1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright 2017 Benjamin Herrenschmidt, IBM Corporation.
4 */
5
6#define pr_fmt(fmt) "xive-kvm: " fmt
7
8#include <linux/kernel.h>
9#include <linux/kvm_host.h>
10#include <linux/err.h>
11#include <linux/gfp.h>
12#include <linux/spinlock.h>
13#include <linux/delay.h>
14#include <linux/percpu.h>
15#include <linux/cpumask.h>
16#include <linux/uaccess.h>
17#include <linux/irqdomain.h>
18#include <asm/kvm_book3s.h>
19#include <asm/kvm_ppc.h>
20#include <asm/hvcall.h>
21#include <asm/xics.h>
22#include <asm/xive.h>
23#include <asm/xive-regs.h>
24#include <asm/debug.h>
25#include <asm/time.h>
26#include <asm/opal.h>
27
28#include <linux/debugfs.h>
29#include <linux/seq_file.h>
30
31#include "book3s_xive.h"
32
33#define __x_eoi_page(xd)	((void __iomem *)((xd)->eoi_mmio))
34#define __x_trig_page(xd)	((void __iomem *)((xd)->trig_mmio))
35
36/* Dummy interrupt used when taking interrupts out of a queue in H_CPPR */
37#define XICS_DUMMY	1
38
39static void xive_vm_ack_pending(struct kvmppc_xive_vcpu *xc)
40{
41	u8 cppr;
42	u16 ack;
43
44	/*
45	 * Ensure any previous store to CPPR is ordered vs.
46	 * the subsequent loads from PIPR or ACK.
47	 */
48	eieio();
49
50	/* Perform the acknowledge OS to register cycle. */
51	ack = be16_to_cpu(__raw_readw(xive_tima + TM_SPC_ACK_OS_REG));
52
53	/* Synchronize subsequent queue accesses */
54	mb();
55
56	/* XXX Check grouping level */
57
58	/* Anything ? */
59	if (!((ack >> 8) & TM_QW1_NSR_EO))
60		return;
61
62	/* Grab CPPR of the most favored pending interrupt */
63	cppr = ack & 0xff;
64	if (cppr < 8)
65		xc->pending |= 1 << cppr;
66
67	/* Check consistency */
68	if (cppr >= xc->hw_cppr)
69		pr_warn("KVM-XIVE: CPU %d odd ack CPPR, got %d at %d\n",
70			smp_processor_id(), cppr, xc->hw_cppr);
71
72	/*
73	 * Update our image of the HW CPPR. We don't yet modify
74	 * xc->cppr, this will be done as we scan for interrupts
75	 * in the queues.
76	 */
77	xc->hw_cppr = cppr;
78}
79
80static u8 xive_vm_esb_load(struct xive_irq_data *xd, u32 offset)
81{
82	u64 val;
83
84	if (offset == XIVE_ESB_SET_PQ_10 && xd->flags & XIVE_IRQ_FLAG_STORE_EOI)
85		offset |= XIVE_ESB_LD_ST_MO;
86
87	val = __raw_readq(__x_eoi_page(xd) + offset);
88#ifdef __LITTLE_ENDIAN__
89	val >>= 64-8;
90#endif
91	return (u8)val;
92}
93
94
95static void xive_vm_source_eoi(u32 hw_irq, struct xive_irq_data *xd)
96{
97	/* If the XIVE supports the new "store EOI facility, use it */
98	if (xd->flags & XIVE_IRQ_FLAG_STORE_EOI)
99		__raw_writeq(0, __x_eoi_page(xd) + XIVE_ESB_STORE_EOI);
100	else if (xd->flags & XIVE_IRQ_FLAG_LSI) {
101		/*
102		 * For LSIs the HW EOI cycle is used rather than PQ bits,
103		 * as they are automatically re-triggred in HW when still
104		 * pending.
105		 */
106		__raw_readq(__x_eoi_page(xd) + XIVE_ESB_LOAD_EOI);
107	} else {
108		uint64_t eoi_val;
109
110		/*
111		 * Otherwise for EOI, we use the special MMIO that does
112		 * a clear of both P and Q and returns the old Q,
113		 * except for LSIs where we use the "EOI cycle" special
114		 * load.
115		 *
116		 * This allows us to then do a re-trigger if Q was set
117		 * rather than synthetizing an interrupt in software
118		 */
119		eoi_val = xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_00);
120
121		/* Re-trigger if needed */
122		if ((eoi_val & 1) && __x_trig_page(xd))
123			__raw_writeq(0, __x_trig_page(xd));
124	}
125}
126
127enum {
128	scan_fetch,
129	scan_poll,
130	scan_eoi,
131};
132
133static u32 xive_vm_scan_interrupts(struct kvmppc_xive_vcpu *xc,
134				       u8 pending, int scan_type)
135{
136	u32 hirq = 0;
137	u8 prio = 0xff;
138
139	/* Find highest pending priority */
140	while ((xc->mfrr != 0xff || pending != 0) && hirq == 0) {
141		struct xive_q *q;
142		u32 idx, toggle;
143		__be32 *qpage;
144
145		/*
146		 * If pending is 0 this will return 0xff which is what
147		 * we want
148		 */
149		prio = ffs(pending) - 1;
150
151		/* Don't scan past the guest cppr */
152		if (prio >= xc->cppr || prio > 7) {
153			if (xc->mfrr < xc->cppr) {
154				prio = xc->mfrr;
155				hirq = XICS_IPI;
156			}
157			break;
158		}
159
160		/* Grab queue and pointers */
161		q = &xc->queues[prio];
162		idx = q->idx;
163		toggle = q->toggle;
164
165		/*
166		 * Snapshot the queue page. The test further down for EOI
167		 * must use the same "copy" that was used by __xive_read_eq
168		 * since qpage can be set concurrently and we don't want
169		 * to miss an EOI.
170		 */
171		qpage = READ_ONCE(q->qpage);
172
173skip_ipi:
174		/*
175		 * Try to fetch from the queue. Will return 0 for a
176		 * non-queueing priority (ie, qpage = 0).
177		 */
178		hirq = __xive_read_eq(qpage, q->msk, &idx, &toggle);
179
180		/*
181		 * If this was a signal for an MFFR change done by
182		 * H_IPI we skip it. Additionally, if we were fetching
183		 * we EOI it now, thus re-enabling reception of a new
184		 * such signal.
185		 *
186		 * We also need to do that if prio is 0 and we had no
187		 * page for the queue. In this case, we have non-queued
188		 * IPI that needs to be EOId.
189		 *
190		 * This is safe because if we have another pending MFRR
191		 * change that wasn't observed above, the Q bit will have
192		 * been set and another occurrence of the IPI will trigger.
193		 */
194		if (hirq == XICS_IPI || (prio == 0 && !qpage)) {
195			if (scan_type == scan_fetch) {
196				xive_vm_source_eoi(xc->vp_ipi,
197						       &xc->vp_ipi_data);
198				q->idx = idx;
199				q->toggle = toggle;
200			}
201			/* Loop back on same queue with updated idx/toggle */
202			WARN_ON(hirq && hirq != XICS_IPI);
203			if (hirq)
204				goto skip_ipi;
205		}
206
207		/* If it's the dummy interrupt, continue searching */
208		if (hirq == XICS_DUMMY)
209			goto skip_ipi;
210
211		/* Clear the pending bit if the queue is now empty */
212		if (!hirq) {
213			pending &= ~(1 << prio);
214
215			/*
216			 * Check if the queue count needs adjusting due to
217			 * interrupts being moved away.
218			 */
219			if (atomic_read(&q->pending_count)) {
220				int p = atomic_xchg(&q->pending_count, 0);
221
222				if (p) {
223					WARN_ON(p > atomic_read(&q->count));
224					atomic_sub(p, &q->count);
225				}
226			}
227		}
228
229		/*
230		 * If the most favoured prio we found pending is less
231		 * favored (or equal) than a pending IPI, we return
232		 * the IPI instead.
233		 */
234		if (prio >= xc->mfrr && xc->mfrr < xc->cppr) {
235			prio = xc->mfrr;
236			hirq = XICS_IPI;
237			break;
238		}
239
240		/* If fetching, update queue pointers */
241		if (scan_type == scan_fetch) {
242			q->idx = idx;
243			q->toggle = toggle;
244		}
245	}
246
247	/* If we are just taking a "peek", do nothing else */
248	if (scan_type == scan_poll)
249		return hirq;
250
251	/* Update the pending bits */
252	xc->pending = pending;
253
254	/*
255	 * If this is an EOI that's it, no CPPR adjustment done here,
256	 * all we needed was cleanup the stale pending bits and check
257	 * if there's anything left.
258	 */
259	if (scan_type == scan_eoi)
260		return hirq;
261
262	/*
263	 * If we found an interrupt, adjust what the guest CPPR should
264	 * be as if we had just fetched that interrupt from HW.
265	 *
266	 * Note: This can only make xc->cppr smaller as the previous
267	 * loop will only exit with hirq != 0 if prio is lower than
268	 * the current xc->cppr. Thus we don't need to re-check xc->mfrr
269	 * for pending IPIs.
270	 */
271	if (hirq)
272		xc->cppr = prio;
273	/*
274	 * If it was an IPI the HW CPPR might have been lowered too much
275	 * as the HW interrupt we use for IPIs is routed to priority 0.
276	 *
277	 * We re-sync it here.
278	 */
279	if (xc->cppr != xc->hw_cppr) {
280		xc->hw_cppr = xc->cppr;
281		__raw_writeb(xc->cppr, xive_tima + TM_QW1_OS + TM_CPPR);
282	}
283
284	return hirq;
285}
286
287static unsigned long xive_vm_h_xirr(struct kvm_vcpu *vcpu)
288{
289	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
290	u8 old_cppr;
291	u32 hirq;
292
293	pr_devel("H_XIRR\n");
294
295	xc->stat_vm_h_xirr++;
296
297	/* First collect pending bits from HW */
298	xive_vm_ack_pending(xc);
299
300	pr_devel(" new pending=0x%02x hw_cppr=%d cppr=%d\n",
301		 xc->pending, xc->hw_cppr, xc->cppr);
302
303	/* Grab previous CPPR and reverse map it */
304	old_cppr = xive_prio_to_guest(xc->cppr);
305
306	/* Scan for actual interrupts */
307	hirq = xive_vm_scan_interrupts(xc, xc->pending, scan_fetch);
308
309	pr_devel(" got hirq=0x%x hw_cppr=%d cppr=%d\n",
310		 hirq, xc->hw_cppr, xc->cppr);
311
312	/* That should never hit */
313	if (hirq & 0xff000000)
314		pr_warn("XIVE: Weird guest interrupt number 0x%08x\n", hirq);
315
316	/*
317	 * XXX We could check if the interrupt is masked here and
318	 * filter it. If we chose to do so, we would need to do:
319	 *
320	 *    if (masked) {
321	 *        lock();
322	 *        if (masked) {
323	 *            old_Q = true;
324	 *            hirq = 0;
325	 *        }
326	 *        unlock();
327	 *    }
328	 */
329
330	/* Return interrupt and old CPPR in GPR4 */
331	kvmppc_set_gpr(vcpu, 4, hirq | (old_cppr << 24));
332
333	return H_SUCCESS;
334}
335
336static unsigned long xive_vm_h_ipoll(struct kvm_vcpu *vcpu, unsigned long server)
337{
338	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
339	u8 pending = xc->pending;
340	u32 hirq;
341
342	pr_devel("H_IPOLL(server=%ld)\n", server);
343
344	xc->stat_vm_h_ipoll++;
345
346	/* Grab the target VCPU if not the current one */
347	if (xc->server_num != server) {
348		vcpu = kvmppc_xive_find_server(vcpu->kvm, server);
349		if (!vcpu)
350			return H_PARAMETER;
351		xc = vcpu->arch.xive_vcpu;
352
353		/* Scan all priorities */
354		pending = 0xff;
355	} else {
356		/* Grab pending interrupt if any */
357		__be64 qw1 = __raw_readq(xive_tima + TM_QW1_OS);
358		u8 pipr = be64_to_cpu(qw1) & 0xff;
359
360		if (pipr < 8)
361			pending |= 1 << pipr;
362	}
363
364	hirq = xive_vm_scan_interrupts(xc, pending, scan_poll);
365
366	/* Return interrupt and old CPPR in GPR4 */
367	kvmppc_set_gpr(vcpu, 4, hirq | (xc->cppr << 24));
368
369	return H_SUCCESS;
370}
371
372static void xive_vm_push_pending_to_hw(struct kvmppc_xive_vcpu *xc)
373{
374	u8 pending, prio;
375
376	pending = xc->pending;
377	if (xc->mfrr != 0xff) {
378		if (xc->mfrr < 8)
379			pending |= 1 << xc->mfrr;
380		else
381			pending |= 0x80;
382	}
383	if (!pending)
384		return;
385	prio = ffs(pending) - 1;
386
387	__raw_writeb(prio, xive_tima + TM_SPC_SET_OS_PENDING);
388}
389
390static void xive_vm_scan_for_rerouted_irqs(struct kvmppc_xive *xive,
391					       struct kvmppc_xive_vcpu *xc)
392{
393	unsigned int prio;
394
395	/* For each priority that is now masked */
396	for (prio = xc->cppr; prio < KVMPPC_XIVE_Q_COUNT; prio++) {
397		struct xive_q *q = &xc->queues[prio];
398		struct kvmppc_xive_irq_state *state;
399		struct kvmppc_xive_src_block *sb;
400		u32 idx, toggle, entry, irq, hw_num;
401		struct xive_irq_data *xd;
402		__be32 *qpage;
403		u16 src;
404
405		idx = q->idx;
406		toggle = q->toggle;
407		qpage = READ_ONCE(q->qpage);
408		if (!qpage)
409			continue;
410
411		/* For each interrupt in the queue */
412		for (;;) {
413			entry = be32_to_cpup(qpage + idx);
414
415			/* No more ? */
416			if ((entry >> 31) == toggle)
417				break;
418			irq = entry & 0x7fffffff;
419
420			/* Skip dummies and IPIs */
421			if (irq == XICS_DUMMY || irq == XICS_IPI)
422				goto next;
423			sb = kvmppc_xive_find_source(xive, irq, &src);
424			if (!sb)
425				goto next;
426			state = &sb->irq_state[src];
427
428			/* Has it been rerouted ? */
429			if (xc->server_num == state->act_server)
430				goto next;
431
432			/*
433			 * Allright, it *has* been re-routed, kill it from
434			 * the queue.
