1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * PowerPC64 port by Mike Corrigan and Dave Engebretsen
4 *   {mikejc|engebret}@us.ibm.com
5 *
6 *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
7 *
8 * SMP scalability work:
9 *    Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
10 *
11 *    Module name: htab.c
12 *
13 *    Description:
14 *      PowerPC Hashed Page Table functions
15 */
16
17#undef DEBUG
18#undef DEBUG_LOW
19
20#define pr_fmt(fmt) "hash-mmu: " fmt
21#include <linux/spinlock.h>
22#include <linux/errno.h>
23#include <linux/sched/mm.h>
24#include <linux/proc_fs.h>
25#include <linux/stat.h>
26#include <linux/sysctl.h>
27#include <linux/export.h>
28#include <linux/ctype.h>
29#include <linux/cache.h>
30#include <linux/init.h>
31#include <linux/signal.h>
32#include <linux/memblock.h>
33#include <linux/context_tracking.h>
34#include <linux/libfdt.h>
35#include <linux/pkeys.h>
36#include <linux/hugetlb.h>
37#include <linux/cpu.h>
38#include <linux/pgtable.h>
39#include <linux/debugfs.h>
40#include <linux/random.h>
41#include <linux/elf-randomize.h>
42#include <linux/of_fdt.h>
43
44#include <asm/interrupt.h>
45#include <asm/processor.h>
46#include <asm/mmu.h>
47#include <asm/mmu_context.h>
48#include <asm/page.h>
49#include <asm/types.h>
50#include <linux/uaccess.h>
51#include <asm/machdep.h>
52#include <asm/io.h>
53#include <asm/eeh.h>
54#include <asm/tlb.h>
55#include <asm/cacheflush.h>
56#include <asm/cputable.h>
57#include <asm/sections.h>
58#include <asm/copro.h>
59#include <asm/udbg.h>
60#include <asm/code-patching.h>
61#include <asm/fadump.h>
62#include <asm/firmware.h>
63#include <asm/tm.h>
64#include <asm/trace.h>
65#include <asm/ps3.h>
66#include <asm/pte-walk.h>
67#include <asm/asm-prototypes.h>
68#include <asm/ultravisor.h>
69
70#include <mm/mmu_decl.h>
71
72#include "internal.h"
73
74
75#ifdef DEBUG
76#define DBG(fmt...) udbg_printf(fmt)
77#else
78#define DBG(fmt...)
79#endif
80
81#ifdef DEBUG_LOW
82#define DBG_LOW(fmt...) udbg_printf(fmt)
83#else
84#define DBG_LOW(fmt...)
85#endif
86
87#define KB (1024)
88#define MB (1024*KB)
89#define GB (1024L*MB)
90
91/*
92 * Note:  pte   --> Linux PTE
93 *        HPTE  --> PowerPC Hashed Page Table Entry
94 *
95 * Execution context:
96 *   htab_initialize is called with the MMU off (of course), but
97 *   the kernel has been copied down to zero so it can directly
98 *   reference global data.  At this point it is very difficult
99 *   to print debug info.
100 *
101 */
102
103static unsigned long _SDR1;
104
105u8 hpte_page_sizes[1 << LP_BITS];
106EXPORT_SYMBOL_GPL(hpte_page_sizes);
107
108struct hash_pte *htab_address;
109unsigned long htab_size_bytes;
110unsigned long htab_hash_mask;
111EXPORT_SYMBOL_GPL(htab_hash_mask);
112int mmu_linear_psize = MMU_PAGE_4K;
113EXPORT_SYMBOL_GPL(mmu_linear_psize);
114int mmu_virtual_psize = MMU_PAGE_4K;
115int mmu_vmalloc_psize = MMU_PAGE_4K;
116EXPORT_SYMBOL_GPL(mmu_vmalloc_psize);
117int mmu_io_psize = MMU_PAGE_4K;
118int mmu_kernel_ssize = MMU_SEGSIZE_256M;
119EXPORT_SYMBOL_GPL(mmu_kernel_ssize);
120int mmu_highuser_ssize = MMU_SEGSIZE_256M;
121u16 mmu_slb_size = 64;
122EXPORT_SYMBOL_GPL(mmu_slb_size);
123#ifdef CONFIG_PPC_64K_PAGES
124int mmu_ci_restrictions;
125#endif
126static u8 *linear_map_hash_slots;
127static unsigned long linear_map_hash_count;
128struct mmu_hash_ops mmu_hash_ops;
129EXPORT_SYMBOL(mmu_hash_ops);
130
131/*
132 * These are definitions of page sizes arrays to be used when none
133 * is provided by the firmware.
134 */
135
136/*
137 * Fallback (4k pages only)
138 */
139static struct mmu_psize_def mmu_psize_defaults[] = {
140	[MMU_PAGE_4K] = {
141		.shift	= 12,
142		.sllp	= 0,
143		.penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
144		.avpnm	= 0,
145		.tlbiel = 0,
146	},
147};
148
149/*
150 * POWER4, GPUL, POWER5
151 *
152 * Support for 16Mb large pages
153 */
154static struct mmu_psize_def mmu_psize_defaults_gp[] = {
155	[MMU_PAGE_4K] = {
156		.shift	= 12,
157		.sllp	= 0,
158		.penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
159		.avpnm	= 0,
160		.tlbiel = 1,
161	},
162	[MMU_PAGE_16M] = {
163		.shift	= 24,
164		.sllp	= SLB_VSID_L,
165		.penc   = {[0 ... MMU_PAGE_16M - 1] = -1, [MMU_PAGE_16M] = 0,
166			    [MMU_PAGE_16M + 1 ... MMU_PAGE_COUNT - 1] = -1 },
167		.avpnm	= 0x1UL,
168		.tlbiel = 0,
169	},
170};
171
172static inline void tlbiel_hash_set_isa206(unsigned int set, unsigned int is)
173{
174	unsigned long rb;
175
176	rb = (set << PPC_BITLSHIFT(51)) | (is << PPC_BITLSHIFT(53));
177
178	asm volatile("tlbiel %0" : : "r" (rb));
179}
180
181/*
182 * tlbiel instruction for hash, set invalidation
183 * i.e., r=1 and is=01 or is=10 or is=11
184 */
185static __always_inline void tlbiel_hash_set_isa300(unsigned int set, unsigned int is,
186					unsigned int pid,
187					unsigned int ric, unsigned int prs)
188{
189	unsigned long rb;
190	unsigned long rs;
191	unsigned int r = 0; /* hash format */
192
193	rb = (set << PPC_BITLSHIFT(51)) | (is << PPC_BITLSHIFT(53));
194	rs = ((unsigned long)pid << PPC_BITLSHIFT(31));
195
196	asm volatile(PPC_TLBIEL(%0, %1, %2, %3, %4)
197		     : : "r"(rb), "r"(rs), "i"(ric), "i"(prs), "i"(r)
198		     : "memory");
199}
200
201
202static void tlbiel_all_isa206(unsigned int num_sets, unsigned int is)
203{
204	unsigned int set;
205
206	asm volatile("ptesync": : :"memory");
207
208	for (set = 0; set < num_sets; set++)
209		tlbiel_hash_set_isa206(set, is);
210
211	ppc_after_tlbiel_barrier();
212}
213
214static void tlbiel_all_isa300(unsigned int num_sets, unsigned int is)
215{
216	unsigned int set;
217
218	asm volatile("ptesync": : :"memory");
219
220	/*
221	 * Flush the partition table cache if this is HV mode.
222	 */
223	if (early_cpu_has_feature(CPU_FTR_HVMODE))
224		tlbiel_hash_set_isa300(0, is, 0, 2, 0);
225
226	/*
227	 * Now invalidate the process table cache. UPRT=0 HPT modes (what
228	 * current hardware implements) do not use the process table, but
229	 * add the flushes anyway.
230	 *
231	 * From ISA v3.0B p. 1078:
232	 *     The following forms are invalid.
233	 *      * PRS=1, R=0, and RIC!=2 (The only process-scoped
234	 *        HPT caching is of the Process Table.)
235	 */
236	tlbiel_hash_set_isa300(0, is, 0, 2, 1);
237
238	/*
239	 * Then flush the sets of the TLB proper. Hash mode uses
240	 * partition scoped TLB translations, which may be flushed
241	 * in !HV mode.
242	 */
243	for (set = 0; set < num_sets; set++)
244		tlbiel_hash_set_isa300(set, is, 0, 0, 0);
245
246	ppc_after_tlbiel_barrier();
247
248	asm volatile(PPC_ISA_3_0_INVALIDATE_ERAT "; isync" : : :"memory");
249}
250
251void hash__tlbiel_all(unsigned int action)
252{
253	unsigned int is;
254
255	switch (action) {
256	case TLB_INVAL_SCOPE_GLOBAL:
257		is = 3;
258		break;
259	case TLB_INVAL_SCOPE_LPID:
260		is = 2;
261		break;
262	default:
263		BUG();
264	}
265
266	if (early_cpu_has_feature(CPU_FTR_ARCH_300))
267		tlbiel_all_isa300(POWER9_TLB_SETS_HASH, is);
268	else if (early_cpu_has_feature(CPU_FTR_ARCH_207S))
269		tlbiel_all_isa206(POWER8_TLB_SETS, is);
270	else if (early_cpu_has_feature(CPU_FTR_ARCH_206))
271		tlbiel_all_isa206(POWER7_TLB_SETS, is);
272	else
273		WARN(1, "%s called on pre-POWER7 CPU\n", __func__);
274}
275
276/*
277 * 'R' and 'C' update notes:
278 *  - Under pHyp or KVM, the updatepp path will not set C, thus it *will*
279 *     create writeable HPTEs without C set, because the hcall H_PROTECT
280 *     that we use in that case will not update C
281 *  - The above is however not a problem, because we also don't do that
282 *     fancy "no flush" variant of eviction and we use H_REMOVE which will
283 *     do the right thing and thus we don't have the race I described earlier
284 *
285 *    - Under bare metal,  we do have the race, so we need R and C set
286 *    - We make sure R is always set and never lost
287 *    - C is _PAGE_DIRTY, and *should* always be set for a writeable mapping
288 */
289unsigned long htab_convert_pte_flags(unsigned long pteflags, unsigned long flags)
290{
291	unsigned long rflags = 0;
292
293	/* _PAGE_EXEC -> NOEXEC */
294	if ((pteflags & _PAGE_EXEC) == 0)
295		rflags |= HPTE_R_N;
296	/*
297	 * PPP bits:
298	 * Linux uses slb key 0 for kernel and 1 for user.
