1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * pSeries NUMA support
4 *
5 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
6 */
7#define pr_fmt(fmt) "numa: " fmt
8
9#include <linux/threads.h>
10#include <linux/memblock.h>
11#include <linux/init.h>
12#include <linux/mm.h>
13#include <linux/mmzone.h>
14#include <linux/export.h>
15#include <linux/nodemask.h>
16#include <linux/cpu.h>
17#include <linux/notifier.h>
18#include <linux/of.h>
19#include <linux/of_address.h>
20#include <linux/pfn.h>
21#include <linux/cpuset.h>
22#include <linux/node.h>
23#include <linux/stop_machine.h>
24#include <linux/proc_fs.h>
25#include <linux/seq_file.h>
26#include <linux/uaccess.h>
27#include <linux/slab.h>
28#include <asm/cputhreads.h>
29#include <asm/sparsemem.h>
30#include <asm/smp.h>
31#include <asm/topology.h>
32#include <asm/firmware.h>
33#include <asm/paca.h>
34#include <asm/hvcall.h>
35#include <asm/setup.h>
36#include <asm/vdso.h>
37#include <asm/vphn.h>
38#include <asm/drmem.h>
39
40static int numa_enabled = 1;
41
42static char *cmdline __initdata;
43
44int numa_cpu_lookup_table[NR_CPUS];
45cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
46struct pglist_data *node_data[MAX_NUMNODES];
47
48EXPORT_SYMBOL(numa_cpu_lookup_table);
49EXPORT_SYMBOL(node_to_cpumask_map);
50EXPORT_SYMBOL(node_data);
51
52static int primary_domain_index;
53static int n_mem_addr_cells, n_mem_size_cells;
54
55#define FORM0_AFFINITY 0
56#define FORM1_AFFINITY 1
57#define FORM2_AFFINITY 2
58static int affinity_form;
59
60#define MAX_DISTANCE_REF_POINTS 4
61static int distance_ref_points_depth;
62static const __be32 *distance_ref_points;
63static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
64static int numa_distance_table[MAX_NUMNODES][MAX_NUMNODES] = {
65	[0 ... MAX_NUMNODES - 1] = { [0 ... MAX_NUMNODES - 1] = -1 }
66};
67static int numa_id_index_table[MAX_NUMNODES] = { [0 ... MAX_NUMNODES - 1] = NUMA_NO_NODE };
68
69/*
70 * Allocate node_to_cpumask_map based on number of available nodes
71 * Requires node_possible_map to be valid.
72 *
73 * Note: cpumask_of_node() is not valid until after this is done.
74 */
75static void __init setup_node_to_cpumask_map(void)
76{
77	unsigned int node;
78
79	/* setup nr_node_ids if not done yet */
80	if (nr_node_ids == MAX_NUMNODES)
81		setup_nr_node_ids();
82
83	/* allocate the map */
84	for_each_node(node)
85		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
86
87	/* cpumask_of_node() will now work */
88	pr_debug("Node to cpumask map for %u nodes\n", nr_node_ids);
89}
90
91static int __init fake_numa_create_new_node(unsigned long end_pfn,
92						unsigned int *nid)
93{
94	unsigned long long mem;
95	char *p = cmdline;
96	static unsigned int fake_nid;
97	static unsigned long long curr_boundary;
98
99	/*
100	 * Modify node id, iff we started creating NUMA nodes
101	 * We want to continue from where we left of the last time
102	 */
103	if (fake_nid)
104		*nid = fake_nid;
105	/*
106	 * In case there are no more arguments to parse, the
107	 * node_id should be the same as the last fake node id
108	 * (we've handled this above).
109	 */
110	if (!p)
111		return 0;
112
113	mem = memparse(p, &p);
114	if (!mem)
115		return 0;
116
117	if (mem < curr_boundary)
118		return 0;
119
120	curr_boundary = mem;
121
122	if ((end_pfn << PAGE_SHIFT) > mem) {
123		/*
124		 * Skip commas and spaces
125		 */
126		while (*p == ',' || *p == ' ' || *p == '\t')
127			p++;
128
129		cmdline = p;
130		fake_nid++;
131		*nid = fake_nid;
132		pr_debug("created new fake_node with id %d\n", fake_nid);
133		return 1;
134	}
135	return 0;
136}
137
138static void __init reset_numa_cpu_lookup_table(void)
139{
140	unsigned int cpu;
141
142	for_each_possible_cpu(cpu)
143		numa_cpu_lookup_table[cpu] = -1;
144}
145
146void map_cpu_to_node(int cpu, int node)
147{
148	update_numa_cpu_lookup_table(cpu, node);
149
150	if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node]))) {
151		pr_debug("adding cpu %d to node %d\n", cpu, node);
152		cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
153	}
154}
155
156#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
157void unmap_cpu_from_node(unsigned long cpu)
158{
159	int node = numa_cpu_lookup_table[cpu];
160
161	if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
162		cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
163		pr_debug("removing cpu %lu from node %d\n", cpu, node);
164	} else {
165		pr_warn("Warning: cpu %lu not found in node %d\n", cpu, node);
166	}
167}
168#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
169
170static int __associativity_to_nid(const __be32 *associativity,
171				  int max_array_sz)
172{
173	int nid;
174	/*
175	 * primary_domain_index is 1 based array index.
176	 */
177	int index = primary_domain_index  - 1;
178
179	if (!numa_enabled || index >= max_array_sz)
180		return NUMA_NO_NODE;
181
182	nid = of_read_number(&associativity[index], 1);
183
184	/* POWER4 LPAR uses 0xffff as invalid node */
185	if (nid == 0xffff || nid >= nr_node_ids)
186		nid = NUMA_NO_NODE;
187	return nid;
188}
189/*
190 * Returns nid in the range [0..nr_node_ids], or -1 if no useful NUMA
191 * info is found.
