN_NEST) {
1639		mutex_lock(&nest_init_lock);
1640		if (nest_pmus == 1) {
1641			cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE);
1642			kfree(nest_imc_refc);
1643			kfree(per_nest_pmu_arr);
1644			per_nest_pmu_arr = NULL;
1645		}
1646
1647		if (nest_pmus > 0)
1648			nest_pmus--;
1649		mutex_unlock(&nest_init_lock);
1650	}
1651
1652	/* Free core_imc memory */
1653	if (pmu_ptr->domain == IMC_DOMAIN_CORE) {
1654		cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE);
1655		cleanup_all_core_imc_memory();
1656	}
1657
1658	/* Free thread_imc memory */
1659	if (pmu_ptr->domain == IMC_DOMAIN_THREAD) {
1660		cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE);
1661		cleanup_all_thread_imc_memory();
1662	}
1663
1664	if (pmu_ptr->domain == IMC_DOMAIN_TRACE) {
1665		cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE);
1666		cleanup_all_trace_imc_memory();
1667	}
1668}
1669
1670/*
1671 * Function to unregister thread-imc if core-imc
1672 * is not registered.
1673 */
1674void unregister_thread_imc(void)
1675{
1676	imc_common_cpuhp_mem_free(thread_imc_pmu);
1677	imc_common_mem_free(thread_imc_pmu);
1678	perf_pmu_unregister(&thread_imc_pmu->pmu);
1679}
1680
1681/*
1682 * imc_mem_init : Function to support memory allocation for core imc.
1683 */
1684static int imc_mem_init(struct imc_pmu *pmu_ptr, struct device_node *parent,
1685								int pmu_index)
1686{
1687	const char *s;
1688	int nr_cores, cpu, res = -ENOMEM;
1689
1690	if (of_property_read_string(parent, "name", &s))
1691		return -ENODEV;
1692
1693	switch (pmu_ptr->domain) {
1694	case IMC_DOMAIN_NEST:
1695		/* Update the pmu name */
1696		pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s_imc", "nest_", s);
1697		if (!pmu_ptr->pmu.name)
1698			goto err;
1699
1700		/* Needed for hotplug/migration */
1701		if (!per_nest_pmu_arr) {
1702			per_nest_pmu_arr = kcalloc(get_max_nest_dev() + 1,
1703						sizeof(struct imc_pmu *),
1704						GFP_KERNEL);
1705			if (!per_nest_pmu_arr)
1706				goto err;
1707		}
1708		per_nest_pmu_arr[pmu_index] = pmu_ptr;
1709		break;
1710	case IMC_DOMAIN_CORE:
1711		/* Update the pmu name */
1712		pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1713		if (!pmu_ptr->pmu.name)
1714			goto err;
1715
1716		nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1717		pmu_ptr->mem_info = kcalloc(nr_cores, sizeof(struct imc_mem_info),
1718								GFP_KERNEL);
1719
1720		if (!pmu_ptr->mem_info)
1721			goto err;
1722
1723		core_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref),
1724								GFP_KERNEL);
1725
1726		if (!core_imc_refc) {
1727			kfree(pmu_ptr->mem_info);
1728			goto err;
1729		}
1730
1731		core_imc_pmu = pmu_ptr;
1732		break;
1733	case IMC_DOMAIN_THREAD:
1734		/* Update the pmu name */
1735		pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1736		if (!pmu_ptr->pmu.name)
1737			goto err;
1738
1739		thread_imc_mem_size = pmu_ptr->counter_mem_size;
1740		for_each_online_cpu(cpu) {
1741			res = thread_imc_mem_alloc(cpu, pmu_ptr->counter_mem_size);
1742			if (res) {
1743				cleanup_all_thread_imc_memory();
1744				goto err;
1745			}
1746		}
1747
1748		thread_imc_pmu = pmu_ptr;
1749		break;
1750	case IMC_DOMAIN_TRACE:
1751		/* Update the pmu name */
1752		pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1753		if (!pmu_ptr->pmu.name)
1754			return -ENOMEM;
1755
1756		nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1757		trace_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref),
1758								GFP_KERNEL);
1759		if (!trace_imc_refc)
1760			return -ENOMEM;
1761
1762		trace_imc_mem_size = pmu_ptr->counter_mem_size;
1763		for_each_online_cpu(cpu) {
1764			res = trace_imc_mem_alloc(cpu, trace_imc_mem_size);
1765			if (res) {
1766				cleanup_all_trace_imc_memory();
1767				goto err;
1768			}
1769		}
1770		break;
1771	default:
1772		return -EINVAL;
1773	}
1774
1775	return 0;
1776err:
1777	return res;
1778}
1779
1780/*
1781 * init_imc_pmu : Setup and register the IMC pmu device.