435			 */
436			qpage[idx] = cpu_to_be32((entry & 0x80000000) | XICS_DUMMY);
437
438			/* Find the HW interrupt */
439			kvmppc_xive_select_irq(state, &hw_num, &xd);
440
441			/* If it's not an LSI, set PQ to 11 the EOI will force a resend */
442			if (!(xd->flags & XIVE_IRQ_FLAG_LSI))
443				xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_11);
444
445			/* EOI the source */
446			xive_vm_source_eoi(hw_num, xd);
447
448next:
449			idx = (idx + 1) & q->msk;
450			if (idx == 0)
451				toggle ^= 1;
452		}
453	}
454}
455
456static int xive_vm_h_cppr(struct kvm_vcpu *vcpu, unsigned long cppr)
457{
458	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
459	struct kvmppc_xive *xive = vcpu->kvm->arch.xive;
460	u8 old_cppr;
461
462	pr_devel("H_CPPR(cppr=%ld)\n", cppr);
463
464	xc->stat_vm_h_cppr++;
465
466	/* Map CPPR */
467	cppr = xive_prio_from_guest(cppr);
468
469	/* Remember old and update SW state */
470	old_cppr = xc->cppr;
471	xc->cppr = cppr;
472
473	/*
474	 * Order the above update of xc->cppr with the subsequent
475	 * read of xc->mfrr inside push_pending_to_hw()
476	 */
477	smp_mb();
478
479	if (cppr > old_cppr) {
480		/*
481		 * We are masking less, we need to look for pending things
482		 * to deliver and set VP pending bits accordingly to trigger
483		 * a new interrupt otherwise we might miss MFRR changes for
484		 * which we have optimized out sending an IPI signal.
485		 */
486		xive_vm_push_pending_to_hw(xc);
487	} else {
488		/*
489		 * We are masking more, we need to check the queue for any
490		 * interrupt that has been routed to another CPU, take
491		 * it out (replace it with the dummy) and retrigger it.
492		 *
493		 * This is necessary since those interrupts may otherwise
494		 * never be processed, at least not until this CPU restores
495		 * its CPPR.
496		 *
497		 * This is in theory racy vs. HW adding new interrupts to
498		 * the queue. In practice this works because the interesting
499		 * cases are when the guest has done a set_xive() to move the
500		 * interrupt away, which flushes the xive, followed by the
501		 * target CPU doing a H_CPPR. So any new interrupt coming into
502		 * the queue must still be routed to us and isn't a source
503		 * of concern.
504		 */
505		xive_vm_scan_for_rerouted_irqs(xive, xc);
506	}
507
508	/* Apply new CPPR */
509	xc->hw_cppr = cppr;
510	__raw_writeb(cppr, xive_tima + TM_QW1_OS + TM_CPPR);
511
512	return H_SUCCESS;
513}
514
515static int xive_vm_h_eoi(struct kvm_vcpu *vcpu, unsigned long xirr)
516{
517	struct kvmppc_xive *xive = vcpu->kvm->arch.xive;
518	struct kvmppc_xive_src_block *sb;
519	struct kvmppc_xive_irq_state *state;
520	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
521	struct xive_irq_data *xd;
522	u8 new_cppr = xirr >> 24;
523	u32 irq = xirr & 0x00ffffff, hw_num;
524	u16 src;
525	int rc = 0;
526
527	pr_devel("H_EOI(xirr=%08lx)\n", xirr);
528
529	xc->stat_vm_h_eoi++;
530
531	xc->cppr = xive_prio_from_guest(new_cppr);
532
533	/*
534	 * IPIs are synthetized from MFRR and thus don't need
535	 * any special EOI handling. The underlying interrupt
536	 * used to signal MFRR changes is EOId when fetched from
537	 * the queue.
538	 */
539	if (irq == XICS_IPI || irq == 0) {
540		/*
541		 * This barrier orders the setting of xc->cppr vs.
542		 * subsequent test of xc->mfrr done inside
543		 * scan_interrupts and push_pending_to_hw
544		 */
545		smp_mb();
546		goto bail;
547	}
548
549	/* Find interrupt source */
550	sb = kvmppc_xive_find_source(xive, irq, &src);
551	if (!sb) {
552		pr_devel(" source not found !\n");
553		rc = H_PARAMETER;
554		/* Same as above */
555		smp_mb();
556		goto bail;
557	}
558	state = &sb->irq_state[src];
559	kvmppc_xive_select_irq(state, &hw_num, &xd);
560
561	state->in_eoi = true;
562
563	/*
564	 * This barrier orders both setting of in_eoi above vs,
565	 * subsequent test of guest_priority, and the setting
566	 * of xc->cppr vs. subsequent test of xc->mfrr done inside
567	 * scan_interrupts and push_pending_to_hw
568	 */
569	smp_mb();
570
571again:
572	if (state->guest_priority == MASKED) {
573		arch_spin_lock(&sb->lock);
574		if (state->guest_priority != MASKED) {
575			arch_spin_unlock(&sb->lock);
576			goto again;
577		}
578		pr_devel(" EOI on saved P...\n");
579
580		/* Clear old_p, that will cause unmask to perform an EOI */
581		state->old_p = false;
582
583		arch_spin_unlock(&sb->lock);
584	} else {
585		pr_devel(" EOI on source...\n");
586
587		/* Perform EOI on the source */
588		xive_vm_source_eoi(hw_num, xd);
589
590		/* If it's an emulated LSI, check level and resend */
591		if (state->lsi && state->asserted)
592			__raw_writeq(0, __x_trig_page(xd));
593
594	}
595
596	/*
597	 * This barrier orders the above guest_priority check
598	 * and spin_lock/unlock with clearing in_eoi below.
599	 *
600	 * It also has to be a full mb() as it must ensure
601	 * the MMIOs done in source_eoi() are completed before
602	 * state->in_eoi is visible.
603	 */
604	mb();
605	state->in_eoi = false;
606bail:
607
608	/* Re-evaluate pending IRQs and update HW */
609	xive_vm_scan_interrupts(xc, xc->pending, scan_eoi);
610	xive_vm_push_pending_to_hw(xc);
611	pr_devel(" after scan pending=%02x\n", xc->pending);
612
613	/* Apply new CPPR */
614	xc->hw_cppr = xc->cppr;
615	__raw_writeb(xc->cppr, xive_tima + TM_QW1_OS + TM_CPPR);
616
617	return rc;
618}
619
620static int xive_vm_h_ipi(struct kvm_vcpu *vcpu, unsigned long server,
621			       unsigned long mfrr)
622{
623	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
624
625	pr_devel("H_IPI(server=%08lx,mfrr=%ld)\n", server, mfrr);
626
627	xc->stat_vm_h_ipi++;
628
629	/* Find target */
630	vcpu = kvmppc_xive_find_server(vcpu->kvm, server);
631	if (!vcpu)
632		return H_PARAMETER;
633	xc = vcpu->arch.xive_vcpu;
634
635	/* Locklessly write over MFRR */
636	xc->mfrr = mfrr;
637
638	/*
639	 * The load of xc->cppr below and the subsequent MMIO store
640	 * to the IPI must happen after the above mfrr update is
641	 * globally visible so that:
642	 *
643	 * - Synchronize with another CPU doing an H_EOI or a H_CPPR
644	 *   updating xc->cppr then reading xc->mfrr.
645	 *
646	 * - The target of the IPI sees the xc->mfrr update
647	 */
648	mb();
649
650	/* Shoot the IPI if most favored than target cppr */
651	if (mfrr < xc->cppr)
652		__raw_writeq(0, __x_trig_page(&xc->vp_ipi_data));
653
654	return H_SUCCESS;
655}
656
657/*
658 * We leave a gap of a couple of interrupts in the queue to
659 * account for the IPI and additional safety guard.
660 */
661#define XIVE_Q_GAP	2
662
663static bool kvmppc_xive_vcpu_has_save_restore(struct kvm_vcpu *vcpu)
664{
665	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
666
667	/* Check enablement at VP level */
668	return xc->vp_cam & TM_QW1W2_HO;
669}
670
671bool kvmppc_xive_check_save_restore(struct kvm_vcpu *vcpu)
672{
673	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
674	struct kvmppc_xive *xive = xc->xive;
675
676	if (xive->flags & KVMPPC_XIVE_FLAG_SAVE_RESTORE)
677		return kvmppc_xive_vcpu_has_save_restore(vcpu);
678
679	return true;
680}
681
682/*
683 * Push a vcpu's context to the XIVE on guest entry.
684 * This assumes we are in virtual mode (MMU on)
685 */
686void kvmppc_xive_push_vcpu(struct kvm_vcpu *vcpu)
687{
688	void __iomem *tima = local_paca->kvm_hstate.xive_tima_virt;
689	u64 pq;
690
691	/*
692	 * Nothing to do if the platform doesn't have a XIVE
693	 * or this vCPU doesn't have its own XIVE context
694	 * (e.g. because it's not using an in-kernel interrupt controller).
695	 */
696	if (!tima || !vcpu->arch.xive_cam_word)
697		return;
698
699	eieio();
700	if (!kvmppc_xive_vcpu_has_save_restore(vcpu))
701		__raw_writeq(vcpu->arch.xive_saved_state.w01, tima + TM_QW1_OS);
702	__raw_writel(vcpu->arch.xive_cam_word, tima + TM_QW1_OS + TM_WORD2);
703	vcpu->arch.xive_pushed = 1;
704	eieio();
705
706	/*
707	 * We clear the irq_pending flag. There is a small chance of a
708	 * race vs. the escalation interrupt happening on another
709	 * processor setting it again, but the only consequence is to
710	 * cause a spurious wakeup on the next H_CEDE, which is not an
711	 * issue.
712	 */
713	vcpu->arch.irq_pending = 0;
714
715	/*
716	 * In single escalation mode, if the escalation interrupt is
717	 * on, we mask it.
718	 */
719	if (vcpu->arch.xive_esc_on) {
720		pq = __raw_readq((void __iomem *)(vcpu->arch.xive_esc_vaddr +
721						  XIVE_ESB_SET_PQ_01));
722		mb();
723
724		/*
725		 * We have a possible subtle race here: The escalation
726		 * interrupt might have fired and be on its way to the
727		 * host queue while we mask it, and if we unmask it
728		 * early enough (re-cede right away), there is a
729		 * theoretical possibility that it fires again, thus
730		 * landing in the target queue more than once which is
731		 * a big no-no.
732		 *
733		 * Fortunately, solving this is rather easy. If the
734		 * above load setting PQ to 01 returns a previous
735		 * value where P is set, then we know the escalation
736		 * interrupt is somewhere on its way to the host. In
737		 * that case we simply don't clear the xive_esc_on
738		 * flag below. It will be eventually cleared by the
739		 * handler for the escalation interrupt.
740		 *
741		 * Then, when doing a cede, we check that flag again
742		 * before re-enabling the escalation interrupt, and if
743		 * set, we abort the cede.
744		 */
745		if (!(pq & XIVE_ESB_VAL_P))
746			/* Now P is 0, we can clear the flag */
747			vcpu->arch.xive_esc_on = 0;
748	}
749}
750EXPORT_SYMBOL_GPL(kvmppc_xive_push_vcpu);
751
752/*
753 * Pull a vcpu's context from the XIVE on guest exit.
754 * This assumes we are in virtual mode (MMU on)
755 */
756void kvmppc_xive_pull_vcpu(struct kvm_vcpu *vcpu)
757{
758	void __iomem *tima = local_paca->kvm_hstate.xive_tima_virt;
759
760	if (!vcpu->arch.xive_pushed)
761		return;
762
763	/*
764	 * Should not have been pushed if there is no tima
765	 */
766	if (WARN_ON(!tima))
767		return;
768
769	eieio();
770	/* First load to pull the context, we ignore the value */
771	__raw_readl(tima + TM_SPC_PULL_OS_CTX);
772	/* Second load to recover the context state (Words 0 and 1) */
773	if (!kvmppc_xive_vcpu_has_save_restore(vcpu))
774		vcpu->arch.xive_saved_state.w01 = __raw_readq(tima + TM_QW1_OS);
775
776	/* Fixup some of the state for the next load */
777	vcpu->arch.xive_saved_state.lsmfb = 0;
778	vcpu->arch.xive_saved_state.ack = 0xff;
779	vcpu->arch.xive_pushed = 0;
780	eieio();
781}
782EXPORT_SYMBOL_GPL(kvmppc_xive_pull_vcpu);
783
784bool kvmppc_xive_rearm_escalation(struct kvm_vcpu *vcpu)
785{
786	void __iomem *esc_vaddr = (void __iomem *)vcpu->arch.xive_esc_vaddr;
787	bool ret = true;
788
789	if (!esc_vaddr)
790		return ret;
791
792	/* we are using XIVE with single escalation */
793
794	if (vcpu->arch.xive_esc_on) {
795		/*
796		 * If we still have a pending escalation, abort the cede,
797		 * and we must set PQ to 10 rather than 00 so that we don't
798		 * potentially end up with two entries for the escalation
799		 * interrupt in the XIVE interrupt queue.  In that case
800		 * we also don't want to set xive_esc_on to 1 here in
801		 * case we race with xive_esc_irq().
