1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2008-2013 Freescale Semiconductor, Inc. All rights reserved.
4 *
5 * Author: Yu Liu, yu.liu@freescale.com
6 *         Scott Wood, scottwood@freescale.com
7 *         Ashish Kalra, ashish.kalra@freescale.com
8 *         Varun Sethi, varun.sethi@freescale.com
9 *         Alexander Graf, agraf@suse.de
10 *
11 * Description:
12 * This file is based on arch/powerpc/kvm/44x_tlb.c,
13 * by Hollis Blanchard <hollisb@us.ibm.com>.
14 */
15
16#include <linux/kernel.h>
17#include <linux/types.h>
18#include <linux/slab.h>
19#include <linux/string.h>
20#include <linux/kvm.h>
21#include <linux/kvm_host.h>
22#include <linux/highmem.h>
23#include <linux/log2.h>
24#include <linux/uaccess.h>
25#include <linux/sched/mm.h>
26#include <linux/rwsem.h>
27#include <linux/vmalloc.h>
28#include <linux/hugetlb.h>
29#include <asm/kvm_ppc.h>
30#include <asm/pte-walk.h>
31
32#include "e500.h"
33#include "timing.h"
34#include "e500_mmu_host.h"
35
36#include "trace_booke.h"
37
38#define to_htlb1_esel(esel) (host_tlb_params[1].entries - (esel) - 1)
39
40static struct kvmppc_e500_tlb_params host_tlb_params[E500_TLB_NUM];
41
42static inline unsigned int tlb1_max_shadow_size(void)
43{
44	/* reserve one entry for magic page */
45	return host_tlb_params[1].entries - tlbcam_index - 1;
46}
47
48static inline u32 e500_shadow_mas3_attrib(u32 mas3, int usermode)
49{
50	/* Mask off reserved bits. */
51	mas3 &= MAS3_ATTRIB_MASK;
52
53#ifndef CONFIG_KVM_BOOKE_HV
54	if (!usermode) {
55		/* Guest is in supervisor mode,
56		 * so we need to translate guest
57		 * supervisor permissions into user permissions. */
58		mas3 &= ~E500_TLB_USER_PERM_MASK;
59		mas3 |= (mas3 & E500_TLB_SUPER_PERM_MASK) << 1;
60	}
61	mas3 |= E500_TLB_SUPER_PERM_MASK;
62#endif
63	return mas3;
64}
65
66/*
67 * writing shadow tlb entry to host TLB
68 */
69static inline void __write_host_tlbe(struct kvm_book3e_206_tlb_entry *stlbe,
70				     uint32_t mas0,
71				     uint32_t lpid)
72{
73	unsigned long flags;
74
75	local_irq_save(flags);
76	mtspr(SPRN_MAS0, mas0);
77	mtspr(SPRN_MAS1, stlbe->mas1);
78	mtspr(SPRN_MAS2, (unsigned long)stlbe->mas2);
79	mtspr(SPRN_MAS3, (u32)stlbe->mas7_3);
80	mtspr(SPRN_MAS7, (u32)(stlbe->mas7_3 >> 32));
81#ifdef CONFIG_KVM_BOOKE_HV
82	mtspr(SPRN_MAS8, MAS8_TGS | get_thread_specific_lpid(lpid));
83#endif
84	asm volatile("isync; tlbwe" : : : "memory");
85
86#ifdef CONFIG_KVM_BOOKE_HV
87	/* Must clear mas8 for other host tlbwe's */
88	mtspr(SPRN_MAS8, 0);
89	isync();
90#endif
91	local_irq_restore(flags);
92
93	trace_kvm_booke206_stlb_write(mas0, stlbe->mas8, stlbe->mas1,
94	                              stlbe->mas2, stlbe->mas7_3);
95}
96
97/*
98 * Acquire a mas0 with victim hint, as if we just took a TLB miss.
99 *
100 * We don't care about the address we're searching for, other than that it's
101 * in the right set and is not present in the TLB.  Using a zero PID and a
102 * userspace address means we don't have to set and then restore MAS5, or
103 * calculate a proper MAS6 value.
