1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Page table handling routines for radix page table.
4 *
5 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
6 */
7
8#define pr_fmt(fmt) "radix-mmu: " fmt
9
10#include <linux/io.h>
11#include <linux/kernel.h>
12#include <linux/sched/mm.h>
13#include <linux/memblock.h>
14#include <linux/of.h>
15#include <linux/of_fdt.h>
16#include <linux/mm.h>
17#include <linux/hugetlb.h>
18#include <linux/string_helpers.h>
19#include <linux/memory.h>
20
21#include <asm/pgalloc.h>
22#include <asm/mmu_context.h>
23#include <asm/dma.h>
24#include <asm/machdep.h>
25#include <asm/mmu.h>
26#include <asm/firmware.h>
27#include <asm/powernv.h>
28#include <asm/sections.h>
29#include <asm/smp.h>
30#include <asm/trace.h>
31#include <asm/uaccess.h>
32#include <asm/ultravisor.h>
33#include <asm/set_memory.h>
34
35#include <trace/events/thp.h>
36
37#include <mm/mmu_decl.h>
38
39unsigned int mmu_base_pid;
40
41static __ref void *early_alloc_pgtable(unsigned long size, int nid,
42			unsigned long region_start, unsigned long region_end)
43{
44	phys_addr_t min_addr = MEMBLOCK_LOW_LIMIT;
45	phys_addr_t max_addr = MEMBLOCK_ALLOC_ANYWHERE;
46	void *ptr;
47
48	if (region_start)
49		min_addr = region_start;
50	if (region_end)
51		max_addr = region_end;
52
53	ptr = memblock_alloc_try_nid(size, size, min_addr, max_addr, nid);
54
55	if (!ptr)
56		panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa max_addr=%pa\n",
57		      __func__, size, size, nid, &min_addr, &max_addr);
58
59	return ptr;
60}
61
62/*
63 * When allocating pud or pmd pointers, we allocate a complete page
64 * of PAGE_SIZE rather than PUD_TABLE_SIZE or PMD_TABLE_SIZE. This
65 * is to ensure that the page obtained from the memblock allocator
66 * can be completely used as page table page and can be freed
67 * correctly when the page table entries are removed.
68 */
69static int early_map_kernel_page(unsigned long ea, unsigned long pa,
70			  pgprot_t flags,
71			  unsigned int map_page_size,
72			  int nid,
73			  unsigned long region_start, unsigned long region_end)
74{
75	unsigned long pfn = pa >> PAGE_SHIFT;
76	pgd_t *pgdp;
77	p4d_t *p4dp;
78	pud_t *pudp;
79	pmd_t *pmdp;
80	pte_t *ptep;
81
82	pgdp = pgd_offset_k(ea);
83	p4dp = p4d_offset(pgdp, ea);
84	if (p4d_none(*p4dp)) {
85		pudp = early_alloc_pgtable(PAGE_SIZE, nid,
86					   region_start, region_end);
87		p4d_populate(&init_mm, p4dp, pudp);
88	}
89	pudp = pud_offset(p4dp, ea);
90	if (map_page_size == PUD_SIZE) {
91		ptep = (pte_t *)pudp;
92		goto set_the_pte;
93	}
94	if (pud_none(*pudp)) {
95		pmdp = early_alloc_pgtable(PAGE_SIZE, nid, region_start,
96					   region_end);
97		pud_populate(&init_mm, pudp, pmdp);
98	}
99	pmdp = pmd_offset(pudp, ea);
100	if (map_page_size == PMD_SIZE) {
101		ptep = pmdp_ptep(pmdp);
102		goto set_the_pte;
103	}
104	if (!pmd_present(*pmdp)) {
105		ptep = early_alloc_pgtable(PAGE_SIZE, nid,
106						region_start, region_end);
107		pmd_populate_kernel(&init_mm, pmdp, ptep);
108	}
109	ptep = pte_offset_kernel(pmdp, ea);
110
111set_the_pte:
112	set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags));
113	asm volatile("ptesync": : :"memory");
114	return 0;
115}
116
117/*
118 * nid, region_start, and region_end are hints to try to place the page
119 * table memory in the same node or region.
120 */
121static int __map_kernel_page(unsigned long ea, unsigned long pa,
122			  pgprot_t flags,
123			  unsigned int map_page_size,
124			  int nid,
125			  unsigned long region_start, unsigned long region_end)
126{
127	unsigned long pfn = pa >> PAGE_SHIFT;
128	pgd_t *pgdp;
129	p4d_t *p4dp;
130	pud_t *pudp;
131	pmd_t *pmdp;
132	pte_t *ptep;
133	/*
134	 * Make sure task size is correct as per the max adddr
135	 */
136	BUILD_BUG_ON(TASK_SIZE_USER64 > RADIX_PGTABLE_RANGE);
137
138#ifdef CONFIG_PPC_64K_PAGES
139	BUILD_BUG_ON(RADIX_KERN_MAP_SIZE != (1UL << MAX_EA_BITS_PER_CONTEXT));
140#endif
141
142	if (unlikely(!slab_is_available()))
143		return early_map_kernel_page(ea, pa, flags, map_page_size,
144						nid, region_start, region_end);
145
146	/*
147	 * Should make page table allocation functions be able to take a
148	 * node, so we can place kernel page tables on the right nodes after
149	 * boot.
