1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * PowerPC64 SLB support.
4 *
5 * Copyright (C) 2004 David Gibson <dwg@au.ibm.com>, IBM
6 * Based on earlier code written by:
7 * Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com
8 *    Copyright (c) 2001 Dave Engebretsen
9 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
10 */
11
12#include <asm/interrupt.h>
13#include <asm/mmu.h>
14#include <asm/mmu_context.h>
15#include <asm/paca.h>
16#include <asm/lppaca.h>
17#include <asm/ppc-opcode.h>
18#include <asm/cputable.h>
19#include <asm/cacheflush.h>
20#include <asm/smp.h>
21#include <linux/compiler.h>
22#include <linux/context_tracking.h>
23#include <linux/mm_types.h>
24#include <linux/pgtable.h>
25
26#include <asm/udbg.h>
27#include <asm/code-patching.h>
28
29#include "internal.h"
30
31
32static long slb_allocate_user(struct mm_struct *mm, unsigned long ea);
33
34bool stress_slb_enabled __initdata;
35
36static int __init parse_stress_slb(char *p)
37{
38	stress_slb_enabled = true;
39	return 0;
40}
41early_param("stress_slb", parse_stress_slb);
42
43__ro_after_init DEFINE_STATIC_KEY_FALSE(stress_slb_key);
44
45static void assert_slb_presence(bool present, unsigned long ea)
46{
47#ifdef CONFIG_DEBUG_VM
48	unsigned long tmp;
49
50	WARN_ON_ONCE(mfmsr() & MSR_EE);
51
52	if (!cpu_has_feature(CPU_FTR_ARCH_206))
53		return;
54
55	/*
56	 * slbfee. requires bit 24 (PPC bit 39) be clear in RB. Hardware
57	 * ignores all other bits from 0-27, so just clear them all.
58	 */
59	ea &= ~((1UL << SID_SHIFT) - 1);
60	asm volatile(__PPC_SLBFEE_DOT(%0, %1) : "=r"(tmp) : "r"(ea) : "cr0");
61
62	WARN_ON(present == (tmp == 0));
63#endif
64}
65
66static inline void slb_shadow_update(unsigned long ea, int ssize,
67				     unsigned long flags,
68				     enum slb_index index)
69{
70	struct slb_shadow *p = get_slb_shadow();
71
72	/*
73	 * Clear the ESID first so the entry is not valid while we are
74	 * updating it.  No write barriers are needed here, provided
75	 * we only update the current CPU's SLB shadow buffer.
76	 */
77	WRITE_ONCE(p->save_area[index].esid, 0);
78	WRITE_ONCE(p->save_area[index].vsid, cpu_to_be64(mk_vsid_data(ea, ssize, flags)));
79	WRITE_ONCE(p->save_area[index].esid, cpu_to_be64(mk_esid_data(ea, ssize, index)));
80}
81
82static inline void slb_shadow_clear(enum slb_index index)
83{
84	WRITE_ONCE(get_slb_shadow()->save_area[index].esid, cpu_to_be64(index));
85}
86
87static inline void create_shadowed_slbe(unsigned long ea, int ssize,
88					unsigned long flags,
89					enum slb_index index)
90{
91	/*
92	 * Updating the shadow buffer before writing the SLB ensures
93	 * we don't get a stale entry here if we get preempted by PHYP
94	 * between these two statements.
95	 */
96	slb_shadow_update(ea, ssize, flags, index);
97
98	assert_slb_presence(false, ea);
99	asm volatile("slbmte  %0,%1" :
100		     : "r" (mk_vsid_data(ea, ssize, flags)),
101		       "r" (mk_esid_data(ea, ssize, index))
102		     : "memory" );
103}
104
105/*
106 * Insert bolted entries into SLB (which may not be empty, so don't clear
107 * slb_cache_ptr).