1782 *
1783 * @parent:	Device tree unit node
1784 * @pmu_ptr:	memory allocated for this pmu
1785 * @pmu_idx:	Count of nest pmc registered
1786 *
1787 * init_imc_pmu() setup pmu cpumask and registers for a cpu hotplug callback.
1788 * Handles failure cases and accordingly frees memory.
1789 */
1790int init_imc_pmu(struct device_node *parent, struct imc_pmu *pmu_ptr, int pmu_idx)
1791{
1792	int ret;
1793
1794	ret = imc_mem_init(pmu_ptr, parent, pmu_idx);
1795	if (ret)
1796		goto err_free_mem;
1797
1798	switch (pmu_ptr->domain) {
1799	case IMC_DOMAIN_NEST:
1800		/*
1801		* Nest imc pmu need only one cpu per chip, we initialize the
1802		* cpumask for the first nest imc pmu and use the same for the
1803		* rest. To handle the cpuhotplug callback unregister, we track
1804		* the number of nest pmus in "nest_pmus".
1805		*/
1806		mutex_lock(&nest_init_lock);
1807		if (nest_pmus == 0) {
1808			ret = init_nest_pmu_ref();
1809			if (ret) {
1810				mutex_unlock(&nest_init_lock);
1811				kfree(per_nest_pmu_arr);
1812				per_nest_pmu_arr = NULL;
1813				goto err_free_mem;
1814			}
1815			/* Register for cpu hotplug notification. */
1816			ret = nest_pmu_cpumask_init();
1817			if (ret) {
1818				mutex_unlock(&nest_init_lock);
1819				kfree(nest_imc_refc);
1820				kfree(per_nest_pmu_arr);
1821				per_nest_pmu_arr = NULL;
1822				goto err_free_mem;
1823			}
1824		}
1825		nest_pmus++;
1826		mutex_unlock(&nest_init_lock);
1827		break;
1828	case IMC_DOMAIN_CORE:
1829		ret = core_imc_pmu_cpumask_init();
1830		if (ret) {
1831			cleanup_all_core_imc_memory();
1832			goto err_free_mem;
1833		}
1834
1835		break;
1836	case IMC_DOMAIN_THREAD:
1837		ret = thread_imc_cpu_init();
1838		if (ret) {
1839			cleanup_all_thread_imc_memory();
1840			goto err_free_mem;
1841		}
1842
1843		break;
1844	case IMC_DOMAIN_TRACE:
1845		ret = trace_imc_cpu_init();
1846		if (ret) {
1847			cleanup_all_trace_imc_memory();
1848			goto err_free_mem;
1849		}
1850
1851		break;
1852	default:
1853		return  -EINVAL;	/* Unknown domain */
1854	}
1855
1856	ret = update_events_in_group(parent, pmu_ptr);
1857	if (ret)
1858		goto err_free_cpuhp_mem;
1859
1860	ret = update_pmu_ops(pmu_ptr);
1861	if (ret)
1862		goto err_free_cpuhp_mem;
1863
1864	ret = perf_pmu_register(&pmu_ptr->pmu, pmu_ptr->pmu.name, -1);
1865	if (ret)
1866		goto err_free_cpuhp_mem;
1867
1868	pr_debug("%s performance monitor hardware support registered\n",
1869							pmu_ptr->pmu.name);
1870
1871	return 0;
1872
1873err_free_cpuhp_mem:
1874	imc_common_cpuhp_mem_free(pmu_ptr);
1875err_free_mem:
1876	imc_common_mem_free(pmu_ptr);
1877	return ret;
1878}
1879