802		 */
803		ret = false;
804		/*
805		 * The escalation interrupts are special as we don't EOI them.
806		 * There is no need to use the load-after-store ordering offset
807		 * to set PQ to 10 as we won't use StoreEOI.
808		 */
809		__raw_readq(esc_vaddr + XIVE_ESB_SET_PQ_10);
810	} else {
811		vcpu->arch.xive_esc_on = true;
812		mb();
813		__raw_readq(esc_vaddr + XIVE_ESB_SET_PQ_00);
814	}
815	mb();
816
817	return ret;
818}
819EXPORT_SYMBOL_GPL(kvmppc_xive_rearm_escalation);
820
821/*
822 * This is a simple trigger for a generic XIVE IRQ. This must
823 * only be called for interrupts that support a trigger page
824 */
825static bool xive_irq_trigger(struct xive_irq_data *xd)
826{
827	/* This should be only for MSIs */
828	if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
829		return false;
830
831	/* Those interrupts should always have a trigger page */
832	if (WARN_ON(!xd->trig_mmio))
833		return false;
834
835	out_be64(xd->trig_mmio, 0);
836
837	return true;
838}
839
840static irqreturn_t xive_esc_irq(int irq, void *data)
841{
842	struct kvm_vcpu *vcpu = data;
843
844	vcpu->arch.irq_pending = 1;
845	smp_mb();
846	if (vcpu->arch.ceded || vcpu->arch.nested)
847		kvmppc_fast_vcpu_kick(vcpu);
848
849	/* Since we have the no-EOI flag, the interrupt is effectively
850	 * disabled now. Clearing xive_esc_on means we won't bother
851	 * doing so on the next entry.
852	 *
853	 * This also allows the entry code to know that if a PQ combination
854	 * of 10 is observed while xive_esc_on is true, it means the queue
855	 * contains an unprocessed escalation interrupt. We don't make use of
856	 * that knowledge today but might (see comment in book3s_hv_rmhandler.S)
857	 */
858	vcpu->arch.xive_esc_on = false;
859
860	/* This orders xive_esc_on = false vs. subsequent stale_p = true */
861	smp_wmb();	/* goes with smp_mb() in cleanup_single_escalation */
862
863	return IRQ_HANDLED;
864}
865
866int kvmppc_xive_attach_escalation(struct kvm_vcpu *vcpu, u8 prio,
867				  bool single_escalation)
868{
869	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
870	struct xive_q *q = &xc->queues[prio];
871	char *name = NULL;
872	int rc;
873
874	/* Already there ? */
875	if (xc->esc_virq[prio])
876		return 0;
877
878	/* Hook up the escalation interrupt */
879	xc->esc_virq[prio] = irq_create_mapping(NULL, q->esc_irq);
880	if (!xc->esc_virq[prio]) {
881		pr_err("Failed to map escalation interrupt for queue %d of VCPU %d\n",
882		       prio, xc->server_num);
883		return -EIO;
884	}
885
886	if (single_escalation)
887		name = kasprintf(GFP_KERNEL, "kvm-%lld-%d",
888				 vcpu->kvm->arch.lpid, xc->server_num);
889	else
890		name = kasprintf(GFP_KERNEL, "kvm-%lld-%d-%d",
891				 vcpu->kvm->arch.lpid, xc->server_num, prio);
892	if (!name) {
893		pr_err("Failed to allocate escalation irq name for queue %d of VCPU %d\n",
894		       prio, xc->server_num);
895		rc = -ENOMEM;
896		goto error;
897	}
898
899	pr_devel("Escalation %s irq %d (prio %d)\n", name, xc->esc_virq[prio], prio);
900
901	rc = request_irq(xc->esc_virq[prio], xive_esc_irq,
902			 IRQF_NO_THREAD, name, vcpu);
903	if (rc) {
904		pr_err("Failed to request escalation interrupt for queue %d of VCPU %d\n",
905		       prio, xc->server_num);
906		goto error;
907	}
908	xc->esc_virq_names[prio] = name;
909
910	/* In single escalation mode, we grab the ESB MMIO of the
911	 * interrupt and mask it. Also populate the VCPU v/raddr
912	 * of the ESB page for use by asm entry/exit code. Finally
913	 * set the XIVE_IRQ_FLAG_NO_EOI flag which will prevent the
914	 * core code from performing an EOI on the escalation
915	 * interrupt, thus leaving it effectively masked after
916	 * it fires once.
917	 */
918	if (single_escalation) {
919		struct irq_data *d = irq_get_irq_data(xc->esc_virq[prio]);
920		struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
921
922		xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01);
923		vcpu->arch.xive_esc_raddr = xd->eoi_page;
924		vcpu->arch.xive_esc_vaddr = (__force u64)xd->eoi_mmio;
925		xd->flags |= XIVE_IRQ_FLAG_NO_EOI;
926	}
927
928	return 0;
929error:
930	irq_dispose_mapping(xc->esc_virq[prio]);
931	xc->esc_virq[prio] = 0;
932	kfree(name);
933	return rc;
934}
935
936static int xive_provision_queue(struct kvm_vcpu *vcpu, u8 prio)
937{
938	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
939	struct kvmppc_xive *xive = xc->xive;
940	struct xive_q *q =  &xc->queues[prio];
941	void *qpage;
942	int rc;
943
944	if (WARN_ON(q->qpage))
945		return 0;
946
947	/* Allocate the queue and retrieve infos on current node for now */
948	qpage = (__be32 *)__get_free_pages(GFP_KERNEL, xive->q_page_order);
949	if (!qpage) {
950		pr_err("Failed to allocate queue %d for VCPU %d\n",
951		       prio, xc->server_num);
952		return -ENOMEM;
953	}
954	memset(qpage, 0, 1 << xive->q_order);
955
956	/*
957	 * Reconfigure the queue. This will set q->qpage only once the
958	 * queue is fully configured. This is a requirement for prio 0
959	 * as we will stop doing EOIs for every IPI as soon as we observe
960	 * qpage being non-NULL, and instead will only EOI when we receive
961	 * corresponding queue 0 entries
962	 */
963	rc = xive_native_configure_queue(xc->vp_id, q, prio, qpage,
964					 xive->q_order, true);
965	if (rc)
966		pr_err("Failed to configure queue %d for VCPU %d\n",
967		       prio, xc->server_num);
968	return rc;
969}
970
971/* Called with xive->lock held */
972static int xive_check_provisioning(struct kvm *kvm, u8 prio)
973{
974	struct kvmppc_xive *xive = kvm->arch.xive;
975	struct kvm_vcpu *vcpu;
976	unsigned long i;
977	int rc;
978
979	lockdep_assert_held(&xive->lock);
980
981	/* Already provisioned ? */
982	if (xive->qmap & (1 << prio))
983		return 0;
984
985	pr_devel("Provisioning prio... %d\n", prio);
986
987	/* Provision each VCPU and enable escalations if needed */
988	kvm_for_each_vcpu(i, vcpu, kvm) {
989		if (!vcpu->arch.xive_vcpu)
990			continue;
991		rc = xive_provision_queue(vcpu, prio);
992		if (rc == 0 && !kvmppc_xive_has_single_escalation(xive))
993			kvmppc_xive_attach_escalation(vcpu, prio,
994						      kvmppc_xive_has_single_escalation(xive));
995		if (rc)
996			return rc;
997	}
998
999	/* Order previous stores and mark it as provisioned */
1000	mb();
1001	xive->qmap |= (1 << prio);
1002	return 0;
1003}
1004
1005static void xive_inc_q_pending(struct kvm *kvm, u32 server, u8 prio)
1006{
1007	struct kvm_vcpu *vcpu;
1008	struct kvmppc_xive_vcpu *xc;
1009	struct xive_q *q;
1010
1011	/* Locate target server */
1012	vcpu = kvmppc_xive_find_server(kvm, server);
1013	if (!vcpu) {
1014		pr_warn("%s: Can't find server %d\n", __func__, server);
1015		return;
1016	}
1017	xc = vcpu->arch.xive_vcpu;
1018	if (WARN_ON(!xc))
1019		return;
1020
1021	q = &xc->queues[prio];
1022	atomic_inc(&q->pending_count);
1023}
1024
1025static int xive_try_pick_queue(struct kvm_vcpu *vcpu, u8 prio)
1026{
1027	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1028	struct xive_q *q;
1029	u32 max;
1030
1031	if (WARN_ON(!xc))
1032		return -ENXIO;
1033	if (!xc->valid)
1034		return -ENXIO;
1035
1036	q = &xc->queues[prio];
1037	if (WARN_ON(!q->qpage))
1038		return -ENXIO;
1039
1040	/* Calculate max number of interrupts in that queue. */
1041	max = (q->msk + 1) - XIVE_Q_GAP;
1042	return atomic_add_unless(&q->count, 1, max) ? 0 : -EBUSY;
1043}
1044
1045int kvmppc_xive_select_target(struct kvm *kvm, u32 *server, u8 prio)
1046{
1047	struct kvm_vcpu *vcpu;
1048	unsigned long i;
1049	int rc;
1050
1051	/* Locate target server */
1052	vcpu = kvmppc_xive_find_server(kvm, *server);
1053	if (!vcpu) {
1054		pr_devel("Can't find server %d\n", *server);
1055		return -EINVAL;
1056	}
1057
1058	pr_devel("Finding irq target on 0x%x/%d...\n", *server, prio);
1059
1060	/* Try pick it */
1061	rc = xive_try_pick_queue(vcpu, prio);
1062	if (rc == 0)
1063		return rc;
1064
1065	pr_devel(" .. failed, looking up candidate...\n");
1066
1067	/* Failed, pick another VCPU */
1068	kvm_for_each_vcpu(i, vcpu, kvm) {
1069		if (!vcpu->arch.xive_vcpu)
1070			continue;
1071		rc = xive_try_pick_queue(vcpu, prio);
1072		if (rc == 0) {
1073			*server = vcpu->arch.xive_vcpu->server_num;
1074			pr_devel("  found on 0x%x/%d\n", *server, prio);
1075			return rc;
1076		}
1077	}
1078	pr_devel("  no available target !\n");
1079
1080	/* No available target ! */
1081	return -EBUSY;
1082}
1083
1084static u8 xive_lock_and_mask(struct kvmppc_xive *xive,
1085			     struct kvmppc_xive_src_block *sb,
1086			     struct kvmppc_xive_irq_state *state)
1087{
1088	struct xive_irq_data *xd;
1089	u32 hw_num;
1090	u8 old_prio;
1091	u64 val;
1092
1093	/*
1094	 * Take the lock, set masked, try again if racing
1095	 * with H_EOI
1096	 */
1097	for (;;) {
1098		arch_spin_lock(&sb->lock);
1099		old_prio = state->guest_priority;
1100		state->guest_priority = MASKED;
1101		mb();
1102		if (!state->in_eoi)
1103			break;
1104		state->guest_priority = old_prio;
1105		arch_spin_unlock(&sb->lock);
1106	}
1107
1108	/* No change ? Bail */
1109	if (old_prio == MASKED)
1110		return old_prio;
1111
1112	/* Get the right irq */
1113	kvmppc_xive_select_irq(state, &hw_num, &xd);
1114
1115	/* Set PQ to 10, return old P and old Q and remember them */
1116	val = xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_10);
1117	state->old_p = !!(val & 2);
1118	state->old_q = !!(val & 1);
1119
1120	/*
1121	 * Synchronize hardware to sensure the queues are updated when
1122	 * masking
1123	 */
1124	xive_native_sync_source(hw_num);
1125
1126	return old_prio;
1127}
1128
1129static void xive_lock_for_unmask(struct kvmppc_xive_src_block *sb,
1130				 struct kvmppc_xive_irq_state *state)
1131{
1132	/*
1133	 * Take the lock try again if racing with H_EOI
1134	 */
1135	for (;;) {
1136		arch_spin_lock(&sb->lock);
1137		if (!state->in_eoi)
1138			break;
1139		arch_spin_unlock(&sb->lock);
1140	}
1141}
1142
1143static void xive_finish_unmask(struct kvmppc_xive *xive,
1144			       struct kvmppc_xive_src_block *sb,
1145			       struct kvmppc_xive_irq_state *state,
1146			       u8 prio)
1147{
1148	struct xive_irq_data *xd;
1149	u32 hw_num;
1150
1151	/* If we aren't changing a thing, move on */
1152	if (state->guest_priority != MASKED)
1153		goto bail;
1154
1155	/* Get the right irq */
1156	kvmppc_xive_select_irq(state, &hw_num, &xd);
1157
1158	/* Old Q set, set PQ to 11 */
1159	if (state->old_q)
1160		xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_11);
1161
1162	/*
1163	 * If not old P, then perform an "effective" EOI,
1164	 * on the source. This will handle the cases where
1165	 * FW EOI is needed.
1166	 */
1167	if (!state->old_p)
1168		xive_vm_source_eoi(hw_num, xd);
1169
1170	/* Synchronize ordering and mark unmasked */
1171	mb();
1172bail:
1173	state->guest_priority = prio;
1174}
1175
1176/*
1177 * Target an interrupt to a given server/prio, this will fallback
1178 * to another server if necessary and perform the HW targetting
1179 * updates as needed
1180 *
1181 * NOTE: Must be called with the state lock held
1182 */
1183static int xive_target_interrupt(struct kvm *kvm,
1184				 struct kvmppc_xive_irq_state *state,
1185				 u32 server, u8 prio)
1186{
1187	struct kvmppc_xive *xive = kvm->arch.xive;
1188	u32 hw_num;
1189	int rc;
1190
1191	/*
1192	 * This will return a tentative server and actual
1193	 * priority. The count for that new target will have
1194	 * already been incremented.
