1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *
4 * Copyright 2016 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
5 */
6
7#include <linux/types.h>
8#include <linux/string.h>
9#include <linux/kvm.h>
10#include <linux/kvm_host.h>
11#include <linux/anon_inodes.h>
12#include <linux/file.h>
13#include <linux/debugfs.h>
14#include <linux/pgtable.h>
15
16#include <asm/kvm_ppc.h>
17#include <asm/kvm_book3s.h>
18#include "book3s_hv.h"
19#include <asm/page.h>
20#include <asm/mmu.h>
21#include <asm/pgalloc.h>
22#include <asm/pte-walk.h>
23#include <asm/ultravisor.h>
24#include <asm/kvm_book3s_uvmem.h>
25#include <asm/plpar_wrappers.h>
26#include <asm/firmware.h>
27
28/*
29 * Supported radix tree geometry.
30 * Like p9, we support either 5 or 9 bits at the first (lowest) level,
31 * for a page size of 64k or 4k.
32 */
33static int p9_supported_radix_bits[4] = { 5, 9, 9, 13 };
34
35unsigned long __kvmhv_copy_tofrom_guest_radix(int lpid, int pid,
36					      gva_t eaddr, void *to, void *from,
37					      unsigned long n)
38{
39	int old_pid, old_lpid;
40	unsigned long quadrant, ret = n;
41	bool is_load = !!to;
42
43	if (kvmhv_is_nestedv2())
44		return H_UNSUPPORTED;
45
46	/* Can't access quadrants 1 or 2 in non-HV mode, call the HV to do it */
47	if (kvmhv_on_pseries())
48		return plpar_hcall_norets(H_COPY_TOFROM_GUEST, lpid, pid, eaddr,
49					  (to != NULL) ? __pa(to): 0,
50					  (from != NULL) ? __pa(from): 0, n);
51
52	if (eaddr & (0xFFFUL << 52))
53		return ret;
54
55	quadrant = 1;
56	if (!pid)
57		quadrant = 2;
58	if (is_load)
59		from = (void *) (eaddr | (quadrant << 62));
60	else
61		to = (void *) (eaddr | (quadrant << 62));
62
63	preempt_disable();
64
65	asm volatile("hwsync" ::: "memory");
66	isync();
67	/* switch the lpid first to avoid running host with unallocated pid */
68	old_lpid = mfspr(SPRN_LPID);
69	if (old_lpid != lpid)
70		mtspr(SPRN_LPID, lpid);
71	if (quadrant == 1) {
72		old_pid = mfspr(SPRN_PID);
73		if (old_pid != pid)
74			mtspr(SPRN_PID, pid);
75	}
76	isync();
77
78	pagefault_disable();
79	if (is_load)
80		ret = __copy_from_user_inatomic(to, (const void __user *)from, n);
81	else
82		ret = __copy_to_user_inatomic((void __user *)to, from, n);
83	pagefault_enable();
84
85	asm volatile("hwsync" ::: "memory");
86	isync();
87	/* switch the pid first to avoid running host with unallocated pid */
88	if (quadrant == 1 && pid != old_pid)
89		mtspr(SPRN_PID, old_pid);
90	if (lpid != old_lpid)
91		mtspr(SPRN_LPID, old_lpid);
92	isync();
93
94	preempt_enable();
95
96	return ret;
97}
98
99static long kvmhv_copy_tofrom_guest_radix(struct kvm_vcpu *vcpu, gva_t eaddr,
100					  void *to, void *from, unsigned long n)
101{
102	int lpid = vcpu->kvm->arch.lpid;
103	int pid;
104
105	/* This would cause a data segment intr so don't allow the access */
106	if (eaddr & (0x3FFUL << 52))
107		return -EINVAL;
108
109	/* Should we be using the nested lpid */
110	if (vcpu->arch.nested)
111		lpid = vcpu->arch.nested->shadow_lpid;
112
113	/* If accessing quadrant 3 then pid is expected to be 0 */
114	if (((eaddr >> 62) & 0x3) == 0x3)
115		pid = 0;
116	else
117		pid = kvmppc_get_pid(vcpu);
118
119	eaddr &= ~(0xFFFUL << 52);
120
121	return __kvmhv_copy_tofrom_guest_radix(lpid, pid, eaddr, to, from, n);
122}
123
124long kvmhv_copy_from_guest_radix(struct kvm_vcpu *vcpu, gva_t eaddr, void *to,
125				 unsigned long n)
126{
127	long ret;
128
129	ret = kvmhv_copy_tofrom_guest_radix(vcpu, eaddr, to, NULL, n);
130	if (ret > 0)
131		memset(to + (n - ret), 0, ret);
132
133	return ret;
134}
135
136long kvmhv_copy_to_guest_radix(struct kvm_vcpu *vcpu, gva_t eaddr, void *from,
137			       unsigned long n)
138{
139	return kvmhv_copy_tofrom_guest_radix(vcpu, eaddr, NULL, from, n);
140}
141
142int kvmppc_mmu_walk_radix_tree(struct kvm_vcpu *vcpu, gva_t eaddr,
143			       struct kvmppc_pte *gpte, u64 root,
144			       u64 *pte_ret_p)
145{
146	struct kvm *kvm = vcpu->kvm;
147	int ret, level, ps;
148	unsigned long rts, bits, offset, index;
149	u64 pte, base, gpa;
150	__be64 rpte;
151
152	rts = ((root & RTS1_MASK) >> (RTS1_SHIFT - 3)) |
153		((root & RTS2_MASK) >> RTS2_SHIFT);
154	bits = root & RPDS_MASK;
155	base = root & RPDB_MASK;
156
157	offset = rts + 31;
158
159	/* Current implementations only support 52-bit space */
160	if (offset != 52)
161		return -EINVAL;
162
163	/* Walk each level of the radix tree */
164	for (level = 3; level >= 0; --level) {
165		u64 addr;
166		/* Check a valid size */
167		if (level && bits != p9_supported_radix_bits[level])
168			return -EINVAL;
169		if (level == 0 && !(bits == 5 || bits == 9))
170			return -EINVAL;
171		offset -= bits;
172		index = (eaddr >> offset) & ((1UL << bits) - 1);
173		/* Check that low bits of page table base are zero */
174		if (base & ((1UL << (bits + 3)) - 1))
175			return -EINVAL;
176		/* Read the entry from guest memory */
177		addr = base + (index * sizeof(rpte));
178
179		kvm_vcpu_srcu_read_lock(vcpu);
180		ret = kvm_read_guest(kvm, addr, &rpte, sizeof(rpte));
181		kvm_vcpu_srcu_read_unlock(vcpu);
182		if (ret) {
183			if (pte_ret_p)
184				*pte_ret_p = addr;
185			return ret;
186		}
187		pte = __be64_to_cpu(rpte);
188		if (!(pte & _PAGE_PRESENT))
189			return -ENOENT;
190		/* Check if a leaf entry */
191		if (pte & _PAGE_PTE)
192			break;
193		/* Get ready to walk the next level */
194		base = pte & RPDB_MASK;
195		bits = pte & RPDS_MASK;
196	}
197
198	/* Need a leaf at lowest level; 512GB pages not supported */
199	if (level < 0 || level == 3)
200		return -EINVAL;
201
202	/* We found a valid leaf PTE */
203	/* Offset is now log base 2 of the page size */
204	gpa = pte & 0x01fffffffffff000ul;
205	if (gpa & ((1ul << offset) - 1))
206		return -EINVAL;
207	gpa |= eaddr & ((1ul << offset) - 1);
208	for (ps = MMU_PAGE_4K; ps < MMU_PAGE_COUNT; ++ps)
209		if (offset == mmu_psize_defs[ps].shift)
210			break;
211	gpte->page_size = ps;
212	gpte->page_shift = offset;
213
214	gpte->eaddr = eaddr;
215	gpte->raddr = gpa;
216
217	/* Work out permissions */
218	gpte->may_read = !!(pte & _PAGE_READ);
219	gpte->may_write = !!(pte & _PAGE_WRITE);
220	gpte->may_execute = !!(pte & _PAGE_EXEC);
221
222	gpte->rc = pte & (_PAGE_ACCESSED | _PAGE_DIRTY);
223
224	if (pte_ret_p)
225		*pte_ret_p = pte;
226
227	return 0;
228}
229
230/*
231 * Used to walk a partition or process table radix tree in guest memory
232 * Note: We exploit the fact that a partition table and a process
233 * table have the same layout, a partition-scoped page table and a
234 * process-scoped page table have the same layout, and the 2nd
235 * doubleword of a partition table entry has the same layout as
236 * the PTCR register.