192 */
193static int associativity_to_nid(const __be32 *associativity)
194{
195	int array_sz = of_read_number(associativity, 1);
196
197	/* Skip the first element in the associativity array */
198	return __associativity_to_nid((associativity + 1), array_sz);
199}
200
201static int __cpu_form2_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
202{
203	int dist;
204	int node1, node2;
205
206	node1 = associativity_to_nid(cpu1_assoc);
207	node2 = associativity_to_nid(cpu2_assoc);
208
209	dist = numa_distance_table[node1][node2];
210	if (dist <= LOCAL_DISTANCE)
211		return 0;
212	else if (dist <= REMOTE_DISTANCE)
213		return 1;
214	else
215		return 2;
216}
217
218static int __cpu_form1_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
219{
220	int dist = 0;
221
222	int i, index;
223
224	for (i = 0; i < distance_ref_points_depth; i++) {
225		index = be32_to_cpu(distance_ref_points[i]);
226		if (cpu1_assoc[index] == cpu2_assoc[index])
227			break;
228		dist++;
229	}
230
231	return dist;
232}
233
234int cpu_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
235{
236	/* We should not get called with FORM0 */
237	VM_WARN_ON(affinity_form == FORM0_AFFINITY);
238	if (affinity_form == FORM1_AFFINITY)
239		return __cpu_form1_relative_distance(cpu1_assoc, cpu2_assoc);
240	return __cpu_form2_relative_distance(cpu1_assoc, cpu2_assoc);
241}
242
243/* must hold reference to node during call */
244static const __be32 *of_get_associativity(struct device_node *dev)
245{
246	return of_get_property(dev, "ibm,associativity", NULL);
247}
248
249int __node_distance(int a, int b)
250{
251	int i;
252	int distance = LOCAL_DISTANCE;
253
254	if (affinity_form == FORM2_AFFINITY)
255		return numa_distance_table[a][b];
256	else if (affinity_form == FORM0_AFFINITY)
257		return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
258
259	for (i = 0; i < distance_ref_points_depth; i++) {
260		if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
261			break;
262
263		/* Double the distance for each NUMA level */
264		distance *= 2;
265	}
266
267	return distance;
268}
269EXPORT_SYMBOL(__node_distance);
270
271/* Returns the nid associated with the given device tree node,
272 * or -1 if not found.
273 */
274static int of_node_to_nid_single(struct device_node *device)
275{
276	int nid = NUMA_NO_NODE;
277	const __be32 *tmp;
278
279	tmp = of_get_associativity(device);
280	if (tmp)
281		nid = associativity_to_nid(tmp);
282	return nid;
283}
284
285/* Walk the device tree upwards, looking for an associativity id */
286int of_node_to_nid(struct device_node *device)
287{
288	int nid = NUMA_NO_NODE;
289
290	of_node_get(device);
291	while (device) {
292		nid = of_node_to_nid_single(device);
293		if (nid != -1)
294			break;
295
296		device = of_get_next_parent(device);
297	}
298	of_node_put(device);
299
300	return nid;
301}
302EXPORT_SYMBOL(of_node_to_nid);
303
304static void __initialize_form1_numa_distance(const __be32 *associativity,
305					     int max_array_sz)
306{
307	int i, nid;
308
309	if (affinity_form != FORM1_AFFINITY)
310		return;
311
312	nid = __associativity_to_nid(associativity, max_array_sz);
313	if (nid != NUMA_NO_NODE) {
314		for (i = 0; i < distance_ref_points_depth; i++) {
315			const __be32 *entry;
316			int index = be32_to_cpu(distance_ref_points[i]) - 1;
317
318			/*
319			 * broken hierarchy, return with broken distance table
320			 */
321			if (WARN(index >= max_array_sz, "Broken ibm,associativity property"))
322				return;
323
324			entry = &associativity[index];
325			distance_lookup_table[nid][i] = of_read_number(entry, 1);
326		}
327	}
328}
329
330static void initialize_form1_numa_distance(const __be32 *associativity)
331{
332	int array_sz;
333
334	array_sz = of_read_number(associativity, 1);
335	/* Skip the first element in the associativity array */
336	__initialize_form1_numa_distance(associativity + 1, array_sz);
337}
338
339/*
340 * Used to update distance information w.r.t newly added node.
341 */
342void update_numa_distance(struct device_node *node)
343{
344	int nid;
345
346	if (affinity_form == FORM0_AFFINITY)
347		return;
348	else if (affinity_form == FORM1_AFFINITY) {
349		const __be32 *associativity;
350
351		associativity = of_get_associativity(node);
352		if (!associativity)
353			return;
354
355		initialize_form1_numa_distance(associativity);
356		return;
357	}
358
359	/* FORM2 affinity  */
360	nid = of_node_to_nid_single(node);
361	if (nid == NUMA_NO_NODE)
362		return;
363
364	/*
365	 * With FORM2 we expect NUMA distance of all possible NUMA
366	 * nodes to be provided during boot.