1195	 */
1196	rc = kvmppc_xive_select_target(kvm, &server, prio);
1197
1198	/*
1199	 * We failed to find a target ? Not much we can do
1200	 * at least until we support the GIQ.
1201	 */
1202	if (rc)
1203		return rc;
1204
1205	/*
1206	 * Increment the old queue pending count if there
1207	 * was one so that the old queue count gets adjusted later
1208	 * when observed to be empty.
1209	 */
1210	if (state->act_priority != MASKED)
1211		xive_inc_q_pending(kvm,
1212				   state->act_server,
1213				   state->act_priority);
1214	/*
1215	 * Update state and HW
1216	 */
1217	state->act_priority = prio;
1218	state->act_server = server;
1219
1220	/* Get the right irq */
1221	kvmppc_xive_select_irq(state, &hw_num, NULL);
1222
1223	return xive_native_configure_irq(hw_num,
1224					 kvmppc_xive_vp(xive, server),
1225					 prio, state->number);
1226}
1227
1228/*
1229 * Targetting rules: In order to avoid losing track of
1230 * pending interrupts across mask and unmask, which would
1231 * allow queue overflows, we implement the following rules:
1232 *
1233 *  - Unless it was never enabled (or we run out of capacity)
1234 *    an interrupt is always targetted at a valid server/queue
1235 *    pair even when "masked" by the guest. This pair tends to
1236 *    be the last one used but it can be changed under some
1237 *    circumstances. That allows us to separate targetting
1238 *    from masking, we only handle accounting during (re)targetting,
1239 *    this also allows us to let an interrupt drain into its target
1240 *    queue after masking, avoiding complex schemes to remove
1241 *    interrupts out of remote processor queues.
1242 *
1243 *  - When masking, we set PQ to 10 and save the previous value
1244 *    of P and Q.
1245 *
1246 *  - When unmasking, if saved Q was set, we set PQ to 11
1247 *    otherwise we leave PQ to the HW state which will be either
1248 *    10 if nothing happened or 11 if the interrupt fired while
1249 *    masked. Effectively we are OR'ing the previous Q into the
1250 *    HW Q.
1251 *
1252 *    Then if saved P is clear, we do an effective EOI (Q->P->Trigger)
1253 *    which will unmask the interrupt and shoot a new one if Q was
1254 *    set.
1255 *
1256 *    Otherwise (saved P is set) we leave PQ unchanged (so 10 or 11,
1257 *    effectively meaning an H_EOI from the guest is still expected
1258 *    for that interrupt).
1259 *
1260 *  - If H_EOI occurs while masked, we clear the saved P.
1261 *
1262 *  - When changing target, we account on the new target and
1263 *    increment a separate "pending" counter on the old one.
1264 *    This pending counter will be used to decrement the old
1265 *    target's count when its queue has been observed empty.
1266 */
1267
1268int kvmppc_xive_set_xive(struct kvm *kvm, u32 irq, u32 server,
1269			 u32 priority)
1270{
1271	struct kvmppc_xive *xive = kvm->arch.xive;
1272	struct kvmppc_xive_src_block *sb;
1273	struct kvmppc_xive_irq_state *state;
1274	u8 new_act_prio;
1275	int rc = 0;
1276	u16 idx;
1277
1278	if (!xive)
1279		return -ENODEV;
1280
1281	pr_devel("set_xive ! irq 0x%x server 0x%x prio %d\n",
1282		 irq, server, priority);
1283
1284	/* First, check provisioning of queues */
1285	if (priority != MASKED) {
1286		mutex_lock(&xive->lock);
1287		rc = xive_check_provisioning(xive->kvm,
1288			      xive_prio_from_guest(priority));
1289		mutex_unlock(&xive->lock);
1290	}
1291	if (rc) {
1292		pr_devel("  provisioning failure %d !\n", rc);
1293		return rc;
1294	}
1295
1296	sb = kvmppc_xive_find_source(xive, irq, &idx);
1297	if (!sb)
1298		return -EINVAL;
1299	state = &sb->irq_state[idx];
1300
1301	/*
1302	 * We first handle masking/unmasking since the locking
1303	 * might need to be retried due to EOIs, we'll handle
1304	 * targetting changes later. These functions will return
1305	 * with the SB lock held.
1306	 *
1307	 * xive_lock_and_mask() will also set state->guest_priority
1308	 * but won't otherwise change other fields of the state.
1309	 *
1310	 * xive_lock_for_unmask will not actually unmask, this will
1311	 * be done later by xive_finish_unmask() once the targetting
1312	 * has been done, so we don't try to unmask an interrupt
1313	 * that hasn't yet been targetted.
1314	 */
1315	if (priority == MASKED)
1316		xive_lock_and_mask(xive, sb, state);
1317	else
1318		xive_lock_for_unmask(sb, state);
1319
1320
1321	/*
1322	 * Then we handle targetting.
1323	 *
1324	 * First calculate a new "actual priority"
1325	 */
1326	new_act_prio = state->act_priority;
1327	if (priority != MASKED)
1328		new_act_prio = xive_prio_from_guest(priority);
1329
1330	pr_devel(" new_act_prio=%x act_server=%x act_prio=%x\n",
1331		 new_act_prio, state->act_server, state->act_priority);
1332
1333	/*
1334	 * Then check if we actually need to change anything,
1335	 *
1336	 * The condition for re-targetting the interrupt is that
1337	 * we have a valid new priority (new_act_prio is not 0xff)
1338	 * and either the server or the priority changed.
1339	 *
1340	 * Note: If act_priority was ff and the new priority is
1341	 *       also ff, we don't do anything and leave the interrupt
1342	 *       untargetted. An attempt of doing an int_on on an
1343	 *       untargetted interrupt will fail. If that is a problem
1344	 *       we could initialize interrupts with valid default
1345	 */
1346
1347	if (new_act_prio != MASKED &&
1348	    (state->act_server != server ||
1349	     state->act_priority != new_act_prio))
1350		rc = xive_target_interrupt(kvm, state, server, new_act_prio);
1351
1352	/*
1353	 * Perform the final unmasking of the interrupt source
1354	 * if necessary
1355	 */
1356	if (priority != MASKED)
1357		xive_finish_unmask(xive, sb, state, priority);
1358
1359	/*
1360	 * Finally Update saved_priority to match. Only int_on/off
1361	 * set this field to a different value.
1362	 */
1363	state->saved_priority = priority;
1364
1365	arch_spin_unlock(&sb->lock);
1366	return rc;
1367}
1368
1369int kvmppc_xive_get_xive(struct kvm *kvm, u32 irq, u32 *server,
1370			 u32 *priority)
1371{
1372	struct kvmppc_xive *xive = kvm->arch.xive;
1373	struct kvmppc_xive_src_block *sb;
1374	struct kvmppc_xive_irq_state *state;
1375	u16 idx;
1376
1377	if (!xive)
1378		return -ENODEV;
1379
1380	sb = kvmppc_xive_find_source(xive, irq, &idx);
1381	if (!sb)
1382		return -EINVAL;
1383	state = &sb->irq_state[idx];
1384	arch_spin_lock(&sb->lock);
1385	*server = state->act_server;
1386	*priority = state->guest_priority;
1387	arch_spin_unlock(&sb->lock);
1388
1389	return 0;
1390}
1391
1392int kvmppc_xive_int_on(struct kvm *kvm, u32 irq)
1393{
1394	struct kvmppc_xive *xive = kvm->arch.xive;
1395	struct kvmppc_xive_src_block *sb;
1396	struct kvmppc_xive_irq_state *state;
1397	u16 idx;
1398
1399	if (!xive)
1400		return -ENODEV;
1401
1402	sb = kvmppc_xive_find_source(xive, irq, &idx);
1403	if (!sb)
1404		return -EINVAL;
1405	state = &sb->irq_state[idx];
1406
1407	pr_devel("int_on(irq=0x%x)\n", irq);
1408
1409	/*
1410	 * Check if interrupt was not targetted
1411	 */
1412	if (state->act_priority == MASKED) {
1413		pr_devel("int_on on untargetted interrupt\n");
1414		return -EINVAL;
1415	}
1416
1417	/* If saved_priority is 0xff, do nothing */
1418	if (state->saved_priority == MASKED)
1419		return 0;
1420
1421	/*
1422	 * Lock and unmask it.
1423	 */
1424	xive_lock_for_unmask(sb, state);
1425	xive_finish_unmask(xive, sb, state, state->saved_priority);
1426	arch_spin_unlock(&sb->lock);
1427
1428	return 0;
1429}
1430
1431int kvmppc_xive_int_off(struct kvm *kvm, u32 irq)
1432{
1433	struct kvmppc_xive *xive = kvm->arch.xive;
1434	struct kvmppc_xive_src_block *sb;
1435	struct kvmppc_xive_irq_state *state;
1436	u16 idx;
1437
1438	if (!xive)
1439		return -ENODEV;
1440
1441	sb = kvmppc_xive_find_source(xive, irq, &idx);
1442	if (!sb)
1443		return -EINVAL;
1444	state = &sb->irq_state[idx];
1445
1446	pr_devel("int_off(irq=0x%x)\n", irq);
1447
1448	/*
1449	 * Lock and mask
1450	 */
1451	state->saved_priority = xive_lock_and_mask(xive, sb, state);
1452	arch_spin_unlock(&sb->lock);
1453
1454	return 0;
1455}
1456
1457static bool xive_restore_pending_irq(struct kvmppc_xive *xive, u32 irq)
1458{
1459	struct kvmppc_xive_src_block *sb;
1460	struct kvmppc_xive_irq_state *state;
1461	u16 idx;
1462
1463	sb = kvmppc_xive_find_source(xive, irq, &idx);
1464	if (!sb)
1465		return false;
1466	state = &sb->irq_state[idx];
1467	if (!state->valid)
1468		return false;
1469
1470	/*
1471	 * Trigger the IPI. This assumes we never restore a pass-through
1472	 * interrupt which should be safe enough
1473	 */
1474	xive_irq_trigger(&state->ipi_data);
1475
1476	return true;
1477}
1478
1479u64 kvmppc_xive_get_icp(struct kvm_vcpu *vcpu)
1480{
1481	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1482
1483	if (!xc)
1484		return 0;
1485
1486	/* Return the per-cpu state for state saving/migration */
1487	return (u64)xc->cppr << KVM_REG_PPC_ICP_CPPR_SHIFT |
1488	       (u64)xc->mfrr << KVM_REG_PPC_ICP_MFRR_SHIFT |
1489	       (u64)0xff << KVM_REG_PPC_ICP_PPRI_SHIFT;
1490}
1491
1492int kvmppc_xive_set_icp(struct kvm_vcpu *vcpu, u64 icpval)
1493{
1494	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1495	struct kvmppc_xive *xive = vcpu->kvm->arch.xive;
1496	u8 cppr, mfrr;
1497	u32 xisr;
1498
1499	if (!xc || !xive)
1500		return -ENOENT;
1501
1502	/* Grab individual state fields. We don't use pending_pri */
1503	cppr = icpval >> KVM_REG_PPC_ICP_CPPR_SHIFT;
1504	xisr = (icpval >> KVM_REG_PPC_ICP_XISR_SHIFT) &
1505		KVM_REG_PPC_ICP_XISR_MASK;
1506	mfrr = icpval >> KVM_REG_PPC_ICP_MFRR_SHIFT;
1507
1508	pr_devel("set_icp vcpu %d cppr=0x%x mfrr=0x%x xisr=0x%x\n",
1509		 xc->server_num, cppr, mfrr, xisr);
1510
1511	/*
1512	 * We can't update the state of a "pushed" VCPU, but that
1513	 * shouldn't happen because the vcpu->mutex makes running a
1514	 * vcpu mutually exclusive with doing one_reg get/set on it.
1515	 */
1516	if (WARN_ON(vcpu->arch.xive_pushed))
1517		return -EIO;
1518
1519	/* Update VCPU HW saved state */
1520	vcpu->arch.xive_saved_state.cppr = cppr;
1521	xc->hw_cppr = xc->cppr = cppr;
1522
1523	/*
1524	 * Update MFRR state. If it's not 0xff, we mark the VCPU as
1525	 * having a pending MFRR change, which will re-evaluate the
1526	 * target. The VCPU will thus potentially get a spurious
1527	 * interrupt but that's not a big deal.
1528	 */
1529	xc->mfrr = mfrr;
1530	if (mfrr < cppr)
1531		xive_irq_trigger(&xc->vp_ipi_data);
1532
1533	/*
1534	 * Now saved XIRR is "interesting". It means there's something in
1535	 * the legacy "1 element" queue... for an IPI we simply ignore it,
1536	 * as the MFRR restore will handle that. For anything else we need
1537	 * to force a resend of the source.
1538	 * However the source may not have been setup yet. If that's the
1539	 * case, we keep that info and increment a counter in the xive to
1540	 * tell subsequent xive_set_source() to go look.