299	 * kernel RW areas are mapped with PPP=0b000
300	 * User area is mapped with PPP=0b010 for read/write
301	 * or PPP=0b011 for read-only (including writeable but clean pages).
302	 */
303	if (pteflags & _PAGE_PRIVILEGED) {
304		/*
305		 * Kernel read only mapped with ppp bits 0b110
306		 */
307		if (!(pteflags & _PAGE_WRITE)) {
308			if (mmu_has_feature(MMU_FTR_KERNEL_RO))
309				rflags |= (HPTE_R_PP0 | 0x2);
310			else
311				rflags |= 0x3;
312		}
313		VM_WARN_ONCE(!(pteflags & _PAGE_RWX), "no-access mapping request");
314	} else {
315		if (pteflags & _PAGE_RWX)
316			rflags |= 0x2;
317		/*
318		 * We should never hit this in normal fault handling because
319		 * a permission check (check_pte_access()) will bubble this
320		 * to higher level linux handler even for PAGE_NONE.
321		 */
322		VM_WARN_ONCE(!(pteflags & _PAGE_RWX), "no-access mapping request");
323		if (!((pteflags & _PAGE_WRITE) && (pteflags & _PAGE_DIRTY)))
324			rflags |= 0x1;
325	}
326	/*
327	 * We can't allow hardware to update hpte bits. Hence always
328	 * set 'R' bit and set 'C' if it is a write fault
329	 */
330	rflags |=  HPTE_R_R;
331
332	if (pteflags & _PAGE_DIRTY)
333		rflags |= HPTE_R_C;
334	/*
335	 * Add in WIG bits
336	 */
337
338	if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_TOLERANT)
339		rflags |= HPTE_R_I;
340	else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT)
341		rflags |= (HPTE_R_I | HPTE_R_G);
342	else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_SAO)
343		rflags |= (HPTE_R_W | HPTE_R_I | HPTE_R_M);
344	else
345		/*
346		 * Add memory coherence if cache inhibited is not set
347		 */
348		rflags |= HPTE_R_M;
349
350	rflags |= pte_to_hpte_pkey_bits(pteflags, flags);
351	return rflags;
352}
353
354int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
355		      unsigned long pstart, unsigned long prot,
356		      int psize, int ssize)
357{
358	unsigned long vaddr, paddr;
359	unsigned int step, shift;
360	int ret = 0;
361
362	shift = mmu_psize_defs[psize].shift;
363	step = 1 << shift;
364
365	prot = htab_convert_pte_flags(prot, HPTE_USE_KERNEL_KEY);
366
367	DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
368	    vstart, vend, pstart, prot, psize, ssize);
369
370	/* Carefully map only the possible range */
371	vaddr = ALIGN(vstart, step);
372	paddr = ALIGN(pstart, step);
373	vend  = ALIGN_DOWN(vend, step);
374
375	for (; vaddr < vend; vaddr += step, paddr += step) {
376		unsigned long hash, hpteg;
377		unsigned long vsid = get_kernel_vsid(vaddr, ssize);
378		unsigned long vpn  = hpt_vpn(vaddr, vsid, ssize);
379		unsigned long tprot = prot;
380		bool secondary_hash = false;
381
382		/*
383		 * If we hit a bad address return error.
384		 */
385		if (!vsid)
386			return -1;
387		/* Make kernel text executable */
388		if (overlaps_kernel_text(vaddr, vaddr + step))
389			tprot &= ~HPTE_R_N;
390
391		/*
392		 * If relocatable, check if it overlaps interrupt vectors that
393		 * are copied down to real 0. For relocatable kernel
394		 * (e.g. kdump case) we copy interrupt vectors down to real
395		 * address 0. Mark that region as executable. This is
396		 * because on p8 system with relocation on exception feature
397		 * enabled, exceptions are raised with MMU (IR=DR=1) ON. Hence
398		 * in order to execute the interrupt handlers in virtual
399		 * mode the vector region need to be marked as executable.
400		 */
401		if ((PHYSICAL_START > MEMORY_START) &&
402			overlaps_interrupt_vector_text(vaddr, vaddr + step))
403				tprot &= ~HPTE_R_N;
404
405		hash = hpt_hash(vpn, shift, ssize);
406		hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
407
408		BUG_ON(!mmu_hash_ops.hpte_insert);
409repeat:
410		ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot,
411					       HPTE_V_BOLTED, psize, psize,
412					       ssize);
413		if (ret == -1) {
414			/*
415			 * Try to keep bolted entries in primary.
416			 * Remove non bolted entries and try insert again
417			 */
418			ret = mmu_hash_ops.hpte_remove(hpteg);
419			if (ret != -1)
420				ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot,
421							       HPTE_V_BOLTED, psize, psize,
422							       ssize);
423			if (ret == -1 && !secondary_hash) {
424				secondary_hash = true;
425				hpteg = ((~hash & htab_hash_mask) * HPTES_PER_GROUP);
426				goto repeat;
427			}
428		}
429
430		if (ret < 0)
431			break;
432
433		cond_resched();
434		if (debug_pagealloc_enabled_or_kfence() &&
435			(paddr >> PAGE_SHIFT) < linear_map_hash_count)
436			linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
437	}
438	return ret < 0 ? ret : 0;
439}
440
441int htab_remove_mapping(unsigned long vstart, unsigned long vend,
442		      int psize, int ssize)
443{
444	unsigned long vaddr, time_limit;
445	unsigned int step, shift;
446	int rc;
447	int ret = 0;
448
449	shift = mmu_psize_defs[psize].shift;
450	step = 1 << shift;
451
452	if (!mmu_hash_ops.hpte_removebolted)
453		return -ENODEV;
454
455	/* Unmap the full range specificied */
456	vaddr = ALIGN_DOWN(vstart, step);
457	time_limit = jiffies + HZ;
458
459	for (;vaddr < vend; vaddr += step) {
460		rc = mmu_hash_ops.hpte_removebolted(vaddr, psize, ssize);
461
462		/*
463		 * For large number of mappings introduce a cond_resched()
464		 * to prevent softlockup warnings.
465		 */
466		if (time_after(jiffies, time_limit)) {
467			cond_resched();
468			time_limit = jiffies + HZ;
469		}
470		if (rc == -ENOENT) {
471			ret = -ENOENT;
472			continue;
473		}
474		if (rc < 0)
475			return rc;
476	}
477
478	return ret;
479}
480
481static bool disable_1tb_segments __ro_after_init;
482
483static int __init parse_disable_1tb_segments(char *p)
484{
485	disable_1tb_segments = true;
486	return 0;
487}
488early_param("disable_1tb_segments", parse_disable_1tb_segments);
489
490bool stress_hpt_enabled __initdata;
491
492static int __init parse_stress_hpt(char *p)
493{
494	stress_hpt_enabled = true;
495	return 0;
496}
497early_param("stress_hpt", parse_stress_hpt);
498
499__ro_after_init DEFINE_STATIC_KEY_FALSE(stress_hpt_key);
500
501/*
502 * per-CPU array allocated if we enable stress_hpt.
503 */
504#define STRESS_MAX_GROUPS 16
505struct stress_hpt_struct {
506	unsigned long last_group[STRESS_MAX_GROUPS];
507};
508
509static inline int stress_nr_groups(void)
510{
511	/*
512	 * LPAR H_REMOVE flushes TLB, so need some number > 1 of entries
513	 * to allow practical forward progress. Bare metal returns 1, which
514	 * seems to help uncover more bugs.
515	 */
516	if (firmware_has_feature(FW_FEATURE_LPAR))
517		return STRESS_MAX_GROUPS;
518	else
519		return 1;
520}
521
522static struct stress_hpt_struct *stress_hpt_struct;
523
524static int __init htab_dt_scan_seg_sizes(unsigned long node,
525					 const char *uname, int depth,
526					 void *data)
527{
528	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
529	const __be32 *prop;
530	int size = 0;
531
532	/* We are scanning "cpu" nodes only */
533	if (type == NULL || strcmp(type, "cpu") != 0)
534		return 0;
535
536	prop = of_get_flat_dt_prop(node, "ibm,processor-segment-sizes", &size);
537	if (prop == NULL)
538		return 0;
539	for (; size >= 4; size -= 4, ++prop) {
540		if (be32_to_cpu(prop[0]) == 40) {
541			DBG("1T segment support detected\n");
542
543			if (disable_1tb_segments) {
544				DBG("1T segments disabled by command line\n");
545				break;
546			}
547
548			cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
549			return 1;
550		}
551	}
552	cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
553	return 0;
554}
555
556static int __init get_idx_from_shift(unsigned int shift)
557{
558	int idx = -1;
559
560	switch (shift) {
561	case 0xc:
562		idx = MMU_PAGE_4K;
563		break;
564	case 0x10:
565		idx = MMU_PAGE_64K;
566		break;
567	case 0x14:
568		idx = MMU_PAGE_1M;
569		break;
570	case 0x18:
571		idx = MMU_PAGE_16M;
572		break;
573	case 0x22:
574		idx = MMU_PAGE_16G;
575		break;
576	}
577	return idx;
578}
579
580static int __init htab_dt_scan_page_sizes(unsigned long node,
581					  const char *uname, int depth,
582					  void *data)
583{
584	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
585	const __be32 *prop;
586	int size = 0;
587
588	/* We are scanning "cpu" nodes only */
589	if (type == NULL || strcmp(type, "cpu") != 0)
590		return 0;
591
592	prop = of_get_flat_dt_prop(node, "ibm,segment-page-sizes", &size);
593	if (!prop)
594		return 0;
595
596	pr_info("Page sizes from device-tree:\n");
597	size /= 4;
598	cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
599	while(size > 0) {
600		unsigned int base_shift = be32_to_cpu(prop[0]);
601		unsigned int slbenc = be32_to_cpu(prop[1]);
602		unsigned int lpnum = be32_to_cpu(prop[2]);
603		struct mmu_psize_def *def;
604		int idx, base_idx;
605
606		size -= 3; prop += 3;
607		base_idx = get_idx_from_shift(base_shift);
608		if (base_idx < 0) {
609			/* skip the pte encoding also */
610			prop += lpnum * 2; size -= lpnum * 2;
611			continue;
612		}
613		def = &mmu_psize_defs[base_idx];
614		if (base_idx == MMU_PAGE_16M)
615			cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
616
617		def->shift = base_shift;
618		if (base_shift <= 23)
619			def->avpnm = 0;
620		else
621			def->avpnm = (1 << (base_shift - 23)) - 1;
622		def->sllp = slbenc;
623		/*
624		 * We don't know for sure what's up with tlbiel, so
625		 * for now we only set it for 4K and 64K pages
626		 */
627		if (base_idx == MMU_PAGE_4K || base_idx == MMU_PAGE_64K)
628			def->tlbiel = 1;
629		else
630			def->tlbiel = 0;
631
632		while (size > 0 && lpnum) {
633			unsigned int shift = be32_to_cpu(prop[0]);
634			int penc  = be32_to_cpu(prop[1]);
635
636			prop += 2; size -= 2;
637			lpnum--;
638
639			idx = get_idx_from_shift(shift);
640			if (idx < 0)
641				continue;
642
643			if (penc == -1)
644				pr_err("Invalid penc for base_shift=%d "
645				       "shift=%d\n", base_shift, shift);
646
647			def->penc[idx] = penc;
648			pr_info("base_shift=%d: shift=%d, sllp=0x%04lx,"
649				" avpnm=0x%08lx, tlbiel=%d, penc=%d\n",
650				base_shift, shift, def->sllp,
651				def->avpnm, def->tlbiel, def->penc[idx]);
652		}
653	}
654
655	return 1;
656}
657
658#ifdef CONFIG_HUGETLB_PAGE
659/*
660 * Scan for 16G memory blocks that have been set aside for huge pages
661 * and reserve those blocks for 16G huge pages.