104 */
105static u32 get_host_mas0(unsigned long eaddr)
106{
107	unsigned long flags;
108	u32 mas0;
109	u32 mas4;
110
111	local_irq_save(flags);
112	mtspr(SPRN_MAS6, 0);
113	mas4 = mfspr(SPRN_MAS4);
114	mtspr(SPRN_MAS4, mas4 & ~MAS4_TLBSEL_MASK);
115	asm volatile("tlbsx 0, %0" : : "b" (eaddr & ~CONFIG_PAGE_OFFSET));
116	mas0 = mfspr(SPRN_MAS0);
117	mtspr(SPRN_MAS4, mas4);
118	local_irq_restore(flags);
119
120	return mas0;
121}
122
123/* sesel is for tlb1 only */
124static inline void write_host_tlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
125		int tlbsel, int sesel, struct kvm_book3e_206_tlb_entry *stlbe)
126{
127	u32 mas0;
128
129	if (tlbsel == 0) {
130		mas0 = get_host_mas0(stlbe->mas2);
131		__write_host_tlbe(stlbe, mas0, vcpu_e500->vcpu.kvm->arch.lpid);
132	} else {
133		__write_host_tlbe(stlbe,
134				  MAS0_TLBSEL(1) |
135				  MAS0_ESEL(to_htlb1_esel(sesel)),
136				  vcpu_e500->vcpu.kvm->arch.lpid);
137	}
138}
139
140/* sesel is for tlb1 only */
141static void write_stlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
142			struct kvm_book3e_206_tlb_entry *gtlbe,
143			struct kvm_book3e_206_tlb_entry *stlbe,
144			int stlbsel, int sesel)
145{
146	int stid;
147
148	preempt_disable();
149	stid = kvmppc_e500_get_tlb_stid(&vcpu_e500->vcpu, gtlbe);
150
151	stlbe->mas1 |= MAS1_TID(stid);
152	write_host_tlbe(vcpu_e500, stlbsel, sesel, stlbe);
153	preempt_enable();
154}
155
156#ifdef CONFIG_KVM_E500V2
157/* XXX should be a hook in the gva2hpa translation */
158void kvmppc_map_magic(struct kvm_vcpu *vcpu)
159{
160	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
161	struct kvm_book3e_206_tlb_entry magic;
162	ulong shared_page = ((ulong)vcpu->arch.shared) & PAGE_MASK;
163	unsigned int stid;
164	kvm_pfn_t pfn;
165
166	pfn = (kvm_pfn_t)virt_to_phys((void *)shared_page) >> PAGE_SHIFT;
167	get_page(pfn_to_page(pfn));
168
169	preempt_disable();
170	stid = kvmppc_e500_get_sid(vcpu_e500, 0, 0, 0, 0);
171
172	magic.mas1 = MAS1_VALID | MAS1_TS | MAS1_TID(stid) |
173		     MAS1_TSIZE(BOOK3E_PAGESZ_4K);
174	magic.mas2 = vcpu->arch.magic_page_ea | MAS2_M;
175	magic.mas7_3 = ((u64)pfn << PAGE_SHIFT) |
176		       MAS3_SW | MAS3_SR | MAS3_UW | MAS3_UR;
177	magic.mas8 = 0;
178
179	__write_host_tlbe(&magic, MAS0_TLBSEL(1) | MAS0_ESEL(tlbcam_index), 0);
180	preempt_enable();
181}
182#endif
183
184void inval_gtlbe_on_host(struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel,
185			 int esel)
186{
187	struct kvm_book3e_206_tlb_entry *gtlbe =
188		get_entry(vcpu_e500, tlbsel, esel);
189	struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[tlbsel][esel].ref;
190
191	/* Don't bother with unmapped entries */
192	if (!(ref->flags & E500_TLB_VALID)) {
193		WARN(ref->flags & (E500_TLB_BITMAP | E500_TLB_TLB0),
194		     "%s: flags %x\n", __func__, ref->flags);
195		WARN_ON(tlbsel == 1 && vcpu_e500->g2h_tlb1_map[esel]);
196	}
197
198	if (tlbsel == 1 && ref->flags & E500_TLB_BITMAP) {