108 */
109void __slb_restore_bolted_realmode(void)
110{
111	struct slb_shadow *p = get_slb_shadow();
112	enum slb_index index;
113
114	 /* No isync needed because realmode. */
115	for (index = 0; index < SLB_NUM_BOLTED; index++) {
116		asm volatile("slbmte  %0,%1" :
117		     : "r" (be64_to_cpu(p->save_area[index].vsid)),
118		       "r" (be64_to_cpu(p->save_area[index].esid)));
119	}
120
121	assert_slb_presence(true, local_paca->kstack);
122}
123
124/*
125 * Insert the bolted entries into an empty SLB.
126 */
127void slb_restore_bolted_realmode(void)
128{
129	__slb_restore_bolted_realmode();
130	get_paca()->slb_cache_ptr = 0;
131
132	get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
133	get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
134}
135
136/*
137 * This flushes all SLB entries including 0, so it must be realmode.
138 */
139void slb_flush_all_realmode(void)
140{
141	asm volatile("slbmte %0,%0; slbia" : : "r" (0));
142}
143
144static __always_inline void __slb_flush_and_restore_bolted(bool preserve_kernel_lookaside)
145{
146	struct slb_shadow *p = get_slb_shadow();
147	unsigned long ksp_esid_data, ksp_vsid_data;
148	u32 ih;
149
150	/*
151	 * SLBIA IH=1 on ISA v2.05 and newer processors may preserve lookaside
152	 * information created with Class=0 entries, which we use for kernel
153	 * SLB entries (the SLB entries themselves are still invalidated).
154	 *
155	 * Older processors will ignore this optimisation. Over-invalidation
156	 * is fine because we never rely on lookaside information existing.
157	 */
158	if (preserve_kernel_lookaside)
159		ih = 1;
160	else
161		ih = 0;
162
163	ksp_esid_data = be64_to_cpu(p->save_area[KSTACK_INDEX].esid);
164	ksp_vsid_data = be64_to_cpu(p->save_area[KSTACK_INDEX].vsid);
165
166	asm volatile(PPC_SLBIA(%0)"	\n"
167		     "slbmte	%1, %2	\n"
168		     :: "i" (ih),
169			"r" (ksp_vsid_data),
170			"r" (ksp_esid_data)
171		     : "memory");
172}
173
174/*
175 * This flushes non-bolted entries, it can be run in virtual mode. Must
176 * be called with interrupts disabled.
177 */
178void slb_flush_and_restore_bolted(void)
179{
180	BUILD_BUG_ON(SLB_NUM_BOLTED != 2);
181
182	WARN_ON(!irqs_disabled());
183
184	/*
185	 * We can't take a PMU exception in the following code, so hard
186	 * disable interrupts.
187	 */
188	hard_irq_disable();
189
190	isync();
191	__slb_flush_and_restore_bolted(false);
192	isync();
193
194	assert_slb_presence(true, get_paca()->kstack);
195
196	get_paca()->slb_cache_ptr = 0;
197
198	get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
199	get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
200}
201
202void slb_save_contents(struct slb_entry *slb_ptr)
203{
204	int i;
205	unsigned long e, v;
206
207	/* Save slb_cache_ptr value. */
208	get_paca()->slb_save_cache_ptr = get_paca()->slb_cache_ptr;
209
210	if (!slb_ptr)
211		return;
212
213	for (i = 0; i < mmu_slb_size; i++) {
214		asm volatile("slbmfee  %0,%1" : "=r" (e) : "r" (i));
215		asm volatile("slbmfev  %0,%1" : "=r" (v) : "r" (i));
216		slb_ptr->esid = e;
217		slb_ptr->vsid = v;
218		slb_ptr++;
219	}
220}
221
222void slb_dump_contents(struct slb_entry *slb_ptr)
223{
224	int i, n;
225	unsigned long e, v;
226	unsigned long llp;