150	 */
151	pgdp = pgd_offset_k(ea);
152	p4dp = p4d_offset(pgdp, ea);
153	pudp = pud_alloc(&init_mm, p4dp, ea);
154	if (!pudp)
155		return -ENOMEM;
156	if (map_page_size == PUD_SIZE) {
157		ptep = (pte_t *)pudp;
158		goto set_the_pte;
159	}
160	pmdp = pmd_alloc(&init_mm, pudp, ea);
161	if (!pmdp)
162		return -ENOMEM;
163	if (map_page_size == PMD_SIZE) {
164		ptep = pmdp_ptep(pmdp);
165		goto set_the_pte;
166	}
167	ptep = pte_alloc_kernel(pmdp, ea);
168	if (!ptep)
169		return -ENOMEM;
170
171set_the_pte:
172	set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags));
173	asm volatile("ptesync": : :"memory");
174	return 0;
175}
176
177int radix__map_kernel_page(unsigned long ea, unsigned long pa,
178			  pgprot_t flags,
179			  unsigned int map_page_size)
180{
181	return __map_kernel_page(ea, pa, flags, map_page_size, -1, 0, 0);
182}
183
184#ifdef CONFIG_STRICT_KERNEL_RWX
185static void radix__change_memory_range(unsigned long start, unsigned long end,
186				       unsigned long clear)
187{
188	unsigned long idx;
189	pgd_t *pgdp;
190	p4d_t *p4dp;
191	pud_t *pudp;
192	pmd_t *pmdp;
193	pte_t *ptep;
194
195	start = ALIGN_DOWN(start, PAGE_SIZE);
196	end = PAGE_ALIGN(end); // aligns up
197
198	pr_debug("Changing flags on range %lx-%lx removing 0x%lx\n",
199		 start, end, clear);
200
201	for (idx = start; idx < end; idx += PAGE_SIZE) {
202		pgdp = pgd_offset_k(idx);
203		p4dp = p4d_offset(pgdp, idx);
204		pudp = pud_alloc(&init_mm, p4dp, idx);
205		if (!pudp)
206			continue;
207		if (pud_leaf(*pudp)) {
208			ptep = (pte_t *)pudp;
209			goto update_the_pte;
210		}
211		pmdp = pmd_alloc(&init_mm, pudp, idx);
212		if (!pmdp)
213			continue;
214		if (pmd_leaf(*pmdp)) {
215			ptep = pmdp_ptep(pmdp);
216			goto update_the_pte;
217		}
218		ptep = pte_alloc_kernel(pmdp, idx);
219		if (!ptep)
220			continue;
221update_the_pte:
222		radix__pte_update(&init_mm, idx, ptep, clear, 0, 0);
223	}
224
225	radix__flush_tlb_kernel_range(start, end);
226}
227
228void radix__mark_rodata_ro(void)
229{
230	unsigned long start, end;
231
232	start = (unsigned long)_stext;
233	end = (unsigned long)__end_rodata;
234
235	radix__change_memory_range(start, end, _PAGE_WRITE);
236
237	for (start = PAGE_OFFSET; start < (unsigned long)_stext; start += PAGE_SIZE) {
238		end = start + PAGE_SIZE;
239		if (overlaps_interrupt_vector_text(start, end))
240			radix__change_memory_range(start, end, _PAGE_WRITE);
241		else
242			break;
243	}
244}
245
246void radix__mark_initmem_nx(void)
247{
248	unsigned long start = (unsigned long)__init_begin;
249	unsigned long end = (unsigned long)__init_end;
250
251	radix__change_memory_range(start, end, _PAGE_EXEC);
252}
253#endif /* CONFIG_STRICT_KERNEL_RWX */
254
255static inline void __meminit
256print_mapping(unsigned long start, unsigned long end, unsigned long size, bool exec)
257{
258	char buf[10];
259
260	if (end <= start)
261		return;
262
263	string_get_size(size, 1, STRING_UNITS_2, buf, sizeof(buf));
264
265	pr_info("Mapped 0x%016lx-0x%016lx with %s pages%s\n", start, end, buf,
266		exec ? " (exec)" : "");
267}
268
269static unsigned long next_boundary(unsigned long addr, unsigned long end)
270{
271#ifdef CONFIG_STRICT_KERNEL_RWX
272	unsigned long stext_phys;
273
274	stext_phys = __pa_symbol(_stext);
275
276	// Relocatable kernel running at non-zero real address
277	if (stext_phys != 0) {
278		// The end of interrupts code at zero is a rodata boundary
279		unsigned long end_intr = __pa_symbol(__end_interrupts) - stext_phys;
280		if (addr < end_intr)
281			return end_intr;
282
283		// Start of relocated kernel text is a rodata boundary
284		if (addr < stext_phys)
285			return stext_phys;
286	}
287
288	if (addr < __pa_symbol(__srwx_boundary))
289		return __pa_symbol(__srwx_boundary);
290#endif
291	return end;
292}
293
294static int __meminit create_physical_mapping(unsigned long start,
295					     unsigned long end,
296					     int nid, pgprot_t _prot)
297{
298	unsigned long vaddr, addr, mapping_size = 0;
299	bool prev_exec, exec = false;
300	pgprot_t prot;
301	int psize;
302	unsigned long max_mapping_size = memory_block_size;
303
304	if (debug_pagealloc_enabled_or_kfence())
305		max_mapping_size = PAGE_SIZE;
306
307	start = ALIGN(start, PAGE_SIZE);
308	end   = ALIGN_DOWN(end, PAGE_SIZE);
309	for (addr = start; addr < end; addr += mapping_size) {
310		unsigned long gap, previous_size;
311		int rc;
312
313		gap = next_boundary(addr, end) - addr;
314		if (gap > max_mapping_size)
315			gap = max_mapping_size;
316		previous_size = mapping_size;
317		prev_exec = exec;
318
319		if (IS_ALIGNED(addr, PUD_SIZE) && gap >= PUD_SIZE &&
320		    mmu_psize_defs[MMU_PAGE_1G].shift) {
321			mapping_size = PUD_SIZE;
322			psize = MMU_PAGE_1G;
323		} else if (IS_ALIGNED(addr, PMD_SIZE) && gap >= PMD_SIZE &&
324			   mmu_psize_defs[MMU_PAGE_2M].shift) {
325			mapping_size = PMD_SIZE;
326			psize = MMU_PAGE_2M;
327		} else {
328			mapping_size = PAGE_SIZE;
329			psize = mmu_virtual_psize;
330		}
331
332		vaddr = (unsigned long)__va(addr);
333
334		if (overlaps_kernel_text(vaddr, vaddr + mapping_size) ||
335		    overlaps_interrupt_vector_text(vaddr, vaddr + mapping_size)) {
336			prot = PAGE_KERNEL_X;
337			exec = true;
338		} else {
339			prot = _prot;
340			exec = false;
341		}
342
343		if (mapping_size != previous_size || exec != prev_exec) {
344			print_mapping(start, addr, previous_size, prev_exec);
345			start = addr;
346		}
347
348		rc = __map_kernel_page(vaddr, addr, prot, mapping_size, nid, start, end);
349		if (rc)
350			return rc;
351
352		update_page_count(psize, 1);
353	}
354
355	print_mapping(start, addr, mapping_size, exec);
356	return 0;
357}
358
359static void __init radix_init_pgtable(void)
360{
361	unsigned long rts_field;
362	phys_addr_t start, end;
363	u64 i;
364
365	/* We don't support slb for radix */
366	slb_set_size(0);
367
368	/*
369	 * Create the linear mapping
370	 */
371	for_each_mem_range(i, &start, &end) {
372		/*
373		 * The memblock allocator  is up at this point, so the
374		 * page tables will be allocated within the range. No
375		 * need or a node (which we don't have yet).
376		 */
377
378		if (end >= RADIX_VMALLOC_START) {
379			pr_warn("Outside the supported range\n");
380			continue;
381		}
382
383		WARN_ON(create_physical_mapping(start, end,
384						-1, PAGE_KERNEL));
385	}
386
387	if (!cpu_has_feature(CPU_FTR_HVMODE) &&
388			cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) {
389		/*
390		 * Older versions of KVM on these machines prefer if the
391		 * guest only uses the low 19 PID bits.
392		 */
393		mmu_pid_bits = 19;
394	}
395	mmu_base_pid = 1;
396
397	/*
398	 * Allocate Partition table and process table for the
399	 * host.
400	 */
401	BUG_ON(PRTB_SIZE_SHIFT > 36);
402	process_tb = early_alloc_pgtable(1UL << PRTB_SIZE_SHIFT, -1, 0, 0);
403	/*
404	 * Fill in the process table.
405	 */
406	rts_field = radix__get_tree_size();
407	process_tb->prtb0 = cpu_to_be64(rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE);
408
409	/*
410	 * The init_mm context is given the first available (non-zero) PID,
411	 * which is the "guard PID" and contains no page table. PIDR should
412	 * never be set to zero because that duplicates the kernel address
413	 * space at the 0x0... offset (quadrant 0)!