237 */
238int kvmppc_mmu_radix_translate_table(struct kvm_vcpu *vcpu, gva_t eaddr,
239				     struct kvmppc_pte *gpte, u64 table,
240				     int table_index, u64 *pte_ret_p)
241{
242	struct kvm *kvm = vcpu->kvm;
243	int ret;
244	unsigned long size, ptbl, root;
245	struct prtb_entry entry;
246
247	if ((table & PRTS_MASK) > 24)
248		return -EINVAL;
249	size = 1ul << ((table & PRTS_MASK) + 12);
250
251	/* Is the table big enough to contain this entry? */
252	if ((table_index * sizeof(entry)) >= size)
253		return -EINVAL;
254
255	/* Read the table to find the root of the radix tree */
256	ptbl = (table & PRTB_MASK) + (table_index * sizeof(entry));
257	kvm_vcpu_srcu_read_lock(vcpu);
258	ret = kvm_read_guest(kvm, ptbl, &entry, sizeof(entry));
259	kvm_vcpu_srcu_read_unlock(vcpu);
260	if (ret)
261		return ret;
262
263	/* Root is stored in the first double word */
264	root = be64_to_cpu(entry.prtb0);
265
266	return kvmppc_mmu_walk_radix_tree(vcpu, eaddr, gpte, root, pte_ret_p);
267}
268
269int kvmppc_mmu_radix_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
270			   struct kvmppc_pte *gpte, bool data, bool iswrite)
271{
272	u32 pid;
273	u64 pte;
274	int ret;
275
276	/* Work out effective PID */
277	switch (eaddr >> 62) {
278	case 0:
279		pid = kvmppc_get_pid(vcpu);
280		break;
281	case 3:
282		pid = 0;
283		break;
284	default:
285		return -EINVAL;
286	}
287
288	ret = kvmppc_mmu_radix_translate_table(vcpu, eaddr, gpte,
289				vcpu->kvm->arch.process_table, pid, &pte);
290	if (ret)
291		return ret;
292
293	/* Check privilege (applies only to process scoped translations) */
294	if (kvmppc_get_msr(vcpu) & MSR_PR) {
295		if (pte & _PAGE_PRIVILEGED) {
296			gpte->may_read = 0;
297			gpte->may_write = 0;
298			gpte->may_execute = 0;
299		}
300	} else {
301		if (!(pte & _PAGE_PRIVILEGED)) {
302			/* Check AMR/IAMR to see if strict mode is in force */
303			if (kvmppc_get_amr_hv(vcpu) & (1ul << 62))
304				gpte->may_read = 0;
305			if (kvmppc_get_amr_hv(vcpu) & (1ul << 63))
306				gpte->may_write = 0;
307			if (vcpu->arch.iamr & (1ul << 62))
308				gpte->may_execute = 0;
309		}
310	}
311
312	return 0;
313}
314
315void kvmppc_radix_tlbie_page(struct kvm *kvm, unsigned long addr,
316			     unsigned int pshift, u64 lpid)
317{
318	unsigned long psize = PAGE_SIZE;
319	int psi;
320	long rc;
321	unsigned long rb;
322
323	if (pshift)
324		psize = 1UL << pshift;
325	else
326		pshift = PAGE_SHIFT;
327
328	addr &= ~(psize - 1);
329
330	if (!kvmhv_on_pseries()) {
331		radix__flush_tlb_lpid_page(lpid, addr, psize);
332		return;
333	}
334
335	psi = shift_to_mmu_psize(pshift);
336
337	if (!firmware_has_feature(FW_FEATURE_RPT_INVALIDATE)) {
338		rb = addr | (mmu_get_ap(psi) << PPC_BITLSHIFT(58));
339		rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(0, 0, 1),
340					lpid, rb);
341	} else {
342		rc = pseries_rpt_invalidate(lpid, H_RPTI_TARGET_CMMU,
343					    H_RPTI_TYPE_NESTED |
344					    H_RPTI_TYPE_TLB,
345					    psize_to_rpti_pgsize(psi),
346					    addr, addr + psize);
347	}
348
349	if (rc)
350		pr_err("KVM: TLB page invalidation hcall failed, rc=%ld\n", rc);
351}
352
353static void kvmppc_radix_flush_pwc(struct kvm *kvm, u64 lpid)
354{
355	long rc;
356
357	if (!kvmhv_on_pseries()) {
358		radix__flush_pwc_lpid(lpid);
359		return;
360	}
361
362	if (!firmware_has_feature(FW_FEATURE_RPT_INVALIDATE))
363		rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(1, 0, 1),
364					lpid, TLBIEL_INVAL_SET_LPID);
365	else
366		rc = pseries_rpt_invalidate(lpid, H_RPTI_TARGET_CMMU,
367					    H_RPTI_TYPE_NESTED |
368					    H_RPTI_TYPE_PWC, H_RPTI_PAGE_ALL,
369					    0, -1UL);
370	if (rc)
371		pr_err("KVM: TLB PWC invalidation hcall failed, rc=%ld\n", rc);
372}
373
374static unsigned long kvmppc_radix_update_pte(struct kvm *kvm, pte_t *ptep,
375				      unsigned long clr, unsigned long set,
376				      unsigned long addr, unsigned int shift)
377{
378	return __radix_pte_update(ptep, clr, set);
379}
380
381static void kvmppc_radix_set_pte_at(struct kvm *kvm, unsigned long addr,
382			     pte_t *ptep, pte_t pte)
383{
384	radix__set_pte_at(kvm->mm, addr, ptep, pte, 0);
385}
386
387static struct kmem_cache *kvm_pte_cache;
388static struct kmem_cache *kvm_pmd_cache;
389
390static pte_t *kvmppc_pte_alloc(void)
391{
392	pte_t *pte;
393
394	pte = kmem_cache_alloc(kvm_pte_cache, GFP_KERNEL);
395	/* pmd_populate() will only reference _pa(pte). */
396	kmemleak_ignore(pte);
397
398	return pte;
399}
400
401static void kvmppc_pte_free(pte_t *ptep)
402{
403	kmem_cache_free(kvm_pte_cache, ptep);
404}
405
406static pmd_t *kvmppc_pmd_alloc(void)
407{
408	pmd_t *pmd;
409
410	pmd = kmem_cache_alloc(kvm_pmd_cache, GFP_KERNEL);