227
228	if (!slb_ptr)
229		return;
230
231	pr_err("SLB contents of cpu 0x%x\n", smp_processor_id());
232
233	for (i = 0; i < mmu_slb_size; i++) {
234		e = slb_ptr->esid;
235		v = slb_ptr->vsid;
236		slb_ptr++;
237
238		if (!e && !v)
239			continue;
240
241		pr_err("%02d %016lx %016lx %s\n", i, e, v,
242				(e & SLB_ESID_V) ? "VALID" : "NOT VALID");
243
244		if (!(e & SLB_ESID_V))
245			continue;
246
247		llp = v & SLB_VSID_LLP;
248		if (v & SLB_VSID_B_1T) {
249			pr_err("     1T ESID=%9lx VSID=%13lx LLP:%3lx\n",
250			       GET_ESID_1T(e),
251			       (v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T, llp);
252		} else {
253			pr_err("   256M ESID=%9lx VSID=%13lx LLP:%3lx\n",
254			       GET_ESID(e),
255			       (v & ~SLB_VSID_B) >> SLB_VSID_SHIFT, llp);
256		}
257	}
258
259	if (!early_cpu_has_feature(CPU_FTR_ARCH_300)) {
260		/* RR is not so useful as it's often not used for allocation */
261		pr_err("SLB RR allocator index %d\n", get_paca()->stab_rr);
262
263		/* Dump slb cache entires as well. */
264		pr_err("SLB cache ptr value = %d\n", get_paca()->slb_save_cache_ptr);
265		pr_err("Valid SLB cache entries:\n");
266		n = min_t(int, get_paca()->slb_save_cache_ptr, SLB_CACHE_ENTRIES);
267		for (i = 0; i < n; i++)
268			pr_err("%02d EA[0-35]=%9x\n", i, get_paca()->slb_cache[i]);
269		pr_err("Rest of SLB cache entries:\n");
270		for (i = n; i < SLB_CACHE_ENTRIES; i++)
271			pr_err("%02d EA[0-35]=%9x\n", i, get_paca()->slb_cache[i]);
272	}
273}
274
275void slb_vmalloc_update(void)
276{
277	/*
278	 * vmalloc is not bolted, so just have to flush non-bolted.
279	 */
280	slb_flush_and_restore_bolted();
281}
282
283static bool preload_hit(struct thread_info *ti, unsigned long esid)
284{
285	unsigned char i;
286
287	for (i = 0; i < ti->slb_preload_nr; i++) {
288		unsigned char idx;
289
290		idx = (ti->slb_preload_tail + i) % SLB_PRELOAD_NR;
291		if (esid == ti->slb_preload_esid[idx])
292			return true;
293	}
294	return false;
295}
296
297static bool preload_add(struct thread_info *ti, unsigned long ea)
298{
299	unsigned char idx;
300	unsigned long esid;
301
302	if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
303		/* EAs are stored >> 28 so 256MB segments don't need clearing */
304		if (ea & ESID_MASK_1T)
305			ea &= ESID_MASK_1T;
306	}
307
308	esid = ea >> SID_SHIFT;
309
310	if (preload_hit(ti, esid))
311		return false;
312
313	idx = (ti->slb_preload_tail + ti->slb_preload_nr) % SLB_PRELOAD_NR;
314	ti->slb_preload_esid[idx] = esid;
315	if (ti->slb_preload_nr == SLB_PRELOAD_NR)
316		ti->slb_preload_tail = (ti->slb_preload_tail + 1) % SLB_PRELOAD_NR;
317	else
318		ti->slb_preload_nr++;
319
320	return true;
321}
322
323static void preload_age(struct thread_info *ti)
324{
325	if (!ti->slb_preload_nr)
326		return;
327	ti->slb_preload_nr--;
328	ti->slb_preload_tail = (ti->slb_preload_tail + 1) % SLB_PRELOAD_NR;
329}
330
331void slb_setup_new_exec(void)
332{
333	struct thread_info *ti = current_thread_info();
334	struct mm_struct *mm = current->mm;
335	unsigned long exec = 0x10000000;
336
337	WARN_ON(irqs_disabled());
338
339	/*
340	 * preload cache can only be used to determine whether a SLB
341	 * entry exists if it does not start to overflow.