414	 *
415	 * An arbitrary PID that may later be allocated by the PID allocator
416	 * for userspace processes must not be used either, because that
417	 * would cause stale user mappings for that PID on CPUs outside of
418	 * the TLB invalidation scheme (because it won't be in mm_cpumask).
419	 *
420	 * So permanently carve out one PID for the purpose of a guard PID.
421	 */
422	init_mm.context.id = mmu_base_pid;
423	mmu_base_pid++;
424}
425
426static void __init radix_init_partition_table(void)
427{
428	unsigned long rts_field, dw0, dw1;
429
430	mmu_partition_table_init();
431	rts_field = radix__get_tree_size();
432	dw0 = rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE | PATB_HR;
433	dw1 = __pa(process_tb) | (PRTB_SIZE_SHIFT - 12) | PATB_GR;
434	mmu_partition_table_set_entry(0, dw0, dw1, false);
435
436	pr_info("Initializing Radix MMU\n");
437}
438
439static int __init get_idx_from_shift(unsigned int shift)
440{
441	int idx = -1;
442
443	switch (shift) {
444	case 0xc:
445		idx = MMU_PAGE_4K;
446		break;
447	case 0x10:
448		idx = MMU_PAGE_64K;
449		break;
450	case 0x15:
451		idx = MMU_PAGE_2M;
452		break;
453	case 0x1e:
454		idx = MMU_PAGE_1G;
455		break;
456	}
457	return idx;
458}
459
460static int __init radix_dt_scan_page_sizes(unsigned long node,
461					   const char *uname, int depth,
462					   void *data)
463{
464	int size = 0;
465	int shift, idx;
466	unsigned int ap;
467	const __be32 *prop;
468	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
469
470	/* We are scanning "cpu" nodes only */
471	if (type == NULL || strcmp(type, "cpu") != 0)
472		return 0;
473
474	/* Grab page size encodings */
475	prop = of_get_flat_dt_prop(node, "ibm,processor-radix-AP-encodings", &size);
476	if (!prop)
477		return 0;
478
479	pr_info("Page sizes from device-tree:\n");
480	for (; size >= 4; size -= 4, ++prop) {
481
482		struct mmu_psize_def *def;
483
484		/* top 3 bit is AP encoding */
485		shift = be32_to_cpu(prop[0]) & ~(0xe << 28);
486		ap = be32_to_cpu(prop[0]) >> 29;
487		pr_info("Page size shift = %d AP=0x%x\n", shift, ap);
488
489		idx = get_idx_from_shift(shift);
490		if (idx < 0)
491			continue;
492
493		def = &mmu_psize_defs[idx];
494		def->shift = shift;
495		def->ap  = ap;
496		def->h_rpt_pgsize = psize_to_rpti_pgsize(idx);
497	}
498
499	/* needed ? */
500	cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
501	return 1;
502}
503
504void __init radix__early_init_devtree(void)
505{
506	int rc;
507
508	/*
509	 * Try to find the available page sizes in the device-tree
510	 */
511	rc = of_scan_flat_dt(radix_dt_scan_page_sizes, NULL);
512	if (!rc) {
513		/*
514		 * No page size details found in device tree.
515		 * Let's assume we have page 4k and 64k support
516		 */
517		mmu_psize_defs[MMU_PAGE_4K].shift = 12;
518		mmu_psize_defs[MMU_PAGE_4K].ap = 0x0;
519		mmu_psize_defs[MMU_PAGE_4K].h_rpt_pgsize =
520			psize_to_rpti_pgsize(MMU_PAGE_4K);
521
522		mmu_psize_defs[MMU_PAGE_64K].shift = 16;
523		mmu_psize_defs[MMU_PAGE_64K].ap = 0x5;
524		mmu_psize_defs[MMU_PAGE_64K].h_rpt_pgsize =
525			psize_to_rpti_pgsize(MMU_PAGE_64K);
526	}
527	return;
528}
529
530void __init radix__early_init_mmu(void)
531{
532	unsigned long lpcr;
533
534#ifdef CONFIG_PPC_64S_HASH_MMU
535#ifdef CONFIG_PPC_64K_PAGES
536	/* PAGE_SIZE mappings */
537	mmu_virtual_psize = MMU_PAGE_64K;
538#else
539	mmu_virtual_psize = MMU_PAGE_4K;
540#endif
541#endif
542	/*
543	 * initialize page table size
544	 */
545	__pte_index_size = RADIX_PTE_INDEX_SIZE;
546	__pmd_index_size = RADIX_PMD_INDEX_SIZE;
547	__pud_index_size = RADIX_PUD_INDEX_SIZE;
548	__pgd_index_size = RADIX_PGD_INDEX_SIZE;
549	__pud_cache_index = RADIX_PUD_INDEX_SIZE;
550	__pte_table_size = RADIX_PTE_TABLE_SIZE;
551	__pmd_table_size = RADIX_PMD_TABLE_SIZE;
552	__pud_table_size = RADIX_PUD_TABLE_SIZE;
553	__pgd_table_size = RADIX_PGD_TABLE_SIZE;
554
555	__pmd_val_bits = RADIX_PMD_VAL_BITS;
556	__pud_val_bits = RADIX_PUD_VAL_BITS;
557	__pgd_val_bits = RADIX_PGD_VAL_BITS;
558
559	__kernel_virt_start = RADIX_KERN_VIRT_START;
560	__vmalloc_start = RADIX_VMALLOC_START;
561	__vmalloc_end = RADIX_VMALLOC_END;
562	__kernel_io_start = RADIX_KERN_IO_START;
563	__kernel_io_end = RADIX_KERN_IO_END;
564	vmemmap = (struct page *)RADIX_VMEMMAP_START;
565	ioremap_bot = IOREMAP_BASE;
566
567#ifdef CONFIG_PCI
568	pci_io_base = ISA_IO_BASE;
569#endif
570	__pte_frag_nr = RADIX_PTE_FRAG_NR;
571	__pte_frag_size_shift = RADIX_PTE_FRAG_SIZE_SHIFT;
572	__pmd_frag_nr = RADIX_PMD_FRAG_NR;
573	__pmd_frag_size_shift = RADIX_PMD_FRAG_SIZE_SHIFT;
574
575	radix_init_pgtable();
576
577	if (!firmware_has_feature(FW_FEATURE_LPAR)) {
578		lpcr = mfspr(SPRN_LPCR);
579		mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
580		radix_init_partition_table();
581	} else {
582		radix_init_pseries();
583	}
584
585	memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
586
587	/* Switch to the guard PID before turning on MMU */
588	radix__switch_mmu_context(NULL, &init_mm);
589	tlbiel_all();
590}
591
592void radix__early_init_mmu_secondary(void)
593{
594	unsigned long lpcr;
595	/*
596	 * update partition table control register and UPRT
597	 */