367	 */
368	WARN(numa_distance_table[nid][nid] == -1,
369	     "NUMA distance details for node %d not provided\n", nid);
370}
371EXPORT_SYMBOL_GPL(update_numa_distance);
372
373/*
374 * ibm,numa-lookup-index-table= {N, domainid1, domainid2, ..... domainidN}
375 * ibm,numa-distance-table = { N, 1, 2, 4, 5, 1, 6, .... N elements}
376 */
377static void __init initialize_form2_numa_distance_lookup_table(void)
378{
379	int i, j;
380	struct device_node *root;
381	const __u8 *form2_distances;
382	const __be32 *numa_lookup_index;
383	int form2_distances_length;
384	int max_numa_index, distance_index;
385
386	if (firmware_has_feature(FW_FEATURE_OPAL))
387		root = of_find_node_by_path("/ibm,opal");
388	else
389		root = of_find_node_by_path("/rtas");
390	if (!root)
391		root = of_find_node_by_path("/");
392
393	numa_lookup_index = of_get_property(root, "ibm,numa-lookup-index-table", NULL);
394	max_numa_index = of_read_number(&numa_lookup_index[0], 1);
395
396	/* first element of the array is the size and is encode-int */
397	form2_distances = of_get_property(root, "ibm,numa-distance-table", NULL);
398	form2_distances_length = of_read_number((const __be32 *)&form2_distances[0], 1);
399	/* Skip the size which is encoded int */
400	form2_distances += sizeof(__be32);
401
402	pr_debug("form2_distances_len = %d, numa_dist_indexes_len = %d\n",
403		 form2_distances_length, max_numa_index);
404
405	for (i = 0; i < max_numa_index; i++)
406		/* +1 skip the max_numa_index in the property */
407		numa_id_index_table[i] = of_read_number(&numa_lookup_index[i + 1], 1);
408
409
410	if (form2_distances_length != max_numa_index * max_numa_index) {
411		WARN(1, "Wrong NUMA distance information\n");
412		form2_distances = NULL; // don't use it
413	}
414	distance_index = 0;
415	for (i = 0;  i < max_numa_index; i++) {
416		for (j = 0; j < max_numa_index; j++) {
417			int nodeA = numa_id_index_table[i];
418			int nodeB = numa_id_index_table[j];
419			int dist;
420
421			if (form2_distances)
422				dist = form2_distances[distance_index++];
423			else if (nodeA == nodeB)
424				dist = LOCAL_DISTANCE;
425			else
426				dist = REMOTE_DISTANCE;
427			numa_distance_table[nodeA][nodeB] = dist;
428			pr_debug("dist[%d][%d]=%d ", nodeA, nodeB, dist);
429		}
430	}
431
432	of_node_put(root);
433}
434
435static int __init find_primary_domain_index(void)
436{
437	int index;
438	struct device_node *root;
439
440	/*
441	 * Check for which form of affinity.
442	 */
443	if (firmware_has_feature(FW_FEATURE_OPAL)) {
444		affinity_form = FORM1_AFFINITY;
445	} else if (firmware_has_feature(FW_FEATURE_FORM2_AFFINITY)) {
446		pr_debug("Using form 2 affinity\n");
447		affinity_form = FORM2_AFFINITY;
448	} else if (firmware_has_feature(FW_FEATURE_FORM1_AFFINITY)) {
449		pr_debug("Using form 1 affinity\n");
450		affinity_form = FORM1_AFFINITY;
451	} else
452		affinity_form = FORM0_AFFINITY;
453
454	if (firmware_has_feature(FW_FEATURE_OPAL))
455		root = of_find_node_by_path("/ibm,opal");
456	else
457		root = of_find_node_by_path("/rtas");
458	if (!root)
459		root = of_find_node_by_path("/");
460
461	/*
462	 * This property is a set of 32-bit integers, each representing
463	 * an index into the ibm,associativity nodes.
464	 *
465	 * With form 0 affinity the first integer is for an SMP configuration
466	 * (should be all 0's) and the second is for a normal NUMA
467	 * configuration. We have only one level of NUMA.
468	 *
469	 * With form 1 affinity the first integer is the most significant
470	 * NUMA boundary and the following are progressively less significant
471	 * boundaries. There can be more than one level of NUMA.
472	 */
473	distance_ref_points = of_get_property(root,
474					"ibm,associativity-reference-points",
475					&distance_ref_points_depth);
476
477	if (!distance_ref_points) {
478		pr_debug("ibm,associativity-reference-points not found.\n");
479		goto err;
480	}
481
482	distance_ref_points_depth /= sizeof(int);
483	if (affinity_form == FORM0_AFFINITY) {
484		if (distance_ref_points_depth < 2) {
485			pr_warn("short ibm,associativity-reference-points\n");
486			goto err;
487		}
488
489		index = of_read_number(&distance_ref_points[1], 1);
490	} else {
491		/*
492		 * Both FORM1 and FORM2 affinity find the primary domain details
493		 * at the same offset.
494		 */
495		index = of_read_number(distance_ref_points, 1);
496	}
497	/*
498	 * Warn and cap if the hardware supports more than
499	 * MAX_DISTANCE_REF_POINTS domains.
500	 */
501	if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
502		pr_warn("distance array capped at %d entries\n",
503			MAX_DISTANCE_REF_POINTS);
504		distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
505	}
506
507	of_node_put(root);
508	return index;
509
510err:
511	of_node_put(root);
512	return -1;
513}
514
515static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
516{
517	struct device_node *memory = NULL;
518
519	memory = of_find_node_by_type(memory, "memory");
520	if (!memory)
521		panic("numa.c: No memory nodes found!");
522
523	*n_addr_cells = of_n_addr_cells(memory);
524	*n_size_cells = of_n_size_cells(memory);
525	of_node_put(memory);
526}
527
528static unsigned long read_n_cells(int n, const __be32 **buf)
529{
530	unsigned long result = 0;
531
532	while (n--) {
533		result = (result << 32) | of_read_number(*buf, 1);
534		(*buf)++;
535	}
536	return result;
537}
538
539struct assoc_arrays {
540	u32	n_arrays;
541	u32	array_sz;
542	const __be32 *arrays;
543};
544
545/*
546 * Retrieve and validate the list of associativity arrays for drconf
547 * memory from the ibm,associativity-lookup-arrays property of the
548 * device tree..
549 *
550 * The layout of the ibm,associativity-lookup-arrays property is a number N
551 * indicating the number of associativity arrays, followed by a number M
552 * indicating the size of each associativity array, followed by a list
553 * of N associativity arrays.