662 */
663static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
664					const char *uname, int depth,
665					void *data) {
666	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
667	const __be64 *addr_prop;
668	const __be32 *page_count_prop;
669	unsigned int expected_pages;
670	long unsigned int phys_addr;
671	long unsigned int block_size;
672
673	/* We are scanning "memory" nodes only */
674	if (type == NULL || strcmp(type, "memory") != 0)
675		return 0;
676
677	/*
678	 * This property is the log base 2 of the number of virtual pages that
679	 * will represent this memory block.
680	 */
681	page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
682	if (page_count_prop == NULL)
683		return 0;
684	expected_pages = (1 << be32_to_cpu(page_count_prop[0]));
685	addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
686	if (addr_prop == NULL)
687		return 0;
688	phys_addr = be64_to_cpu(addr_prop[0]);
689	block_size = be64_to_cpu(addr_prop[1]);
690	if (block_size != (16 * GB))
691		return 0;
692	printk(KERN_INFO "Huge page(16GB) memory: "
693			"addr = 0x%lX size = 0x%lX pages = %d\n",
694			phys_addr, block_size, expected_pages);
695	if (phys_addr + block_size * expected_pages <= memblock_end_of_DRAM()) {
696		memblock_reserve(phys_addr, block_size * expected_pages);
697		pseries_add_gpage(phys_addr, block_size, expected_pages);
698	}
699	return 0;
700}
701#endif /* CONFIG_HUGETLB_PAGE */
702
703static void __init mmu_psize_set_default_penc(void)
704{
705	int bpsize, apsize;
706	for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
707		for (apsize = 0; apsize < MMU_PAGE_COUNT; apsize++)
708			mmu_psize_defs[bpsize].penc[apsize] = -1;
709}
710
711#ifdef CONFIG_PPC_64K_PAGES
712
713static bool __init might_have_hea(void)
714{
715	/*
716	 * The HEA ethernet adapter requires awareness of the
717	 * GX bus. Without that awareness we can easily assume
718	 * we will never see an HEA ethernet device.
719	 */
720#ifdef CONFIG_IBMEBUS
721	return !cpu_has_feature(CPU_FTR_ARCH_207S) &&
722		firmware_has_feature(FW_FEATURE_SPLPAR);
723#else
724	return false;
725#endif
726}
727
728#endif /* #ifdef CONFIG_PPC_64K_PAGES */
729
730static void __init htab_scan_page_sizes(void)
731{
732	int rc;
733
734	/* se the invalid penc to -1 */
735	mmu_psize_set_default_penc();
736
737	/* Default to 4K pages only */
738	memcpy(mmu_psize_defs, mmu_psize_defaults,
739	       sizeof(mmu_psize_defaults));
740
741	/*
742	 * Try to find the available page sizes in the device-tree
743	 */
744	rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
745	if (rc == 0 && early_mmu_has_feature(MMU_FTR_16M_PAGE)) {
746		/*
747		 * Nothing in the device-tree, but the CPU supports 16M pages,
748		 * so let's fallback on a known size list for 16M capable CPUs.
749		 */
750		memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
751		       sizeof(mmu_psize_defaults_gp));
752	}
753
754#ifdef CONFIG_HUGETLB_PAGE
755	if (!hugetlb_disabled && !early_radix_enabled() ) {
756		/* Reserve 16G huge page memory sections for huge pages */
757		of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
758	}
759#endif /* CONFIG_HUGETLB_PAGE */
760}
761
762/*
763 * Fill in the hpte_page_sizes[] array.
764 * We go through the mmu_psize_defs[] array looking for all the
765 * supported base/actual page size combinations.  Each combination
766 * has a unique pagesize encoding (penc) value in the low bits of
767 * the LP field of the HPTE.  For actual page sizes less than 1MB,
768 * some of the upper LP bits are used for RPN bits, meaning that
769 * we need to fill in several entries in hpte_page_sizes[].
770 *
771 * In diagrammatic form, with r = RPN bits and z = page size bits:
772 *        PTE LP     actual page size
773 *    rrrr rrrz		>=8KB
774 *    rrrr rrzz		>=16KB
775 *    rrrr rzzz		>=32KB
776 *    rrrr zzzz		>=64KB
777 *    ...
778 *
779 * The zzzz bits are implementation-specific but are chosen so that
780 * no encoding for a larger page size uses the same value in its
781 * low-order N bits as the encoding for the 2^(12+N) byte page size
782 * (if it exists).
783 */
784static void __init init_hpte_page_sizes(void)
785{
786	long int ap, bp;
787	long int shift, penc;
788
789	for (bp = 0; bp < MMU_PAGE_COUNT; ++bp) {
790		if (!mmu_psize_defs[bp].shift)
791			continue;	/* not a supported page size */
792		for (ap = bp; ap < MMU_PAGE_COUNT; ++ap) {
793			penc = mmu_psize_defs[bp].penc[ap];
794			if (penc == -1 || !mmu_psize_defs[ap].shift)
795				continue;
796			shift = mmu_psize_defs[ap].shift - LP_SHIFT;
797			if (shift <= 0)
798				continue;	/* should never happen */
799			/*
800			 * For page sizes less than 1MB, this loop
801			 * replicates the entry for all possible values
802			 * of the rrrr bits.
803			 */
804			while (penc < (1 << LP_BITS)) {
805				hpte_page_sizes[penc] = (ap << 4) | bp;
806				penc += 1 << shift;
807			}
808		}
809	}
810}
811
812static void __init htab_init_page_sizes(void)
813{
814	bool aligned = true;
815	init_hpte_page_sizes();
816
817	if (!debug_pagealloc_enabled_or_kfence()) {
818		/*
819		 * Pick a size for the linear mapping. Currently, we only
820		 * support 16M, 1M and 4K which is the default
821		 */
822		if (IS_ENABLED(CONFIG_STRICT_KERNEL_RWX) &&
823		    (unsigned long)_stext % 0x1000000) {
824			if (mmu_psize_defs[MMU_PAGE_16M].shift)
825				pr_warn("Kernel not 16M aligned, disabling 16M linear map alignment\n");
826			aligned = false;
827		}
828
829		if (mmu_psize_defs[MMU_PAGE_16M].shift && aligned)
830			mmu_linear_psize = MMU_PAGE_16M;
831		else if (mmu_psize_defs[MMU_PAGE_1M].shift)
832			mmu_linear_psize = MMU_PAGE_1M;
833	}
834
835#ifdef CONFIG_PPC_64K_PAGES
836	/*
837	 * Pick a size for the ordinary pages. Default is 4K, we support
838	 * 64K for user mappings and vmalloc if supported by the processor.
839	 * We only use 64k for ioremap if the processor
840	 * (and firmware) support cache-inhibited large pages.
841	 * If not, we use 4k and set mmu_ci_restrictions so that
842	 * hash_page knows to switch processes that use cache-inhibited
843	 * mappings to 4k pages.
844	 */
845	if (mmu_psize_defs[MMU_PAGE_64K].shift) {
846		mmu_virtual_psize = MMU_PAGE_64K;
847		mmu_vmalloc_psize = MMU_PAGE_64K;
848		if (mmu_linear_psize == MMU_PAGE_4K)
849			mmu_linear_psize = MMU_PAGE_64K;
850		if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
851			/*
852			 * When running on pSeries using 64k pages for ioremap
853			 * would stop us accessing the HEA ethernet. So if we
854			 * have the chance of ever seeing one, stay at 4k.
855			 */
856			if (!might_have_hea())
857				mmu_io_psize = MMU_PAGE_64K;
858		} else
859			mmu_ci_restrictions = 1;
860	}
861#endif /* CONFIG_PPC_64K_PAGES */
862
863#ifdef CONFIG_SPARSEMEM_VMEMMAP
864	/*
865	 * We try to use 16M pages for vmemmap if that is supported
866	 * and we have at least 1G of RAM at boot
867	 */
868	if (mmu_psize_defs[MMU_PAGE_16M].shift &&
869	    memblock_phys_mem_size() >= 0x40000000)
870		mmu_vmemmap_psize = MMU_PAGE_16M;
871	else
872		mmu_vmemmap_psize = mmu_virtual_psize;
873#endif /* CONFIG_SPARSEMEM_VMEMMAP */
874
875	printk(KERN_DEBUG "Page orders: linear mapping = %d, "
876	       "virtual = %d, io = %d"
877#ifdef CONFIG_SPARSEMEM_VMEMMAP
878	       ", vmemmap = %d"
879#endif
880	       "\n",
881	       mmu_psize_defs[mmu_linear_psize].shift,
882	       mmu_psize_defs[mmu_virtual_psize].shift,
883	       mmu_psize_defs[mmu_io_psize].shift
884#ifdef CONFIG_SPARSEMEM_VMEMMAP
885	       ,mmu_psize_defs[mmu_vmemmap_psize].shift
886#endif
887	       );
888}
889
890static int __init htab_dt_scan_pftsize(unsigned long node,
891				       const char *uname, int depth,
892				       void *data)
893{
894	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
895	const __be32 *prop;
896
897	/* We are scanning "cpu" nodes only */
898	if (type == NULL || strcmp(type, "cpu") != 0)
899		return 0;
900
901	prop = of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
902	if (prop != NULL) {
903		/* pft_size[0] is the NUMA CEC cookie */
904		ppc64_pft_size = be32_to_cpu(prop[1]);
905		return 1;
906	}
907	return 0;
908}
909
910unsigned htab_shift_for_mem_size(unsigned long mem_size)
911{
912	unsigned memshift = __ilog2(mem_size);
913	unsigned pshift = mmu_psize_defs[mmu_virtual_psize].shift;
914	unsigned pteg_shift;
915
916	/* round mem_size up to next power of 2 */
917	if ((1UL << memshift) < mem_size)
918		memshift += 1;
919
920	/* aim for 2 pages / pteg */
921	pteg_shift = memshift - (pshift + 1);
922
923	/*
924	 * 2^11 PTEGS of 128 bytes each, ie. 2^18 bytes is the minimum htab
925	 * size permitted by the architecture.