1541	 */
1542	if (xisr > XICS_IPI && !xive_restore_pending_irq(xive, xisr)) {
1543		xc->delayed_irq = xisr;
1544		xive->delayed_irqs++;
1545		pr_devel("  xisr restore delayed\n");
1546	}
1547
1548	return 0;
1549}
1550
1551int kvmppc_xive_set_mapped(struct kvm *kvm, unsigned long guest_irq,
1552			   unsigned long host_irq)
1553{
1554	struct kvmppc_xive *xive = kvm->arch.xive;
1555	struct kvmppc_xive_src_block *sb;
1556	struct kvmppc_xive_irq_state *state;
1557	struct irq_data *host_data =
1558		irq_domain_get_irq_data(irq_get_default_host(), host_irq);
1559	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(host_data);
1560	u16 idx;
1561	u8 prio;
1562	int rc;
1563
1564	if (!xive)
1565		return -ENODEV;
1566
1567	pr_debug("%s: GIRQ 0x%lx host IRQ %ld XIVE HW IRQ 0x%x\n",
1568		 __func__, guest_irq, host_irq, hw_irq);
1569
1570	sb = kvmppc_xive_find_source(xive, guest_irq, &idx);
1571	if (!sb)
1572		return -EINVAL;
1573	state = &sb->irq_state[idx];
1574
1575	/*
1576	 * Mark the passed-through interrupt as going to a VCPU,
1577	 * this will prevent further EOIs and similar operations
1578	 * from the XIVE code. It will also mask the interrupt
1579	 * to either PQ=10 or 11 state, the latter if the interrupt
1580	 * is pending. This will allow us to unmask or retrigger it
1581	 * after routing it to the guest with a simple EOI.
1582	 *
1583	 * The "state" argument is a "token", all it needs is to be
1584	 * non-NULL to switch to passed-through or NULL for the
1585	 * other way around. We may not yet have an actual VCPU
1586	 * target here and we don't really care.
1587	 */
1588	rc = irq_set_vcpu_affinity(host_irq, state);
1589	if (rc) {
1590		pr_err("Failed to set VCPU affinity for host IRQ %ld\n", host_irq);
1591		return rc;
1592	}
1593
1594	/*
1595	 * Mask and read state of IPI. We need to know if its P bit
1596	 * is set as that means it's potentially already using a
1597	 * queue entry in the target
1598	 */
1599	prio = xive_lock_and_mask(xive, sb, state);
1600	pr_devel(" old IPI prio %02x P:%d Q:%d\n", prio,
1601		 state->old_p, state->old_q);
1602
1603	/* Turn the IPI hard off */
1604	xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01);
1605
1606	/*
1607	 * Reset ESB guest mapping. Needed when ESB pages are exposed
1608	 * to the guest in XIVE native mode
1609	 */
1610	if (xive->ops && xive->ops->reset_mapped)
1611		xive->ops->reset_mapped(kvm, guest_irq);
1612
1613	/* Grab info about irq */
1614	state->pt_number = hw_irq;
1615	state->pt_data = irq_data_get_irq_handler_data(host_data);
1616
1617	/*
1618	 * Configure the IRQ to match the existing configuration of
1619	 * the IPI if it was already targetted. Otherwise this will
1620	 * mask the interrupt in a lossy way (act_priority is 0xff)
1621	 * which is fine for a never started interrupt.
1622	 */
1623	xive_native_configure_irq(hw_irq,
1624				  kvmppc_xive_vp(xive, state->act_server),
1625				  state->act_priority, state->number);
1626
1627	/*
1628	 * We do an EOI to enable the interrupt (and retrigger if needed)
1629	 * if the guest has the interrupt unmasked and the P bit was *not*
1630	 * set in the IPI. If it was set, we know a slot may still be in
1631	 * use in the target queue thus we have to wait for a guest
1632	 * originated EOI
1633	 */
1634	if (prio != MASKED && !state->old_p)
1635		xive_vm_source_eoi(hw_irq, state->pt_data);
1636
1637	/* Clear old_p/old_q as they are no longer relevant */
1638	state->old_p = state->old_q = false;
1639
1640	/* Restore guest prio (unlocks EOI) */
1641	mb();
1642	state->guest_priority = prio;
1643	arch_spin_unlock(&sb->lock);
1644
1645	return 0;
1646}
1647EXPORT_SYMBOL_GPL(kvmppc_xive_set_mapped);
1648
1649int kvmppc_xive_clr_mapped(struct kvm *kvm, unsigned long guest_irq,
1650			   unsigned long host_irq)
1651{
1652	struct kvmppc_xive *xive = kvm->arch.xive;
1653	struct kvmppc_xive_src_block *sb;
1654	struct kvmppc_xive_irq_state *state;
1655	u16 idx;
1656	u8 prio;
1657	int rc;
1658
1659	if (!xive)
1660		return -ENODEV;
1661
1662	pr_debug("%s: GIRQ 0x%lx host IRQ %ld\n", __func__, guest_irq, host_irq);
1663
1664	sb = kvmppc_xive_find_source(xive, guest_irq, &idx);
1665	if (!sb)
1666		return -EINVAL;
1667	state = &sb->irq_state[idx];
1668
1669	/*
1670	 * Mask and read state of IRQ. We need to know if its P bit
1671	 * is set as that means it's potentially already using a
1672	 * queue entry in the target
1673	 */
1674	prio = xive_lock_and_mask(xive, sb, state);
1675	pr_devel(" old IRQ prio %02x P:%d Q:%d\n", prio,
1676		 state->old_p, state->old_q);
1677
1678	/*
1679	 * If old_p is set, the interrupt is pending, we switch it to
1680	 * PQ=11. This will force a resend in the host so the interrupt
1681	 * isn't lost to whatever host driver may pick it up
1682	 */
1683	if (state->old_p)
1684		xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_11);
1685
1686	/* Release the passed-through interrupt to the host */
1687	rc = irq_set_vcpu_affinity(host_irq, NULL);
1688	if (rc) {
1689		pr_err("Failed to clr VCPU affinity for host IRQ %ld\n", host_irq);
1690		return rc;
1691	}
1692
1693	/* Forget about the IRQ */
1694	state->pt_number = 0;
1695	state->pt_data = NULL;
1696
1697	/*
1698	 * Reset ESB guest mapping. Needed when ESB pages are exposed
1699	 * to the guest in XIVE native mode
1700	 */
1701	if (xive->ops && xive->ops->reset_mapped) {
1702		xive->ops->reset_mapped(kvm, guest_irq);
1703	}
1704
1705	/* Reconfigure the IPI */
1706	xive_native_configure_irq(state->ipi_number,
1707				  kvmppc_xive_vp(xive, state->act_server),
1708				  state->act_priority, state->number);
1709
1710	/*
1711	 * If old_p is set (we have a queue entry potentially
1712	 * occupied) or the interrupt is masked, we set the IPI
1713	 * to PQ=10 state. Otherwise we just re-enable it (PQ=00).
1714	 */
1715	if (prio == MASKED || state->old_p)
1716		xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_10);
1717	else
1718		xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_00);
1719
1720	/* Restore guest prio (unlocks EOI) */
1721	mb();
1722	state->guest_priority = prio;
1723	arch_spin_unlock(&sb->lock);
1724
1725	return 0;
1726}
1727EXPORT_SYMBOL_GPL(kvmppc_xive_clr_mapped);
1728
1729void kvmppc_xive_disable_vcpu_interrupts(struct kvm_vcpu *vcpu)
1730{
1731	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1732	struct kvm *kvm = vcpu->kvm;
1733	struct kvmppc_xive *xive = kvm->arch.xive;
1734	int i, j;
1735
1736	for (i = 0; i <= xive->max_sbid; i++) {
1737		struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1738
1739		if (!sb)
1740			continue;
1741		for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) {
1742			struct kvmppc_xive_irq_state *state = &sb->irq_state[j];
1743
1744			if (!state->valid)
1745				continue;
1746			if (state->act_priority == MASKED)
1747				continue;
1748			if (state->act_server != xc->server_num)
1749				continue;
1750
1751			/* Clean it up */
1752			arch_spin_lock(&sb->lock);
1753			state->act_priority = MASKED;
1754			xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01);
1755			xive_native_configure_irq(state->ipi_number, 0, MASKED, 0);
1756			if (state->pt_number) {
1757				xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_01);
1758				xive_native_configure_irq(state->pt_number, 0, MASKED, 0);
1759			}
1760			arch_spin_unlock(&sb->lock);
1761		}
1762	}
1763
1764	/* Disable vcpu's escalation interrupt */
1765	if (vcpu->arch.xive_esc_on) {
1766		__raw_readq((void __iomem *)(vcpu->arch.xive_esc_vaddr +
1767					     XIVE_ESB_SET_PQ_01));
1768		vcpu->arch.xive_esc_on = false;
1769	}
1770
1771	/*
1772	 * Clear pointers to escalation interrupt ESB.
1773	 * This is safe because the vcpu->mutex is held, preventing
1774	 * any other CPU from concurrently executing a KVM_RUN ioctl.
1775	 */
1776	vcpu->arch.xive_esc_vaddr = 0;
1777	vcpu->arch.xive_esc_raddr = 0;
1778}
1779
1780/*
1781 * In single escalation mode, the escalation interrupt is marked so
1782 * that EOI doesn't re-enable it, but just sets the stale_p flag to
1783 * indicate that the P bit has already been dealt with.  However, the
1784 * assembly code that enters the guest sets PQ to 00 without clearing
1785 * stale_p (because it has no easy way to address it).  Hence we have
1786 * to adjust stale_p before shutting down the interrupt.
1787 */
1788void xive_cleanup_single_escalation(struct kvm_vcpu *vcpu, int irq)
1789{
1790	struct irq_data *d = irq_get_irq_data(irq);
1791	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
1792
1793	/*
1794	 * This slightly odd sequence gives the right result
1795	 * (i.e. stale_p set if xive_esc_on is false) even if
1796	 * we race with xive_esc_irq() and xive_irq_eoi().
1797	 */
1798	xd->stale_p = false;
1799	smp_mb();		/* paired with smb_wmb in xive_esc_irq */
1800	if (!vcpu->arch.xive_esc_on)
1801		xd->stale_p = true;
1802}
1803
1804void kvmppc_xive_cleanup_vcpu(struct kvm_vcpu *vcpu)
1805{
1806	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1807	struct kvmppc_xive *xive = vcpu->kvm->arch.xive;
1808	int i;
1809
1810	if (!kvmppc_xics_enabled(vcpu))
1811		return;
1812
1813	if (!xc)
1814		return;
1815
1816	pr_devel("cleanup_vcpu(cpu=%d)\n", xc->server_num);
1817
1818	/* Ensure no interrupt is still routed to that VP */
1819	xc->valid = false;
1820	kvmppc_xive_disable_vcpu_interrupts(vcpu);
1821
1822	/* Mask the VP IPI */
1823	xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_01);
1824
1825	/* Free escalations */
1826	for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1827		if (xc->esc_virq[i]) {
1828			if (kvmppc_xive_has_single_escalation(xc->xive))
1829				xive_cleanup_single_escalation(vcpu, xc->esc_virq[i]);
1830			free_irq(xc->esc_virq[i], vcpu);
1831			irq_dispose_mapping(xc->esc_virq[i]);
1832			kfree(xc->esc_virq_names[i]);
1833		}
1834	}
1835
1836	/* Disable the VP */
1837	xive_native_disable_vp(xc->vp_id);
1838
1839	/* Clear the cam word so guest entry won't try to push context */
1840	vcpu->arch.xive_cam_word = 0;
1841
1842	/* Free the queues */
1843	for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1844		struct xive_q *q = &xc->queues[i];
1845
1846		xive_native_disable_queue(xc->vp_id, q, i);
1847		if (q->qpage) {
1848			free_pages((unsigned long)q->qpage,
1849				   xive->q_page_order);
1850			q->qpage = NULL;
1851		}
1852	}
1853
1854	/* Free the IPI */
1855	if (xc->vp_ipi) {
1856		xive_cleanup_irq_data(&xc->vp_ipi_data);
1857		xive_native_free_irq(xc->vp_ipi);
1858	}
1859	/* Free the VP */
1860	kfree(xc);
1861
1862	/* Cleanup the vcpu */
1863	vcpu->arch.irq_type = KVMPPC_IRQ_DEFAULT;
1864	vcpu->arch.xive_vcpu = NULL;
1865}
1866
1867static bool kvmppc_xive_vcpu_id_valid(struct kvmppc_xive *xive, u32 cpu)
1868{
1869	/* We have a block of xive->nr_servers VPs. We just need to check
1870	 * packed vCPU ids are below that.