199		u64 tmp = vcpu_e500->g2h_tlb1_map[esel];
200		int hw_tlb_indx;
201		unsigned long flags;
202
203		local_irq_save(flags);
204		while (tmp) {
205			hw_tlb_indx = __ilog2_u64(tmp & -tmp);
206			mtspr(SPRN_MAS0,
207			      MAS0_TLBSEL(1) |
208			      MAS0_ESEL(to_htlb1_esel(hw_tlb_indx)));
209			mtspr(SPRN_MAS1, 0);
210			asm volatile("tlbwe");
211			vcpu_e500->h2g_tlb1_rmap[hw_tlb_indx] = 0;
212			tmp &= tmp - 1;
213		}
214		mb();
215		vcpu_e500->g2h_tlb1_map[esel] = 0;
216		ref->flags &= ~(E500_TLB_BITMAP | E500_TLB_VALID);
217		local_irq_restore(flags);
218	}
219
220	if (tlbsel == 1 && ref->flags & E500_TLB_TLB0) {
221		/*
222		 * TLB1 entry is backed by 4k pages. This should happen
223		 * rarely and is not worth optimizing. Invalidate everything.
224		 */
225		kvmppc_e500_tlbil_all(vcpu_e500);
226		ref->flags &= ~(E500_TLB_TLB0 | E500_TLB_VALID);
227	}
228
229	/*
230	 * If TLB entry is still valid then it's a TLB0 entry, and thus
231	 * backed by at most one host tlbe per shadow pid
232	 */
233	if (ref->flags & E500_TLB_VALID)
234		kvmppc_e500_tlbil_one(vcpu_e500, gtlbe);
235
236	/* Mark the TLB as not backed by the host anymore */
237	ref->flags = 0;
238}
239
240static inline int tlbe_is_writable(struct kvm_book3e_206_tlb_entry *tlbe)
241{
242	return tlbe->mas7_3 & (MAS3_SW|MAS3_UW);
243}
244
245static inline void kvmppc_e500_ref_setup(struct tlbe_ref *ref,
246					 struct kvm_book3e_206_tlb_entry *gtlbe,
247					 kvm_pfn_t pfn, unsigned int wimg)
248{
249	ref->pfn = pfn;
250	ref->flags = E500_TLB_VALID;
251
252	/* Use guest supplied MAS2_G and MAS2_E */
253	ref->flags |= (gtlbe->mas2 & MAS2_ATTRIB_MASK) | wimg;
254
255	/* Mark the page accessed */
256	kvm_set_pfn_accessed(pfn);
257
258	if (tlbe_is_writable(gtlbe))
259		kvm_set_pfn_dirty(pfn);
260}
261
262static inline void kvmppc_e500_ref_release(struct tlbe_ref *ref)
263{
264	if (ref->flags & E500_TLB_VALID) {
265		/* FIXME: don't log bogus pfn for TLB1 */
266		trace_kvm_booke206_ref_release(ref->pfn, ref->flags);
267		ref->flags = 0;
268	}
269}
270
271static void clear_tlb1_bitmap(struct kvmppc_vcpu_e500 *vcpu_e500)
272{
273	if (vcpu_e500->g2h_tlb1_map)
274		memset(vcpu_e500->g2h_tlb1_map, 0,
275		       sizeof(u64) * vcpu_e500->gtlb_params[1].entries);
276	if (vcpu_e500->h2g_tlb1_rmap)
277		memset(vcpu_e500->h2g_tlb1_rmap, 0,
278		       sizeof(unsigned int) * host_tlb_params[1].entries);
279}
280
281static void clear_tlb_privs(struct kvmppc_vcpu_e500 *vcpu_e500)
282{
283	int tlbsel;
284	int i;
285
286	for (tlbsel = 0; tlbsel <= 1; tlbsel++) {
287		for (i = 0; i < vcpu_e500->gtlb_params[tlbsel].entries; i++) {
288			struct tlbe_ref *ref =
289				&vcpu_e500->gtlb_priv[tlbsel][i].ref;
290			kvmppc_e500_ref_release(ref);
291		}
292	}
293}
294
295void kvmppc_core_flush_tlb(struct kvm_vcpu *vcpu)
296{
297	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
298	kvmppc_e500_tlbil_all(vcpu_e500);
299	clear_tlb_privs(vcpu_e500);