598	if (!firmware_has_feature(FW_FEATURE_LPAR)) {
599		lpcr = mfspr(SPRN_LPCR);
600		mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
601
602		set_ptcr_when_no_uv(__pa(partition_tb) |
603				    (PATB_SIZE_SHIFT - 12));
604	}
605
606	radix__switch_mmu_context(NULL, &init_mm);
607	tlbiel_all();
608
609	/* Make sure userspace can't change the AMR */
610	mtspr(SPRN_UAMOR, 0);
611}
612
613/* Called during kexec sequence with MMU off */
614notrace void radix__mmu_cleanup_all(void)
615{
616	unsigned long lpcr;
617
618	if (!firmware_has_feature(FW_FEATURE_LPAR)) {
619		lpcr = mfspr(SPRN_LPCR);
620		mtspr(SPRN_LPCR, lpcr & ~LPCR_UPRT);
621		set_ptcr_when_no_uv(0);
622		powernv_set_nmmu_ptcr(0);
623		radix__flush_tlb_all();
624	}
625}
626
627#ifdef CONFIG_MEMORY_HOTPLUG
628static void free_pte_table(pte_t *pte_start, pmd_t *pmd)
629{
630	pte_t *pte;
631	int i;
632
633	for (i = 0; i < PTRS_PER_PTE; i++) {
634		pte = pte_start + i;
635		if (!pte_none(*pte))
636			return;
637	}
638
639	pte_free_kernel(&init_mm, pte_start);
640	pmd_clear(pmd);
641}
642
643static void free_pmd_table(pmd_t *pmd_start, pud_t *pud)
644{
645	pmd_t *pmd;
646	int i;
647
648	for (i = 0; i < PTRS_PER_PMD; i++) {
649		pmd = pmd_start + i;
650		if (!pmd_none(*pmd))
651			return;
652	}
653
654	pmd_free(&init_mm, pmd_start);
655	pud_clear(pud);
656}
657
658static void free_pud_table(pud_t *pud_start, p4d_t *p4d)
659{
660	pud_t *pud;
661	int i;
662
663	for (i = 0; i < PTRS_PER_PUD; i++) {
664		pud = pud_start + i;
665		if (!pud_none(*pud))
666			return;
667	}
668
669	pud_free(&init_mm, pud_start);
670	p4d_clear(p4d);
671}
672
673#ifdef CONFIG_SPARSEMEM_VMEMMAP
674static bool __meminit vmemmap_pmd_is_unused(unsigned long addr, unsigned long end)
675{
676	unsigned long start = ALIGN_DOWN(addr, PMD_SIZE);
677
678	return !vmemmap_populated(start, PMD_SIZE);
679}
680
681static bool __meminit vmemmap_page_is_unused(unsigned long addr, unsigned long end)
682{
683	unsigned long start = ALIGN_DOWN(addr, PAGE_SIZE);
684
685	return !vmemmap_populated(start, PAGE_SIZE);
686
687}
688#endif
689
690static void __meminit free_vmemmap_pages(struct page *page,
691					 struct vmem_altmap *altmap,
692					 int order)
693{
694	unsigned int nr_pages = 1 << order;
695
696	if (altmap) {
697		unsigned long alt_start, alt_end;
698		unsigned long base_pfn = page_to_pfn(page);
699
700		/*
701		 * with 2M vmemmap mmaping we can have things setup
702		 * such that even though atlmap is specified we never
703		 * used altmap.
704		 */
705		alt_start = altmap->base_pfn;
706		alt_end = altmap->base_pfn + altmap->reserve + altmap->free;
707
708		if (base_pfn >= alt_start && base_pfn < alt_end) {
709			vmem_altmap_free(altmap, nr_pages);
710			return;
711		}
712	}
713
714	if (PageReserved(page)) {
715		/* allocated from memblock */
716		while (nr_pages--)
717			free_reserved_page(page++);
718	} else
719		free_pages((unsigned long)page_address(page), order);
720}
721
722static void __meminit remove_pte_table(pte_t *pte_start, unsigned long addr,
723				       unsigned long end, bool direct,
724				       struct vmem_altmap *altmap)
725{
726	unsigned long next, pages = 0;
727	pte_t *pte;
728
729	pte = pte_start + pte_index(addr);
730	for (; addr < end; addr = next, pte++) {
731		next = (addr + PAGE_SIZE) & PAGE_MASK;
732		if (next > end)
733			next = end;
734
735		if (!pte_present(*pte))
736			continue;
737
738		if (PAGE_ALIGNED(addr) && PAGE_ALIGNED(next)) {
739			if (!direct)
740				free_vmemmap_pages(pte_page(*pte), altmap, 0);
741			pte_clear(&init_mm, addr, pte);
742			pages++;
743		}
744#ifdef CONFIG_SPARSEMEM_VMEMMAP
745		else if (!direct && vmemmap_page_is_unused(addr, next)) {
746			free_vmemmap_pages(pte_page(*pte), altmap, 0);
747			pte_clear(&init_mm, addr, pte);
748		}
749#endif
750	}
751	if (direct)
752		update_page_count(mmu_virtual_psize, -pages);
753}
754
755static void __meminit remove_pmd_table(pmd_t *pmd_start, unsigned long addr,
756				       unsigned long end, bool direct,
757				       struct vmem_altmap *altmap)
758{
759	unsigned long next, pages = 0;
760	pte_t *pte_base;
761	pmd_t *pmd;
762
763	pmd = pmd_start + pmd_index(addr);
764	for (; addr < end; addr = next, pmd++) {
765		next = pmd_addr_end(addr, end);
766
767		if (!pmd_present(*pmd))
768			continue;
769
770		if (pmd_leaf(*pmd)) {
771			if (IS_ALIGNED(addr, PMD_SIZE) &&
772			    IS_ALIGNED(next, PMD_SIZE)) {
773				if (!direct)
774					free_vmemmap_pages(pmd_page(*pmd), altmap, get_order(PMD_SIZE));
775				pte_clear(&init_mm, addr, (pte_t *)pmd);
776				pages++;
777			}
778#ifdef CONFIG_SPARSEMEM_VMEMMAP
779			else if (!direct && vmemmap_pmd_is_unused(addr, next)) {
780				free_vmemmap_pages(pmd_page(*pmd), altmap, get_order(PMD_SIZE));
781				pte_clear(&init_mm, addr, (pte_t *)pmd);
782			}
783#endif
784			continue;
785		}
786
787		pte_base = (pte_t *)pmd_page_vaddr(*pmd);
788		remove_pte_table(pte_base, addr, next, direct, altmap);
789		free_pte_table(pte_base, pmd);
790	}
791	if (direct)
792		update_page_count(MMU_PAGE_2M, -pages);
793}
794
795static void __meminit remove_pud_table(pud_t *pud_start, unsigned long addr,