411	/* pud_populate() will only reference _pa(pmd). */
412	kmemleak_ignore(pmd);
413
414	return pmd;
415}
416
417static void kvmppc_pmd_free(pmd_t *pmdp)
418{
419	kmem_cache_free(kvm_pmd_cache, pmdp);
420}
421
422/* Called with kvm->mmu_lock held */
423void kvmppc_unmap_pte(struct kvm *kvm, pte_t *pte, unsigned long gpa,
424		      unsigned int shift,
425		      const struct kvm_memory_slot *memslot,
426		      u64 lpid)
427
428{
429	unsigned long old;
430	unsigned long gfn = gpa >> PAGE_SHIFT;
431	unsigned long page_size = PAGE_SIZE;
432	unsigned long hpa;
433
434	old = kvmppc_radix_update_pte(kvm, pte, ~0UL, 0, gpa, shift);
435	kvmppc_radix_tlbie_page(kvm, gpa, shift, lpid);
436
437	/* The following only applies to L1 entries */
438	if (lpid != kvm->arch.lpid)
439		return;
440
441	if (!memslot) {
442		memslot = gfn_to_memslot(kvm, gfn);
443		if (!memslot)
444			return;
445	}
446	if (shift) { /* 1GB or 2MB page */
447		page_size = 1ul << shift;
448		if (shift == PMD_SHIFT)
449			kvm->stat.num_2M_pages--;
450		else if (shift == PUD_SHIFT)
451			kvm->stat.num_1G_pages--;
452	}
453
454	gpa &= ~(page_size - 1);
455	hpa = old & PTE_RPN_MASK;
456	kvmhv_remove_nest_rmap_range(kvm, memslot, gpa, hpa, page_size);
457
458	if ((old & _PAGE_DIRTY) && memslot->dirty_bitmap)
459		kvmppc_update_dirty_map(memslot, gfn, page_size);
460}
461
462/*
463 * kvmppc_free_p?d are used to free existing page tables, and recursively
464 * descend and clear and free children.
465 * Callers are responsible for flushing the PWC.
466 *
467 * When page tables are being unmapped/freed as part of page fault path
468 * (full == false), valid ptes are generally not expected; however, there
469 * is one situation where they arise, which is when dirty page logging is
470 * turned off for a memslot while the VM is running.  The new memslot
471 * becomes visible to page faults before the memslot commit function
472 * gets to flush the memslot, which can lead to a 2MB page mapping being
473 * installed for a guest physical address where there are already 64kB
474 * (or 4kB) mappings (of sub-pages of the same 2MB page).
475 */
476static void kvmppc_unmap_free_pte(struct kvm *kvm, pte_t *pte, bool full,
477				  u64 lpid)
478{
479	if (full) {
480		memset(pte, 0, sizeof(long) << RADIX_PTE_INDEX_SIZE);
481	} else {
482		pte_t *p = pte;
483		unsigned long it;
484
485		for (it = 0; it < PTRS_PER_PTE; ++it, ++p) {
486			if (pte_val(*p) == 0)
487				continue;
488			kvmppc_unmap_pte(kvm, p,
489					 pte_pfn(*p) << PAGE_SHIFT,
490					 PAGE_SHIFT, NULL, lpid);
491		}
492	}
493
494	kvmppc_pte_free(pte);
495}
496
497static void kvmppc_unmap_free_pmd(struct kvm *kvm, pmd_t *pmd, bool full,
498				  u64 lpid)
499{
500	unsigned long im;
501	pmd_t *p = pmd;
502
503	for (im = 0; im < PTRS_PER_PMD; ++im, ++p) {
504		if (!pmd_present(*p))
505			continue;
506		if (pmd_leaf(*p)) {
507			if (full) {
508				pmd_clear(p);
509			} else {
510				WARN_ON_ONCE(1);
511				kvmppc_unmap_pte(kvm, (pte_t *)p,
512					 pte_pfn(*(pte_t *)p) << PAGE_SHIFT,
513					 PMD_SHIFT, NULL, lpid);
514			}
515		} else {
516			pte_t *pte;
517
518			pte = pte_offset_kernel(p, 0);
519			kvmppc_unmap_free_pte(kvm, pte, full, lpid);
520			pmd_clear(p);
521		}
522	}
523	kvmppc_pmd_free(pmd);
524}
525
526static void kvmppc_unmap_free_pud(struct kvm *kvm, pud_t *pud,
527				  u64 lpid)
528{
529	unsigned long iu;
530	pud_t *p = pud;
531
532	for (iu = 0; iu < PTRS_PER_PUD; ++iu, ++p) {
533		if (!pud_present(*p))
534			continue;
535		if (pud_leaf(*p)) {
536			pud_clear(p);
537		} else {
538			pmd_t *pmd;
539
540			pmd = pmd_offset(p, 0);
541			kvmppc_unmap_free_pmd(kvm, pmd, true, lpid);
542			pud_clear(p);
543		}
544	}
545	pud_free(kvm->mm, pud);
546}
547
548void kvmppc_free_pgtable_radix(struct kvm *kvm, pgd_t *pgd, u64 lpid)
549{
550	unsigned long ig;
551
552	for (ig = 0; ig < PTRS_PER_PGD; ++ig, ++pgd) {
553		p4d_t *p4d = p4d_offset(pgd, 0);
554		pud_t *pud;
555
556		if (!p4d_present(*p4d))
557			continue;
558		pud = pud_offset(p4d, 0);
559		kvmppc_unmap_free_pud(kvm, pud, lpid);
560		p4d_clear(p4d);
561	}
562}
563
564void kvmppc_free_radix(struct kvm *kvm)
565{
566	if (kvm->arch.pgtable) {
567		kvmppc_free_pgtable_radix(kvm, kvm->arch.pgtable,
568					  kvm->arch.lpid);
569		pgd_free(kvm->mm, kvm->arch.pgtable);
570		kvm->arch.pgtable = NULL;
571	}
572}
573
574static void kvmppc_unmap_free_pmd_entry_table(struct kvm *kvm, pmd_t *pmd,
575					unsigned long gpa, u64 lpid)
576{
577	pte_t *pte = pte_offset_kernel(pmd, 0);
578
579	/*
580	 * Clearing the pmd entry then flushing the PWC ensures that the pte
581	 * page no longer be cached by the MMU, so can be freed without
582	 * flushing the PWC again.