342	 */
343	if (ti->slb_preload_nr + 2 > SLB_PRELOAD_NR)
344		return;
345
346	hard_irq_disable();
347
348	/*
349	 * We have no good place to clear the slb preload cache on exec,
350	 * flush_thread is about the earliest arch hook but that happens
351	 * after we switch to the mm and have already preloaded the SLBEs.
352	 *
353	 * For the most part that's probably okay to use entries from the
354	 * previous exec, they will age out if unused. It may turn out to
355	 * be an advantage to clear the cache before switching to it,
356	 * however.
357	 */
358
359	/*
360	 * preload some userspace segments into the SLB.
361	 * Almost all 32 and 64bit PowerPC executables are linked at
362	 * 0x10000000 so it makes sense to preload this segment.
363	 */
364	if (!is_kernel_addr(exec)) {
365		if (preload_add(ti, exec))
366			slb_allocate_user(mm, exec);
367	}
368
369	/* Libraries and mmaps. */
370	if (!is_kernel_addr(mm->mmap_base)) {
371		if (preload_add(ti, mm->mmap_base))
372			slb_allocate_user(mm, mm->mmap_base);
373	}
374
375	/* see switch_slb */
376	asm volatile("isync" : : : "memory");
377
378	local_irq_enable();
379}
380
381void preload_new_slb_context(unsigned long start, unsigned long sp)
382{
383	struct thread_info *ti = current_thread_info();
384	struct mm_struct *mm = current->mm;
385	unsigned long heap = mm->start_brk;
386
387	WARN_ON(irqs_disabled());
388
389	/* see above */
390	if (ti->slb_preload_nr + 3 > SLB_PRELOAD_NR)
391		return;
392
393	hard_irq_disable();
394
395	/* Userspace entry address. */
396	if (!is_kernel_addr(start)) {
397		if (preload_add(ti, start))
398			slb_allocate_user(mm, start);
399	}
400
401	/* Top of stack, grows down. */
402	if (!is_kernel_addr(sp)) {
403		if (preload_add(ti, sp))
404			slb_allocate_user(mm, sp);
405	}
406
407	/* Bottom of heap, grows up. */
408	if (heap && !is_kernel_addr(heap)) {
409		if (preload_add(ti, heap))
410			slb_allocate_user(mm, heap);
411	}
412
413	/* see switch_slb */
414	asm volatile("isync" : : : "memory");
415
416	local_irq_enable();
417}
418
419static void slb_cache_slbie_kernel(unsigned int index)
420{
421	unsigned long slbie_data = get_paca()->slb_cache[index];
422	unsigned long ksp = get_paca()->kstack;
423
424	slbie_data <<= SID_SHIFT;
425	slbie_data |= 0xc000000000000000ULL;
426	if ((ksp & slb_esid_mask(mmu_kernel_ssize)) == slbie_data)
427		return;
428	slbie_data |= mmu_kernel_ssize << SLBIE_SSIZE_SHIFT;
429
430	asm volatile("slbie %0" : : "r" (slbie_data));
431}
432
433static void slb_cache_slbie_user(unsigned int index)
434{
435	unsigned long slbie_data = get_paca()->slb_cache[index];
436
437	slbie_data <<= SID_SHIFT;
438	slbie_data |= user_segment_size(slbie_data) << SLBIE_SSIZE_SHIFT;
439	slbie_data |= SLBIE_C; /* user slbs have C=1 */
440
441	asm volatile("slbie %0" : : "r" (slbie_data));
442}
443
444/* Flush all user entries from the segment table of the current processor. */
445void switch_slb(struct task_struct *tsk, struct mm_struct *mm)
446{
447	struct thread_info *ti = task_thread_info(tsk);
448	unsigned char i;
449
450	/*
451	 * We need interrupts hard-disabled here, not just soft-disabled,
452	 * so that a PMU interrupt can't occur, which might try to access
453	 * user memory (to get a stack trace) and possible cause an SLB miss
454	 * which would update the slb_cache/slb_cache_ptr fields in the PACA.