796				       unsigned long end, bool direct,
797				       struct vmem_altmap *altmap)
798{
799	unsigned long next, pages = 0;
800	pmd_t *pmd_base;
801	pud_t *pud;
802
803	pud = pud_start + pud_index(addr);
804	for (; addr < end; addr = next, pud++) {
805		next = pud_addr_end(addr, end);
806
807		if (!pud_present(*pud))
808			continue;
809
810		if (pud_leaf(*pud)) {
811			if (!IS_ALIGNED(addr, PUD_SIZE) ||
812			    !IS_ALIGNED(next, PUD_SIZE)) {
813				WARN_ONCE(1, "%s: unaligned range\n", __func__);
814				continue;
815			}
816			pte_clear(&init_mm, addr, (pte_t *)pud);
817			pages++;
818			continue;
819		}
820
821		pmd_base = pud_pgtable(*pud);
822		remove_pmd_table(pmd_base, addr, next, direct, altmap);
823		free_pmd_table(pmd_base, pud);
824	}
825	if (direct)
826		update_page_count(MMU_PAGE_1G, -pages);
827}
828
829static void __meminit
830remove_pagetable(unsigned long start, unsigned long end, bool direct,
831		 struct vmem_altmap *altmap)
832{
833	unsigned long addr, next;
834	pud_t *pud_base;
835	pgd_t *pgd;
836	p4d_t *p4d;
837
838	spin_lock(&init_mm.page_table_lock);
839
840	for (addr = start; addr < end; addr = next) {
841		next = pgd_addr_end(addr, end);
842
843		pgd = pgd_offset_k(addr);
844		p4d = p4d_offset(pgd, addr);
845		if (!p4d_present(*p4d))
846			continue;
847
848		if (p4d_leaf(*p4d)) {
849			if (!IS_ALIGNED(addr, P4D_SIZE) ||
850			    !IS_ALIGNED(next, P4D_SIZE)) {
851				WARN_ONCE(1, "%s: unaligned range\n", __func__);
852				continue;
853			}
854
855			pte_clear(&init_mm, addr, (pte_t *)pgd);
856			continue;
857		}
858
859		pud_base = p4d_pgtable(*p4d);
860		remove_pud_table(pud_base, addr, next, direct, altmap);
861		free_pud_table(pud_base, p4d);
862	}
863
864	spin_unlock(&init_mm.page_table_lock);
865	radix__flush_tlb_kernel_range(start, end);
866}
867
868int __meminit radix__create_section_mapping(unsigned long start,
869					    unsigned long end, int nid,
870					    pgprot_t prot)
871{
872	if (end >= RADIX_VMALLOC_START) {
873		pr_warn("Outside the supported range\n");
874		return -1;
875	}
876
877	return create_physical_mapping(__pa(start), __pa(end),
878				       nid, prot);
879}
880
881int __meminit radix__remove_section_mapping(unsigned long start, unsigned long end)
882{
883	remove_pagetable(start, end, true, NULL);
884	return 0;
885}
886#endif /* CONFIG_MEMORY_HOTPLUG */
887
888#ifdef CONFIG_SPARSEMEM_VMEMMAP
889static int __map_kernel_page_nid(unsigned long ea, unsigned long pa,
890				 pgprot_t flags, unsigned int map_page_size,
891				 int nid)
892{
893	return __map_kernel_page(ea, pa, flags, map_page_size, nid, 0, 0);
894}
895
896int __meminit radix__vmemmap_create_mapping(unsigned long start,
897				      unsigned long page_size,
898				      unsigned long phys)
899{
900	/* Create a PTE encoding */
901	int nid = early_pfn_to_nid(phys >> PAGE_SHIFT);
902	int ret;
903
904	if ((start + page_size) >= RADIX_VMEMMAP_END) {
905		pr_warn("Outside the supported range\n");
906		return -1;
907	}
908
909	ret = __map_kernel_page_nid(start, phys, PAGE_KERNEL, page_size, nid);
910	BUG_ON(ret);
911
912	return 0;
913}
914
915
916bool vmemmap_can_optimize(struct vmem_altmap *altmap, struct dev_pagemap *pgmap)
917{
918	if (radix_enabled())
919		return __vmemmap_can_optimize(altmap, pgmap);
920
921	return false;
922}
923
924int __meminit vmemmap_check_pmd(pmd_t *pmdp, int node,
925				unsigned long addr, unsigned long next)
926{
927	int large = pmd_leaf(*pmdp);
928
929	if (large)
930		vmemmap_verify(pmdp_ptep(pmdp), node, addr, next);
931
932	return large;
933}
934
935void __meminit vmemmap_set_pmd(pmd_t *pmdp, void *p, int node,
936			       unsigned long addr, unsigned long next)
937{
938	pte_t entry;
939	pte_t *ptep = pmdp_ptep(pmdp);
940
941	VM_BUG_ON(!IS_ALIGNED(addr, PMD_SIZE));
942	entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
943	set_pte_at(&init_mm, addr, ptep, entry);
944	asm volatile("ptesync": : :"memory");
945
946	vmemmap_verify(ptep, node, addr, next);
947}
948
949static pte_t * __meminit radix__vmemmap_pte_populate(pmd_t *pmdp, unsigned long addr,
950						     int node,
951						     struct vmem_altmap *altmap,
952						     struct page *reuse)
953{
954	pte_t *pte = pte_offset_kernel(pmdp, addr);
955
956	if (pte_none(*pte)) {
957		pte_t entry;
958		void *p;
959
960		if (!reuse) {
961			/*
962			 * make sure we don't create altmap mappings
963			 * covering things outside the device.
964			 */
965			if (altmap && altmap_cross_boundary(altmap, addr, PAGE_SIZE))
966				altmap = NULL;
967
968			p = vmemmap_alloc_block_buf(PAGE_SIZE, node, altmap);
969			if (!p && altmap)
970				p = vmemmap_alloc_block_buf(PAGE_SIZE, node, NULL);
971			if (!p)
972				return NULL;
973			pr_debug("PAGE_SIZE vmemmap mapping\n");
974		} else {
975			/*
976			 * When a PTE/PMD entry is freed from the init_mm
977			 * there's a free_pages() call to this page allocated
978			 * above. Thus this get_page() is paired with the
979			 * put_page_testzero() on the freeing path.
980			 * This can only called by certain ZONE_DEVICE path,
981			 * and through vmemmap_populate_compound_pages() when
982			 * slab is available.