926	 */
927	return max(pteg_shift + 7, 18U);
928}
929
930static unsigned long __init htab_get_table_size(void)
931{
932	/*
933	 * If hash size isn't already provided by the platform, we try to
934	 * retrieve it from the device-tree. If it's not there neither, we
935	 * calculate it now based on the total RAM size
936	 */
937	if (ppc64_pft_size == 0)
938		of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
939	if (ppc64_pft_size)
940		return 1UL << ppc64_pft_size;
941
942	return 1UL << htab_shift_for_mem_size(memblock_phys_mem_size());
943}
944
945#ifdef CONFIG_MEMORY_HOTPLUG
946static int resize_hpt_for_hotplug(unsigned long new_mem_size)
947{
948	unsigned target_hpt_shift;
949
950	if (!mmu_hash_ops.resize_hpt)
951		return 0;
952
953	target_hpt_shift = htab_shift_for_mem_size(new_mem_size);
954
955	/*
956	 * To avoid lots of HPT resizes if memory size is fluctuating
957	 * across a boundary, we deliberately have some hysterisis
958	 * here: we immediately increase the HPT size if the target
959	 * shift exceeds the current shift, but we won't attempt to
960	 * reduce unless the target shift is at least 2 below the
961	 * current shift
962	 */
963	if (target_hpt_shift > ppc64_pft_size ||
964	    target_hpt_shift < ppc64_pft_size - 1)
965		return mmu_hash_ops.resize_hpt(target_hpt_shift);
966
967	return 0;
968}
969
970int hash__create_section_mapping(unsigned long start, unsigned long end,
971				 int nid, pgprot_t prot)
972{
973	int rc;
974
975	if (end >= H_VMALLOC_START) {
976		pr_warn("Outside the supported range\n");
977		return -1;
978	}
979
980	resize_hpt_for_hotplug(memblock_phys_mem_size());
981
982	rc = htab_bolt_mapping(start, end, __pa(start),
983			       pgprot_val(prot), mmu_linear_psize,
984			       mmu_kernel_ssize);
985
986	if (rc < 0) {
987		int rc2 = htab_remove_mapping(start, end, mmu_linear_psize,
988					      mmu_kernel_ssize);
989		BUG_ON(rc2 && (rc2 != -ENOENT));
990	}
991	return rc;
992}
993
994int hash__remove_section_mapping(unsigned long start, unsigned long end)
995{
996	int rc = htab_remove_mapping(start, end, mmu_linear_psize,
997				     mmu_kernel_ssize);
998
999	if (resize_hpt_for_hotplug(memblock_phys_mem_size()) == -ENOSPC)
1000		pr_warn("Hash collision while resizing HPT\n");
1001
1002	return rc;
1003}
1004#endif /* CONFIG_MEMORY_HOTPLUG */
1005
1006static void __init hash_init_partition_table(phys_addr_t hash_table,
1007					     unsigned long htab_size)
1008{
1009	mmu_partition_table_init();
1010
1011	/*
1012	 * PS field (VRMA page size) is not used for LPID 0, hence set to 0.
1013	 * For now, UPRT is 0 and we have no segment table.
1014	 */
1015	htab_size =  __ilog2(htab_size) - 18;
1016	mmu_partition_table_set_entry(0, hash_table | htab_size, 0, false);
1017	pr_info("Partition table %p\n", partition_tb);
1018}
1019
1020void hpt_clear_stress(void);
1021static struct timer_list stress_hpt_timer;
1022static void stress_hpt_timer_fn(struct timer_list *timer)
1023{
1024	int next_cpu;
1025
1026	hpt_clear_stress();
1027	if (!firmware_has_feature(FW_FEATURE_LPAR))
1028		tlbiel_all();
1029
1030	next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
1031	if (next_cpu >= nr_cpu_ids)
1032		next_cpu = cpumask_first(cpu_online_mask);
1033	stress_hpt_timer.expires = jiffies + msecs_to_jiffies(10);
1034	add_timer_on(&stress_hpt_timer, next_cpu);
1035}
1036
1037static void __init htab_initialize(void)
1038{
1039	unsigned long table;
1040	unsigned long pteg_count;
1041	unsigned long prot;
1042	phys_addr_t base = 0, size = 0, end;
1043	u64 i;
1044
1045	DBG(" -> htab_initialize()\n");
1046
1047	if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
1048		mmu_kernel_ssize = MMU_SEGSIZE_1T;
1049		mmu_highuser_ssize = MMU_SEGSIZE_1T;
1050		printk(KERN_INFO "Using 1TB segments\n");
1051	}
1052
1053	if (stress_slb_enabled)
1054		static_branch_enable(&stress_slb_key);
1055
1056	if (stress_hpt_enabled) {
1057		unsigned long tmp;
1058		static_branch_enable(&stress_hpt_key);
1059		// Too early to use nr_cpu_ids, so use NR_CPUS
1060		tmp = memblock_phys_alloc_range(sizeof(struct stress_hpt_struct) * NR_CPUS,
1061						__alignof__(struct stress_hpt_struct),
1062						0, MEMBLOCK_ALLOC_ANYWHERE);
1063		memset((void *)tmp, 0xff, sizeof(struct stress_hpt_struct) * NR_CPUS);
1064		stress_hpt_struct = __va(tmp);
1065
1066		timer_setup(&stress_hpt_timer, stress_hpt_timer_fn, 0);
1067		stress_hpt_timer.expires = jiffies + msecs_to_jiffies(10);
1068		add_timer(&stress_hpt_timer);
1069	}
1070
1071	/*
1072	 * Calculate the required size of the htab.  We want the number of
1073	 * PTEGs to equal one half the number of real pages.
1074	 */
1075	htab_size_bytes = htab_get_table_size();
1076	pteg_count = htab_size_bytes >> 7;
1077
1078	htab_hash_mask = pteg_count - 1;
1079
1080	if (firmware_has_feature(FW_FEATURE_LPAR) ||
1081	    firmware_has_feature(FW_FEATURE_PS3_LV1)) {
1082		/* Using a hypervisor which owns the htab */
1083		htab_address = NULL;
1084		_SDR1 = 0;
1085#ifdef CONFIG_FA_DUMP
1086		/*
1087		 * If firmware assisted dump is active firmware preserves
1088		 * the contents of htab along with entire partition memory.
1089		 * Clear the htab if firmware assisted dump is active so
1090		 * that we dont end up using old mappings.
1091		 */
1092		if (is_fadump_active() && mmu_hash_ops.hpte_clear_all)
1093			mmu_hash_ops.hpte_clear_all();
1094#endif
1095	} else {
1096		unsigned long limit = MEMBLOCK_ALLOC_ANYWHERE;
1097
1098#ifdef CONFIG_PPC_CELL
1099		/*
1100		 * Cell may require the hash table down low when using the
1101		 * Axon IOMMU in order to fit the dynamic region over it, see
1102		 * comments in cell/iommu.c
1103		 */
1104		if (fdt_subnode_offset(initial_boot_params, 0, "axon") > 0) {
1105			limit = 0x80000000;
1106			pr_info("Hash table forced below 2G for Axon IOMMU\n");
1107		}
1108#endif /* CONFIG_PPC_CELL */
1109
1110		table = memblock_phys_alloc_range(htab_size_bytes,
1111						  htab_size_bytes,
1112						  0, limit);
1113		if (!table)
1114			panic("ERROR: Failed to allocate %pa bytes below %pa\n",
1115			      &htab_size_bytes, &limit);
1116
1117		DBG("Hash table allocated at %lx, size: %lx\n", table,
1118		    htab_size_bytes);
1119
1120		htab_address = __va(table);
1121
1122		/* htab absolute addr + encoded htabsize */
1123		_SDR1 = table + __ilog2(htab_size_bytes) - 18;
1124
1125		/* Initialize the HPT with no entries */
1126		memset((void *)table, 0, htab_size_bytes);
1127
1128		if (!cpu_has_feature(CPU_FTR_ARCH_300))
1129			/* Set SDR1 */
1130			mtspr(SPRN_SDR1, _SDR1);
1131		else
1132			hash_init_partition_table(table, htab_size_bytes);
1133	}
1134
1135	prot = pgprot_val(PAGE_KERNEL);
1136
1137	if (debug_pagealloc_enabled_or_kfence()) {
1138		linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
1139		linear_map_hash_slots = memblock_alloc_try_nid(
1140				linear_map_hash_count, 1, MEMBLOCK_LOW_LIMIT,
1141				ppc64_rma_size,	NUMA_NO_NODE);
1142		if (!linear_map_hash_slots)
1143			panic("%s: Failed to allocate %lu bytes max_addr=%pa\n",
1144			      __func__, linear_map_hash_count, &ppc64_rma_size);
1145	}
1146
1147	/* create bolted the linear mapping in the hash table */
1148	for_each_mem_range(i, &base, &end) {
1149		size = end - base;
1150		base = (unsigned long)__va(base);
1151
1152		DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
1153		    base, size, prot);
1154
1155		if ((base + size) >= H_VMALLOC_START) {
1156			pr_warn("Outside the supported range\n");
1157			continue;
1158		}
1159
1160		BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
1161				prot, mmu_linear_psize, mmu_kernel_ssize));
1162	}
1163	memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
1164
1165	/*
1166	 * If we have a memory_limit and we've allocated TCEs then we need to
1167	 * explicitly map the TCE area at the top of RAM. We also cope with the
1168	 * case that the TCEs start below memory_limit.
1169	 * tce_alloc_start/end are 16MB aligned so the mapping should work
1170	 * for either 4K or 16MB pages.