554 */
555static int of_get_assoc_arrays(struct assoc_arrays *aa)
556{
557	struct device_node *memory;
558	const __be32 *prop;
559	u32 len;
560
561	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
562	if (!memory)
563		return -1;
564
565	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
566	if (!prop || len < 2 * sizeof(unsigned int)) {
567		of_node_put(memory);
568		return -1;
569	}
570
571	aa->n_arrays = of_read_number(prop++, 1);
572	aa->array_sz = of_read_number(prop++, 1);
573
574	of_node_put(memory);
575
576	/* Now that we know the number of arrays and size of each array,
577	 * revalidate the size of the property read in.
578	 */
579	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
580		return -1;
581
582	aa->arrays = prop;
583	return 0;
584}
585
586static int __init get_nid_and_numa_distance(struct drmem_lmb *lmb)
587{
588	struct assoc_arrays aa = { .arrays = NULL };
589	int default_nid = NUMA_NO_NODE;
590	int nid = default_nid;
591	int rc, index;
592
593	if ((primary_domain_index < 0) || !numa_enabled)
594		return default_nid;
595
596	rc = of_get_assoc_arrays(&aa);
597	if (rc)
598		return default_nid;
599
600	if (primary_domain_index <= aa.array_sz &&
601	    !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) {
602		const __be32 *associativity;
603
604		index = lmb->aa_index * aa.array_sz;
605		associativity = &aa.arrays[index];
606		nid = __associativity_to_nid(associativity, aa.array_sz);
607		if (nid > 0 && affinity_form == FORM1_AFFINITY) {
608			/*
609			 * lookup array associativity entries have
610			 * no length of the array as the first element.
611			 */
612			__initialize_form1_numa_distance(associativity, aa.array_sz);
613		}
614	}
615	return nid;
616}
617
618/*
619 * This is like of_node_to_nid_single() for memory represented in the
620 * ibm,dynamic-reconfiguration-memory node.
621 */
622int of_drconf_to_nid_single(struct drmem_lmb *lmb)
623{
624	struct assoc_arrays aa = { .arrays = NULL };
625	int default_nid = NUMA_NO_NODE;
626	int nid = default_nid;
627	int rc, index;
628
629	if ((primary_domain_index < 0) || !numa_enabled)
630		return default_nid;
631
632	rc = of_get_assoc_arrays(&aa);
633	if (rc)
634		return default_nid;
635
636	if (primary_domain_index <= aa.array_sz &&
637	    !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) {
638		const __be32 *associativity;
639
640		index = lmb->aa_index * aa.array_sz;
641		associativity = &aa.arrays[index];
642		nid = __associativity_to_nid(associativity, aa.array_sz);
643	}
644	return nid;
645}
646
647#ifdef CONFIG_PPC_SPLPAR
648
649static int __vphn_get_associativity(long lcpu, __be32 *associativity)
650{
651	long rc, hwid;
652
653	/*
654	 * On a shared lpar, device tree will not have node associativity.
655	 * At this time lppaca, or its __old_status field may not be
656	 * updated. Hence kernel cannot detect if its on a shared lpar. So
657	 * request an explicit associativity irrespective of whether the
658	 * lpar is shared or dedicated. Use the device tree property as a
659	 * fallback. cpu_to_phys_id is only valid between
660	 * smp_setup_cpu_maps() and smp_setup_pacas().
661	 */
662	if (firmware_has_feature(FW_FEATURE_VPHN)) {
663		if (cpu_to_phys_id)
664			hwid = cpu_to_phys_id[lcpu];
665		else
666			hwid = get_hard_smp_processor_id(lcpu);
667
668		rc = hcall_vphn(hwid, VPHN_FLAG_VCPU, associativity);
669		if (rc == H_SUCCESS)
670			return 0;
671	}
672
673	return -1;
674}
675
676static int vphn_get_nid(long lcpu)
677{
678	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
679
680
681	if (!__vphn_get_associativity(lcpu, associativity))
682		return associativity_to_nid(associativity);
683
684	return NUMA_NO_NODE;
685
686}
687#else
688
689static int __vphn_get_associativity(long lcpu, __be32 *associativity)
690{
691	return -1;
692}
693
694static int vphn_get_nid(long unused)
695{
696	return NUMA_NO_NODE;
697}
698#endif  /* CONFIG_PPC_SPLPAR */
699
700/*
701 * Figure out to which domain a cpu belongs and stick it there.
702 * Return the id of the domain used.
703 */
704static int numa_setup_cpu(unsigned long lcpu)
705{
706	struct device_node *cpu;
707	int fcpu = cpu_first_thread_sibling(lcpu);
708	int nid = NUMA_NO_NODE;
709
710	if (!cpu_present(lcpu)) {
711		set_cpu_numa_node(lcpu, first_online_node);
712		return first_online_node;
713	}
714
715	/*
716	 * If a valid cpu-to-node mapping is already available, use it
717	 * directly instead of querying the firmware, since it represents
718	 * the most recent mapping notified to us by the platform (eg: VPHN).
719	 * Since cpu_to_node binding remains the same for all threads in the
720	 * core. If a valid cpu-to-node mapping is already available, for
721	 * the first thread in the core, use it.
722	 */
723	nid = numa_cpu_lookup_table[fcpu];
724	if (nid >= 0) {
725		map_cpu_to_node(lcpu, nid);
726		return nid;
727	}
728
729	nid = vphn_get_nid(lcpu);
730	if (nid != NUMA_NO_NODE)
731		goto out_present;
732
733	cpu = of_get_cpu_node(lcpu, NULL);
734
735	if (!cpu) {
736		WARN_ON(1);
737		if (cpu_present(lcpu))
738			goto out_present;
739		else
740			goto out;
741	}
742
743	nid = of_node_to_nid_single(cpu);
744	of_node_put(cpu);
745
746out_present:
747	if (nid < 0 || !node_possible(nid))
748		nid = first_online_node;
749
750	/*
751	 * Update for the first thread of the core. All threads of a core
752	 * have to be part of the same node. This not only avoids querying
753	 * for every other thread in the core, but always avoids a case
754	 * where virtual node associativity change causes subsequent threads
755	 * of a core to be associated with different nid. However if first
756	 * thread is already online, expect it to have a valid mapping.