300	clear_tlb1_bitmap(vcpu_e500);
301}
302
303/* TID must be supplied by the caller */
304static void kvmppc_e500_setup_stlbe(
305	struct kvm_vcpu *vcpu,
306	struct kvm_book3e_206_tlb_entry *gtlbe,
307	int tsize, struct tlbe_ref *ref, u64 gvaddr,
308	struct kvm_book3e_206_tlb_entry *stlbe)
309{
310	kvm_pfn_t pfn = ref->pfn;
311	u32 pr = vcpu->arch.shared->msr & MSR_PR;
312
313	BUG_ON(!(ref->flags & E500_TLB_VALID));
314
315	/* Force IPROT=0 for all guest mappings. */
316	stlbe->mas1 = MAS1_TSIZE(tsize) | get_tlb_sts(gtlbe) | MAS1_VALID;
317	stlbe->mas2 = (gvaddr & MAS2_EPN) | (ref->flags & E500_TLB_MAS2_ATTR);
318	stlbe->mas7_3 = ((u64)pfn << PAGE_SHIFT) |
319			e500_shadow_mas3_attrib(gtlbe->mas7_3, pr);
320}
321
322static inline int kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 *vcpu_e500,
323	u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
324	int tlbsel, struct kvm_book3e_206_tlb_entry *stlbe,
325	struct tlbe_ref *ref)
326{
327	struct kvm_memory_slot *slot;
328	unsigned long pfn = 0; /* silence GCC warning */
329	unsigned long hva;
330	int pfnmap = 0;
331	int tsize = BOOK3E_PAGESZ_4K;
332	int ret = 0;
333	unsigned long mmu_seq;
334	struct kvm *kvm = vcpu_e500->vcpu.kvm;
335	unsigned long tsize_pages = 0;
336	pte_t *ptep;
337	unsigned int wimg = 0;
338	pgd_t *pgdir;
339	unsigned long flags;
340
341	/* used to check for invalidations in progress */
342	mmu_seq = kvm->mmu_invalidate_seq;
343	smp_rmb();
344
345	/*
346	 * Translate guest physical to true physical, acquiring
347	 * a page reference if it is normal, non-reserved memory.
348	 *
349	 * gfn_to_memslot() must succeed because otherwise we wouldn't
350	 * have gotten this far.  Eventually we should just pass the slot
351	 * pointer through from the first lookup.
352	 */
353	slot = gfn_to_memslot(vcpu_e500->vcpu.kvm, gfn);
354	hva = gfn_to_hva_memslot(slot, gfn);
355
356	if (tlbsel == 1) {
357		struct vm_area_struct *vma;
358		mmap_read_lock(kvm->mm);
359
360		vma = find_vma(kvm->mm, hva);
361		if (vma && hva >= vma->vm_start &&
362		    (vma->vm_flags & VM_PFNMAP)) {
363			/*
364			 * This VMA is a physically contiguous region (e.g.
365			 * /dev/mem) that bypasses normal Linux page
366			 * management.  Find the overlap between the
367			 * vma and the memslot.
368			 */
369
370			unsigned long start, end;
371			unsigned long slot_start, slot_end;
372
373			pfnmap = 1;
374
375			start = vma->vm_pgoff;
376			end = start +
377			      vma_pages(vma);
378
379			pfn = start + ((hva - vma->vm_start) >> PAGE_SHIFT);
380
381			slot_start = pfn - (gfn - slot->base_gfn);
382			slot_end = slot_start + slot->npages;
383
384			if (start < slot_start)
385				start = slot_start;
386			if (end > slot_end)
387				end = slot_end;
388
389			tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
390				MAS1_TSIZE_SHIFT;
391
392			/*
393			 * e500 doesn't implement the lowest tsize bit,
394			 * or 1K pages.