983			 */
984			get_page(reuse);
985			p = page_to_virt(reuse);
986			pr_debug("Tail page reuse vmemmap mapping\n");
987		}
988
989		VM_BUG_ON(!PAGE_ALIGNED(addr));
990		entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
991		set_pte_at(&init_mm, addr, pte, entry);
992		asm volatile("ptesync": : :"memory");
993	}
994	return pte;
995}
996
997static inline pud_t *vmemmap_pud_alloc(p4d_t *p4dp, int node,
998				       unsigned long address)
999{
1000	pud_t *pud;
1001
1002	/* All early vmemmap mapping to keep simple do it at PAGE_SIZE */
1003	if (unlikely(p4d_none(*p4dp))) {
1004		if (unlikely(!slab_is_available())) {
1005			pud = early_alloc_pgtable(PAGE_SIZE, node, 0, 0);
1006			p4d_populate(&init_mm, p4dp, pud);
1007			/* go to the pud_offset */
1008		} else
1009			return pud_alloc(&init_mm, p4dp, address);
1010	}
1011	return pud_offset(p4dp, address);
1012}
1013
1014static inline pmd_t *vmemmap_pmd_alloc(pud_t *pudp, int node,
1015				       unsigned long address)
1016{
1017	pmd_t *pmd;
1018
1019	/* All early vmemmap mapping to keep simple do it at PAGE_SIZE */
1020	if (unlikely(pud_none(*pudp))) {
1021		if (unlikely(!slab_is_available())) {
1022			pmd = early_alloc_pgtable(PAGE_SIZE, node, 0, 0);
1023			pud_populate(&init_mm, pudp, pmd);
1024		} else
1025			return pmd_alloc(&init_mm, pudp, address);
1026	}
1027	return pmd_offset(pudp, address);
1028}
1029
1030static inline pte_t *vmemmap_pte_alloc(pmd_t *pmdp, int node,
1031				       unsigned long address)
1032{
1033	pte_t *pte;
1034
1035	/* All early vmemmap mapping to keep simple do it at PAGE_SIZE */
1036	if (unlikely(pmd_none(*pmdp))) {
1037		if (unlikely(!slab_is_available())) {
1038			pte = early_alloc_pgtable(PAGE_SIZE, node, 0, 0);
1039			pmd_populate(&init_mm, pmdp, pte);
1040		} else
1041			return pte_alloc_kernel(pmdp, address);
1042	}
1043	return pte_offset_kernel(pmdp, address);
1044}
1045
1046
1047
1048int __meminit radix__vmemmap_populate(unsigned long start, unsigned long end, int node,
1049				      struct vmem_altmap *altmap)
1050{
1051	unsigned long addr;
1052	unsigned long next;
1053	pgd_t *pgd;
1054	p4d_t *p4d;
1055	pud_t *pud;
1056	pmd_t *pmd;
1057	pte_t *pte;
1058
1059	for (addr = start; addr < end; addr = next) {
1060		next = pmd_addr_end(addr, end);
1061
1062		pgd = pgd_offset_k(addr);
1063		p4d = p4d_offset(pgd, addr);
1064		pud = vmemmap_pud_alloc(p4d, node, addr);
1065		if (!pud)
1066			return -ENOMEM;
1067		pmd = vmemmap_pmd_alloc(pud, node, addr);
1068		if (!pmd)
1069			return -ENOMEM;
1070
1071		if (pmd_none(READ_ONCE(*pmd))) {
1072			void *p;
1073
1074			/*
1075			 * keep it simple by checking addr PMD_SIZE alignment
1076			 * and verifying the device boundary condition.
1077			 * For us to use a pmd mapping, both addr and pfn should
1078			 * be aligned. We skip if addr is not aligned and for
1079			 * pfn we hope we have extra area in the altmap that
1080			 * can help to find an aligned block. This can result
1081			 * in altmap block allocation failures, in which case
1082			 * we fallback to RAM for vmemmap allocation.
1083			 */
1084			if (altmap && (!IS_ALIGNED(addr, PMD_SIZE) ||
1085				       altmap_cross_boundary(altmap, addr, PMD_SIZE))) {
1086				/*
1087				 * make sure we don't create altmap mappings
1088				 * covering things outside the device.
1089				 */
1090				goto base_mapping;
1091			}
1092
1093			p = vmemmap_alloc_block_buf(PMD_SIZE, node, altmap);
1094			if (p) {
1095				vmemmap_set_pmd(pmd, p, node, addr, next);
1096				pr_debug("PMD_SIZE vmemmap mapping\n");
1097				continue;
1098			} else if (altmap) {
1099				/*
1100				 * A vmemmap block allocation can fail due to
1101				 * alignment requirements and we trying to align
1102				 * things aggressively there by running out of
1103				 * space. Try base mapping on failure.
1104				 */
1105				goto base_mapping;
1106			}
1107		} else if (vmemmap_check_pmd(pmd, node, addr, next)) {
1108			/*
1109			 * If a huge mapping exist due to early call to
1110			 * vmemmap_populate, let's try to use that.
1111			 */
1112			continue;
1113		}
1114base_mapping:
1115		/*
1116		 * Not able allocate higher order memory to back memmap
1117		 * or we found a pointer to pte page. Allocate base page
1118		 * size vmemmap
1119		 */
1120		pte = vmemmap_pte_alloc(pmd, node, addr);
1121		if (!pte)
1122			return -ENOMEM;
1123
1124		pte = radix__vmemmap_pte_populate(pmd, addr, node, altmap, NULL);
1125		if (!pte)
1126			return -ENOMEM;
1127
1128		vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
1129		next = addr + PAGE_SIZE;
1130	}
1131	return 0;
1132}
1133
1134static pte_t * __meminit radix__vmemmap_populate_address(unsigned long addr, int node,
1135							 struct vmem_altmap *altmap,
1136							 struct page *reuse)
1137{
1138	pgd_t *pgd;
1139	p4d_t *p4d;
1140	pud_t *pud;
1141	pmd_t *pmd;
1142	pte_t *pte;
1143
1144	pgd = pgd_offset_k(addr);
1145	p4d = p4d_offset(pgd, addr);
1146	pud = vmemmap_pud_alloc(p4d, node, addr);
1147	if (!pud)
1148		return NULL;
1149	pmd = vmemmap_pmd_alloc(pud, node, addr);
1150	if (!pmd)
1151		return NULL;
1152	if (pmd_leaf(*pmd))
1153		/*
1154		 * The second page is mapped as a hugepage due to a nearby request.
1155		 * Force our mapping to page size without deduplication
1156		 */
1157		return NULL;
1158	pte = vmemmap_pte_alloc(pmd, node, addr);
1159	if (!pte)
1160		return NULL;
1161	radix__vmemmap_pte_populate(pmd, addr, node, NULL, NULL);
1162	vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
1163
1164	return pte;
1165}
1166
1167static pte_t * __meminit vmemmap_compound_tail_page(unsigned long addr,
1168						    unsigned long pfn_offset, int node)
1169{
1170	pgd_t *pgd;
1171	p4d_t *p4d;
1172	pud_t *pud;
1173	pmd_t *pmd;
1174	pte_t *pte;
1175	unsigned long map_addr;
1176
1177	/* the second vmemmap page which we use for duplication */
1178	map_addr = addr - pfn_offset * sizeof(struct page) + PAGE_SIZE;
1179	pgd = pgd_offset_k(map_addr);
1180	p4d = p4d_offset(pgd, map_addr);
1181	pud = vmemmap_pud_alloc(p4d, node, map_addr);
1182	if (!pud)
1183		return NULL;
1184	pmd = vmemmap_pmd_alloc(pud, node, map_addr);
1185	if (!pmd)
1186		return NULL;
1187	if (pmd_leaf(*pmd))
1188		/*
1189		 * The second page is mapped as a hugepage due to a nearby request.
1190		 * Force our mapping to page size without deduplication
1191		 */
1192		return NULL;
1193	pte = vmemmap_pte_alloc(pmd, node, map_addr);
1194	if (!pte)
1195		return NULL;
1196	/*
1197	 * Check if there exist a mapping to the left
1198	 */
1199	if (pte_none(*pte)) {
1200		/*
1201		 * Populate the head page vmemmap page.