757	 */
758	if (fcpu != lcpu) {
759		WARN_ON(cpu_online(fcpu));
760		map_cpu_to_node(fcpu, nid);
761	}
762
763	map_cpu_to_node(lcpu, nid);
764out:
765	return nid;
766}
767
768static void verify_cpu_node_mapping(int cpu, int node)
769{
770	int base, sibling, i;
771
772	/* Verify that all the threads in the core belong to the same node */
773	base = cpu_first_thread_sibling(cpu);
774
775	for (i = 0; i < threads_per_core; i++) {
776		sibling = base + i;
777
778		if (sibling == cpu || cpu_is_offline(sibling))
779			continue;
780
781		if (cpu_to_node(sibling) != node) {
782			WARN(1, "CPU thread siblings %d and %d don't belong"
783				" to the same node!\n", cpu, sibling);
784			break;
785		}
786	}
787}
788
789/* Must run before sched domains notifier. */
790static int ppc_numa_cpu_prepare(unsigned int cpu)
791{
792	int nid;
793
794	nid = numa_setup_cpu(cpu);
795	verify_cpu_node_mapping(cpu, nid);
796	return 0;
797}
798
799static int ppc_numa_cpu_dead(unsigned int cpu)
800{
801	return 0;
802}
803
804/*
805 * Check and possibly modify a memory region to enforce the memory limit.
806 *
807 * Returns the size the region should have to enforce the memory limit.
808 * This will either be the original value of size, a truncated value,
809 * or zero. If the returned value of size is 0 the region should be
810 * discarded as it lies wholly above the memory limit.
811 */
812static unsigned long __init numa_enforce_memory_limit(unsigned long start,
813						      unsigned long size)
814{
815	/*
816	 * We use memblock_end_of_DRAM() in here instead of memory_limit because
817	 * we've already adjusted it for the limit and it takes care of
818	 * having memory holes below the limit.  Also, in the case of
819	 * iommu_is_off, memory_limit is not set but is implicitly enforced.
820	 */
821
822	if (start + size <= memblock_end_of_DRAM())
823		return size;
824
825	if (start >= memblock_end_of_DRAM())
826		return 0;
827
828	return memblock_end_of_DRAM() - start;
829}
830
831/*
832 * Reads the counter for a given entry in
833 * linux,drconf-usable-memory property
834 */
835static inline int __init read_usm_ranges(const __be32 **usm)
836{
837	/*
838	 * For each lmb in ibm,dynamic-memory a corresponding
839	 * entry in linux,drconf-usable-memory property contains
840	 * a counter followed by that many (base, size) duple.
841	 * read the counter from linux,drconf-usable-memory
842	 */
843	return read_n_cells(n_mem_size_cells, usm);
844}
845
846/*
847 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
848 * node.  This assumes n_mem_{addr,size}_cells have been set.
849 */
850static int __init numa_setup_drmem_lmb(struct drmem_lmb *lmb,
851					const __be32 **usm,
852					void *data)
853{
854	unsigned int ranges, is_kexec_kdump = 0;
855	unsigned long base, size, sz;
856	int nid;
857
858	/*
859	 * Skip this block if the reserved bit is set in flags (0x80)
860	 * or if the block is not assigned to this partition (0x8)
861	 */
862	if ((lmb->flags & DRCONF_MEM_RESERVED)
863	    || !(lmb->flags & DRCONF_MEM_ASSIGNED))
864		return 0;
865
866	if (*usm)
867		is_kexec_kdump = 1;
868
869	base = lmb->base_addr;
870	size = drmem_lmb_size();
871	ranges = 1;
872
873	if (is_kexec_kdump) {
874		ranges = read_usm_ranges(usm);
875		if (!ranges) /* there are no (base, size) duple */
876			return 0;
877	}
878
879	do {
880		if (is_kexec_kdump) {
881			base = read_n_cells(n_mem_addr_cells, usm);
882			size = read_n_cells(n_mem_size_cells, usm);
883		}
884
885		nid = get_nid_and_numa_distance(lmb);
886		fake_numa_create_new_node(((base + size) >> PAGE_SHIFT),
887					  &nid);
888		node_set_online(nid);
889		sz = numa_enforce_memory_limit(base, size);
890		if (sz)
891			memblock_set_node(base, sz, &memblock.memory, nid);
892	} while (--ranges);
893
894	return 0;
895}
896
897static int __init parse_numa_properties(void)
898{
899	struct device_node *memory;
900	int default_nid = 0;
901	unsigned long i;
902	const __be32 *associativity;
903
904	if (numa_enabled == 0) {
905		pr_warn("disabled by user\n");
906		return -1;
907	}
908
909	primary_domain_index = find_primary_domain_index();
910
911	if (primary_domain_index < 0) {
912		/*
913		 * if we fail to parse primary_domain_index from device tree
914		 * mark the numa disabled, boot with numa disabled.
915		 */
916		numa_enabled = false;
917		return primary_domain_index;
918	}
919
920	pr_debug("associativity depth for CPU/Memory: %d\n", primary_domain_index);
921
922	/*
923	 * If it is FORM2 initialize the distance table here.
924	 */
925	if (affinity_form == FORM2_AFFINITY)
926		initialize_form2_numa_distance_lookup_table();
927
928	/*
929	 * Even though we connect cpus to numa domains later in SMP
930	 * init, we need to know the node ids now. This is because
931	 * each node to be onlined must have NODE_DATA etc backing it.