1171	 */
1172	if (tce_alloc_start) {
1173		tce_alloc_start = (unsigned long)__va(tce_alloc_start);
1174		tce_alloc_end = (unsigned long)__va(tce_alloc_end);
1175
1176		if (base + size >= tce_alloc_start)
1177			tce_alloc_start = base + size + 1;
1178
1179		BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
1180					 __pa(tce_alloc_start), prot,
1181					 mmu_linear_psize, mmu_kernel_ssize));
1182	}
1183
1184
1185	DBG(" <- htab_initialize()\n");
1186}
1187#undef KB
1188#undef MB
1189
1190void __init hash__early_init_devtree(void)
1191{
1192	/* Initialize segment sizes */
1193	of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
1194
1195	/* Initialize page sizes */
1196	htab_scan_page_sizes();
1197}
1198
1199static struct hash_mm_context init_hash_mm_context;
1200void __init hash__early_init_mmu(void)
1201{
1202#ifndef CONFIG_PPC_64K_PAGES
1203	/*
1204	 * We have code in __hash_page_4K() and elsewhere, which assumes it can
1205	 * do the following:
1206	 *   new_pte |= (slot << H_PAGE_F_GIX_SHIFT) & (H_PAGE_F_SECOND | H_PAGE_F_GIX);
1207	 *
1208	 * Where the slot number is between 0-15, and values of 8-15 indicate
1209	 * the secondary bucket. For that code to work H_PAGE_F_SECOND and
1210	 * H_PAGE_F_GIX must occupy four contiguous bits in the PTE, and
1211	 * H_PAGE_F_SECOND must be placed above H_PAGE_F_GIX. Assert that here
1212	 * with a BUILD_BUG_ON().
1213	 */
1214	BUILD_BUG_ON(H_PAGE_F_SECOND != (1ul  << (H_PAGE_F_GIX_SHIFT + 3)));
1215#endif /* CONFIG_PPC_64K_PAGES */
1216
1217	htab_init_page_sizes();
1218
1219	/*
1220	 * initialize page table size
1221	 */
1222	__pte_frag_nr = H_PTE_FRAG_NR;
1223	__pte_frag_size_shift = H_PTE_FRAG_SIZE_SHIFT;
1224	__pmd_frag_nr = H_PMD_FRAG_NR;
1225	__pmd_frag_size_shift = H_PMD_FRAG_SIZE_SHIFT;
1226
1227	__pte_index_size = H_PTE_INDEX_SIZE;
1228	__pmd_index_size = H_PMD_INDEX_SIZE;
1229	__pud_index_size = H_PUD_INDEX_SIZE;
1230	__pgd_index_size = H_PGD_INDEX_SIZE;
1231	__pud_cache_index = H_PUD_CACHE_INDEX;
1232	__pte_table_size = H_PTE_TABLE_SIZE;
1233	__pmd_table_size = H_PMD_TABLE_SIZE;
1234	__pud_table_size = H_PUD_TABLE_SIZE;
1235	__pgd_table_size = H_PGD_TABLE_SIZE;
1236	/*
1237	 * 4k use hugepd format, so for hash set then to
1238	 * zero
1239	 */
1240	__pmd_val_bits = HASH_PMD_VAL_BITS;
1241	__pud_val_bits = HASH_PUD_VAL_BITS;
1242	__pgd_val_bits = HASH_PGD_VAL_BITS;
1243
1244	__kernel_virt_start = H_KERN_VIRT_START;
1245	__vmalloc_start = H_VMALLOC_START;
1246	__vmalloc_end = H_VMALLOC_END;
1247	__kernel_io_start = H_KERN_IO_START;
1248	__kernel_io_end = H_KERN_IO_END;
1249	vmemmap = (struct page *)H_VMEMMAP_START;
1250	ioremap_bot = IOREMAP_BASE;
1251
1252#ifdef CONFIG_PCI
1253	pci_io_base = ISA_IO_BASE;
1254#endif
1255
1256	/* Select appropriate backend */
1257	if (firmware_has_feature(FW_FEATURE_PS3_LV1))
1258		ps3_early_mm_init();
1259	else if (firmware_has_feature(FW_FEATURE_LPAR))
1260		hpte_init_pseries();
1261	else if (IS_ENABLED(CONFIG_PPC_HASH_MMU_NATIVE))
1262		hpte_init_native();
1263
1264	if (!mmu_hash_ops.hpte_insert)
1265		panic("hash__early_init_mmu: No MMU hash ops defined!\n");
1266
1267	/*
1268	 * Initialize the MMU Hash table and create the linear mapping
1269	 * of memory. Has to be done before SLB initialization as this is
1270	 * currently where the page size encoding is obtained.
1271	 */
1272	htab_initialize();
1273
1274	init_mm.context.hash_context = &init_hash_mm_context;
1275	mm_ctx_set_slb_addr_limit(&init_mm.context, SLB_ADDR_LIMIT_DEFAULT);
1276
1277	pr_info("Initializing hash mmu with SLB\n");
1278	/* Initialize SLB management */
1279	slb_initialize();
1280
1281	if (cpu_has_feature(CPU_FTR_ARCH_206)
1282			&& cpu_has_feature(CPU_FTR_HVMODE))
1283		tlbiel_all();
1284}
1285
1286#ifdef CONFIG_SMP
1287void hash__early_init_mmu_secondary(void)
1288{
1289	/* Initialize hash table for that CPU */
1290	if (!firmware_has_feature(FW_FEATURE_LPAR)) {
1291
1292		if (!cpu_has_feature(CPU_FTR_ARCH_300))
1293			mtspr(SPRN_SDR1, _SDR1);
1294		else
1295			set_ptcr_when_no_uv(__pa(partition_tb) |
1296					    (PATB_SIZE_SHIFT - 12));
1297	}
1298	/* Initialize SLB */
1299	slb_initialize();
1300
1301	if (cpu_has_feature(CPU_FTR_ARCH_206)
1302			&& cpu_has_feature(CPU_FTR_HVMODE))
1303		tlbiel_all();
1304
1305#ifdef CONFIG_PPC_MEM_KEYS
1306	if (mmu_has_feature(MMU_FTR_PKEY))
1307		mtspr(SPRN_UAMOR, default_uamor);
1308#endif
1309}
1310#endif /* CONFIG_SMP */
1311
1312/*
1313 * Called by asm hashtable.S for doing lazy icache flush
1314 */
1315unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
1316{
1317	struct folio *folio;
1318
1319	if (!pfn_valid(pte_pfn(pte)))
1320		return pp;
1321
1322	folio = page_folio(pte_page(pte));
1323
1324	/* page is dirty */
1325	if (!test_bit(PG_dcache_clean, &folio->flags) &&
1326	    !folio_test_reserved(folio)) {
1327		if (trap == INTERRUPT_INST_STORAGE) {
1328			flush_dcache_icache_folio(folio);
1329			set_bit(PG_dcache_clean, &folio->flags);
1330		} else
1331			pp |= HPTE_R_N;
1332	}
1333	return pp;
1334}
1335
1336static unsigned int get_paca_psize(unsigned long addr)
1337{
1338	unsigned char *psizes;
1339	unsigned long index, mask_index;
1340
1341	if (addr < SLICE_LOW_TOP) {
1342		psizes = get_paca()->mm_ctx_low_slices_psize;
1343		index = GET_LOW_SLICE_INDEX(addr);
1344	} else {
1345		psizes = get_paca()->mm_ctx_high_slices_psize;
1346		index = GET_HIGH_SLICE_INDEX(addr);
1347	}
1348	mask_index = index & 0x1;
1349	return (psizes[index >> 1] >> (mask_index * 4)) & 0xF;
1350}
1351
1352
1353/*
1354 * Demote a segment to using 4k pages.
1355 * For now this makes the whole process use 4k pages.
1356 */
1357#ifdef CONFIG_PPC_64K_PAGES
1358void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
1359{
1360	if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
1361		return;
1362	slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
1363	copro_flush_all_slbs(mm);
1364	if ((get_paca_psize(addr) != MMU_PAGE_4K) && (current->mm == mm)) {
1365
1366		copy_mm_to_paca(mm);
1367		slb_flush_and_restore_bolted();
1368	}
1369}
1370#endif /* CONFIG_PPC_64K_PAGES */
1371
1372#ifdef CONFIG_PPC_SUBPAGE_PROT
1373/*
1374 * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
1375 * Userspace sets the subpage permissions using the subpage_prot system call.
1376 *
1377 * Result is 0: full permissions, _PAGE_RW: read-only,
1378 * _PAGE_RWX: no access.
1379 */
1380static int subpage_protection(struct mm_struct *mm, unsigned long ea)
1381{
1382	struct subpage_prot_table *spt = mm_ctx_subpage_prot(&mm->context);
1383	u32 spp = 0;
1384	u32 **sbpm, *sbpp;
1385
1386	if (!spt)
1387		return 0;
1388
1389	if (ea >= spt->maxaddr)
1390		return 0;
1391	if (ea < 0x100000000UL) {
1392		/* addresses below 4GB use spt->low_prot */
1393		sbpm = spt->low_prot;
1394	} else {
1395		sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
1396		if (!sbpm)
1397			return 0;
1398	}
1399	sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
1400	if (!sbpp)
1401		return 0;
1402	spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
1403
1404	/* extract 2-bit bitfield for this 4k subpage */
1405	spp >>= 30 - 2 * ((ea >> 12) & 0xf);
1406
1407	/*
1408	 * 0 -> full permission
1409	 * 1 -> Read only
1410	 * 2 -> no access.
1411	 * We return the flag that need to be cleared.