455	 */
456	hard_irq_disable();
457	isync();
458	if (stress_slb()) {
459		__slb_flush_and_restore_bolted(false);
460		isync();
461		get_paca()->slb_cache_ptr = 0;
462		get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
463
464	} else if (cpu_has_feature(CPU_FTR_ARCH_300)) {
465		/*
466		 * SLBIA IH=3 invalidates all Class=1 SLBEs and their
467		 * associated lookaside structures, which matches what
468		 * switch_slb wants. So ARCH_300 does not use the slb
469		 * cache.
470		 */
471		asm volatile(PPC_SLBIA(3));
472
473	} else {
474		unsigned long offset = get_paca()->slb_cache_ptr;
475
476		if (!mmu_has_feature(MMU_FTR_NO_SLBIE_B) &&
477		    offset <= SLB_CACHE_ENTRIES) {
478			/*
479			 * Could assert_slb_presence(true) here, but
480			 * hypervisor or machine check could have come
481			 * in and removed the entry at this point.
482			 */
483
484			for (i = 0; i < offset; i++)
485				slb_cache_slbie_user(i);
486
487			/* Workaround POWER5 < DD2.1 issue */
488			if (!cpu_has_feature(CPU_FTR_ARCH_207S) && offset == 1)
489				slb_cache_slbie_user(0);
490
491		} else {
492			/* Flush but retain kernel lookaside information */
493			__slb_flush_and_restore_bolted(true);
494			isync();
495
496			get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
497		}
498
499		get_paca()->slb_cache_ptr = 0;
500	}
501	get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
502
503	copy_mm_to_paca(mm);
504
505	/*
506	 * We gradually age out SLBs after a number of context switches to
507	 * reduce reload overhead of unused entries (like we do with FP/VEC
508	 * reload). Each time we wrap 256 switches, take an entry out of the
509	 * SLB preload cache.
510	 */
511	tsk->thread.load_slb++;
512	if (!tsk->thread.load_slb) {
513		unsigned long pc = KSTK_EIP(tsk);
514
515		preload_age(ti);
516		preload_add(ti, pc);
517	}
518
519	for (i = 0; i < ti->slb_preload_nr; i++) {
520		unsigned char idx;
521		unsigned long ea;
522
523		idx = (ti->slb_preload_tail + i) % SLB_PRELOAD_NR;
524		ea = (unsigned long)ti->slb_preload_esid[idx] << SID_SHIFT;
525
526		slb_allocate_user(mm, ea);
527	}
528
529	/*
530	 * Synchronize slbmte preloads with possible subsequent user memory
531	 * address accesses by the kernel (user mode won't happen until
532	 * rfid, which is safe).