583	 */
584	pmd_clear(pmd);
585	kvmppc_radix_flush_pwc(kvm, lpid);
586
587	kvmppc_unmap_free_pte(kvm, pte, false, lpid);
588}
589
590static void kvmppc_unmap_free_pud_entry_table(struct kvm *kvm, pud_t *pud,
591					unsigned long gpa, u64 lpid)
592{
593	pmd_t *pmd = pmd_offset(pud, 0);
594
595	/*
596	 * Clearing the pud entry then flushing the PWC ensures that the pmd
597	 * page and any children pte pages will no longer be cached by the MMU,
598	 * so can be freed without flushing the PWC again.
599	 */
600	pud_clear(pud);
601	kvmppc_radix_flush_pwc(kvm, lpid);
602
603	kvmppc_unmap_free_pmd(kvm, pmd, false, lpid);
604}
605
606/*
607 * There are a number of bits which may differ between different faults to
608 * the same partition scope entry. RC bits, in the course of cleaning and
609 * aging. And the write bit can change, either the access could have been
610 * upgraded, or a read fault could happen concurrently with a write fault
611 * that sets those bits first.
612 */
613#define PTE_BITS_MUST_MATCH (~(_PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED))
614
615int kvmppc_create_pte(struct kvm *kvm, pgd_t *pgtable, pte_t pte,
616		      unsigned long gpa, unsigned int level,
617		      unsigned long mmu_seq, u64 lpid,
618		      unsigned long *rmapp, struct rmap_nested **n_rmap)
619{
620	pgd_t *pgd;
621	p4d_t *p4d;
622	pud_t *pud, *new_pud = NULL;
623	pmd_t *pmd, *new_pmd = NULL;
624	pte_t *ptep, *new_ptep = NULL;
625	int ret;
626
627	/* Traverse the guest's 2nd-level tree, allocate new levels needed */
628	pgd = pgtable + pgd_index(gpa);
629	p4d = p4d_offset(pgd, gpa);
630
631	pud = NULL;
632	if (p4d_present(*p4d))
633		pud = pud_offset(p4d, gpa);
634	else
635		new_pud = pud_alloc_one(kvm->mm, gpa);
636
637	pmd = NULL;
638	if (pud && pud_present(*pud) && !pud_leaf(*pud))
639		pmd = pmd_offset(pud, gpa);
640	else if (level <= 1)
641		new_pmd = kvmppc_pmd_alloc();
642
643	if (level == 0 && !(pmd && pmd_present(*pmd) && !pmd_leaf(*pmd)))
644		new_ptep = kvmppc_pte_alloc();
645
646	/* Check if we might have been invalidated; let the guest retry if so */
647	spin_lock(&kvm->mmu_lock);
648	ret = -EAGAIN;
649	if (mmu_invalidate_retry(kvm, mmu_seq))
650		goto out_unlock;
651
652	/* Now traverse again under the lock and change the tree */
653	ret = -ENOMEM;
654	if (p4d_none(*p4d)) {
655		if (!new_pud)
656			goto out_unlock;
657		p4d_populate(kvm->mm, p4d, new_pud);
658		new_pud = NULL;
659	}
660	pud = pud_offset(p4d, gpa);
661	if (pud_leaf(*pud)) {
662		unsigned long hgpa = gpa & PUD_MASK;
663
664		/* Check if we raced and someone else has set the same thing */
665		if (level == 2) {
666			if (pud_raw(*pud) == pte_raw(pte)) {
667				ret = 0;
668				goto out_unlock;
669			}
670			/* Valid 1GB page here already, add our extra bits */
671			WARN_ON_ONCE((pud_val(*pud) ^ pte_val(pte)) &
672							PTE_BITS_MUST_MATCH);
673			kvmppc_radix_update_pte(kvm, (pte_t *)pud,
674					      0, pte_val(pte), hgpa, PUD_SHIFT);
675			ret = 0;
676			goto out_unlock;
677		}
678		/*
679		 * If we raced with another CPU which has just put
680		 * a 1GB pte in after we saw a pmd page, try again.
681		 */
682		if (!new_pmd) {
683			ret = -EAGAIN;
684			goto out_unlock;
685		}
686		/* Valid 1GB page here already, remove it */
687		kvmppc_unmap_pte(kvm, (pte_t *)pud, hgpa, PUD_SHIFT, NULL,
688				 lpid);
689	}
690	if (level == 2) {
691		if (!pud_none(*pud)) {
692			/*
693			 * There's a page table page here, but we wanted to
694			 * install a large page, so remove and free the page
695			 * table page.
696			 */
697			kvmppc_unmap_free_pud_entry_table(kvm, pud, gpa, lpid);
698		}
699		kvmppc_radix_set_pte_at(kvm, gpa, (pte_t *)pud, pte);
700		if (rmapp && n_rmap)
701			kvmhv_insert_nest_rmap(kvm, rmapp, n_rmap);
702		ret = 0;
703		goto out_unlock;
704	}
705	if (pud_none(*pud)) {
706		if (!new_pmd)
707			goto out_unlock;
708		pud_populate(kvm->mm, pud, new_pmd);
709		new_pmd = NULL;
710	}
711	pmd = pmd_offset(pud, gpa);
712	if (pmd_leaf(*pmd)) {
713		unsigned long lgpa = gpa & PMD_MASK;
714
715		/* Check if we raced and someone else has set the same thing */
716		if (level == 1) {
717			if (pmd_raw(*pmd) == pte_raw(pte)) {
718				ret = 0;
719				goto out_unlock;
720			}
721			/* Valid 2MB page here already, add our extra bits */
722			WARN_ON_ONCE((pmd_val(*pmd) ^ pte_val(pte)) &
723							PTE_BITS_MUST_MATCH);
724			kvmppc_radix_update_pte(kvm, pmdp_ptep(pmd),
725					0, pte_val(pte), lgpa, PMD_SHIFT);
726			ret = 0;
727			goto out_unlock;
728		}
729
730		/*
731		 * If we raced with another CPU which has just put
732		 * a 2MB pte in after we saw a pte page, try again.
733		 */
734		if (!new_ptep) {
735			ret = -EAGAIN;
736			goto out_unlock;
737		}
738		/* Valid 2MB page here already, remove it */
739		kvmppc_unmap_pte(kvm, pmdp_ptep(pmd), lgpa, PMD_SHIFT, NULL,
740				 lpid);
741	}
742	if (level == 1) {
743		if (!pmd_none(*pmd)) {
744			/*
745			 * There's a page table page here, but we wanted to
746			 * install a large page, so remove and free the page
747			 * table page.