395			 */
396			tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
397
398			/*
399			 * Now find the largest tsize (up to what the guest
400			 * requested) that will cover gfn, stay within the
401			 * range, and for which gfn and pfn are mutually
402			 * aligned.
403			 */
404
405			for (; tsize > BOOK3E_PAGESZ_4K; tsize -= 2) {
406				unsigned long gfn_start, gfn_end;
407				tsize_pages = 1UL << (tsize - 2);
408
409				gfn_start = gfn & ~(tsize_pages - 1);
410				gfn_end = gfn_start + tsize_pages;
411
412				if (gfn_start + pfn - gfn < start)
413					continue;
414				if (gfn_end + pfn - gfn > end)
415					continue;
416				if ((gfn & (tsize_pages - 1)) !=
417				    (pfn & (tsize_pages - 1)))
418					continue;
419
420				gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
421				pfn &= ~(tsize_pages - 1);
422				break;
423			}
424		} else if (vma && hva >= vma->vm_start &&
425			   is_vm_hugetlb_page(vma)) {
426			unsigned long psize = vma_kernel_pagesize(vma);
427
428			tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
429				MAS1_TSIZE_SHIFT;
430
431			/*
432			 * Take the largest page size that satisfies both host
433			 * and guest mapping
434			 */
435			tsize = min(__ilog2(psize) - 10, tsize);
436
437			/*
438			 * e500 doesn't implement the lowest tsize bit,
439			 * or 1K pages.
440			 */
441			tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
442		}
443
444		mmap_read_unlock(kvm->mm);
445	}
446
447	if (likely(!pfnmap)) {
448		tsize_pages = 1UL << (tsize + 10 - PAGE_SHIFT);
449		pfn = gfn_to_pfn_memslot(slot, gfn);
450		if (is_error_noslot_pfn(pfn)) {
451			if (printk_ratelimit())
452				pr_err("%s: real page not found for gfn %lx\n",
453				       __func__, (long)gfn);
454			return -EINVAL;
455		}
456
457		/* Align guest and physical address to page map boundaries */
458		pfn &= ~(tsize_pages - 1);
459		gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
460	}
461
462	spin_lock(&kvm->mmu_lock);
463	if (mmu_invalidate_retry(kvm, mmu_seq)) {
464		ret = -EAGAIN;
465		goto out;
466	}
467
468
469	pgdir = vcpu_e500->vcpu.arch.pgdir;
470	/*
471	 * We are just looking at the wimg bits, so we don't
472	 * care much about the trans splitting bit.
473	 * We are holding kvm->mmu_lock so a notifier invalidate
474	 * can't run hence pfn won't change.