1871	 */
1872	return kvmppc_pack_vcpu_id(xive->kvm, cpu) < xive->nr_servers;
1873}
1874
1875int kvmppc_xive_compute_vp_id(struct kvmppc_xive *xive, u32 cpu, u32 *vp)
1876{
1877	u32 vp_id;
1878
1879	if (!kvmppc_xive_vcpu_id_valid(xive, cpu)) {
1880		pr_devel("Out of bounds !\n");
1881		return -EINVAL;
1882	}
1883
1884	if (xive->vp_base == XIVE_INVALID_VP) {
1885		xive->vp_base = xive_native_alloc_vp_block(xive->nr_servers);
1886		pr_devel("VP_Base=%x nr_servers=%d\n", xive->vp_base, xive->nr_servers);
1887
1888		if (xive->vp_base == XIVE_INVALID_VP)
1889			return -ENOSPC;
1890	}
1891
1892	vp_id = kvmppc_xive_vp(xive, cpu);
1893	if (kvmppc_xive_vp_in_use(xive->kvm, vp_id)) {
1894		pr_devel("Duplicate !\n");
1895		return -EEXIST;
1896	}
1897
1898	*vp = vp_id;
1899
1900	return 0;
1901}
1902
1903int kvmppc_xive_connect_vcpu(struct kvm_device *dev,
1904			     struct kvm_vcpu *vcpu, u32 cpu)
1905{
1906	struct kvmppc_xive *xive = dev->private;
1907	struct kvmppc_xive_vcpu *xc;
1908	int i, r = -EBUSY;
1909	u32 vp_id;
1910
1911	pr_devel("connect_vcpu(cpu=%d)\n", cpu);
1912
1913	if (dev->ops != &kvm_xive_ops) {
1914		pr_devel("Wrong ops !\n");
1915		return -EPERM;
1916	}
1917	if (xive->kvm != vcpu->kvm)
1918		return -EPERM;
1919	if (vcpu->arch.irq_type != KVMPPC_IRQ_DEFAULT)
1920		return -EBUSY;
1921
1922	/* We need to synchronize with queue provisioning */
1923	mutex_lock(&xive->lock);
1924
1925	r = kvmppc_xive_compute_vp_id(xive, cpu, &vp_id);
1926	if (r)
1927		goto bail;
1928
1929	xc = kzalloc(sizeof(*xc), GFP_KERNEL);
1930	if (!xc) {
1931		r = -ENOMEM;
1932		goto bail;
1933	}
1934
1935	vcpu->arch.xive_vcpu = xc;
1936	xc->xive = xive;
1937	xc->vcpu = vcpu;
1938	xc->server_num = cpu;
1939	xc->vp_id = vp_id;
1940	xc->mfrr = 0xff;
1941	xc->valid = true;
1942
1943	r = xive_native_get_vp_info(xc->vp_id, &xc->vp_cam, &xc->vp_chip_id);
1944	if (r)
1945		goto bail;
1946
1947	if (!kvmppc_xive_check_save_restore(vcpu)) {
1948		pr_err("inconsistent save-restore setup for VCPU %d\n", cpu);
1949		r = -EIO;
1950		goto bail;
1951	}
1952
1953	/* Configure VCPU fields for use by assembly push/pull */
1954	vcpu->arch.xive_saved_state.w01 = cpu_to_be64(0xff000000);
1955	vcpu->arch.xive_cam_word = cpu_to_be32(xc->vp_cam | TM_QW1W2_VO);
1956
1957	/* Allocate IPI */
1958	xc->vp_ipi = xive_native_alloc_irq();
1959	if (!xc->vp_ipi) {
1960		pr_err("Failed to allocate xive irq for VCPU IPI\n");
1961		r = -EIO;
1962		goto bail;
1963	}
1964	pr_devel(" IPI=0x%x\n", xc->vp_ipi);
1965
1966	r = xive_native_populate_irq_data(xc->vp_ipi, &xc->vp_ipi_data);
1967	if (r)
1968		goto bail;
1969
1970	/*
1971	 * Enable the VP first as the single escalation mode will
1972	 * affect escalation interrupts numbering
1973	 */
1974	r = xive_native_enable_vp(xc->vp_id, kvmppc_xive_has_single_escalation(xive));
1975	if (r) {
1976		pr_err("Failed to enable VP in OPAL, err %d\n", r);
1977		goto bail;
1978	}
1979
1980	/*
1981	 * Initialize queues. Initially we set them all for no queueing
1982	 * and we enable escalation for queue 0 only which we'll use for
1983	 * our mfrr change notifications. If the VCPU is hot-plugged, we
1984	 * do handle provisioning however based on the existing "map"
1985	 * of enabled queues.
1986	 */
1987	for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1988		struct xive_q *q = &xc->queues[i];
1989
1990		/* Single escalation, no queue 7 */
1991		if (i == 7 && kvmppc_xive_has_single_escalation(xive))
1992			break;
1993
1994		/* Is queue already enabled ? Provision it */
1995		if (xive->qmap & (1 << i)) {
1996			r = xive_provision_queue(vcpu, i);
1997			if (r == 0 && !kvmppc_xive_has_single_escalation(xive))
1998				kvmppc_xive_attach_escalation(
1999					vcpu, i, kvmppc_xive_has_single_escalation(xive));
2000			if (r)
2001				goto bail;
2002		} else {
2003			r = xive_native_configure_queue(xc->vp_id,
2004							q, i, NULL, 0, true);
2005			if (r) {
2006				pr_err("Failed to configure queue %d for VCPU %d\n",
2007				       i, cpu);
2008				goto bail;
2009			}
2010		}
2011	}
2012
2013	/* If not done above, attach priority 0 escalation */
2014	r = kvmppc_xive_attach_escalation(vcpu, 0, kvmppc_xive_has_single_escalation(xive));
2015	if (r)
2016		goto bail;
2017
2018	/* Route the IPI */
2019	r = xive_native_configure_irq(xc->vp_ipi, xc->vp_id, 0, XICS_IPI);
2020	if (!r)
2021		xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_00);
2022
2023bail:
2024	mutex_unlock(&xive->lock);
2025	if (r) {
2026		kvmppc_xive_cleanup_vcpu(vcpu);
2027		return r;
2028	}
2029
2030	vcpu->arch.irq_type = KVMPPC_IRQ_XICS;
2031	return 0;
2032}
2033
2034/*
2035 * Scanning of queues before/after migration save
2036 */
2037static void xive_pre_save_set_queued(struct kvmppc_xive *xive, u32 irq)
2038{
2039	struct kvmppc_xive_src_block *sb;
2040	struct kvmppc_xive_irq_state *state;
2041	u16 idx;
2042
2043	sb = kvmppc_xive_find_source(xive, irq, &idx);
2044	if (!sb)
2045		return;
2046
2047	state = &sb->irq_state[idx];
2048
2049	/* Some sanity checking */
2050	if (!state->valid) {
2051		pr_err("invalid irq 0x%x in cpu queue!\n", irq);
2052		return;
2053	}
2054
2055	/*
2056	 * If the interrupt is in a queue it should have P set.
2057	 * We warn so that gets reported. A backtrace isn't useful
2058	 * so no need to use a WARN_ON.
2059	 */
2060	if (!state->saved_p)
2061		pr_err("Interrupt 0x%x is marked in a queue but P not set !\n", irq);
2062
2063	/* Set flag */
2064	state->in_queue = true;
2065}
2066
2067static void xive_pre_save_mask_irq(struct kvmppc_xive *xive,
2068				   struct kvmppc_xive_src_block *sb,
2069				   u32 irq)
2070{
2071	struct kvmppc_xive_irq_state *state = &sb->irq_state[irq];
2072
2073	if (!state->valid)
2074		return;
2075
2076	/* Mask and save state, this will also sync HW queues */
2077	state->saved_scan_prio = xive_lock_and_mask(xive, sb, state);
2078
2079	/* Transfer P and Q */
2080	state->saved_p = state->old_p;
2081	state->saved_q = state->old_q;
2082
2083	/* Unlock */
2084	arch_spin_unlock(&sb->lock);
2085}
2086
2087static void xive_pre_save_unmask_irq(struct kvmppc_xive *xive,
2088				     struct kvmppc_xive_src_block *sb,
2089				     u32 irq)
2090{
2091	struct kvmppc_xive_irq_state *state = &sb->irq_state[irq];
2092
2093	if (!state->valid)
2094		return;
2095
2096	/*
2097	 * Lock / exclude EOI (not technically necessary if the
2098	 * guest isn't running concurrently. If this becomes a
2099	 * performance issue we can probably remove the lock.
2100	 */
2101	xive_lock_for_unmask(sb, state);
2102
2103	/* Restore mask/prio if it wasn't masked */
2104	if (state->saved_scan_prio != MASKED)
2105		xive_finish_unmask(xive, sb, state, state->saved_scan_prio);
2106
2107	/* Unlock */
2108	arch_spin_unlock(&sb->lock);
2109}
2110
2111static void xive_pre_save_queue(struct kvmppc_xive *xive, struct xive_q *q)
2112{
2113	u32 idx = q->idx;
2114	u32 toggle = q->toggle;
2115	u32 irq;
2116
2117	do {
2118		irq = __xive_read_eq(q->qpage, q->msk, &idx, &toggle);
2119		if (irq > XICS_IPI)
2120			xive_pre_save_set_queued(xive, irq);
2121	} while(irq);
2122}
2123
2124static void xive_pre_save_scan(struct kvmppc_xive *xive)
2125{
2126	struct kvm_vcpu *vcpu = NULL;
2127	unsigned long i;
2128	int j;
2129
2130	/*
2131	 * See comment in xive_get_source() about how this
2132	 * work. Collect a stable state for all interrupts
2133	 */
2134	for (i = 0; i <= xive->max_sbid; i++) {
2135		struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
2136		if (!sb)
2137			continue;
2138		for (j = 0;  j < KVMPPC_XICS_IRQ_PER_ICS; j++)
2139			xive_pre_save_mask_irq(xive, sb, j);
2140	}
2141
2142	/* Then scan the queues and update the "in_queue" flag */
2143	kvm_for_each_vcpu(i, vcpu, xive->kvm) {
2144		struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
2145		if (!xc)
2146			continue;
2147		for (j = 0; j < KVMPPC_XIVE_Q_COUNT; j++) {
2148			if (xc->queues[j].qpage)
2149				xive_pre_save_queue(xive, &xc->queues[j]);
2150		}
2151	}
2152
2153	/* Finally restore interrupt states */
2154	for (i = 0; i <= xive->max_sbid; i++) {
2155		struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
2156		if (!sb)
2157			continue;
2158		for (j = 0;  j < KVMPPC_XICS_IRQ_PER_ICS; j++)
2159			xive_pre_save_unmask_irq(xive, sb, j);
2160	}
2161}
2162
2163static void xive_post_save_scan(struct kvmppc_xive *xive)
2164{
2165	u32 i, j;
2166
2167	/* Clear all the in_queue flags */
2168	for (i = 0; i <= xive->max_sbid; i++) {
2169		struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
2170		if (!sb)
2171			continue;
2172		for (j = 0;  j < KVMPPC_XICS_IRQ_PER_ICS; j++)
2173			sb->irq_state[j].in_queue = false;
2174	}
2175
2176	/* Next get_source() will do a new scan */
2177	xive->saved_src_count = 0;
2178}
2179
2180/*
2181 * This returns the source configuration and state to user space.
2182 */
2183static int xive_get_source(struct kvmppc_xive *xive, long irq, u64 addr)
2184{
2185	struct kvmppc_xive_src_block *sb;
2186	struct kvmppc_xive_irq_state *state;
2187	u64 __user *ubufp = (u64 __user *) addr;
2188	u64 val, prio;
2189	u16 idx;
2190
2191	sb = kvmppc_xive_find_source(xive, irq, &idx);
2192	if (!sb)
2193		return -ENOENT;
2194
2195	state = &sb->irq_state[idx];
2196
2197	if (!state->valid)
2198		return -ENOENT;
2199
2200	pr_devel("get_source(%ld)...\n", irq);
2201
2202	/*
2203	 * So to properly save the state into something that looks like a
2204	 * XICS migration stream we cannot treat interrupts individually.
2205	 *
2206	 * We need, instead, mask them all (& save their previous PQ state)
2207	 * to get a stable state in the HW, then sync them to ensure that
2208	 * any interrupt that had already fired hits its queue, and finally
2209	 * scan all the queues to collect which interrupts are still present
2210	 * in the queues, so we can set the "pending" flag on them and
2211	 * they can be resent on restore.
2212	 *
2213	 * So we do it all when the "first" interrupt gets saved, all the
2214	 * state is collected at that point, the rest of xive_get_source()
2215	 * will merely collect and convert that state to the expected
2216	 * userspace bit mask.