748			 */
749			kvmppc_unmap_free_pmd_entry_table(kvm, pmd, gpa, lpid);
750		}
751		kvmppc_radix_set_pte_at(kvm, gpa, pmdp_ptep(pmd), pte);
752		if (rmapp && n_rmap)
753			kvmhv_insert_nest_rmap(kvm, rmapp, n_rmap);
754		ret = 0;
755		goto out_unlock;
756	}
757	if (pmd_none(*pmd)) {
758		if (!new_ptep)
759			goto out_unlock;
760		pmd_populate(kvm->mm, pmd, new_ptep);
761		new_ptep = NULL;
762	}
763	ptep = pte_offset_kernel(pmd, gpa);
764	if (pte_present(*ptep)) {
765		/* Check if someone else set the same thing */
766		if (pte_raw(*ptep) == pte_raw(pte)) {
767			ret = 0;
768			goto out_unlock;
769		}
770		/* Valid page here already, add our extra bits */
771		WARN_ON_ONCE((pte_val(*ptep) ^ pte_val(pte)) &
772							PTE_BITS_MUST_MATCH);
773		kvmppc_radix_update_pte(kvm, ptep, 0, pte_val(pte), gpa, 0);
774		ret = 0;
775		goto out_unlock;
776	}
777	kvmppc_radix_set_pte_at(kvm, gpa, ptep, pte);
778	if (rmapp && n_rmap)
779		kvmhv_insert_nest_rmap(kvm, rmapp, n_rmap);
780	ret = 0;
781
782 out_unlock:
783	spin_unlock(&kvm->mmu_lock);
784	if (new_pud)
785		pud_free(kvm->mm, new_pud);
786	if (new_pmd)
787		kvmppc_pmd_free(new_pmd);
788	if (new_ptep)
789		kvmppc_pte_free(new_ptep);
790	return ret;
791}
792
793bool kvmppc_hv_handle_set_rc(struct kvm *kvm, bool nested, bool writing,
794			     unsigned long gpa, u64 lpid)
795{
796	unsigned long pgflags;
797	unsigned int shift;
798	pte_t *ptep;
799
800	/*
801	 * Need to set an R or C bit in the 2nd-level tables;
802	 * since we are just helping out the hardware here,
803	 * it is sufficient to do what the hardware does.
804	 */
805	pgflags = _PAGE_ACCESSED;
806	if (writing)
807		pgflags |= _PAGE_DIRTY;
808
809	if (nested)
810		ptep = find_kvm_nested_guest_pte(kvm, lpid, gpa, &shift);
811	else
812		ptep = find_kvm_secondary_pte(kvm, gpa, &shift);
813
814	if (ptep && pte_present(*ptep) && (!writing || pte_write(*ptep))) {
815		kvmppc_radix_update_pte(kvm, ptep, 0, pgflags, gpa, shift);
816		return true;
817	}
818	return false;
819}
820
821int kvmppc_book3s_instantiate_page(struct kvm_vcpu *vcpu,
822				   unsigned long gpa,
823				   struct kvm_memory_slot *memslot,
824				   bool writing, bool kvm_ro,
825				   pte_t *inserted_pte, unsigned int *levelp)
826{
827	struct kvm *kvm = vcpu->kvm;
828	struct page *page = NULL;
829	unsigned long mmu_seq;
830	unsigned long hva, gfn = gpa >> PAGE_SHIFT;
831	bool upgrade_write = false;
832	bool *upgrade_p = &upgrade_write;
833	pte_t pte, *ptep;
834	unsigned int shift, level;
835	int ret;
836	bool large_enable;
837
838	/* used to check for invalidations in progress */
839	mmu_seq = kvm->mmu_invalidate_seq;
840	smp_rmb();
841
842	/*
843	 * Do a fast check first, since __gfn_to_pfn_memslot doesn't
844	 * do it with !atomic && !async, which is how we call it.
845	 * We always ask for write permission since the common case
846	 * is that the page is writable.
847	 */
848	hva = gfn_to_hva_memslot(memslot, gfn);
849	if (!kvm_ro && get_user_page_fast_only(hva, FOLL_WRITE, &page)) {
850		upgrade_write = true;
851	} else {
852		unsigned long pfn;
853
854		/* Call KVM generic code to do the slow-path check */
855		pfn = __gfn_to_pfn_memslot(memslot, gfn, false, false, NULL,
856					   writing, upgrade_p, NULL);
857		if (is_error_noslot_pfn(pfn))
858			return -EFAULT;
859		page = NULL;
860		if (pfn_valid(pfn)) {
861			page = pfn_to_page(pfn);
862			if (PageReserved(page))
863				page = NULL;
864		}
865	}
866
867	/*
868	 * Read the PTE from the process' radix tree and use that
869	 * so we get the shift and attribute bits.
870	 */
871	spin_lock(&kvm->mmu_lock);
872	ptep = find_kvm_host_pte(kvm, mmu_seq, hva, &shift);
873	pte = __pte(0);
874	if (ptep)
875		pte = READ_ONCE(*ptep);
876	spin_unlock(&kvm->mmu_lock);
877	/*
878	 * If the PTE disappeared temporarily due to a THP
879	 * collapse, just return and let the guest try again.
880	 */
881	if (!pte_present(pte)) {
882		if (page)
883			put_page(page);
884		return RESUME_GUEST;
885	}
886
887	/* If we're logging dirty pages, always map single pages */
888	large_enable = !(memslot->flags & KVM_MEM_LOG_DIRTY_PAGES);
889
890	/* Get pte level from shift/size */
891	if (large_enable && shift == PUD_SHIFT &&
892	    (gpa & (PUD_SIZE - PAGE_SIZE)) ==
893	    (hva & (PUD_SIZE - PAGE_SIZE))) {
894		level = 2;
895	} else if (large_enable && shift == PMD_SHIFT &&
896		   (gpa & (PMD_SIZE - PAGE_SIZE)) ==
897		   (hva & (PMD_SIZE - PAGE_SIZE))) {
898		level = 1;
899	} else {
900		level = 0;
901		if (shift > PAGE_SHIFT) {
902			/*
903			 * If the pte maps more than one page, bring over
904			 * bits from the virtual address to get the real
905			 * address of the specific single page we want.