475	 */
476	local_irq_save(flags);
477	ptep = find_linux_pte(pgdir, hva, NULL, NULL);
478	if (ptep) {
479		pte_t pte = READ_ONCE(*ptep);
480
481		if (pte_present(pte)) {
482			wimg = (pte_val(pte) >> PTE_WIMGE_SHIFT) &
483				MAS2_WIMGE_MASK;
484			local_irq_restore(flags);
485		} else {
486			local_irq_restore(flags);
487			pr_err_ratelimited("%s: pte not present: gfn %lx,pfn %lx\n",
488					   __func__, (long)gfn, pfn);
489			ret = -EINVAL;
490			goto out;
491		}
492	}
493	kvmppc_e500_ref_setup(ref, gtlbe, pfn, wimg);
494
495	kvmppc_e500_setup_stlbe(&vcpu_e500->vcpu, gtlbe, tsize,
496				ref, gvaddr, stlbe);
497
498	/* Clear i-cache for new pages */
499	kvmppc_mmu_flush_icache(pfn);
500
501out:
502	spin_unlock(&kvm->mmu_lock);
503
504	/* Drop refcount on page, so that mmu notifiers can clear it */
505	kvm_release_pfn_clean(pfn);
506
507	return ret;
508}
509
510/* XXX only map the one-one case, for now use TLB0 */
511static int kvmppc_e500_tlb0_map(struct kvmppc_vcpu_e500 *vcpu_e500, int esel,
512				struct kvm_book3e_206_tlb_entry *stlbe)
513{
514	struct kvm_book3e_206_tlb_entry *gtlbe;
515	struct tlbe_ref *ref;
516	int stlbsel = 0;
517	int sesel = 0;
518	int r;
519
520	gtlbe = get_entry(vcpu_e500, 0, esel);
521	ref = &vcpu_e500->gtlb_priv[0][esel].ref;
522
523	r = kvmppc_e500_shadow_map(vcpu_e500, get_tlb_eaddr(gtlbe),
524			get_tlb_raddr(gtlbe) >> PAGE_SHIFT,
525			gtlbe, 0, stlbe, ref);
526	if (r)
527		return r;
528
529	write_stlbe(vcpu_e500, gtlbe, stlbe, stlbsel, sesel);
530
531	return 0;
532}
533
534static int kvmppc_e500_tlb1_map_tlb1(struct kvmppc_vcpu_e500 *vcpu_e500,
535				     struct tlbe_ref *ref,
536				     int esel)
537{
538	unsigned int sesel = vcpu_e500->host_tlb1_nv++;
539
540	if (unlikely(vcpu_e500->host_tlb1_nv >= tlb1_max_shadow_size()))
541		vcpu_e500->host_tlb1_nv = 0;
542
543	if (vcpu_e500->h2g_tlb1_rmap[sesel]) {
544		unsigned int idx = vcpu_e500->h2g_tlb1_rmap[sesel] - 1;
545		vcpu_e500->g2h_tlb1_map[idx] &= ~(1ULL << sesel);
546	}
547
548	vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_BITMAP;
549	vcpu_e500->g2h_tlb1_map[esel] |= (u64)1 << sesel;
550	vcpu_e500->h2g_tlb1_rmap[sesel] = esel + 1;
551	WARN_ON(!(ref->flags & E500_TLB_VALID));
552
553	return sesel;
554}
555
556/* Caller must ensure that the specified guest TLB entry is safe to insert into
557 * the shadow TLB. */
558/* For both one-one and one-to-many */
559static int kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500 *vcpu_e500,
560		u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
561		struct kvm_book3e_206_tlb_entry *stlbe, int esel)
562{
563	struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[1][esel].ref;
564	int sesel;
565	int r;
566
567	r = kvmppc_e500_shadow_map(vcpu_e500, gvaddr, gfn, gtlbe, 1, stlbe,
568				   ref);
569	if (r)
570		return r;
571
572	/* Use TLB0 when we can only map a page with 4k */
573	if (get_tlb_tsize(stlbe) == BOOK3E_PAGESZ_4K) {
574		vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_TLB0;
575		write_stlbe(vcpu_e500, gtlbe, stlbe, 0, 0);
576		return 0;
577	}
578