1412	 */
1413	spp = ((spp & 2) ? _PAGE_RWX : 0) | ((spp & 1) ? _PAGE_WRITE : 0);
1414	return spp;
1415}
1416
1417#else /* CONFIG_PPC_SUBPAGE_PROT */
1418static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
1419{
1420	return 0;
1421}
1422#endif
1423
1424void hash_failure_debug(unsigned long ea, unsigned long access,
1425			unsigned long vsid, unsigned long trap,
1426			int ssize, int psize, int lpsize, unsigned long pte)
1427{
1428	if (!printk_ratelimit())
1429		return;
1430	pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
1431		ea, access, current->comm);
1432	pr_info("    trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n",
1433		trap, vsid, ssize, psize, lpsize, pte);
1434}
1435
1436static void check_paca_psize(unsigned long ea, struct mm_struct *mm,
1437			     int psize, bool user_region)
1438{
1439	if (user_region) {
1440		if (psize != get_paca_psize(ea)) {
1441			copy_mm_to_paca(mm);
1442			slb_flush_and_restore_bolted();
1443		}
1444	} else if (get_paca()->vmalloc_sllp !=
1445		   mmu_psize_defs[mmu_vmalloc_psize].sllp) {
1446		get_paca()->vmalloc_sllp =
1447			mmu_psize_defs[mmu_vmalloc_psize].sllp;
1448		slb_vmalloc_update();
1449	}
1450}
1451
1452/*
1453 * Result code is:
1454 *  0 - handled
1455 *  1 - normal page fault
1456 * -1 - critical hash insertion error
1457 * -2 - access not permitted by subpage protection mechanism
1458 */
1459int hash_page_mm(struct mm_struct *mm, unsigned long ea,
1460		 unsigned long access, unsigned long trap,
1461		 unsigned long flags)
1462{
1463	bool is_thp;
1464	pgd_t *pgdir;
1465	unsigned long vsid;
1466	pte_t *ptep;
1467	unsigned hugeshift;
1468	int rc, user_region = 0;
1469	int psize, ssize;
1470
1471	DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
1472		ea, access, trap);
1473	trace_hash_fault(ea, access, trap);
1474
1475	/* Get region & vsid */
1476	switch (get_region_id(ea)) {
1477	case USER_REGION_ID:
1478		user_region = 1;
1479		if (! mm) {
1480			DBG_LOW(" user region with no mm !\n");
1481			rc = 1;
1482			goto bail;
1483		}
1484		psize = get_slice_psize(mm, ea);
1485		ssize = user_segment_size(ea);
1486		vsid = get_user_vsid(&mm->context, ea, ssize);
1487		break;
1488	case VMALLOC_REGION_ID:
1489		vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1490		psize = mmu_vmalloc_psize;
1491		ssize = mmu_kernel_ssize;
1492		flags |= HPTE_USE_KERNEL_KEY;
1493		break;
1494
1495	case IO_REGION_ID:
1496		vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1497		psize = mmu_io_psize;
1498		ssize = mmu_kernel_ssize;
1499		flags |= HPTE_USE_KERNEL_KEY;
1500		break;
1501	default:
1502		/*
1503		 * Not a valid range
1504		 * Send the problem up to do_page_fault()
1505		 */
1506		rc = 1;
1507		goto bail;
1508	}
1509	DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
1510
1511	/* Bad address. */
1512	if (!vsid) {
1513		DBG_LOW("Bad address!\n");
1514		rc = 1;
1515		goto bail;
1516	}
1517	/* Get pgdir */
1518	pgdir = mm->pgd;
1519	if (pgdir == NULL) {
1520		rc = 1;
1521		goto bail;
1522	}
1523
1524	/* Check CPU locality */
1525	if (user_region && mm_is_thread_local(mm))
1526		flags |= HPTE_LOCAL_UPDATE;
1527
1528#ifndef CONFIG_PPC_64K_PAGES
1529	/*
1530	 * If we use 4K pages and our psize is not 4K, then we might
1531	 * be hitting a special driver mapping, and need to align the
1532	 * address before we fetch the PTE.
1533	 *
1534	 * It could also be a hugepage mapping, in which case this is
1535	 * not necessary, but it's not harmful, either.
1536	 */
1537	if (psize != MMU_PAGE_4K)
1538		ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
1539#endif /* CONFIG_PPC_64K_PAGES */
1540
1541	/* Get PTE and page size from page tables */
1542	ptep = find_linux_pte(pgdir, ea, &is_thp, &hugeshift);
1543	if (ptep == NULL || !pte_present(*ptep)) {
1544		DBG_LOW(" no PTE !\n");
1545		rc = 1;
1546		goto bail;
1547	}
1548
1549	/*
1550	 * Add _PAGE_PRESENT to the required access perm. If there are parallel
1551	 * updates to the pte that can possibly clear _PAGE_PTE, catch that too.
1552	 *
1553	 * We can safely use the return pte address in rest of the function
1554	 * because we do set H_PAGE_BUSY which prevents further updates to pte
1555	 * from generic code.
1556	 */
1557	access |= _PAGE_PRESENT | _PAGE_PTE;
1558
1559	/*
1560	 * Pre-check access permissions (will be re-checked atomically
1561	 * in __hash_page_XX but this pre-check is a fast path
1562	 */
1563	if (!check_pte_access(access, pte_val(*ptep))) {
1564		DBG_LOW(" no access !\n");
1565		rc = 1;
1566		goto bail;
1567	}
1568
1569	if (hugeshift) {
1570		if (is_thp)
1571			rc = __hash_page_thp(ea, access, vsid, (pmd_t *)ptep,
1572					     trap, flags, ssize, psize);
1573#ifdef CONFIG_HUGETLB_PAGE
1574		else
1575			rc = __hash_page_huge(ea, access, vsid, ptep, trap,
1576					      flags, ssize, hugeshift, psize);
1577#else
1578		else {
1579			/*
1580			 * if we have hugeshift, and is not transhuge with
1581			 * hugetlb disabled, something is really wrong.
1582			 */
1583			rc = 1;
1584			WARN_ON(1);
1585		}
1586#endif
1587		if (current->mm == mm)
1588			check_paca_psize(ea, mm, psize, user_region);
1589
1590		goto bail;
1591	}
1592
1593#ifndef CONFIG_PPC_64K_PAGES
1594	DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
1595#else
1596	DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
1597		pte_val(*(ptep + PTRS_PER_PTE)));
1598#endif
1599	/* Do actual hashing */
1600#ifdef CONFIG_PPC_64K_PAGES
1601	/* If H_PAGE_4K_PFN is set, make sure this is a 4k segment */
1602	if ((pte_val(*ptep) & H_PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
1603		demote_segment_4k(mm, ea);
1604		psize = MMU_PAGE_4K;
1605	}
1606
1607	/*
1608	 * If this PTE is non-cacheable and we have restrictions on
1609	 * using non cacheable large pages, then we switch to 4k
1610	 */
1611	if (mmu_ci_restrictions && psize == MMU_PAGE_64K && pte_ci(*ptep)) {
1612		if (user_region) {
1613			demote_segment_4k(mm, ea);
1614			psize = MMU_PAGE_4K;
1615		} else if (ea < VMALLOC_END) {
1616			/*
1617			 * some driver did a non-cacheable mapping
1618			 * in vmalloc space, so switch vmalloc
1619			 * to 4k pages
1620			 */
1621			printk(KERN_ALERT "Reducing vmalloc segment "
1622			       "to 4kB pages because of "
1623			       "non-cacheable mapping\n");
1624			psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1625			copro_flush_all_slbs(mm);
1626		}
1627	}
1628
1629#endif /* CONFIG_PPC_64K_PAGES */
1630
1631	if (current->mm == mm)
1632		check_paca_psize(ea, mm, psize, user_region);
1633
1634#ifdef CONFIG_PPC_64K_PAGES
1635	if (psize == MMU_PAGE_64K)
1636		rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1637				     flags, ssize);
1638	else
1639#endif /* CONFIG_PPC_64K_PAGES */
1640	{
1641		int spp = subpage_protection(mm, ea);
1642		if (access & spp)
1643			rc = -2;
1644		else
1645			rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1646					    flags, ssize, spp);
1647	}
1648
1649	/*
1650	 * Dump some info in case of hash insertion failure, they should
1651	 * never happen so it is really useful to know if/when they do
1652	 */
1653	if (rc == -1)
1654		hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1655				   psize, pte_val(*ptep));
1656#ifndef CONFIG_PPC_64K_PAGES
1657	DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1658#else
1659	DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1660		pte_val(*(ptep + PTRS_PER_PTE)));
1661#endif
1662	DBG_LOW(" -> rc=%d\n", rc);
1663
1664bail:
1665	return rc;
1666}
1667EXPORT_SYMBOL_GPL(hash_page_mm);
1668
1669int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
1670	      unsigned long dsisr)
1671{
1672	unsigned long flags = 0;
1673	struct mm_struct *mm = current->mm;
1674
1675	if ((get_region_id(ea) == VMALLOC_REGION_ID) ||
1676	    (get_region_id(ea) == IO_REGION_ID))
1677		mm = &init_mm;
1678
1679	if (dsisr & DSISR_NOHPTE)
1680		flags |= HPTE_NOHPTE_UPDATE;
1681
1682	return hash_page_mm(mm, ea, access, trap, flags);
1683}
1684EXPORT_SYMBOL_GPL(hash_page);
1685
1686DEFINE_INTERRUPT_HANDLER(do_hash_fault)
1687{
1688	unsigned long ea = regs->dar;
1689	unsigned long dsisr = regs->dsisr;
1690	unsigned long access = _PAGE_PRESENT | _PAGE_READ;
1691	unsigned long flags = 0;
1692	struct mm_struct *mm;
1693	unsigned int region_id;
1694	long err;
1695
1696	if (unlikely(dsisr & (DSISR_BAD_FAULT_64S | DSISR_KEYFAULT))) {
1697		hash__do_page_fault(regs);
1698		return;
1699	}
1700
1701	region_id = get_region_id(ea);
1702	if ((region_id == VMALLOC_REGION_ID) || (region_id == IO_REGION_ID))
1703		mm = &init_mm;
1704	else
1705		mm = current->mm;
1706
1707	if (dsisr & DSISR_NOHPTE)
1708		flags |= HPTE_NOHPTE_UPDATE;
1709
1710	if (dsisr & DSISR_ISSTORE)
1711		access |= _PAGE_WRITE;
1712	/*
1713	 * We set _PAGE_PRIVILEGED only when
1714	 * kernel mode access kernel space.
1715	 *
1716	 * _PAGE_PRIVILEGED is NOT set
1717	 * 1) when kernel mode access user space
1718	 * 2) user space access kernel space.