906			 */
907			unsigned long rpnmask = (1ul << shift) - PAGE_SIZE;
908			pte = __pte(pte_val(pte) | (hva & rpnmask));
909		}
910	}
911
912	pte = __pte(pte_val(pte) | _PAGE_EXEC | _PAGE_ACCESSED);
913	if (writing || upgrade_write) {
914		if (pte_val(pte) & _PAGE_WRITE)
915			pte = __pte(pte_val(pte) | _PAGE_DIRTY);
916	} else {
917		pte = __pte(pte_val(pte) & ~(_PAGE_WRITE | _PAGE_DIRTY));
918	}
919
920	/* Allocate space in the tree and write the PTE */
921	ret = kvmppc_create_pte(kvm, kvm->arch.pgtable, pte, gpa, level,
922				mmu_seq, kvm->arch.lpid, NULL, NULL);
923	if (inserted_pte)
924		*inserted_pte = pte;
925	if (levelp)
926		*levelp = level;
927
928	if (page) {
929		if (!ret && (pte_val(pte) & _PAGE_WRITE))
930			set_page_dirty_lock(page);
931		put_page(page);
932	}
933
934	/* Increment number of large pages if we (successfully) inserted one */
935	if (!ret) {
936		if (level == 1)
937			kvm->stat.num_2M_pages++;
938		else if (level == 2)
939			kvm->stat.num_1G_pages++;
940	}
941
942	return ret;
943}
944
945int kvmppc_book3s_radix_page_fault(struct kvm_vcpu *vcpu,
946				   unsigned long ea, unsigned long dsisr)
947{
948	struct kvm *kvm = vcpu->kvm;
949	unsigned long gpa, gfn;
950	struct kvm_memory_slot *memslot;
951	long ret;
952	bool writing = !!(dsisr & DSISR_ISSTORE);
953	bool kvm_ro = false;
954
955	/* Check for unusual errors */
956	if (dsisr & DSISR_UNSUPP_MMU) {
957		pr_err("KVM: Got unsupported MMU fault\n");
958		return -EFAULT;
959	}
960	if (dsisr & DSISR_BADACCESS) {
961		/* Reflect to the guest as DSI */
962		pr_err("KVM: Got radix HV page fault with DSISR=%lx\n", dsisr);
963		kvmppc_core_queue_data_storage(vcpu,
964				kvmppc_get_msr(vcpu) & SRR1_PREFIXED,
965				ea, dsisr);
966		return RESUME_GUEST;
967	}
968
969	/* Translate the logical address */
970	gpa = vcpu->arch.fault_gpa & ~0xfffUL;
971	gpa &= ~0xF000000000000000ul;
972	gfn = gpa >> PAGE_SHIFT;
973	if (!(dsisr & DSISR_PRTABLE_FAULT))
974		gpa |= ea & 0xfff;
975
976	if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE)
977		return kvmppc_send_page_to_uv(kvm, gfn);
978
979	/* Get the corresponding memslot */
980	memslot = gfn_to_memslot(kvm, gfn);
981
982	/* No memslot means it's an emulated MMIO region */
983	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) {
984		if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS |
985			     DSISR_SET_RC)) {
986			/*
987			 * Bad address in guest page table tree, or other
988			 * unusual error - reflect it to the guest as DSI.
989			 */
990			kvmppc_core_queue_data_storage(vcpu,
991					kvmppc_get_msr(vcpu) & SRR1_PREFIXED,
992					ea, dsisr);
993			return RESUME_GUEST;
994		}
995		return kvmppc_hv_emulate_mmio(vcpu, gpa, ea, writing);
996	}
997
998	if (memslot->flags & KVM_MEM_READONLY) {
999		if (writing) {
1000			/* give the guest a DSI */
1001			kvmppc_core_queue_data_storage(vcpu,
1002					kvmppc_get_msr(vcpu) & SRR1_PREFIXED,
1003					ea, DSISR_ISSTORE | DSISR_PROTFAULT);
1004			return RESUME_GUEST;
1005		}
1006		kvm_ro = true;
1007	}
1008
1009	/* Failed to set the reference/change bits */
1010	if (dsisr & DSISR_SET_RC) {
1011		spin_lock(&kvm->mmu_lock);
1012		if (kvmppc_hv_handle_set_rc(kvm, false, writing,
1013					    gpa, kvm->arch.lpid))
1014			dsisr &= ~DSISR_SET_RC;
1015		spin_unlock(&kvm->mmu_lock);
1016
1017		if (!(dsisr & (DSISR_BAD_FAULT_64S | DSISR_NOHPTE |
1018			       DSISR_PROTFAULT | DSISR_SET_RC)))
1019			return RESUME_GUEST;
1020	}
1021
1022	/* Try to insert a pte */
1023	ret = kvmppc_book3s_instantiate_page(vcpu, gpa, memslot, writing,
1024					     kvm_ro, NULL, NULL);
1025
1026	if (ret == 0 || ret == -EAGAIN)
1027		ret = RESUME_GUEST;
1028	return ret;
1029}
1030
1031/* Called with kvm->mmu_lock held */
1032void kvm_unmap_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
1033		     unsigned long gfn)
1034{
1035	pte_t *ptep;
1036	unsigned long gpa = gfn << PAGE_SHIFT;
1037	unsigned int shift;
1038
1039	if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE) {
1040		uv_page_inval(kvm->arch.lpid, gpa, PAGE_SHIFT);
1041		return;
1042	}
1043
1044	ptep = find_kvm_secondary_pte(kvm, gpa, &shift);
1045	if (ptep && pte_present(*ptep))
1046		kvmppc_unmap_pte(kvm, ptep, gpa, shift, memslot,
1047				 kvm->arch.lpid);
1048}
1049
1050/* Called with kvm->mmu_lock held */
1051bool kvm_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
1052		   unsigned long gfn)
1053{
1054	pte_t *ptep;
1055	unsigned long gpa = gfn << PAGE_SHIFT;
1056	unsigned int shift;
1057	bool ref = false;
1058	unsigned long old, *rmapp;
1059
1060	if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE)
1061		return ref;
1062
1063	ptep = find_kvm_secondary_pte(kvm, gpa, &shift);
1064	if (ptep && pte_present(*ptep) && pte_young(*ptep)) {
1065		old = kvmppc_radix_update_pte(kvm, ptep, _PAGE_ACCESSED, 0,
1066					      gpa, shift);
1067		/* XXX need to flush tlb here? */
1068		/* Also clear bit in ptes in shadow pgtable for nested guests */
1069		rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1070		kvmhv_update_nest_rmap_rc_list(kvm, rmapp, _PAGE_ACCESSED, 0,
1071					       old & PTE_RPN_MASK,
1072					       1UL << shift);
1073		ref = true;
1074	}
1075	return ref;
1076}
1077
1078/* Called with kvm->mmu_lock held */
1079bool kvm_test_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
1080			unsigned long gfn)
1081
1082{
1083	pte_t *ptep;
1084	unsigned long gpa = gfn << PAGE_SHIFT;
1085	unsigned int shift;
1086	bool ref = false;
1087
1088	if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE)
1089		return ref;
1090
1091	ptep = find_kvm_secondary_pte(kvm, gpa, &shift);
1092	if (ptep && pte_present(*ptep) && pte_young(*ptep))
1093		ref = true;
1094	return ref;
1095}
1096
1097/* Returns the number of PAGE_SIZE pages that are dirty */
1098static int kvm_radix_test_clear_dirty(struct kvm *kvm,
1099				struct kvm_memory_slot *memslot, int pagenum)
1100{
1101	unsigned long gfn = memslot->base_gfn + pagenum;
1102	unsigned long gpa = gfn << PAGE_SHIFT;
1103	pte_t *ptep, pte;
1104	unsigned int shift;
1105	int ret = 0;
1106	unsigned long old, *rmapp;
1107
1108	if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE)
1109		return ret;
1110
1111	/*
1112	 * For performance reasons we don't hold kvm->mmu_lock while walking the
1113	 * partition scoped table.