1202		 * It can fall in different pmd, hence
1203		 * vmemmap_populate_address()
1204		 */
1205		pte = radix__vmemmap_populate_address(map_addr - PAGE_SIZE, node, NULL, NULL);
1206		if (!pte)
1207			return NULL;
1208		/*
1209		 * Populate the tail pages vmemmap page
1210		 */
1211		pte = radix__vmemmap_pte_populate(pmd, map_addr, node, NULL, NULL);
1212		if (!pte)
1213			return NULL;
1214		vmemmap_verify(pte, node, map_addr, map_addr + PAGE_SIZE);
1215		return pte;
1216	}
1217	return pte;
1218}
1219
1220int __meminit vmemmap_populate_compound_pages(unsigned long start_pfn,
1221					      unsigned long start,
1222					      unsigned long end, int node,
1223					      struct dev_pagemap *pgmap)
1224{
1225	/*
1226	 * we want to map things as base page size mapping so that
1227	 * we can save space in vmemmap. We could have huge mapping
1228	 * covering out both edges.
1229	 */
1230	unsigned long addr;
1231	unsigned long addr_pfn = start_pfn;
1232	unsigned long next;
1233	pgd_t *pgd;
1234	p4d_t *p4d;
1235	pud_t *pud;
1236	pmd_t *pmd;
1237	pte_t *pte;
1238
1239	for (addr = start; addr < end; addr = next) {
1240
1241		pgd = pgd_offset_k(addr);
1242		p4d = p4d_offset(pgd, addr);
1243		pud = vmemmap_pud_alloc(p4d, node, addr);
1244		if (!pud)
1245			return -ENOMEM;
1246		pmd = vmemmap_pmd_alloc(pud, node, addr);
1247		if (!pmd)
1248			return -ENOMEM;
1249
1250		if (pmd_leaf(READ_ONCE(*pmd))) {
1251			/* existing huge mapping. Skip the range */
1252			addr_pfn += (PMD_SIZE >> PAGE_SHIFT);
1253			next = pmd_addr_end(addr, end);
1254			continue;
1255		}
1256		pte = vmemmap_pte_alloc(pmd, node, addr);
1257		if (!pte)
1258			return -ENOMEM;
1259		if (!pte_none(*pte)) {
1260			/*
1261			 * This could be because we already have a compound
1262			 * page whose VMEMMAP_RESERVE_NR pages were mapped and
1263			 * this request fall in those pages.
1264			 */
1265			addr_pfn += 1;
1266			next = addr + PAGE_SIZE;
1267			continue;
1268		} else {
1269			unsigned long nr_pages = pgmap_vmemmap_nr(pgmap);
1270			unsigned long pfn_offset = addr_pfn - ALIGN_DOWN(addr_pfn, nr_pages);
1271			pte_t *tail_page_pte;
1272
1273			/*
1274			 * if the address is aligned to huge page size it is the
1275			 * head mapping.
1276			 */
1277			if (pfn_offset == 0) {
1278				/* Populate the head page vmemmap page */
1279				pte = radix__vmemmap_pte_populate(pmd, addr, node, NULL, NULL);
1280				if (!pte)
1281					return -ENOMEM;
1282				vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
1283
1284				/*
1285				 * Populate the tail pages vmemmap page
1286				 * It can fall in different pmd, hence
1287				 * vmemmap_populate_address()
1288				 */
1289				pte = radix__vmemmap_populate_address(addr + PAGE_SIZE, node, NULL, NULL);
1290				if (!pte)
1291					return -ENOMEM;
1292
1293				addr_pfn += 2;
1294				next = addr + 2 * PAGE_SIZE;
1295				continue;
1296			}
1297			/*
1298			 * get the 2nd mapping details
1299			 * Also create it if that doesn't exist
1300			 */
1301			tail_page_pte = vmemmap_compound_tail_page(addr, pfn_offset, node);
1302			if (!tail_page_pte) {
1303
1304				pte = radix__vmemmap_pte_populate(pmd, addr, node, NULL, NULL);
1305				if (!pte)
1306					return -ENOMEM;
1307				vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
1308
1309				addr_pfn += 1;
1310				next = addr + PAGE_SIZE;
1311				continue;
1312			}
1313
1314			pte = radix__vmemmap_pte_populate(pmd, addr, node, NULL, pte_page(*tail_page_pte));
1315			if (!pte)
1316				return -ENOMEM;
1317			vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
1318
1319			addr_pfn += 1;
1320			next = addr + PAGE_SIZE;
1321			continue;
1322		}
1323	}
1324	return 0;
1325}
1326
1327
1328#ifdef CONFIG_MEMORY_HOTPLUG
1329void __meminit radix__vmemmap_remove_mapping(unsigned long start, unsigned long page_size)
1330{
1331	remove_pagetable(start, start + page_size, true, NULL);
1332}
1333
1334void __ref radix__vmemmap_free(unsigned long start, unsigned long end,
1335			       struct vmem_altmap *altmap)
1336{
1337	remove_pagetable(start, end, false, altmap);
1338}
1339#endif
1340#endif
1341
1342#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1343
1344unsigned long radix__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
1345				  pmd_t *pmdp, unsigned long clr,
1346				  unsigned long set)
1347{
1348	unsigned long old;
1349
1350#ifdef CONFIG_DEBUG_VM
1351	WARN_ON(!radix__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
1352	assert_spin_locked(pmd_lockptr(mm, pmdp));
1353#endif
1354
1355	old = radix__pte_update(mm, addr, pmdp_ptep(pmdp), clr, set, 1);
1356	trace_hugepage_update_pmd(addr, old, clr, set);
1357
1358	return old;
1359}
1360
1361unsigned long radix__pud_hugepage_update(struct mm_struct *mm, unsigned long addr,
1362					 pud_t *pudp, unsigned long clr,
1363					 unsigned long set)
1364{
1365	unsigned long old;
1366
1367#ifdef CONFIG_DEBUG_VM
1368	WARN_ON(!pud_devmap(*pudp));
1369	assert_spin_locked(pud_lockptr(mm, pudp));
1370#endif
1371
1372	old = radix__pte_update(mm, addr, pudp_ptep(pudp), clr, set, 1);
1373	trace_hugepage_update_pud(addr, old, clr, set);
1374
1375	return old;
1376}
1377
1378pmd_t radix__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
1379			pmd_t *pmdp)
1380
1381{
1382	pmd_t pmd;
1383
1384	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1385	VM_BUG_ON(radix__pmd_trans_huge(*pmdp));
1386	VM_BUG_ON(pmd_devmap(*pmdp));
1387	/*
1388	 * khugepaged calls this for normal pmd
1389	 */
1390	pmd = *pmdp;
1391	pmd_clear(pmdp);
1392
1393	radix__flush_tlb_collapsed_pmd(vma->vm_mm, address);
1394
1395	return pmd;
1396}
1397
1398/*
1399 * For us pgtable_t is pte_t *. Inorder to save the deposisted
1400 * page table, we consider the allocated page table as a list
1401 * head. On withdraw we need to make sure we zero out the used
1402 * list_head memory area.