533	 */
534	isync();
535}
536
537void slb_set_size(u16 size)
538{
539	mmu_slb_size = size;
540}
541
542void slb_initialize(void)
543{
544	unsigned long linear_llp, vmalloc_llp, io_llp;
545	unsigned long lflags;
546	static int slb_encoding_inited;
547#ifdef CONFIG_SPARSEMEM_VMEMMAP
548	unsigned long vmemmap_llp;
549#endif
550
551	/* Prepare our SLB miss handler based on our page size */
552	linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
553	io_llp = mmu_psize_defs[mmu_io_psize].sllp;
554	vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
555	get_paca()->vmalloc_sllp = SLB_VSID_KERNEL | vmalloc_llp;
556#ifdef CONFIG_SPARSEMEM_VMEMMAP
557	vmemmap_llp = mmu_psize_defs[mmu_vmemmap_psize].sllp;
558#endif
559	if (!slb_encoding_inited) {
560		slb_encoding_inited = 1;
561		pr_devel("SLB: linear  LLP = %04lx\n", linear_llp);
562		pr_devel("SLB: io      LLP = %04lx\n", io_llp);
563#ifdef CONFIG_SPARSEMEM_VMEMMAP
564		pr_devel("SLB: vmemmap LLP = %04lx\n", vmemmap_llp);
565#endif
566	}
567
568	get_paca()->stab_rr = SLB_NUM_BOLTED - 1;
569	get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
570	get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
571
572	lflags = SLB_VSID_KERNEL | linear_llp;
573
574	/* Invalidate the entire SLB (even entry 0) & all the ERATS */
575	asm volatile("isync":::"memory");
576	asm volatile("slbmte  %0,%0"::"r" (0) : "memory");
577	asm volatile("isync; slbia; isync":::"memory");
578	create_shadowed_slbe(PAGE_OFFSET, mmu_kernel_ssize, lflags, LINEAR_INDEX);
579
580	/*
581	 * For the boot cpu, we're running on the stack in init_thread_union,
582	 * which is in the first segment of the linear mapping, and also
583	 * get_paca()->kstack hasn't been initialized yet.
584	 * For secondary cpus, we need to bolt the kernel stack entry now.
585	 */
586	slb_shadow_clear(KSTACK_INDEX);
587	if (raw_smp_processor_id() != boot_cpuid &&
588	    (get_paca()->kstack & slb_esid_mask(mmu_kernel_ssize)) > PAGE_OFFSET)
589		create_shadowed_slbe(get_paca()->kstack,
590				     mmu_kernel_ssize, lflags, KSTACK_INDEX);
591
592	asm volatile("isync":::"memory");
593}
594
595static void slb_cache_update(unsigned long esid_data)
596{
597	int slb_cache_index;
598
599	if (cpu_has_feature(CPU_FTR_ARCH_300))
600		return; /* ISAv3.0B and later does not use slb_cache */
601
602	if (stress_slb())
603		return;
604
605	/*
606	 * Now update slb cache entries
607	 */
608	slb_cache_index = local_paca->slb_cache_ptr;
609	if (slb_cache_index < SLB_CACHE_ENTRIES) {
610		/*
611		 * We have space in slb cache for optimized switch_slb().
612		 * Top 36 bits from esid_data as per ISA
613		 */
614		local_paca->slb_cache[slb_cache_index++] = esid_data >> SID_SHIFT;
615		local_paca->slb_cache_ptr++;
616	} else {
617		/*
618		 * Our cache is full and the current cache content strictly
619		 * doesn't indicate the active SLB contents. Bump the ptr
620		 * so that switch_slb() will ignore the cache.
621		 */
622		local_paca->slb_cache_ptr = SLB_CACHE_ENTRIES + 1;
623	}
624}
625
626static enum slb_index alloc_slb_index(bool kernel)
627{
628	enum slb_index index;
629
630	/*
631	 * The allocation bitmaps can become out of synch with the SLB
632	 * when the _switch code does slbie when bolting a new stack
633	 * segment and it must not be anywhere else in the SLB. This leaves
634	 * a kernel allocated entry that is unused in the SLB. With very
635	 * large systems or small segment sizes, the bitmaps could slowly
636	 * fill with these entries. They will eventually be cleared out
637	 * by the round robin allocator in that case, so it's probably not
638	 * worth accounting for.
639	 */
640
641	/*
642	 * SLBs beyond 32 entries are allocated with stab_rr only
643	 * POWER7/8/9 have 32 SLB entries, this could be expanded if a
644	 * future CPU has more.