932	 */
933	for_each_present_cpu(i) {
934		__be32 vphn_assoc[VPHN_ASSOC_BUFSIZE];
935		struct device_node *cpu;
936		int nid = NUMA_NO_NODE;
937
938		memset(vphn_assoc, 0, VPHN_ASSOC_BUFSIZE * sizeof(__be32));
939
940		if (__vphn_get_associativity(i, vphn_assoc) == 0) {
941			nid = associativity_to_nid(vphn_assoc);
942			initialize_form1_numa_distance(vphn_assoc);
943		} else {
944
945			/*
946			 * Don't fall back to default_nid yet -- we will plug
947			 * cpus into nodes once the memory scan has discovered
948			 * the topology.
949			 */
950			cpu = of_get_cpu_node(i, NULL);
951			BUG_ON(!cpu);
952
953			associativity = of_get_associativity(cpu);
954			if (associativity) {
955				nid = associativity_to_nid(associativity);
956				initialize_form1_numa_distance(associativity);
957			}
958			of_node_put(cpu);
959		}
960
961		/* node_set_online() is an UB if 'nid' is negative */
962		if (likely(nid >= 0))
963			node_set_online(nid);
964	}
965
966	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
967
968	for_each_node_by_type(memory, "memory") {
969		unsigned long start;
970		unsigned long size;
971		int nid;
972		int ranges;
973		const __be32 *memcell_buf;
974		unsigned int len;
975
976		memcell_buf = of_get_property(memory,
977			"linux,usable-memory", &len);
978		if (!memcell_buf || len <= 0)
979			memcell_buf = of_get_property(memory, "reg", &len);
980		if (!memcell_buf || len <= 0)
981			continue;
982
983		/* ranges in cell */
984		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
985new_range:
986		/* these are order-sensitive, and modify the buffer pointer */
987		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
988		size = read_n_cells(n_mem_size_cells, &memcell_buf);
989
990		/*
991		 * Assumption: either all memory nodes or none will
992		 * have associativity properties.  If none, then
993		 * everything goes to default_nid.
994		 */
995		associativity = of_get_associativity(memory);
996		if (associativity) {
997			nid = associativity_to_nid(associativity);
998			initialize_form1_numa_distance(associativity);
999		} else
1000			nid = default_nid;
1001
1002		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
1003		node_set_online(nid);
1004
1005		size = numa_enforce_memory_limit(start, size);
1006		if (size)
1007			memblock_set_node(start, size, &memblock.memory, nid);
1008
1009		if (--ranges)
1010			goto new_range;
1011	}
1012
1013	/*
1014	 * Now do the same thing for each MEMBLOCK listed in the
1015	 * ibm,dynamic-memory property in the
1016	 * ibm,dynamic-reconfiguration-memory node.
1017	 */
1018	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1019	if (memory) {
1020		walk_drmem_lmbs(memory, NULL, numa_setup_drmem_lmb);
1021		of_node_put(memory);
1022	}
1023
1024	return 0;
1025}
1026
1027static void __init setup_nonnuma(void)
1028{
1029	unsigned long top_of_ram = memblock_end_of_DRAM();
1030	unsigned long total_ram = memblock_phys_mem_size();
1031	unsigned long start_pfn, end_pfn;
1032	unsigned int nid = 0;
1033	int i;
1034
1035	pr_debug("Top of RAM: 0x%lx, Total RAM: 0x%lx\n", top_of_ram, total_ram);
1036	pr_debug("Memory hole size: %ldMB\n", (top_of_ram - total_ram) >> 20);
1037
1038	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
1039		fake_numa_create_new_node(end_pfn, &nid);
1040		memblock_set_node(PFN_PHYS(start_pfn),
1041				  PFN_PHYS(end_pfn - start_pfn),
1042				  &memblock.memory, nid);
1043		node_set_online(nid);
1044	}
1045}
1046
1047void __init dump_numa_cpu_topology(void)
1048{
1049	unsigned int node;
1050	unsigned int cpu, count;
1051
1052	if (!numa_enabled)
1053		return;
1054
1055	for_each_online_node(node) {
1056		pr_info("Node %d CPUs:", node);
1057
1058		count = 0;
1059		/*
1060		 * If we used a CPU iterator here we would miss printing
1061		 * the holes in the cpumap.
1062		 */
1063		for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
1064			if (cpumask_test_cpu(cpu,
1065					node_to_cpumask_map[node])) {
1066				if (count == 0)
1067					pr_cont(" %u", cpu);
1068				++count;
1069			} else {
1070				if (count > 1)
1071					pr_cont("-%u", cpu - 1);
1072				count = 0;
1073			}
1074		}
1075
1076		if (count > 1)
1077			pr_cont("-%u", nr_cpu_ids - 1);
1078		pr_cont("\n");
1079	}
1080}
1081
1082/* Initialize NODE_DATA for a node on the local memory */
1083static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
1084{
1085	u64 spanned_pages = end_pfn - start_pfn;
1086	const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
1087	u64 nd_pa;
1088	void *nd;
1089	int tnid;
1090
1091	nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
1092	if (!nd_pa)
1093		panic("Cannot allocate %zu bytes for node %d data\n",
1094		      nd_size, nid);
1095
1096	nd = __va(nd_pa);
1097
1098	/* report and initialize */
1099	pr_info("  NODE_DATA [mem %#010Lx-%#010Lx]\n",
1100		nd_pa, nd_pa + nd_size - 1);
1101	tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
1102	if (tnid != nid)
1103		pr_info("    NODE_DATA(%d) on node %d\n", nid, tnid);
1104
1105	node_data[nid] = nd;
1106	memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
1107	NODE_DATA(nid)->node_id = nid;
1108	NODE_DATA(nid)->node_start_pfn = start_pfn;
1109	NODE_DATA(nid)->node_spanned_pages = spanned_pages;
1110}
1111
1112static void __init find_possible_nodes(void)
1113{
1114	struct device_node *rtas, *root;
1115	const __be32 *domains = NULL;
1116	int prop_length, max_nodes;
1117	u32 i;
1118
1119	if (!numa_enabled)
1120		return;
1121
1122	rtas = of_find_node_by_path("/rtas");
1123	if (!rtas)
1124		return;
1125
1126	/*
1127	 * ibm,current-associativity-domains is a fairly recent property. If
1128	 * it doesn't exist, then fallback on ibm,max-associativity-domains.