2217	 */
2218	if (xive->saved_src_count == 0)
2219		xive_pre_save_scan(xive);
2220	xive->saved_src_count++;
2221
2222	/* Convert saved state into something compatible with xics */
2223	val = state->act_server;
2224	prio = state->saved_scan_prio;
2225
2226	if (prio == MASKED) {
2227		val |= KVM_XICS_MASKED;
2228		prio = state->saved_priority;
2229	}
2230	val |= prio << KVM_XICS_PRIORITY_SHIFT;
2231	if (state->lsi) {
2232		val |= KVM_XICS_LEVEL_SENSITIVE;
2233		if (state->saved_p)
2234			val |= KVM_XICS_PENDING;
2235	} else {
2236		if (state->saved_p)
2237			val |= KVM_XICS_PRESENTED;
2238
2239		if (state->saved_q)
2240			val |= KVM_XICS_QUEUED;
2241
2242		/*
2243		 * We mark it pending (which will attempt a re-delivery)
2244		 * if we are in a queue *or* we were masked and had
2245		 * Q set which is equivalent to the XICS "masked pending"
2246		 * state
2247		 */
2248		if (state->in_queue || (prio == MASKED && state->saved_q))
2249			val |= KVM_XICS_PENDING;
2250	}
2251
2252	/*
2253	 * If that was the last interrupt saved, reset the
2254	 * in_queue flags
2255	 */
2256	if (xive->saved_src_count == xive->src_count)
2257		xive_post_save_scan(xive);
2258
2259	/* Copy the result to userspace */
2260	if (put_user(val, ubufp))
2261		return -EFAULT;
2262
2263	return 0;
2264}
2265
2266struct kvmppc_xive_src_block *kvmppc_xive_create_src_block(
2267	struct kvmppc_xive *xive, int irq)
2268{
2269	struct kvmppc_xive_src_block *sb;
2270	int i, bid;
2271
2272	bid = irq >> KVMPPC_XICS_ICS_SHIFT;
2273
2274	mutex_lock(&xive->lock);
2275
2276	/* block already exists - somebody else got here first */
2277	if (xive->src_blocks[bid])
2278		goto out;
2279
2280	/* Create the ICS */
2281	sb = kzalloc(sizeof(*sb), GFP_KERNEL);
2282	if (!sb)
2283		goto out;
2284
2285	sb->id = bid;
2286
2287	for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
2288		sb->irq_state[i].number = (bid << KVMPPC_XICS_ICS_SHIFT) | i;
2289		sb->irq_state[i].eisn = 0;
2290		sb->irq_state[i].guest_priority = MASKED;
2291		sb->irq_state[i].saved_priority = MASKED;
2292		sb->irq_state[i].act_priority = MASKED;
2293	}
2294	smp_wmb();
2295	xive->src_blocks[bid] = sb;
2296
2297	if (bid > xive->max_sbid)
2298		xive->max_sbid = bid;
2299
2300out:
2301	mutex_unlock(&xive->lock);
2302	return xive->src_blocks[bid];
2303}
2304
2305static bool xive_check_delayed_irq(struct kvmppc_xive *xive, u32 irq)
2306{
2307	struct kvm *kvm = xive->kvm;
2308	struct kvm_vcpu *vcpu = NULL;
2309	unsigned long i;
2310
2311	kvm_for_each_vcpu(i, vcpu, kvm) {
2312		struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
2313
2314		if (!xc)
2315			continue;
2316
2317		if (xc->delayed_irq == irq) {
2318			xc->delayed_irq = 0;
2319			xive->delayed_irqs--;
2320			return true;
2321		}
2322	}
2323	return false;
2324}
2325
2326static int xive_set_source(struct kvmppc_xive *xive, long irq, u64 addr)
2327{
2328	struct kvmppc_xive_src_block *sb;
2329	struct kvmppc_xive_irq_state *state;
2330	u64 __user *ubufp = (u64 __user *) addr;
2331	u16 idx;
2332	u64 val;
2333	u8 act_prio, guest_prio;
2334	u32 server;
2335	int rc = 0;
2336
2337	if (irq < KVMPPC_XICS_FIRST_IRQ || irq >= KVMPPC_XICS_NR_IRQS)
2338		return -ENOENT;
2339
2340	pr_devel("set_source(irq=0x%lx)\n", irq);
2341
2342	/* Find the source */
2343	sb = kvmppc_xive_find_source(xive, irq, &idx);
2344	if (!sb) {
2345		pr_devel("No source, creating source block...\n");
2346		sb = kvmppc_xive_create_src_block(xive, irq);
2347		if (!sb) {
2348			pr_devel("Failed to create block...\n");
2349			return -ENOMEM;
2350		}
2351	}
2352	state = &sb->irq_state[idx];
2353
2354	/* Read user passed data */
2355	if (get_user(val, ubufp)) {
2356		pr_devel("fault getting user info !\n");
2357		return -EFAULT;
2358	}
2359
2360	server = val & KVM_XICS_DESTINATION_MASK;
2361	guest_prio = val >> KVM_XICS_PRIORITY_SHIFT;
2362
2363	pr_devel("  val=0x016%llx (server=0x%x, guest_prio=%d)\n",
2364		 val, server, guest_prio);
2365
2366	/*
2367	 * If the source doesn't already have an IPI, allocate
2368	 * one and get the corresponding data
2369	 */
2370	if (!state->ipi_number) {
2371		state->ipi_number = xive_native_alloc_irq();
2372		if (state->ipi_number == 0) {
2373			pr_devel("Failed to allocate IPI !\n");
2374			return -ENOMEM;
2375		}
2376		xive_native_populate_irq_data(state->ipi_number, &state->ipi_data);
2377		pr_devel(" src_ipi=0x%x\n", state->ipi_number);
2378	}
2379
2380	/*
2381	 * We use lock_and_mask() to set us in the right masked
2382	 * state. We will override that state from the saved state
2383	 * further down, but this will handle the cases of interrupts
2384	 * that need FW masking. We set the initial guest_priority to
2385	 * 0 before calling it to ensure it actually performs the masking.
2386	 */
2387	state->guest_priority = 0;
2388	xive_lock_and_mask(xive, sb, state);
2389
2390	/*
2391	 * Now, we select a target if we have one. If we don't we
2392	 * leave the interrupt untargetted. It means that an interrupt
2393	 * can become "untargetted" across migration if it was masked
2394	 * by set_xive() but there is little we can do about it.
2395	 */
2396
2397	/* First convert prio and mark interrupt as untargetted */
2398	act_prio = xive_prio_from_guest(guest_prio);
2399	state->act_priority = MASKED;
2400
2401	/*
2402	 * We need to drop the lock due to the mutex below. Hopefully
2403	 * nothing is touching that interrupt yet since it hasn't been
2404	 * advertized to a running guest yet
2405	 */
2406	arch_spin_unlock(&sb->lock);
2407
2408	/* If we have a priority target the interrupt */
2409	if (act_prio != MASKED) {
2410		/* First, check provisioning of queues */
2411		mutex_lock(&xive->lock);
2412		rc = xive_check_provisioning(xive->kvm, act_prio);
2413		mutex_unlock(&xive->lock);
2414
2415		/* Target interrupt */
2416		if (rc == 0)
2417			rc = xive_target_interrupt(xive->kvm, state,
2418						   server, act_prio);
2419		/*
2420		 * If provisioning or targetting failed, leave it
2421		 * alone and masked. It will remain disabled until
2422		 * the guest re-targets it.
2423		 */
2424	}
2425
2426	/*
2427	 * Find out if this was a delayed irq stashed in an ICP,
2428	 * in which case, treat it as pending
2429	 */
2430	if (xive->delayed_irqs && xive_check_delayed_irq(xive, irq)) {
2431		val |= KVM_XICS_PENDING;
2432		pr_devel("  Found delayed ! forcing PENDING !\n");
2433	}
2434
2435	/* Cleanup the SW state */
2436	state->old_p = false;
2437	state->old_q = false;
2438	state->lsi = false;
2439	state->asserted = false;
2440
2441	/* Restore LSI state */
2442	if (val & KVM_XICS_LEVEL_SENSITIVE) {
2443		state->lsi = true;
2444		if (val & KVM_XICS_PENDING)
2445			state->asserted = true;
2446		pr_devel("  LSI ! Asserted=%d\n", state->asserted);
2447	}
2448
2449	/*
2450	 * Restore P and Q. If the interrupt was pending, we
2451	 * force Q and !P, which will trigger a resend.
2452	 *
2453	 * That means that a guest that had both an interrupt
2454	 * pending (queued) and Q set will restore with only
2455	 * one instance of that interrupt instead of 2, but that
2456	 * is perfectly fine as coalescing interrupts that haven't
2457	 * been presented yet is always allowed.
2458	 */
2459	if (val & KVM_XICS_PRESENTED && !(val & KVM_XICS_PENDING))
2460		state->old_p = true;
2461	if (val & KVM_XICS_QUEUED || val & KVM_XICS_PENDING)
2462		state->old_q = true;
2463
2464	pr_devel("  P=%d, Q=%d\n", state->old_p, state->old_q);
2465
2466	/*
2467	 * If the interrupt was unmasked, update guest priority and
2468	 * perform the appropriate state transition and do a
2469	 * re-trigger if necessary.
2470	 */
2471	if (val & KVM_XICS_MASKED) {
2472		pr_devel("  masked, saving prio\n");
2473		state->guest_priority = MASKED;
2474		state->saved_priority = guest_prio;
2475	} else {
2476		pr_devel("  unmasked, restoring to prio %d\n", guest_prio);
2477		xive_finish_unmask(xive, sb, state, guest_prio);
2478		state->saved_priority = guest_prio;
2479	}
2480
2481	/* Increment the number of valid sources and mark this one valid */
2482	if (!state->valid)
2483		xive->src_count++;
2484	state->valid = true;
2485
2486	return 0;
2487}
2488
2489int kvmppc_xive_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
2490			bool line_status)
2491{
2492	struct kvmppc_xive *xive = kvm->arch.xive;
2493	struct kvmppc_xive_src_block *sb;
2494	struct kvmppc_xive_irq_state *state;
2495	u16 idx;
2496
2497	if (!xive)
2498		return -ENODEV;
2499
2500	sb = kvmppc_xive_find_source(xive, irq, &idx);
2501	if (!sb)
2502		return -EINVAL;
2503
2504	/* Perform locklessly .... (we need to do some RCUisms here...) */
2505	state = &sb->irq_state[idx];
2506	if (!state->valid)
2507		return -EINVAL;
2508
2509	/* We don't allow a trigger on a passed-through interrupt */
2510	if (state->pt_number)
2511		return -EINVAL;
2512
2513	if ((level == 1 && state->lsi) || level == KVM_INTERRUPT_SET_LEVEL)
2514		state->asserted = true;
2515	else if (level == 0 || level == KVM_INTERRUPT_UNSET) {
2516		state->asserted = false;
2517		return 0;
2518	}
2519
2520	/* Trigger the IPI */
2521	xive_irq_trigger(&state->ipi_data);
2522
2523	return 0;
2524}
2525
2526int kvmppc_xive_set_nr_servers(struct kvmppc_xive *xive, u64 addr)
2527{
2528	u32 __user *ubufp = (u32 __user *) addr;
2529	u32 nr_servers;
2530	int rc = 0;
2531
2532	if (get_user(nr_servers, ubufp))
2533		return -EFAULT;
2534
2535	pr_devel("%s nr_servers=%u\n", __func__, nr_servers);
2536
2537	if (!nr_servers || nr_servers > KVM_MAX_VCPU_IDS)
2538		return -EINVAL;
2539
2540	mutex_lock(&xive->lock);
2541	if (xive->vp_base != XIVE_INVALID_VP)
2542		/* The VP block is allocated once and freed when the device
2543		 * is released. Better not allow to change its size since its
2544		 * used by connect_vcpu to validate vCPU ids are valid (eg,
2545		 * setting it back to a higher value could allow connect_vcpu
2546		 * to come up with a VP id that goes beyond the VP block, which
2547		 * is likely to cause a crash in OPAL).
2548		 */
2549		rc = -EBUSY;
2550	else if (nr_servers > KVM_MAX_VCPUS)
2551		/* We don't need more servers. Higher vCPU ids get packed
2552		 * down below KVM_MAX_VCPUS by kvmppc_pack_vcpu_id().
2553		 */
2554		xive->nr_servers = KVM_MAX_VCPUS;
2555	else
2556		xive->nr_servers = nr_servers;
2557
2558	mutex_unlock(&xive->lock);
2559
2560	return rc;
2561}
2562
2563static int xive_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2564{
2565	struct kvmppc_xive *xive = dev->private;
2566
2567	/* We honor the existing XICS ioctl */
2568	switch (attr->group) {
2569	case KVM_DEV_XICS_GRP_SOURCES:
2570		return xive_set_source(xive, attr->attr, attr->addr);
2571	case KVM_DEV_XICS_GRP_CTRL:
2572		switch (attr->attr) {
2573		case KVM_DEV_XICS_NR_SERVERS:
2574			return kvmppc_xive_set_nr_servers(xive, attr->addr);
2575		}
2576	}
2577	return -ENXIO;
2578}
2579
2580static int xive_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2581{
2582	struct kvmppc_xive *xive = dev->private;
2583
2584	/* We honor the existing XICS ioctl */
2585	switch (attr->group) {
2586	case KVM_DEV_XICS_GRP_SOURCES:
2587		return xive_get_source(xive, attr->attr, attr->addr);
2588	}
2589	return -ENXIO;
2590}
2591
2592static int xive_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2593{
2594	/* We honor the same limits as XICS, at least for now */
2595	switch (attr->group) {
2596	case KVM_DEV_XICS_GRP_SOURCES:
2597		if (attr->attr >= KVMPPC_XICS_FIRST_IRQ &&
2598		    attr->attr < KVMPPC_XICS_NR_IRQS)
2599			return 0;
2600		break;
2601	case KVM_DEV_XICS_GRP_CTRL:
2602		switch (attr->attr) {
2603		case KVM_DEV_XICS_NR_SERVERS:
2604			return 0;
2605		}
2606	}
2607	return -ENXIO;
2608}
2609
2610static void kvmppc_xive_cleanup_irq(u32 hw_num, struct xive_irq_data *xd)
2611{
2612	xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01);
2613	xive_native_configure_irq(hw_num, 0, MASKED, 0);
2614}
2615
2616void kvmppc_xive_free_sources(struct kvmppc_xive_src_block *sb)
2617{
2618	int i;
2619
2620	for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
2621		struct kvmppc_xive_irq_state *state = &sb->irq_state[i];
2622
2623		if (!state->valid)
2624			continue;
2625
2626		kvmppc_xive_cleanup_irq(state->ipi_number, &state->ipi_data);
2627		xive_cleanup_irq_data(&state->ipi_data);
2628		xive_native_free_irq(state->ipi_number);
2629
2630		/* Pass-through, cleanup too but keep IRQ hw data */
2631		if (state->pt_number)
2632			kvmppc_xive_cleanup_irq(state->pt_number, state->pt_data);
2633
2634		state->valid = false;
2635	}
2636}
2637
2638/*
2639 * Called when device fd is closed.  kvm->lock is held.
2640 */
2641static void kvmppc_xive_release(struct kvm_device *dev)
2642{
2643	struct kvmppc_xive *xive = dev->private;
2644	struct kvm *kvm = xive->kvm;
2645	struct kvm_vcpu *vcpu;
2646	unsigned long i;
2647
2648	pr_devel("Releasing xive device\n");
2649
2650	/*
2651	 * Since this is the device release function, we know that
2652	 * userspace does not have any open fd referring to the
2653	 * device.  Therefore there can not be any of the device
2654	 * attribute set/get functions being executed concurrently,
2655	 * and similarly, the connect_vcpu and set/clr_mapped
2656	 * functions also cannot be being executed.
2657	 */
2658
2659	debugfs_remove(xive->dentry);
2660
2661	/*
2662	 * We should clean up the vCPU interrupt presenters first.