1114	 */
1115	ptep = find_kvm_secondary_pte_unlocked(kvm, gpa, &shift);
1116	if (!ptep)
1117		return 0;
1118
1119	pte = READ_ONCE(*ptep);
1120	if (pte_present(pte) && pte_dirty(pte)) {
1121		spin_lock(&kvm->mmu_lock);
1122		/*
1123		 * Recheck the pte again
1124		 */
1125		if (pte_val(pte) != pte_val(*ptep)) {
1126			/*
1127			 * We have KVM_MEM_LOG_DIRTY_PAGES enabled. Hence we can
1128			 * only find PAGE_SIZE pte entries here. We can continue
1129			 * to use the pte addr returned by above page table
1130			 * walk.
1131			 */
1132			if (!pte_present(*ptep) || !pte_dirty(*ptep)) {
1133				spin_unlock(&kvm->mmu_lock);
1134				return 0;
1135			}
1136		}
1137
1138		ret = 1;
1139		VM_BUG_ON(shift);
1140		old = kvmppc_radix_update_pte(kvm, ptep, _PAGE_DIRTY, 0,
1141					      gpa, shift);
1142		kvmppc_radix_tlbie_page(kvm, gpa, shift, kvm->arch.lpid);
1143		/* Also clear bit in ptes in shadow pgtable for nested guests */
1144		rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1145		kvmhv_update_nest_rmap_rc_list(kvm, rmapp, _PAGE_DIRTY, 0,
1146					       old & PTE_RPN_MASK,
1147					       1UL << shift);
1148		spin_unlock(&kvm->mmu_lock);
1149	}
1150	return ret;
1151}
1152
1153long kvmppc_hv_get_dirty_log_radix(struct kvm *kvm,
1154			struct kvm_memory_slot *memslot, unsigned long *map)
1155{
1156	unsigned long i, j;
1157	int npages;
1158
1159	for (i = 0; i < memslot->npages; i = j) {
1160		npages = kvm_radix_test_clear_dirty(kvm, memslot, i);
1161
1162		/*
1163		 * Note that if npages > 0 then i must be a multiple of npages,
1164		 * since huge pages are only used to back the guest at guest
1165		 * real addresses that are a multiple of their size.
1166		 * Since we have at most one PTE covering any given guest
1167		 * real address, if npages > 1 we can skip to i + npages.
1168		 */
1169		j = i + 1;
1170		if (npages) {
1171			set_dirty_bits(map, i, npages);
1172			j = i + npages;
1173		}
1174	}
1175	return 0;
1176}
1177
1178void kvmppc_radix_flush_memslot(struct kvm *kvm,
1179				const struct kvm_memory_slot *memslot)
1180{
1181	unsigned long n;
1182	pte_t *ptep;
1183	unsigned long gpa;
1184	unsigned int shift;
1185
1186	if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START)
1187		kvmppc_uvmem_drop_pages(memslot, kvm, true);
1188
1189	if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE)
1190		return;
1191
1192	gpa = memslot->base_gfn << PAGE_SHIFT;
1193	spin_lock(&kvm->mmu_lock);
1194	for (n = memslot->npages; n; --n) {
1195		ptep = find_kvm_secondary_pte(kvm, gpa, &shift);
1196		if (ptep && pte_present(*ptep))
1197			kvmppc_unmap_pte(kvm, ptep, gpa, shift, memslot,
1198					 kvm->arch.lpid);
1199		gpa += PAGE_SIZE;
1200	}
1201	/*
1202	 * Increase the mmu notifier sequence number to prevent any page
1203	 * fault that read the memslot earlier from writing a PTE.
1204	 */
1205	kvm->mmu_invalidate_seq++;
1206	spin_unlock(&kvm->mmu_lock);
1207}
1208
1209static void add_rmmu_ap_encoding(struct kvm_ppc_rmmu_info *info,
1210				 int psize, int *indexp)
1211{
1212	if (!mmu_psize_defs[psize].shift)
1213		return;
1214	info->ap_encodings[*indexp] = mmu_psize_defs[psize].shift |
1215		(mmu_psize_defs[psize].ap << 29);
1216	++(*indexp);
1217}
1218
1219int kvmhv_get_rmmu_info(struct kvm *kvm, struct kvm_ppc_rmmu_info *info)
1220{
1221	int i;
1222
1223	if (!radix_enabled())
1224		return -EINVAL;
1225	memset(info, 0, sizeof(*info));
1226
1227	/* 4k page size */
1228	info->geometries[0].page_shift = 12;
1229	info->geometries[0].level_bits[0] = 9;
1230	for (i = 1; i < 4; ++i)
1231		info->geometries[0].level_bits[i] = p9_supported_radix_bits[i];
1232	/* 64k page size */
1233	info->geometries[1].page_shift = 16;
1234	for (i = 0; i < 4; ++i)
1235		info->geometries[1].level_bits[i] = p9_supported_radix_bits[i];
1236
1237	i = 0;
1238	add_rmmu_ap_encoding(info, MMU_PAGE_4K, &i);
1239	add_rmmu_ap_encoding(info, MMU_PAGE_64K, &i);
1240	add_rmmu_ap_encoding(info, MMU_PAGE_2M, &i);
1241	add_rmmu_ap_encoding(info, MMU_PAGE_1G, &i);
1242
1243	return 0;
1244}
1245
1246int kvmppc_init_vm_radix(struct kvm *kvm)
1247{
1248	kvm->arch.pgtable = pgd_alloc(kvm->mm);
1249	if (!kvm->arch.pgtable)
1250		return -ENOMEM;
1251	return 0;
1252}
1253
1254static void pte_ctor(void *addr)
1255{
1256	memset(addr, 0, RADIX_PTE_TABLE_SIZE);
1257}
1258
1259static void pmd_ctor(void *addr)
1260{
1261	memset(addr, 0, RADIX_PMD_TABLE_SIZE);
1262}
1263
1264struct debugfs_radix_state {
1265	struct kvm	*kvm;
1266	struct mutex	mutex;
1267	unsigned long	gpa;
1268	int		lpid;
1269	int		chars_left;
1270	int		buf_index;
1271	char		buf[128];
1272	u8		hdr;
1273};
1274
1275static int debugfs_radix_open(struct inode *inode, struct file *file)
1276{
1277	struct kvm *kvm = inode->i_private;
1278	struct debugfs_radix_state *p;
1279
1280	p = kzalloc(sizeof(*p), GFP_KERNEL);
1281	if (!p)
1282		return -ENOMEM;
1283
1284	kvm_get_kvm(kvm);
1285	p->kvm = kvm;
1286	mutex_init(&p->mutex);
1287	file->private_data = p;
1288
1289	return nonseekable_open(inode, file);