1129	 * Current denotes what the platform can support compared to max
1130	 * which denotes what the Hypervisor can support.
1131	 *
1132	 * If the LPAR is migratable, new nodes might be activated after a LPM,
1133	 * so we should consider the max number in that case.
1134	 */
1135	root = of_find_node_by_path("/");
1136	if (!of_get_property(root, "ibm,migratable-partition", NULL))
1137		domains = of_get_property(rtas,
1138					  "ibm,current-associativity-domains",
1139					  &prop_length);
1140	of_node_put(root);
1141	if (!domains) {
1142		domains = of_get_property(rtas, "ibm,max-associativity-domains",
1143					&prop_length);
1144		if (!domains)
1145			goto out;
1146	}
1147
1148	max_nodes = of_read_number(&domains[primary_domain_index], 1);
1149	pr_info("Partition configured for %d NUMA nodes.\n", max_nodes);
1150
1151	for (i = 0; i < max_nodes; i++) {
1152		if (!node_possible(i))
1153			node_set(i, node_possible_map);
1154	}
1155
1156	prop_length /= sizeof(int);
1157	if (prop_length > primary_domain_index + 2)
1158		coregroup_enabled = 1;
1159
1160out:
1161	of_node_put(rtas);
1162}
1163
1164void __init mem_topology_setup(void)
1165{
1166	int cpu;
1167
1168	max_low_pfn = max_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1169	min_low_pfn = MEMORY_START >> PAGE_SHIFT;
1170
1171	/*
1172	 * Linux/mm assumes node 0 to be online at boot. However this is not
1173	 * true on PowerPC, where node 0 is similar to any other node, it
1174	 * could be cpuless, memoryless node. So force node 0 to be offline
1175	 * for now. This will prevent cpuless, memoryless node 0 showing up
1176	 * unnecessarily as online. If a node has cpus or memory that need
1177	 * to be online, then node will anyway be marked online.
1178	 */
1179	node_set_offline(0);
1180
1181	if (parse_numa_properties())
1182		setup_nonnuma();
1183
1184	/*
1185	 * Modify the set of possible NUMA nodes to reflect information
1186	 * available about the set of online nodes, and the set of nodes
1187	 * that we expect to make use of for this platform's affinity
1188	 * calculations.
1189	 */
1190	nodes_and(node_possible_map, node_possible_map, node_online_map);
1191
1192	find_possible_nodes();
1193
1194	setup_node_to_cpumask_map();
1195
1196	reset_numa_cpu_lookup_table();
1197
1198	for_each_possible_cpu(cpu) {
1199		/*
1200		 * Powerpc with CONFIG_NUMA always used to have a node 0,
1201		 * even if it was memoryless or cpuless. For all cpus that
1202		 * are possible but not present, cpu_to_node() would point
1203		 * to node 0. To remove a cpuless, memoryless dummy node,
1204		 * powerpc need to make sure all possible but not present
1205		 * cpu_to_node are set to a proper node.
1206		 */
1207		numa_setup_cpu(cpu);
1208	}
1209}
1210
1211void __init initmem_init(void)
1212{
1213	int nid;
1214
1215	memblock_dump_all();
1216
1217	for_each_online_node(nid) {
1218		unsigned long start_pfn, end_pfn;
1219
1220		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1221		setup_node_data(nid, start_pfn, end_pfn);
1222	}
1223
1224	sparse_init();
1225
1226	/*
1227	 * We need the numa_cpu_lookup_table to be accurate for all CPUs,
1228	 * even before we online them, so that we can use cpu_to_{node,mem}
1229	 * early in boot, cf. smp_prepare_cpus().
1230	 * _nocalls() + manual invocation is used because cpuhp is not yet
1231	 * initialized for the boot CPU.
1232	 */
1233	cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare",
1234				  ppc_numa_cpu_prepare, ppc_numa_cpu_dead);
1235}
1236
1237static int __init early_numa(char *p)
1238{
1239	if (!p)
1240		return 0;
1241
1242	if (strstr(p, "off"))
1243		numa_enabled = 0;
1244
1245	p = strstr(p, "fake=");
1246	if (p)
1247		cmdline = p + strlen("fake=");
1248
1249	return 0;
1250}
1251early_param("numa", early_numa);
1252
1253#ifdef CONFIG_MEMORY_HOTPLUG
1254/*
1255 * Find the node associated with a hot added memory section for
1256 * memory represented in the device tree by the property
1257 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1258 */
1259static int hot_add_drconf_scn_to_nid(unsigned long scn_addr)
1260{
1261	struct drmem_lmb *lmb;
1262	unsigned long lmb_size;
1263	int nid = NUMA_NO_NODE;
1264
1265	lmb_size = drmem_lmb_size();
1266
1267	for_each_drmem_lmb(lmb) {
1268		/* skip this block if it is reserved or not assigned to
1269		 * this partition */
1270		if ((lmb->flags & DRCONF_MEM_RESERVED)
1271		    || !(lmb->flags & DRCONF_MEM_ASSIGNED))
1272			continue;
1273
1274		if ((scn_addr < lmb->base_addr)
1275		    || (scn_addr >= (lmb->base_addr + lmb_size)))
1276			continue;
1277
1278		nid = of_drconf_to_nid_single(lmb);
1279		break;
1280	}
1281
1282	return nid;
1283}
1284
1285/*
1286 * Find the node associated with a hot added memory section for memory
1287 * represented in the device tree as a node (i.e. memory@XXXX) for
1288 * each memblock.