1403 */
1404void radix__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1405				 pgtable_t pgtable)
1406{
1407	struct list_head *lh = (struct list_head *) pgtable;
1408
1409	assert_spin_locked(pmd_lockptr(mm, pmdp));
1410
1411	/* FIFO */
1412	if (!pmd_huge_pte(mm, pmdp))
1413		INIT_LIST_HEAD(lh);
1414	else
1415		list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
1416	pmd_huge_pte(mm, pmdp) = pgtable;
1417}
1418
1419pgtable_t radix__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
1420{
1421	pte_t *ptep;
1422	pgtable_t pgtable;
1423	struct list_head *lh;
1424
1425	assert_spin_locked(pmd_lockptr(mm, pmdp));
1426
1427	/* FIFO */
1428	pgtable = pmd_huge_pte(mm, pmdp);
1429	lh = (struct list_head *) pgtable;
1430	if (list_empty(lh))
1431		pmd_huge_pte(mm, pmdp) = NULL;
1432	else {
1433		pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
1434		list_del(lh);
1435	}
1436	ptep = (pte_t *) pgtable;
1437	*ptep = __pte(0);
1438	ptep++;
1439	*ptep = __pte(0);
1440	return pgtable;
1441}
1442
1443pmd_t radix__pmdp_huge_get_and_clear(struct mm_struct *mm,
1444				     unsigned long addr, pmd_t *pmdp)
1445{
1446	pmd_t old_pmd;
1447	unsigned long old;
1448
1449	old = radix__pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
1450	old_pmd = __pmd(old);
1451	return old_pmd;
1452}
1453
1454pud_t radix__pudp_huge_get_and_clear(struct mm_struct *mm,
1455				     unsigned long addr, pud_t *pudp)
1456{
1457	pud_t old_pud;
1458	unsigned long old;
1459
1460	old = radix__pud_hugepage_update(mm, addr, pudp, ~0UL, 0);
1461	old_pud = __pud(old);
1462	return old_pud;
1463}
1464
1465#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1466
1467void radix__ptep_set_access_flags(struct vm_area_struct *vma, pte_t *ptep,
1468				  pte_t entry, unsigned long address, int psize)
1469{
1470	struct mm_struct *mm = vma->vm_mm;
1471	unsigned long set = pte_val(entry) & (_PAGE_DIRTY | _PAGE_SOFT_DIRTY |
1472					      _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
1473
1474	unsigned long change = pte_val(entry) ^ pte_val(*ptep);
1475	/*
1476	 * On POWER9, the NMMU is not able to relax PTE access permissions
1477	 * for a translation with a TLB. The PTE must be invalidated, TLB
1478	 * flushed before the new PTE is installed.
1479	 *
1480	 * This only needs to be done for radix, because hash translation does
1481	 * flush when updating the linux pte (and we don't support NMMU
1482	 * accelerators on HPT on POWER9 anyway XXX: do we?).
1483	 *
1484	 * POWER10 (and P9P) NMMU does behave as per ISA.
1485	 */
1486	if (!cpu_has_feature(CPU_FTR_ARCH_31) && (change & _PAGE_RW) &&
1487	    atomic_read(&mm->context.copros) > 0) {
1488		unsigned long old_pte, new_pte;
1489
1490		old_pte = __radix_pte_update(ptep, _PAGE_PRESENT, _PAGE_INVALID);
1491		new_pte = old_pte | set;
1492		radix__flush_tlb_page_psize(mm, address, psize);
1493		__radix_pte_update(ptep, _PAGE_INVALID, new_pte);
1494	} else {
1495		__radix_pte_update(ptep, 0, set);
1496		/*
1497		 * Book3S does not require a TLB flush when relaxing access
1498		 * restrictions when the address space (modulo the POWER9 nest
1499		 * MMU issue above) because the MMU will reload the PTE after
1500		 * taking an access fault, as defined by the architecture. See
1501		 * "Setting a Reference or Change Bit or Upgrading Access
1502		 *  Authority (PTE Subject to Atomic Hardware Updates)" in
1503		 *  Power ISA Version 3.1B.
1504		 */
1505	}
1506	/* See ptesync comment in radix__set_pte_at */
1507}
1508
1509void radix__ptep_modify_prot_commit(struct vm_area_struct *vma,
1510				    unsigned long addr, pte_t *ptep,
1511				    pte_t old_pte, pte_t pte)
1512{
1513	struct mm_struct *mm = vma->vm_mm;
1514
1515	/*
1516	 * POWER9 NMMU must flush the TLB after clearing the PTE before
1517	 * installing a PTE with more relaxed access permissions, see
1518	 * radix__ptep_set_access_flags.
1519	 */
1520	if (!cpu_has_feature(CPU_FTR_ARCH_31) &&
1521	    is_pte_rw_upgrade(pte_val(old_pte), pte_val(pte)) &&
1522	    (atomic_read(&mm->context.copros) > 0))
1523		radix__flush_tlb_page(vma, addr);
1524
1525	set_pte_at(mm, addr, ptep, pte);
1526}
1527
1528int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1529{
1530	pte_t *ptep = (pte_t *)pud;
1531	pte_t new_pud = pfn_pte(__phys_to_pfn(addr), prot);
1532
1533	if (!radix_enabled())
1534		return 0;
1535
1536	set_pte_at(&init_mm, 0 /* radix unused */, ptep, new_pud);
1537
1538	return 1;
1539}
1540
1541int pud_clear_huge(pud_t *pud)
1542{
1543	if (pud_leaf(*pud)) {
1544		pud_clear(pud);
1545		return 1;
1546	}
1547
1548	return 0;
1549}
1550
1551int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1552{
1553	pmd_t *pmd;
1554	int i;
1555
1556	pmd = pud_pgtable(*pud);
1557	pud_clear(pud);
1558
1559	flush_tlb_kernel_range(addr, addr + PUD_SIZE);
1560
1561	for (i = 0; i < PTRS_PER_PMD; i++) {
1562		if (!pmd_none(pmd[i])) {
1563			pte_t *pte;
1564			pte = (pte_t *)pmd_page_vaddr(pmd[i]);
1565
1566			pte_free_kernel(&init_mm, pte);
1567		}
1568	}
1569
1570	pmd_free(&init_mm, pmd);
1571
1572	return 1;
1573}
1574
1575int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1576{
1577	pte_t *ptep = (pte_t *)pmd;
1578	pte_t new_pmd = pfn_pte(__phys_to_pfn(addr), prot);
1579
1580	if (!radix_enabled())
1581		return 0;
1582
1583	set_pte_at(&init_mm, 0 /* radix unused */, ptep, new_pmd);
1584
1585	return 1;
1586}
1587
1588int pmd_clear_huge(pmd_t *pmd)
1589{
1590	if (pmd_leaf(*pmd)) {
1591		pmd_clear(pmd);
1592		return 1;
1593	}
1594
1595	return 0;
1596}
1597
1598int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1599{
1600	pte_t *pte;
1601
1602	pte = (pte_t *)pmd_page_vaddr(*pmd);
1603	pmd_clear(pmd);
1604
1605	flush_tlb_kernel_range(addr, addr + PMD_SIZE);
1606
1607	pte_free_kernel(&init_mm, pte);
1608
1609	return 1;
1610}
1611