579	/* Otherwise map into TLB1 */
580	sesel = kvmppc_e500_tlb1_map_tlb1(vcpu_e500, ref, esel);
581	write_stlbe(vcpu_e500, gtlbe, stlbe, 1, sesel);
582
583	return 0;
584}
585
586void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 eaddr, gpa_t gpaddr,
587		    unsigned int index)
588{
589	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
590	struct tlbe_priv *priv;
591	struct kvm_book3e_206_tlb_entry *gtlbe, stlbe;
592	int tlbsel = tlbsel_of(index);
593	int esel = esel_of(index);
594
595	gtlbe = get_entry(vcpu_e500, tlbsel, esel);
596
597	switch (tlbsel) {
598	case 0:
599		priv = &vcpu_e500->gtlb_priv[tlbsel][esel];
600
601		/* Triggers after clear_tlb_privs or on initial mapping */
602		if (!(priv->ref.flags & E500_TLB_VALID)) {
603			kvmppc_e500_tlb0_map(vcpu_e500, esel, &stlbe);
604		} else {
605			kvmppc_e500_setup_stlbe(vcpu, gtlbe, BOOK3E_PAGESZ_4K,
606						&priv->ref, eaddr, &stlbe);
607			write_stlbe(vcpu_e500, gtlbe, &stlbe, 0, 0);
608		}
609		break;
610
611	case 1: {
612		gfn_t gfn = gpaddr >> PAGE_SHIFT;
613		kvmppc_e500_tlb1_map(vcpu_e500, eaddr, gfn, gtlbe, &stlbe,
614				     esel);
615		break;
616	}
617
618	default:
619		BUG();
620		break;
621	}
622}
623
624#ifdef CONFIG_KVM_BOOKE_HV
625int kvmppc_load_last_inst(struct kvm_vcpu *vcpu,
626		enum instruction_fetch_type type, unsigned long *instr)
627{
628	gva_t geaddr;
629	hpa_t addr;
630	hfn_t pfn;
631	hva_t eaddr;
632	u32 mas1, mas2, mas3;
633	u64 mas7_mas3;
634	struct page *page;
635	unsigned int addr_space, psize_shift;
636	bool pr;
637	unsigned long flags;
638
639	/* Search TLB for guest pc to get the real address */
640	geaddr = kvmppc_get_pc(vcpu);
641
642	addr_space = (vcpu->arch.shared->msr & MSR_IS) >> MSR_IR_LG;
643
644	local_irq_save(flags);
645	mtspr(SPRN_MAS6, (vcpu->arch.pid << MAS6_SPID_SHIFT) | addr_space);
646	mtspr(SPRN_MAS5, MAS5_SGS | get_lpid(vcpu));
647	asm volatile("tlbsx 0, %[geaddr]\n" : :
648		     [geaddr] "r" (geaddr));
649	mtspr(SPRN_MAS5, 0);
650	mtspr(SPRN_MAS8, 0);
651	mas1 = mfspr(SPRN_MAS1);
652	mas2 = mfspr(SPRN_MAS2);
653	mas3 = mfspr(SPRN_MAS3);
654#ifdef CONFIG_64BIT
655	mas7_mas3 = mfspr(SPRN_MAS7_MAS3);
656#else
657	mas7_mas3 = ((u64)mfspr(SPRN_MAS7) << 32) | mas3;
658#endif
659	local_irq_restore(flags);
660
661	/*
662	 * If the TLB entry for guest pc was evicted, return to the guest.
663	 * There are high chances to find a valid TLB entry next time.
664	 */
665	if (!(mas1 & MAS1_VALID))
666		return EMULATE_AGAIN;
667
668	/*
669	 * Another thread may rewrite the TLB entry in parallel, don't
670	 * execute from the address if the execute permission is not set
671	 */
672	pr = vcpu->arch.shared->msr & MSR_PR;
673	if (unlikely((pr && !(mas3 & MAS3_UX)) ||
674		     (!pr && !(mas3 & MAS3_SX)))) {
675		pr_err_ratelimited(
676			"%s: Instruction emulation from guest address %08lx without execute permission\n",
677			__func__, geaddr);
678		return EMULATE_AGAIN;
679	}
680
681	/*
682	 * The real address will be mapped by a cacheable, memory coherent,
683	 * write-back page. Check for mismatches when LRAT is used.