2663	 */
2664	kvm_for_each_vcpu(i, vcpu, kvm) {
2665		/*
2666		 * Take vcpu->mutex to ensure that no one_reg get/set ioctl
2667		 * (i.e. kvmppc_xive_[gs]et_icp) can be done concurrently.
2668		 * Holding the vcpu->mutex also means that the vcpu cannot
2669		 * be executing the KVM_RUN ioctl, and therefore it cannot
2670		 * be executing the XIVE push or pull code or accessing
2671		 * the XIVE MMIO regions.
2672		 */
2673		mutex_lock(&vcpu->mutex);
2674		kvmppc_xive_cleanup_vcpu(vcpu);
2675		mutex_unlock(&vcpu->mutex);
2676	}
2677
2678	/*
2679	 * Now that we have cleared vcpu->arch.xive_vcpu, vcpu->arch.irq_type
2680	 * and vcpu->arch.xive_esc_[vr]addr on each vcpu, we are safe
2681	 * against xive code getting called during vcpu execution or
2682	 * set/get one_reg operations.
2683	 */
2684	kvm->arch.xive = NULL;
2685
2686	/* Mask and free interrupts */
2687	for (i = 0; i <= xive->max_sbid; i++) {
2688		if (xive->src_blocks[i])
2689			kvmppc_xive_free_sources(xive->src_blocks[i]);
2690		kfree(xive->src_blocks[i]);
2691		xive->src_blocks[i] = NULL;
2692	}
2693
2694	if (xive->vp_base != XIVE_INVALID_VP)
2695		xive_native_free_vp_block(xive->vp_base);
2696
2697	/*
2698	 * A reference of the kvmppc_xive pointer is now kept under
2699	 * the xive_devices struct of the machine for reuse. It is
2700	 * freed when the VM is destroyed for now until we fix all the
2701	 * execution paths.
2702	 */
2703
2704	kfree(dev);
2705}
2706
2707/*
2708 * When the guest chooses the interrupt mode (XICS legacy or XIVE
2709 * native), the VM will switch of KVM device. The previous device will
2710 * be "released" before the new one is created.
2711 *
2712 * Until we are sure all execution paths are well protected, provide a
2713 * fail safe (transitional) method for device destruction, in which
2714 * the XIVE device pointer is recycled and not directly freed.
2715 */
2716struct kvmppc_xive *kvmppc_xive_get_device(struct kvm *kvm, u32 type)
2717{
2718	struct kvmppc_xive **kvm_xive_device = type == KVM_DEV_TYPE_XIVE ?
2719		&kvm->arch.xive_devices.native :
2720		&kvm->arch.xive_devices.xics_on_xive;
2721	struct kvmppc_xive *xive = *kvm_xive_device;
2722
2723	if (!xive) {
2724		xive = kzalloc(sizeof(*xive), GFP_KERNEL);
2725		*kvm_xive_device = xive;
2726	} else {
2727		memset(xive, 0, sizeof(*xive));
2728	}
2729
2730	return xive;
2731}
2732
2733/*
2734 * Create a XICS device with XIVE backend.  kvm->lock is held.
2735 */
2736static int kvmppc_xive_create(struct kvm_device *dev, u32 type)
2737{
2738	struct kvmppc_xive *xive;
2739	struct kvm *kvm = dev->kvm;
2740
2741	pr_devel("Creating xive for partition\n");
2742
2743	/* Already there ? */
2744	if (kvm->arch.xive)
2745		return -EEXIST;
2746
2747	xive = kvmppc_xive_get_device(kvm, type);
2748	if (!xive)
2749		return -ENOMEM;
2750
2751	dev->private = xive;
2752	xive->dev = dev;
2753	xive->kvm = kvm;
2754	mutex_init(&xive->lock);
2755
2756	/* We use the default queue size set by the host */
2757	xive->q_order = xive_native_default_eq_shift();
2758	if (xive->q_order < PAGE_SHIFT)
2759		xive->q_page_order = 0;
2760	else
2761		xive->q_page_order = xive->q_order - PAGE_SHIFT;
2762
2763	/* VP allocation is delayed to the first call to connect_vcpu */
2764	xive->vp_base = XIVE_INVALID_VP;
2765	/* KVM_MAX_VCPUS limits the number of VMs to roughly 64 per sockets
2766	 * on a POWER9 system.
2767	 */
2768	xive->nr_servers = KVM_MAX_VCPUS;
2769
2770	if (xive_native_has_single_escalation())
2771		xive->flags |= KVMPPC_XIVE_FLAG_SINGLE_ESCALATION;
2772
2773	if (xive_native_has_save_restore())
2774		xive->flags |= KVMPPC_XIVE_FLAG_SAVE_RESTORE;
2775
2776	kvm->arch.xive = xive;
2777	return 0;
2778}
2779
2780int kvmppc_xive_xics_hcall(struct kvm_vcpu *vcpu, u32 req)
2781{
2782	/* The VM should have configured XICS mode before doing XICS hcalls. */
2783	if (!kvmppc_xics_enabled(vcpu))
2784		return H_TOO_HARD;
2785
2786	switch (req) {
2787	case H_XIRR:
2788		return xive_vm_h_xirr(vcpu);
2789	case H_CPPR:
2790		return xive_vm_h_cppr(vcpu, kvmppc_get_gpr(vcpu, 4));
2791	case H_EOI:
2792		return xive_vm_h_eoi(vcpu, kvmppc_get_gpr(vcpu, 4));
2793	case H_IPI:
2794		return xive_vm_h_ipi(vcpu, kvmppc_get_gpr(vcpu, 4),
2795					  kvmppc_get_gpr(vcpu, 5));
2796	case H_IPOLL:
2797		return xive_vm_h_ipoll(vcpu, kvmppc_get_gpr(vcpu, 4));
2798	case H_XIRR_X:
2799		xive_vm_h_xirr(vcpu);
2800		kvmppc_set_gpr(vcpu, 5, get_tb() + kvmppc_get_tb_offset(vcpu));
2801		return H_SUCCESS;
2802	}
2803
2804	return H_UNSUPPORTED;
2805}
2806EXPORT_SYMBOL_GPL(kvmppc_xive_xics_hcall);
2807
2808int kvmppc_xive_debug_show_queues(struct seq_file *m, struct kvm_vcpu *vcpu)
2809{
2810	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
2811	unsigned int i;
2812
2813	for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
2814		struct xive_q *q = &xc->queues[i];
2815		u32 i0, i1, idx;
2816
2817		if (!q->qpage && !xc->esc_virq[i])
2818			continue;
2819
2820		if (q->qpage) {
2821			seq_printf(m, "    q[%d]: ", i);
2822			idx = q->idx;
2823			i0 = be32_to_cpup(q->qpage + idx);
2824			idx = (idx + 1) & q->msk;
2825			i1 = be32_to_cpup(q->qpage + idx);
2826			seq_printf(m, "T=%d %08x %08x...\n", q->toggle,
2827				   i0, i1);
2828		}
2829		if (xc->esc_virq[i]) {
2830			struct irq_data *d = irq_get_irq_data(xc->esc_virq[i]);
2831			struct xive_irq_data *xd =
2832				irq_data_get_irq_handler_data(d);
2833			u64 pq = xive_vm_esb_load(xd, XIVE_ESB_GET);
2834
2835			seq_printf(m, "    ESC %d %c%c EOI @%llx",
2836				   xc->esc_virq[i],
2837				   (pq & XIVE_ESB_VAL_P) ? 'P' : '-',
2838				   (pq & XIVE_ESB_VAL_Q) ? 'Q' : '-',
2839				   xd->eoi_page);
2840			seq_puts(m, "\n");
2841		}
2842	}
2843	return 0;
2844}
2845
2846void kvmppc_xive_debug_show_sources(struct seq_file *m,
2847				    struct kvmppc_xive_src_block *sb)
2848{
2849	int i;
2850
2851	seq_puts(m, "    LISN      HW/CHIP   TYPE    PQ      EISN    CPU/PRIO\n");
2852	for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
2853		struct kvmppc_xive_irq_state *state = &sb->irq_state[i];
2854		struct xive_irq_data *xd;
2855		u64 pq;
2856		u32 hw_num;
2857
2858		if (!state->valid)
2859			continue;
2860
2861		kvmppc_xive_select_irq(state, &hw_num, &xd);
2862
2863		pq = xive_vm_esb_load(xd, XIVE_ESB_GET);
2864
2865		seq_printf(m, "%08x  %08x/%02x", state->number, hw_num,
2866			   xd->src_chip);
2867		if (state->lsi)
2868			seq_printf(m, " %cLSI", state->asserted ? '^' : ' ');
2869		else
2870			seq_puts(m, "  MSI");
2871
2872		seq_printf(m, " %s  %c%c  %08x   % 4d/%d",
2873			   state->ipi_number == hw_num ? "IPI" : " PT",
2874			   pq & XIVE_ESB_VAL_P ? 'P' : '-',
2875			   pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
2876			   state->eisn, state->act_server,
2877			   state->act_priority);
2878
2879		seq_puts(m, "\n");
2880	}
2881}
2882
2883static int xive_debug_show(struct seq_file *m, void *private)
2884{
2885	struct kvmppc_xive *xive = m->private;
2886	struct kvm *kvm = xive->kvm;
2887	struct kvm_vcpu *vcpu;
2888	u64 t_rm_h_xirr = 0;
2889	u64 t_rm_h_ipoll = 0;
2890	u64 t_rm_h_cppr = 0;
2891	u64 t_rm_h_eoi = 0;
2892	u64 t_rm_h_ipi = 0;
2893	u64 t_vm_h_xirr = 0;
2894	u64 t_vm_h_ipoll = 0;
2895	u64 t_vm_h_cppr = 0;
2896	u64 t_vm_h_eoi = 0;
2897	u64 t_vm_h_ipi = 0;
2898	unsigned long i;
2899
2900	if (!kvm)
2901		return 0;
2902
2903	seq_puts(m, "=========\nVCPU state\n=========\n");
2904
2905	kvm_for_each_vcpu(i, vcpu, kvm) {
2906		struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
2907
2908		if (!xc)
2909			continue;
2910
2911		seq_printf(m, "VCPU %d: VP:%#x/%02x\n"
2912			 "    CPPR:%#x HWCPPR:%#x MFRR:%#x PEND:%#x h_xirr: R=%lld V=%lld\n",
2913			 xc->server_num, xc->vp_id, xc->vp_chip_id,
2914			 xc->cppr, xc->hw_cppr,
2915			 xc->mfrr, xc->pending,
2916			 xc->stat_rm_h_xirr, xc->stat_vm_h_xirr);
2917
2918		kvmppc_xive_debug_show_queues(m, vcpu);
2919
2920		t_rm_h_xirr += xc->stat_rm_h_xirr;
2921		t_rm_h_ipoll += xc->stat_rm_h_ipoll;
2922		t_rm_h_cppr += xc->stat_rm_h_cppr;
2923		t_rm_h_eoi += xc->stat_rm_h_eoi;
2924		t_rm_h_ipi += xc->stat_rm_h_ipi;
2925		t_vm_h_xirr += xc->stat_vm_h_xirr;
2926		t_vm_h_ipoll += xc->stat_vm_h_ipoll;
2927		t_vm_h_cppr += xc->stat_vm_h_cppr;
2928		t_vm_h_eoi += xc->stat_vm_h_eoi;
2929		t_vm_h_ipi += xc->stat_vm_h_ipi;
2930	}
2931
2932	seq_puts(m, "Hcalls totals\n");
2933	seq_printf(m, " H_XIRR  R=%10lld V=%10lld\n", t_rm_h_xirr, t_vm_h_xirr);
2934	seq_printf(m, " H_IPOLL R=%10lld V=%10lld\n", t_rm_h_ipoll, t_vm_h_ipoll);
2935	seq_printf(m, " H_CPPR  R=%10lld V=%10lld\n", t_rm_h_cppr, t_vm_h_cppr);
2936	seq_printf(m, " H_EOI   R=%10lld V=%10lld\n", t_rm_h_eoi, t_vm_h_eoi);
2937	seq_printf(m, " H_IPI   R=%10lld V=%10lld\n", t_rm_h_ipi, t_vm_h_ipi);
2938
2939	seq_puts(m, "=========\nSources\n=========\n");
2940
2941	for (i = 0; i <= xive->max_sbid; i++) {
2942		struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
2943
2944		if (sb) {
2945			arch_spin_lock(&sb->lock);
2946			kvmppc_xive_debug_show_sources(m, sb);
2947			arch_spin_unlock(&sb->lock);
2948		}
2949	}
2950
2951	return 0;
2952}
2953
2954DEFINE_SHOW_ATTRIBUTE(xive_debug);
2955
2956static void xive_debugfs_init(struct kvmppc_xive *xive)
2957{
2958	xive->dentry = debugfs_create_file("xive", S_IRUGO, xive->kvm->debugfs_dentry,
2959					   xive, &xive_debug_fops);
2960
2961	pr_debug("%s: created\n", __func__);
2962}
2963
2964static void kvmppc_xive_init(struct kvm_device *dev)
2965{
2966	struct kvmppc_xive *xive = dev->private;
2967
2968	/* Register some debug interfaces */
2969	xive_debugfs_init(xive);
2970}
2971
2972struct kvm_device_ops kvm_xive_ops = {
2973	.name = "kvm-xive",
2974	.create = kvmppc_xive_create,
2975	.init = kvmppc_xive_init,
2976	.release = kvmppc_xive_release,
2977	.set_attr = xive_set_attr,
2978	.get_attr = xive_get_attr,
2979	.has_attr = xive_has_attr,
2980};
2981