1289 */
1290static int hot_add_node_scn_to_nid(unsigned long scn_addr)
1291{
1292	struct device_node *memory;
1293	int nid = NUMA_NO_NODE;
1294
1295	for_each_node_by_type(memory, "memory") {
1296		int i = 0;
1297
1298		while (1) {
1299			struct resource res;
1300
1301			if (of_address_to_resource(memory, i++, &res))
1302				break;
1303
1304			if ((scn_addr < res.start) || (scn_addr > res.end))
1305				continue;
1306
1307			nid = of_node_to_nid_single(memory);
1308			break;
1309		}
1310
1311		if (nid >= 0)
1312			break;
1313	}
1314
1315	of_node_put(memory);
1316
1317	return nid;
1318}
1319
1320/*
1321 * Find the node associated with a hot added memory section.  Section
1322 * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
1323 * sections are fully contained within a single MEMBLOCK.
1324 */
1325int hot_add_scn_to_nid(unsigned long scn_addr)
1326{
1327	struct device_node *memory = NULL;
1328	int nid;
1329
1330	if (!numa_enabled)
1331		return first_online_node;
1332
1333	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1334	if (memory) {
1335		nid = hot_add_drconf_scn_to_nid(scn_addr);
1336		of_node_put(memory);
1337	} else {
1338		nid = hot_add_node_scn_to_nid(scn_addr);
1339	}
1340
1341	if (nid < 0 || !node_possible(nid))
1342		nid = first_online_node;
1343
1344	return nid;
1345}
1346
1347static u64 hot_add_drconf_memory_max(void)
1348{
1349	struct device_node *memory = NULL;
1350	struct device_node *dn = NULL;
1351	const __be64 *lrdr = NULL;
1352
1353	dn = of_find_node_by_path("/rtas");
1354	if (dn) {
1355		lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL);
1356		of_node_put(dn);
1357		if (lrdr)
1358			return be64_to_cpup(lrdr);
1359	}
1360
1361	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1362	if (memory) {
1363		of_node_put(memory);
1364		return drmem_lmb_memory_max();
1365	}
1366	return 0;
1367}
1368
1369/*
1370 * memory_hotplug_max - return max address of memory that may be added
1371 *
1372 * This is currently only used on systems that support drconfig memory
1373 * hotplug.
1374 */
1375u64 memory_hotplug_max(void)
1376{
1377        return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1378}
1379#endif /* CONFIG_MEMORY_HOTPLUG */
1380
1381/* Virtual Processor Home Node (VPHN) support */
1382#ifdef CONFIG_PPC_SPLPAR
1383static int topology_inited;
1384
1385/*
1386 * Retrieve the new associativity information for a virtual processor's
1387 * home node.
1388 */
1389static long vphn_get_associativity(unsigned long cpu,
1390					__be32 *associativity)
1391{
1392	long rc;
1393
1394	rc = hcall_vphn(get_hard_smp_processor_id(cpu),
1395				VPHN_FLAG_VCPU, associativity);
1396
1397	switch (rc) {
1398	case H_SUCCESS:
1399		pr_debug("VPHN hcall succeeded. Reset polling...\n");
1400		goto out;
1401
1402	case H_FUNCTION:
1403		pr_err_ratelimited("VPHN unsupported. Disabling polling...\n");
1404		break;
1405	case H_HARDWARE:
1406		pr_err_ratelimited("hcall_vphn() experienced a hardware fault "
1407			"preventing VPHN. Disabling polling...\n");
1408		break;
1409	case H_PARAMETER:
1410		pr_err_ratelimited("hcall_vphn() was passed an invalid parameter. "
1411			"Disabling polling...\n");
1412		break;
1413	default:
1414		pr_err_ratelimited("hcall_vphn() returned %ld. Disabling polling...\n"
1415			, rc);
1416		break;
1417	}
1418out:
1419	return rc;
1420}
1421
1422void find_and_update_cpu_nid(int cpu)
1423{
1424	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1425	int new_nid;
1426
1427	/* Use associativity from first thread for all siblings */
1428	if (vphn_get_associativity(cpu, associativity))
1429		return;
1430
1431	/* Do not have previous associativity, so find it now. */
1432	new_nid = associativity_to_nid(associativity);
1433
1434	if (new_nid < 0 || !node_possible(new_nid))
1435		new_nid = first_online_node;
1436	else
1437		// Associate node <-> cpu, so cpu_up() calls
1438		// try_online_node() on the right node.
1439		set_cpu_numa_node(cpu, new_nid);
1440
1441	pr_debug("%s:%d cpu %d nid %d\n", __func__, __LINE__, cpu, new_nid);
1442}
1443
1444int cpu_to_coregroup_id(int cpu)
1445{
1446	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1447	int index;
1448
1449	if (cpu < 0 || cpu > nr_cpu_ids)
1450		return -1;
1451
1452	if (!coregroup_enabled)
1453		goto out;
1454
1455	if (!firmware_has_feature(FW_FEATURE_VPHN))
1456		goto out;
1457
1458	if (vphn_get_associativity(cpu, associativity))
1459		goto out;
1460
1461	index = of_read_number(associativity, 1);
1462	if (index > primary_domain_index + 1)
1463		return of_read_number(&associativity[index - 1], 1);
1464
1465out:
1466	return cpu_to_core_id(cpu);
1467}
1468
1469static int topology_update_init(void)
1470{
1471	topology_inited = 1;
1472	return 0;
1473}
1474device_initcall(topology_update_init);
1475#endif /* CONFIG_PPC_SPLPAR */
1476