1719	 */
1720	access |= _PAGE_PRIVILEGED;
1721	if (user_mode(regs) || (region_id == USER_REGION_ID))
1722		access &= ~_PAGE_PRIVILEGED;
1723
1724	if (TRAP(regs) == INTERRUPT_INST_STORAGE)
1725		access |= _PAGE_EXEC;
1726
1727	err = hash_page_mm(mm, ea, access, TRAP(regs), flags);
1728	if (unlikely(err < 0)) {
1729		// failed to insert a hash PTE due to an hypervisor error
1730		if (user_mode(regs)) {
1731			if (IS_ENABLED(CONFIG_PPC_SUBPAGE_PROT) && err == -2)
1732				_exception(SIGSEGV, regs, SEGV_ACCERR, ea);
1733			else
1734				_exception(SIGBUS, regs, BUS_ADRERR, ea);
1735		} else {
1736			bad_page_fault(regs, SIGBUS);
1737		}
1738		err = 0;
1739
1740	} else if (err) {
1741		hash__do_page_fault(regs);
1742	}
1743}
1744
1745static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1746{
1747	int psize = get_slice_psize(mm, ea);
1748
1749	/* We only prefault standard pages for now */
1750	if (unlikely(psize != mm_ctx_user_psize(&mm->context)))
1751		return false;
1752
1753	/*
1754	 * Don't prefault if subpage protection is enabled for the EA.
1755	 */
1756	if (unlikely((psize == MMU_PAGE_4K) && subpage_protection(mm, ea)))
1757		return false;
1758
1759	return true;
1760}
1761
1762static void hash_preload(struct mm_struct *mm, pte_t *ptep, unsigned long ea,
1763			 bool is_exec, unsigned long trap)
1764{
1765	unsigned long vsid;
1766	pgd_t *pgdir;
1767	int rc, ssize, update_flags = 0;
1768	unsigned long access = _PAGE_PRESENT | _PAGE_READ | (is_exec ? _PAGE_EXEC : 0);
1769	unsigned long flags;
1770
1771	BUG_ON(get_region_id(ea) != USER_REGION_ID);
1772
1773	if (!should_hash_preload(mm, ea))
1774		return;
1775
1776	DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1777		" trap=%lx\n", mm, mm->pgd, ea, access, trap);
1778
1779	/* Get Linux PTE if available */
1780	pgdir = mm->pgd;
1781	if (pgdir == NULL)
1782		return;
1783
1784	/* Get VSID */
1785	ssize = user_segment_size(ea);
1786	vsid = get_user_vsid(&mm->context, ea, ssize);
1787	if (!vsid)
1788		return;
1789
1790#ifdef CONFIG_PPC_64K_PAGES
1791	/* If either H_PAGE_4K_PFN or cache inhibited is set (and we are on
1792	 * a 64K kernel), then we don't preload, hash_page() will take
1793	 * care of it once we actually try to access the page.
1794	 * That way we don't have to duplicate all of the logic for segment
1795	 * page size demotion here
1796	 * Called with  PTL held, hence can be sure the value won't change in
1797	 * between.
1798	 */
1799	if ((pte_val(*ptep) & H_PAGE_4K_PFN) || pte_ci(*ptep))
1800		return;
1801#endif /* CONFIG_PPC_64K_PAGES */
1802
1803	/*
1804	 * __hash_page_* must run with interrupts off, including PMI interrupts
1805	 * off, as it sets the H_PAGE_BUSY bit.
1806	 *
1807	 * It's otherwise possible for perf interrupts to hit at any time and
1808	 * may take a hash fault reading the user stack, which could take a
1809	 * hash miss and deadlock on the same H_PAGE_BUSY bit.
1810	 *
1811	 * Interrupts must also be off for the duration of the
1812	 * mm_is_thread_local test and update, to prevent preempt running the
1813	 * mm on another CPU (XXX: this may be racy vs kthread_use_mm).
1814	 */
1815	powerpc_local_irq_pmu_save(flags);
1816
1817	/* Is that local to this CPU ? */
1818	if (mm_is_thread_local(mm))
1819		update_flags |= HPTE_LOCAL_UPDATE;
1820
1821	/* Hash it in */
1822#ifdef CONFIG_PPC_64K_PAGES
1823	if (mm_ctx_user_psize(&mm->context) == MMU_PAGE_64K)
1824		rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1825				     update_flags, ssize);
1826	else
1827#endif /* CONFIG_PPC_64K_PAGES */
1828		rc = __hash_page_4K(ea, access, vsid, ptep, trap, update_flags,
1829				    ssize, subpage_protection(mm, ea));
1830
1831	/* Dump some info in case of hash insertion failure, they should
1832	 * never happen so it is really useful to know if/when they do
1833	 */
1834	if (rc == -1)
1835		hash_failure_debug(ea, access, vsid, trap, ssize,
1836				   mm_ctx_user_psize(&mm->context),
1837				   mm_ctx_user_psize(&mm->context),
1838				   pte_val(*ptep));
1839
1840	powerpc_local_irq_pmu_restore(flags);
1841}
1842
1843/*
1844 * This is called at the end of handling a user page fault, when the
1845 * fault has been handled by updating a PTE in the linux page tables.
1846 * We use it to preload an HPTE into the hash table corresponding to
1847 * the updated linux PTE.
1848 *
1849 * This must always be called with the pte lock held.
1850 */
1851void __update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
1852		      pte_t *ptep)
1853{
1854	/*
1855	 * We don't need to worry about _PAGE_PRESENT here because we are
1856	 * called with either mm->page_table_lock held or ptl lock held
1857	 */
1858	unsigned long trap;
1859	bool is_exec;
1860
1861	/* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
1862	if (!pte_young(*ptep) || address >= TASK_SIZE)
1863		return;
1864
1865	/*
1866	 * We try to figure out if we are coming from an instruction
1867	 * access fault and pass that down to __hash_page so we avoid
1868	 * double-faulting on execution of fresh text. We have to test
1869	 * for regs NULL since init will get here first thing at boot.
1870	 *
1871	 * We also avoid filling the hash if not coming from a fault.
1872	 */
1873
1874	trap = current->thread.regs ? TRAP(current->thread.regs) : 0UL;
1875	switch (trap) {
1876	case 0x300:
1877		is_exec = false;
1878		break;
1879	case 0x400:
1880		is_exec = true;
1881		break;
1882	default:
1883		return;
1884	}
1885
1886	hash_preload(vma->vm_mm, ptep, address, is_exec, trap);
1887}
1888
1889#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1890static inline void tm_flush_hash_page(int local)
1891{
1892	/*
1893	 * Transactions are not aborted by tlbiel, only tlbie. Without, syncing a
1894	 * page back to a block device w/PIO could pick up transactional data
1895	 * (bad!) so we force an abort here. Before the sync the page will be
1896	 * made read-only, which will flush_hash_page. BIG ISSUE here: if the
1897	 * kernel uses a page from userspace without unmapping it first, it may
1898	 * see the speculated version.
1899	 */
1900	if (local && cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
1901	    MSR_TM_ACTIVE(current->thread.regs->msr)) {
1902		tm_enable();
1903		tm_abort(TM_CAUSE_TLBI);
1904	}
1905}
1906#else
1907static inline void tm_flush_hash_page(int local)
1908{
1909}
1910#endif
1911
1912/*
1913 * Return the global hash slot, corresponding to the given PTE, which contains
1914 * the HPTE.
1915 */
1916unsigned long pte_get_hash_gslot(unsigned long vpn, unsigned long shift,
1917		int ssize, real_pte_t rpte, unsigned int subpg_index)
1918{
1919	unsigned long hash, gslot, hidx;
1920
1921	hash = hpt_hash(vpn, shift, ssize);
1922	hidx = __rpte_to_hidx(rpte, subpg_index);
1923	if (hidx & _PTEIDX_SECONDARY)
1924		hash = ~hash;
1925	gslot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1926	gslot += hidx & _PTEIDX_GROUP_IX;
1927	return gslot;
1928}
1929
1930void flush_hash_page(unsigned long vpn, real_pte_t pte, int psize, int ssize,
1931		     unsigned long flags)
1932{
1933	unsigned long index, shift, gslot;
1934	int local = flags & HPTE_LOCAL_UPDATE;
1935
1936	DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn);
1937	pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1938		gslot = pte_get_hash_gslot(vpn, shift, ssize, pte, index);
1939		DBG_LOW(" sub %ld: gslot=%lx\n", index, gslot);
1940		/*
1941		 * We use same base page size and actual psize, because we don't
1942		 * use these functions for hugepage
1943		 */
1944		mmu_hash_ops.hpte_invalidate(gslot, vpn, psize, psize,
1945					     ssize, local);
1946	} pte_iterate_hashed_end();
1947
1948	tm_flush_hash_page(local);
1949}
1950
1951#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1952void flush_hash_hugepage(unsigned long vsid, unsigned long addr,
1953			 pmd_t *pmdp, unsigned int psize, int ssize,
1954			 unsigned long flags)
1955{
1956	int i, max_hpte_count, valid;
1957	unsigned long s_addr;
1958	unsigned char *hpte_slot_array;
1959	unsigned long hidx, shift, vpn, hash, slot;
1960	int local = flags & HPTE_LOCAL_UPDATE;
1961
1962	s_addr = addr & HPAGE_PMD_MASK;
1963	hpte_slot_array = get_hpte_slot_array(pmdp);
1964	/*
1965	 * IF we try to do a HUGE PTE update after a withdraw is done.