645	 */
646	if (local_paca->slb_used_bitmap != U32_MAX) {
647		index = ffz(local_paca->slb_used_bitmap);
648		local_paca->slb_used_bitmap |= 1U << index;
649		if (kernel)
650			local_paca->slb_kern_bitmap |= 1U << index;
651	} else {
652		/* round-robin replacement of slb starting at SLB_NUM_BOLTED. */
653		index = local_paca->stab_rr;
654		if (index < (mmu_slb_size - 1))
655			index++;
656		else
657			index = SLB_NUM_BOLTED;
658		local_paca->stab_rr = index;
659		if (index < 32) {
660			if (kernel)
661				local_paca->slb_kern_bitmap |= 1U << index;
662			else
663				local_paca->slb_kern_bitmap &= ~(1U << index);
664		}
665	}
666	BUG_ON(index < SLB_NUM_BOLTED);
667
668	return index;
669}
670
671static long slb_insert_entry(unsigned long ea, unsigned long context,
672				unsigned long flags, int ssize, bool kernel)
673{
674	unsigned long vsid;
675	unsigned long vsid_data, esid_data;
676	enum slb_index index;
677
678	vsid = get_vsid(context, ea, ssize);
679	if (!vsid)
680		return -EFAULT;
681
682	/*
683	 * There must not be a kernel SLB fault in alloc_slb_index or before
684	 * slbmte here or the allocation bitmaps could get out of whack with
685	 * the SLB.
686	 *
687	 * User SLB faults or preloads take this path which might get inlined
688	 * into the caller, so add compiler barriers here to ensure unsafe
689	 * memory accesses do not come between.
690	 */
691	barrier();
692
693	index = alloc_slb_index(kernel);
694
695	vsid_data = __mk_vsid_data(vsid, ssize, flags);
696	esid_data = mk_esid_data(ea, ssize, index);
697
698	/*
699	 * No need for an isync before or after this slbmte. The exception
700	 * we enter with and the rfid we exit with are context synchronizing.
701	 * User preloads should add isync afterwards in case the kernel
702	 * accesses user memory before it returns to userspace with rfid.
703	 */
704	assert_slb_presence(false, ea);
705	if (stress_slb()) {
706		int slb_cache_index = local_paca->slb_cache_ptr;
707
708		/*
709		 * stress_slb() does not use slb cache, repurpose as a
710		 * cache of inserted (non-bolted) kernel SLB entries. All
711		 * non-bolted kernel entries are flushed on any user fault,
712		 * or if there are already 3 non-boled kernel entries.
713		 */
714		BUILD_BUG_ON(SLB_CACHE_ENTRIES < 3);
715		if (!kernel || slb_cache_index == 3) {
716			int i;
717
718			for (i = 0; i < slb_cache_index; i++)
719				slb_cache_slbie_kernel(i);
720			slb_cache_index = 0;
721		}
722
723		if (kernel)
724			local_paca->slb_cache[slb_cache_index++] = esid_data >> SID_SHIFT;
725		local_paca->slb_cache_ptr = slb_cache_index;
726	}
727	asm volatile("slbmte %0, %1" : : "r" (vsid_data), "r" (esid_data));
728
729	barrier();
730
731	if (!kernel)
732		slb_cache_update(esid_data);
733
734	return 0;
735}
736
737static long slb_allocate_kernel(unsigned long ea, unsigned long id)
738{
739	unsigned long context;
740	unsigned long flags;
741	int ssize;
742
743	if (id == LINEAR_MAP_REGION_ID) {
744
745		/* We only support upto H_MAX_PHYSMEM_BITS */
746		if ((ea & EA_MASK) > (1UL << H_MAX_PHYSMEM_BITS))
747			return -EFAULT;
748
749		flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_linear_psize].sllp;
750
751#ifdef CONFIG_SPARSEMEM_VMEMMAP
752	} else if (id == VMEMMAP_REGION_ID) {
753