1290}
1291
1292static int debugfs_radix_release(struct inode *inode, struct file *file)
1293{
1294	struct debugfs_radix_state *p = file->private_data;
1295
1296	kvm_put_kvm(p->kvm);
1297	kfree(p);
1298	return 0;
1299}
1300
1301static ssize_t debugfs_radix_read(struct file *file, char __user *buf,
1302				 size_t len, loff_t *ppos)
1303{
1304	struct debugfs_radix_state *p = file->private_data;
1305	ssize_t ret, r;
1306	unsigned long n;
1307	struct kvm *kvm;
1308	unsigned long gpa;
1309	pgd_t *pgt;
1310	struct kvm_nested_guest *nested;
1311	pgd_t *pgdp;
1312	p4d_t p4d, *p4dp;
1313	pud_t pud, *pudp;
1314	pmd_t pmd, *pmdp;
1315	pte_t *ptep;
1316	int shift;
1317	unsigned long pte;
1318
1319	kvm = p->kvm;
1320	if (!kvm_is_radix(kvm))
1321		return 0;
1322
1323	ret = mutex_lock_interruptible(&p->mutex);
1324	if (ret)
1325		return ret;
1326
1327	if (p->chars_left) {
1328		n = p->chars_left;
1329		if (n > len)
1330			n = len;
1331		r = copy_to_user(buf, p->buf + p->buf_index, n);
1332		n -= r;
1333		p->chars_left -= n;
1334		p->buf_index += n;
1335		buf += n;
1336		len -= n;
1337		ret = n;
1338		if (r) {
1339			if (!n)
1340				ret = -EFAULT;
1341			goto out;
1342		}
1343	}
1344
1345	gpa = p->gpa;
1346	nested = NULL;
1347	pgt = NULL;
1348	while (len != 0 && p->lpid >= 0) {
1349		if (gpa >= RADIX_PGTABLE_RANGE) {
1350			gpa = 0;
1351			pgt = NULL;
1352			if (nested) {
1353				kvmhv_put_nested(nested);
1354				nested = NULL;
1355			}
1356			p->lpid = kvmhv_nested_next_lpid(kvm, p->lpid);
1357			p->hdr = 0;
1358			if (p->lpid < 0)
1359				break;
1360		}
1361		if (!pgt) {
1362			if (p->lpid == 0) {
1363				pgt = kvm->arch.pgtable;
1364			} else {
1365				nested = kvmhv_get_nested(kvm, p->lpid, false);
1366				if (!nested) {
1367					gpa = RADIX_PGTABLE_RANGE;
1368					continue;
1369				}
1370				pgt = nested->shadow_pgtable;
1371			}
1372		}
1373		n = 0;
1374		if (!p->hdr) {
1375			if (p->lpid > 0)
1376				n = scnprintf(p->buf, sizeof(p->buf),
1377					      "\nNested LPID %d: ", p->lpid);
1378			n += scnprintf(p->buf + n, sizeof(p->buf) - n,
1379				      "pgdir: %lx\n", (unsigned long)pgt);
1380			p->hdr = 1;
1381			goto copy;
1382		}
1383
1384		pgdp = pgt + pgd_index(gpa);
1385		p4dp = p4d_offset(pgdp, gpa);
1386		p4d = READ_ONCE(*p4dp);
1387		if (!(p4d_val(p4d) & _PAGE_PRESENT)) {
1388			gpa = (gpa & P4D_MASK) + P4D_SIZE;
1389			continue;
1390		}
1391
1392		pudp = pud_offset(&p4d, gpa);
1393		pud = READ_ONCE(*pudp);
1394		if (!(pud_val(pud) & _PAGE_PRESENT)) {
1395			gpa = (gpa & PUD_MASK) + PUD_SIZE;
1396			continue;
1397		}
1398		if (pud_val(pud) & _PAGE_PTE) {
1399			pte = pud_val(pud);
1400			shift = PUD_SHIFT;
1401			goto leaf;
1402		}
1403
1404		pmdp = pmd_offset(&pud, gpa);
1405		pmd = READ_ONCE(*pmdp);
1406		if (!(pmd_val(pmd) & _PAGE_PRESENT)) {
1407			gpa = (gpa & PMD_MASK) + PMD_SIZE;
1408			continue;
1409		}
1410		if (pmd_val(pmd) & _PAGE_PTE) {
1411			pte = pmd_val(pmd);
1412			shift = PMD_SHIFT;
1413			goto leaf;
1414		}
1415
1416		ptep = pte_offset_kernel(&pmd, gpa);
1417		pte = pte_val(READ_ONCE(*ptep));
1418		if (!(pte & _PAGE_PRESENT)) {
1419			gpa += PAGE_SIZE;
1420			continue;
1421		}
1422		shift = PAGE_SHIFT;
1423	leaf:
1424		n = scnprintf(p->buf, sizeof(p->buf),
1425			      " %lx: %lx %d\n", gpa, pte, shift);
1426		gpa += 1ul << shift;
1427	copy:
1428		p->chars_left = n;
1429		if (n > len)
1430			n = len;
1431		r = copy_to_user(buf, p->buf, n);
1432		n -= r;
1433		p->chars_left -= n;
1434		p->buf_index = n;
1435		buf += n;
1436		len -= n;
1437		ret += n;
1438		if (r) {
1439			if (!ret)
1440				ret = -EFAULT;
1441			break;
1442		}
1443	}
1444	p->gpa = gpa;
1445	if (nested)
1446		kvmhv_put_nested(nested);
1447
1448 out:
1449	mutex_unlock(&p->mutex);
1450	return ret;
1451}
1452
1453static ssize_t debugfs_radix_write(struct file *file, const char __user *buf,
1454			   size_t len, loff_t *ppos)
1455{
1456	return -EACCES;
1457}
1458
1459static const struct file_operations debugfs_radix_fops = {
1460	.owner	 = THIS_MODULE,
1461	.open	 = debugfs_radix_open,
1462	.release = debugfs_radix_release,
1463	.read	 = debugfs_radix_read,
1464	.write	 = debugfs_radix_write,
1465	.llseek	 = generic_file_llseek,
1466};
1467
1468void kvmhv_radix_debugfs_init(struct kvm *kvm)
1469{
1470	debugfs_create_file("radix", 0400, kvm->debugfs_dentry, kvm,
1471			    &debugfs_radix_fops);
1472}
1473
1474int kvmppc_radix_init(void)
1475{
1476	unsigned long size = sizeof(void *) << RADIX_PTE_INDEX_SIZE;
1477
1478	kvm_pte_cache = kmem_cache_create("kvm-pte", size, size, 0, pte_ctor);
1479	if (!kvm_pte_cache)
1480		return -ENOMEM;
1481
1482	size = sizeof(void *) << RADIX_PMD_INDEX_SIZE;
1483
1484	kvm_pmd_cache = kmem_cache_create("kvm-pmd", size, size, 0, pmd_ctor);
1485	if (!kvm_pmd_cache) {
1486		kmem_cache_destroy(kvm_pte_cache);
1487		return -ENOMEM;
1488	}
1489
1490	return 0;
1491}
1492
1493void kvmppc_radix_exit(void)
1494{
1495	kmem_cache_destroy(kvm_pte_cache);
1496	kmem_cache_destroy(kvm_pmd_cache);
1497}
1498