1966	 * we will find the below NULL. This happens when we do
1967	 * split_huge_pmd
1968	 */
1969	if (!hpte_slot_array)
1970		return;
1971
1972	if (mmu_hash_ops.hugepage_invalidate) {
1973		mmu_hash_ops.hugepage_invalidate(vsid, s_addr, hpte_slot_array,
1974						 psize, ssize, local);
1975		goto tm_abort;
1976	}
1977	/*
1978	 * No bluk hpte removal support, invalidate each entry
1979	 */
1980	shift = mmu_psize_defs[psize].shift;
1981	max_hpte_count = HPAGE_PMD_SIZE >> shift;
1982	for (i = 0; i < max_hpte_count; i++) {
1983		/*
1984		 * 8 bits per each hpte entries
1985		 * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit]
1986		 */
1987		valid = hpte_valid(hpte_slot_array, i);
1988		if (!valid)
1989			continue;
1990		hidx =  hpte_hash_index(hpte_slot_array, i);
1991
1992		/* get the vpn */
1993		addr = s_addr + (i * (1ul << shift));
1994		vpn = hpt_vpn(addr, vsid, ssize);
1995		hash = hpt_hash(vpn, shift, ssize);
1996		if (hidx & _PTEIDX_SECONDARY)
1997			hash = ~hash;
1998
1999		slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
2000		slot += hidx & _PTEIDX_GROUP_IX;
2001		mmu_hash_ops.hpte_invalidate(slot, vpn, psize,
2002					     MMU_PAGE_16M, ssize, local);
2003	}
2004tm_abort:
2005	tm_flush_hash_page(local);
2006}
2007#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2008
2009void flush_hash_range(unsigned long number, int local)
2010{
2011	if (mmu_hash_ops.flush_hash_range)
2012		mmu_hash_ops.flush_hash_range(number, local);
2013	else {
2014		int i;
2015		struct ppc64_tlb_batch *batch =
2016			this_cpu_ptr(&ppc64_tlb_batch);
2017
2018		for (i = 0; i < number; i++)
2019			flush_hash_page(batch->vpn[i], batch->pte[i],
2020					batch->psize, batch->ssize, local);
2021	}
2022}
2023
2024long hpte_insert_repeating(unsigned long hash, unsigned long vpn,
2025			   unsigned long pa, unsigned long rflags,
2026			   unsigned long vflags, int psize, int ssize)
2027{
2028	unsigned long hpte_group;
2029	long slot;
2030
2031repeat:
2032	hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP;
2033
2034	/* Insert into the hash table, primary slot */
2035	slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags, vflags,
2036					psize, psize, ssize);
2037
2038	/* Primary is full, try the secondary */
2039	if (unlikely(slot == -1)) {
2040		hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP;
2041		slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags,
2042						vflags | HPTE_V_SECONDARY,
2043						psize, psize, ssize);
2044		if (slot == -1) {
2045			if (mftb() & 0x1)
2046				hpte_group = (hash & htab_hash_mask) *
2047						HPTES_PER_GROUP;
2048
2049			mmu_hash_ops.hpte_remove(hpte_group);
2050			goto repeat;
2051		}
2052	}
2053
2054	return slot;
2055}
2056
2057void hpt_clear_stress(void)
2058{
2059	int cpu = raw_smp_processor_id();
2060	int g;
2061
2062	for (g = 0; g < stress_nr_groups(); g++) {
2063		unsigned long last_group;
2064		last_group = stress_hpt_struct[cpu].last_group[g];
2065
2066		if (last_group != -1UL) {
2067			int i;
2068			for (i = 0; i < HPTES_PER_GROUP; i++) {
2069				if (mmu_hash_ops.hpte_remove(last_group) == -1)
2070					break;
2071			}
2072			stress_hpt_struct[cpu].last_group[g] = -1;
2073		}
2074	}
2075}
2076
2077void hpt_do_stress(unsigned long ea, unsigned long hpte_group)
2078{
2079	unsigned long last_group;
2080	int cpu = raw_smp_processor_id();
2081
2082	last_group = stress_hpt_struct[cpu].last_group[stress_nr_groups() - 1];
2083	if (hpte_group == last_group)
2084		return;
2085
2086	if (last_group != -1UL) {
2087		int i;
2088		/*
2089		 * Concurrent CPUs might be inserting into this group, so
2090		 * give up after a number of iterations, to prevent a live
2091		 * lock.
2092		 */
2093		for (i = 0; i < HPTES_PER_GROUP; i++) {
2094			if (mmu_hash_ops.hpte_remove(last_group) == -1)
2095				break;
2096		}
2097		stress_hpt_struct[cpu].last_group[stress_nr_groups() - 1] = -1;
2098	}
2099
2100	if (ea >= PAGE_OFFSET) {
2101		/*
2102		 * We would really like to prefetch to get the TLB loaded, then
2103		 * remove the PTE before returning from fault interrupt, to
2104		 * increase the hash fault rate.
2105		 *
2106		 * Unfortunately QEMU TCG does not model the TLB in a way that
2107		 * makes this possible, and systemsim (mambo) emulator does not
2108		 * bring in TLBs with prefetches (although loads/stores do
2109		 * work for non-CI PTEs).
2110		 *
2111		 * So remember this PTE and clear it on the next hash fault.
2112		 */
2113		memmove(&stress_hpt_struct[cpu].last_group[1],
2114			&stress_hpt_struct[cpu].last_group[0],
2115			(stress_nr_groups() - 1) * sizeof(unsigned long));
2116		stress_hpt_struct[cpu].last_group[0] = hpte_group;
2117	}
2118}
2119
2120#if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_KFENCE)
2121static DEFINE_RAW_SPINLOCK(linear_map_hash_lock);
2122
2123static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
2124{
2125	unsigned long hash;
2126	unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
2127	unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
2128	unsigned long mode = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL), HPTE_USE_KERNEL_KEY);
2129	long ret;
2130
2131	hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
2132
2133	/* Don't create HPTE entries for bad address */
2134	if (!vsid)
2135		return;
2136
2137	if (linear_map_hash_slots[lmi] & 0x80)
2138		return;
2139
2140	ret = hpte_insert_repeating(hash, vpn, __pa(vaddr), mode,
2141				    HPTE_V_BOLTED,
2142				    mmu_linear_psize, mmu_kernel_ssize);
2143
2144	BUG_ON (ret < 0);
2145	raw_spin_lock(&linear_map_hash_lock);
2146	BUG_ON(linear_map_hash_slots[lmi] & 0x80);
2147	linear_map_hash_slots[lmi] = ret | 0x80;
2148	raw_spin_unlock(&linear_map_hash_lock);
2149}
2150
2151static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
2152{
2153	unsigned long hash, hidx, slot;
2154	unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
2155	unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
2156
2157	hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
2158	raw_spin_lock(&linear_map_hash_lock);
2159	if (!(linear_map_hash_slots[lmi] & 0x80)) {
2160		raw_spin_unlock(&linear_map_hash_lock);
2161		return;
2162	}
2163	hidx = linear_map_hash_slots[lmi] & 0x7f;
2164	linear_map_hash_slots[lmi] = 0;
2165	raw_spin_unlock(&linear_map_hash_lock);
2166	if (hidx & _PTEIDX_SECONDARY)
2167		hash = ~hash;
2168	slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
2169	slot += hidx & _PTEIDX_GROUP_IX;
2170	mmu_hash_ops.hpte_invalidate(slot, vpn, mmu_linear_psize,
2171				     mmu_linear_psize,
2172				     mmu_kernel_ssize, 0);
2173}
2174
2175int hash__kernel_map_pages(struct page *page, int numpages, int enable)
2176{
2177	unsigned long flags, vaddr, lmi;
2178	int i;
2179
2180	local_irq_save(flags);
2181	for (i = 0; i < numpages; i++, page++) {
2182		vaddr = (unsigned long)page_address(page);
2183		lmi = __pa(vaddr) >> PAGE_SHIFT;
2184		if (lmi >= linear_map_hash_count)
2185			continue;
2186		if (enable)
2187			kernel_map_linear_page(vaddr, lmi);
2188		else
2189			kernel_unmap_linear_page(vaddr, lmi);
2190	}
2191	local_irq_restore(flags);
2192	return 0;
2193}
2194#endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_KFENCE */
2195
2196void hash__setup_initial_memory_limit(phys_addr_t first_memblock_base,
2197				phys_addr_t first_memblock_size)
2198{
2199	/*
2200	 * We don't currently support the first MEMBLOCK not mapping 0
2201	 * physical on those processors
2202	 */
2203	BUG_ON(first_memblock_base != 0);
2204
2205	/*
2206	 * On virtualized systems the first entry is our RMA region aka VRMA,
2207	 * non-virtualized 64-bit hash MMU systems don't have a limitation
2208	 * on real mode access.
2209	 *
2210	 * For guests on platforms before POWER9, we clamp the it limit to 1G
2211	 * to avoid some funky things such as RTAS bugs etc...
2212	 *
2213	 * On POWER9 we limit to 1TB in case the host erroneously told us that
2214	 * the RMA was >1TB. Effective address bits 0:23 are treated as zero
2215	 * (meaning the access is aliased to zero i.e. addr = addr % 1TB)
2216	 * for virtual real mode addressing and so it doesn't make sense to
2217	 * have an area larger than 1TB as it can't be addressed.
2218	 */
2219	if (!early_cpu_has_feature(CPU_FTR_HVMODE)) {
2220		ppc64_rma_size = first_memblock_size;
2221		if (!early_cpu_has_feature(CPU_FTR_ARCH_300))
2222			ppc64_rma_size = min_t(u64, ppc64_rma_size, 0x40000000);
2223		else
2224			ppc64_rma_size = min_t(u64, ppc64_rma_size,
2225					       1UL << SID_SHIFT_1T);
2226
2227		/* Finally limit subsequent allocations */
2228		memblock_set_current_limit(ppc64_rma_size);
2229	} else {
2230		ppc64_rma_size = ULONG_MAX;
2231	}
2232}
2233
2234#ifdef CONFIG_DEBUG_FS
2235
2236static int hpt_order_get(void *data, u64 *val)
2237{
2238	*val = ppc64_pft_size;
2239	return 0;
2240}
2241
2242static int hpt_order_set(void *data, u64 val)
2243{
2244	int ret;
2245
2246	if (!mmu_hash_ops.resize_hpt)
2247		return -ENODEV;
2248
2249	cpus_read_lock();
2250	ret = mmu_hash_ops.resize_hpt(val);
2251	cpus_read_unlock();
2252
2253	return ret;
2254}
2255
2256DEFINE_DEBUGFS_ATTRIBUTE(fops_hpt_order, hpt_order_get, hpt_order_set, "%llu\n");
2257
2258static int __init hash64_debugfs(void)
2259{
2260	debugfs_create_file("hpt_order", 0600, arch_debugfs_dir, NULL,
2261			    &fops_hpt_order);
2262	return 0;
2263}
2264machine_device_initcall(pseries, hash64_debugfs);
2265#endif /* CONFIG_DEBUG_FS */
2266
2267void __init print_system_hash_info(void)
2268{
2269	pr_info("ppc64_pft_size    = 0x%llx\n", ppc64_pft_size);
2270
2271	if (htab_hash_mask)
2272		pr_info("htab_hash_mask    = 0x%lx\n", htab_hash_mask);
2273}
2274
2275unsigned long arch_randomize_brk(struct mm_struct *mm)
2276{
2277	/*
2278	 * If we are using 1TB segments and we are allowed to randomise
2279	 * the heap, we can put it above 1TB so it is backed by a 1TB
2280	 * segment. Otherwise the heap will be in the bottom 1TB
2281	 * which always uses 256MB segments and this may result in a
2282	 * performance penalty.
2283	 */
2284	if (is_32bit_task())
2285		return randomize_page(mm->brk, SZ_32M);
2286	else if (!radix_enabled() && mmu_highuser_ssize == MMU_SEGSIZE_1T)
2287		return randomize_page(max_t(unsigned long, mm->brk, SZ_1T), SZ_1G);
2288	else
2289		return randomize_page(mm->brk, SZ_1G);
2290}
2291