754		if (ea >= H_VMEMMAP_END)
755			return -EFAULT;
756
757		flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_vmemmap_psize].sllp;
758#endif
759	} else if (id == VMALLOC_REGION_ID) {
760
761		if (ea >= H_VMALLOC_END)
762			return -EFAULT;
763
764		flags = local_paca->vmalloc_sllp;
765
766	} else if (id == IO_REGION_ID) {
767
768		if (ea >= H_KERN_IO_END)
769			return -EFAULT;
770
771		flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_io_psize].sllp;
772
773	} else {
774		return -EFAULT;
775	}
776
777	ssize = MMU_SEGSIZE_1T;
778	if (!mmu_has_feature(MMU_FTR_1T_SEGMENT))
779		ssize = MMU_SEGSIZE_256M;
780
781	context = get_kernel_context(ea);
782
783	return slb_insert_entry(ea, context, flags, ssize, true);
784}
785
786static long slb_allocate_user(struct mm_struct *mm, unsigned long ea)
787{
788	unsigned long context;
789	unsigned long flags;
790	int bpsize;
791	int ssize;
792
793	/*
794	 * consider this as bad access if we take a SLB miss
795	 * on an address above addr limit.
796	 */
797	if (ea >= mm_ctx_slb_addr_limit(&mm->context))
798		return -EFAULT;
799
800	context = get_user_context(&mm->context, ea);
801	if (!context)
802		return -EFAULT;
803
804	if (unlikely(ea >= H_PGTABLE_RANGE)) {
805		WARN_ON(1);
806		return -EFAULT;
807	}
808
809	ssize = user_segment_size(ea);
810
811	bpsize = get_slice_psize(mm, ea);
812	flags = SLB_VSID_USER | mmu_psize_defs[bpsize].sllp;
813
814	return slb_insert_entry(ea, context, flags, ssize, false);
815}
816
817DEFINE_INTERRUPT_HANDLER_RAW(do_slb_fault)
818{
819	unsigned long ea = regs->dar;
820	unsigned long id = get_region_id(ea);
821
822	/* IRQs are not reconciled here, so can't check irqs_disabled */
823	VM_WARN_ON(mfmsr() & MSR_EE);
824
825	if (regs_is_unrecoverable(regs))
826		return -EINVAL;
827
828	/*
829	 * SLB kernel faults must be very careful not to touch anything that is
830	 * not bolted. E.g., PACA and global variables are okay, mm->context
831	 * stuff is not. SLB user faults may access all of memory (and induce
832	 * one recursive SLB kernel fault), so the kernel fault must not
833	 * trample on the user fault state at those points.
834	 */
835
836	/*
837	 * This is a raw interrupt handler, for performance, so that
838	 * fast_interrupt_return can be used. The handler must not touch local
839	 * irq state, or schedule. We could test for usermode and upgrade to a
840	 * normal process context (synchronous) interrupt for those, which
841	 * would make them first-class kernel code and able to be traced and
842	 * instrumented, although performance would suffer a bit, it would
843	 * probably be a good tradeoff.
844	 */
845	if (id >= LINEAR_MAP_REGION_ID) {
846		long err;
847#ifdef CONFIG_DEBUG_VM
848		/* Catch recursive kernel SLB faults. */
849		BUG_ON(local_paca->in_kernel_slb_handler);
850		local_paca->in_kernel_slb_handler = 1;
851#endif
852		err = slb_allocate_kernel(ea, id);
853#ifdef CONFIG_DEBUG_VM
854		local_paca->in_kernel_slb_handler = 0;
855#endif
856		return err;
857	} else {
858		struct mm_struct *mm = current->mm;
859		long err;
860
861		if (unlikely(!mm))
862			return -EFAULT;
863
864		err = slb_allocate_user(mm, ea);
865		if (!err)
866			preload_add(current_thread_info(), ea);
867
868		return err;
869	}
870}
871