684	 */
685	if (has_feature(vcpu, VCPU_FTR_MMU_V2) &&
686	    unlikely((mas2 & MAS2_I) || (mas2 & MAS2_W) || !(mas2 & MAS2_M))) {
687		pr_err_ratelimited(
688			"%s: Instruction emulation from guest address %08lx mismatches storage attributes\n",
689			__func__, geaddr);
690		return EMULATE_AGAIN;
691	}
692
693	/* Get pfn */
694	psize_shift = MAS1_GET_TSIZE(mas1) + 10;
695	addr = (mas7_mas3 & (~0ULL << psize_shift)) |
696	       (geaddr & ((1ULL << psize_shift) - 1ULL));
697	pfn = addr >> PAGE_SHIFT;
698
699	/* Guard against emulation from devices area */
700	if (unlikely(!page_is_ram(pfn))) {
701		pr_err_ratelimited("%s: Instruction emulation from non-RAM host address %08llx is not supported\n",
702			 __func__, addr);
703		return EMULATE_AGAIN;
704	}
705
706	/* Map a page and get guest's instruction */
707	page = pfn_to_page(pfn);
708	eaddr = (unsigned long)kmap_atomic(page);
709	*instr = *(u32 *)(eaddr | (unsigned long)(addr & ~PAGE_MASK));
710	kunmap_atomic((u32 *)eaddr);
711
712	return EMULATE_DONE;
713}
714#else
715int kvmppc_load_last_inst(struct kvm_vcpu *vcpu,
716		enum instruction_fetch_type type, unsigned long *instr)
717{
718	return EMULATE_AGAIN;
719}
720#endif
721
722/************* MMU Notifiers *************/
723
724static bool kvm_e500_mmu_unmap_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
725{
726	/*
727	 * Flush all shadow tlb entries everywhere. This is slow, but
728	 * we are 100% sure that we catch the to be unmapped page
729	 */
730	return true;
731}
732
733bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
734{
735	return kvm_e500_mmu_unmap_gfn(kvm, range);
736}
737
738bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
739{
740	/* XXX could be more clever ;) */
741	return false;
742}
743
744bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
745{
746	/* XXX could be more clever ;) */
747	return false;
748}
749
750bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
751{
752	/* The page will get remapped properly on its next fault */
753	return kvm_e500_mmu_unmap_gfn(kvm, range);
754}
755
756/*****************************************/
757
758int e500_mmu_host_init(struct kvmppc_vcpu_e500 *vcpu_e500)
759{
760	host_tlb_params[0].entries = mfspr(SPRN_TLB0CFG) & TLBnCFG_N_ENTRY;
761	host_tlb_params[1].entries = mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY;
762
763	/*
764	 * This should never happen on real e500 hardware, but is
765	 * architecturally possible -- e.g. in some weird nested
766	 * virtualization case.
767	 */
768	if (host_tlb_params[0].entries == 0 ||
769	    host_tlb_params[1].entries == 0) {
770		pr_err("%s: need to know host tlb size\n", __func__);
771		return -ENODEV;
772	}
773
774	host_tlb_params[0].ways = (mfspr(SPRN_TLB0CFG) & TLBnCFG_ASSOC) >>
775				  TLBnCFG_ASSOC_SHIFT;
776	host_tlb_params[1].ways = host_tlb_params[1].entries;
777
778	if (!is_power_of_2(host_tlb_params[0].entries) ||
779	    !is_power_of_2(host_tlb_params[0].ways) ||
780	    host_tlb_params[0].entries < host_tlb_params[0].ways ||
781	    host_tlb_params[0].ways == 0) {
782		pr_err("%s: bad tlb0 host config: %u entries %u ways\n",
783		       __func__, host_tlb_params[0].entries,
784		       host_tlb_params[0].ways);
785		return -ENODEV;
786	}
787
788	host_tlb_params[0].sets =
789		host_tlb_params[0].entries / host_tlb_params[0].ways;
790	host_tlb_params[1].sets = 1;
791	vcpu_e500->h2g_tlb1_rmap = kcalloc(host_tlb_params[1].entries,
792					   sizeof(*vcpu_e500->h2g_tlb1_rmap),
793					   GFP_KERNEL);
794	if (!vcpu_e500->h2g_tlb1_rmap)
795		return -EINVAL;
796
797	return 0;
798}
799
800void e500_mmu_host_uninit(struct kvmppc_vcpu_e500 *vcpu_e500)
801{
802	kfree(vcpu_e500->h2g_tlb1_rmap);
803}
804