1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 *
4 * Procedures for interfacing to the RTAS on CHRP machines.
5 *
6 * Peter Bergner, IBM	March 2001.
7 * Copyright (C) 2001 IBM.
8 */
9
10#define pr_fmt(fmt)	"rtas: " fmt
11
12#include <linux/bsearch.h>
13#include <linux/capability.h>
14#include <linux/delay.h>
15#include <linux/export.h>
16#include <linux/init.h>
17#include <linux/kconfig.h>
18#include <linux/kernel.h>
19#include <linux/lockdep.h>
20#include <linux/memblock.h>
21#include <linux/mutex.h>
22#include <linux/of.h>
23#include <linux/of_fdt.h>
24#include <linux/reboot.h>
25#include <linux/sched.h>
26#include <linux/security.h>
27#include <linux/slab.h>
28#include <linux/spinlock.h>
29#include <linux/stdarg.h>
30#include <linux/syscalls.h>
31#include <linux/types.h>
32#include <linux/uaccess.h>
33#include <linux/xarray.h>
34
35#include <asm/delay.h>
36#include <asm/firmware.h>
37#include <asm/interrupt.h>
38#include <asm/machdep.h>
39#include <asm/mmu.h>
40#include <asm/page.h>
41#include <asm/rtas-work-area.h>
42#include <asm/rtas.h>
43#include <asm/time.h>
44#include <asm/trace.h>
45#include <asm/udbg.h>
46
47struct rtas_filter {
48	/* Indexes into the args buffer, -1 if not used */
49	const int buf_idx1;
50	const int size_idx1;
51	const int buf_idx2;
52	const int size_idx2;
53	/*
54	 * Assumed buffer size per the spec if the function does not
55	 * have a size parameter, e.g. ibm,errinjct. 0 if unused.
56	 */
57	const int fixed_size;
58};
59
60/**
61 * struct rtas_function - Descriptor for RTAS functions.
62 *
63 * @token: Value of @name if it exists under the /rtas node.
64 * @name: Function name.
65 * @filter: If non-NULL, invoking this function via the rtas syscall is
66 *          generally allowed, and @filter describes constraints on the
67 *          arguments. See also @banned_for_syscall_on_le.
68 * @banned_for_syscall_on_le: Set when call via sys_rtas is generally allowed
69 *                            but specifically restricted on ppc64le. Such
70 *                            functions are believed to have no users on
71 *                            ppc64le, and we want to keep it that way. It does
72 *                            not make sense for this to be set when @filter
73 *                            is NULL.
74 * @lock: Pointer to an optional dedicated per-function mutex. This
75 *        should be set for functions that require multiple calls in
76 *        sequence to complete a single operation, and such sequences
77 *        will disrupt each other if allowed to interleave. Users of
78 *        this function are required to hold the associated lock for
79 *        the duration of the call sequence. Add an explanatory
80 *        comment to the function table entry if setting this member.
81 */
82struct rtas_function {
83	s32 token;
84	const bool banned_for_syscall_on_le:1;
85	const char * const name;
86	const struct rtas_filter *filter;
87	struct mutex *lock;
88};
89
90/*
91 * Per-function locks for sequence-based RTAS functions.
92 */
93static DEFINE_MUTEX(rtas_ibm_activate_firmware_lock);
94static DEFINE_MUTEX(rtas_ibm_get_dynamic_sensor_state_lock);
95static DEFINE_MUTEX(rtas_ibm_get_indices_lock);
96static DEFINE_MUTEX(rtas_ibm_lpar_perftools_lock);
97static DEFINE_MUTEX(rtas_ibm_physical_attestation_lock);
98static DEFINE_MUTEX(rtas_ibm_set_dynamic_indicator_lock);
99DEFINE_MUTEX(rtas_ibm_get_vpd_lock);
100
101static struct rtas_function rtas_function_table[] __ro_after_init = {
102	[RTAS_FNIDX__CHECK_EXCEPTION] = {
103		.name = "check-exception",
104	},
105	[RTAS_FNIDX__DISPLAY_CHARACTER] = {
106		.name = "display-character",
107		.filter = &(const struct rtas_filter) {
108			.buf_idx1 = -1, .size_idx1 = -1,
109			.buf_idx2 = -1, .size_idx2 = -1,
110		},
111	},
112	[RTAS_FNIDX__EVENT_SCAN] = {
113		.name = "event-scan",
114	},
115	[RTAS_FNIDX__FREEZE_TIME_BASE] = {
116		.name = "freeze-time-base",
117	},
118	[RTAS_FNIDX__GET_POWER_LEVEL] = {
119		.name = "get-power-level",
120		.filter = &(const struct rtas_filter) {
121			.buf_idx1 = -1, .size_idx1 = -1,
122			.buf_idx2 = -1, .size_idx2 = -1,
123		},
124	},
125	[RTAS_FNIDX__GET_SENSOR_STATE] = {
126		.name = "get-sensor-state",
127		.filter = &(const struct rtas_filter) {
128			.buf_idx1 = -1, .size_idx1 = -1,
129			.buf_idx2 = -1, .size_idx2 = -1,
130		},
131	},
132	[RTAS_FNIDX__GET_TERM_CHAR] = {
133		.name = "get-term-char",
134	},
135	[RTAS_FNIDX__GET_TIME_OF_DAY] = {
136		.name = "get-time-of-day",
137		.filter = &(const struct rtas_filter) {
138			.buf_idx1 = -1, .size_idx1 = -1,
139			.buf_idx2 = -1, .size_idx2 = -1,
140		},
141	},
142	[RTAS_FNIDX__IBM_ACTIVATE_FIRMWARE] = {
143		.name = "ibm,activate-firmware",
144		.filter = &(const struct rtas_filter) {
145			.buf_idx1 = -1, .size_idx1 = -1,
146			.buf_idx2 = -1, .size_idx2 = -1,
147		},
148		/*
149		 * PAPR+ as of v2.13 doesn't explicitly impose any
150		 * restriction, but this typically requires multiple
151		 * calls before success, and there's no reason to
152		 * allow sequences to interleave.
153		 */
154		.lock = &rtas_ibm_activate_firmware_lock,
155	},
156	[RTAS_FNIDX__IBM_CBE_START_PTCAL] = {
157		.name = "ibm,cbe-start-ptcal",
158	},
159	[RTAS_FNIDX__IBM_CBE_STOP_PTCAL] = {
160		.name = "ibm,cbe-stop-ptcal",
161	},
162	[RTAS_FNIDX__IBM_CHANGE_MSI] = {
163		.name = "ibm,change-msi",
164	},
165	[RTAS_FNIDX__IBM_CLOSE_ERRINJCT] = {
166		.name = "ibm,close-errinjct",
167		.filter = &(const struct rtas_filter) {
168			.buf_idx1 = -1, .size_idx1 = -1,
169			.buf_idx2 = -1, .size_idx2 = -1,
170		},
171	},
172	[RTAS_FNIDX__IBM_CONFIGURE_BRIDGE] = {
173		.name = "ibm,configure-bridge",
174	},
175	[RTAS_FNIDX__IBM_CONFIGURE_CONNECTOR] = {
176		.name = "ibm,configure-connector",
177		.filter = &(const struct rtas_filter) {
178			.buf_idx1 = 0, .size_idx1 = -1,
179			.buf_idx2 = 1, .size_idx2 = -1,
180			.fixed_size = 4096,
181		},
182	},
183	[RTAS_FNIDX__IBM_CONFIGURE_KERNEL_DUMP] = {
184		.name = "ibm,configure-kernel-dump",
185	},
186	[RTAS_FNIDX__IBM_CONFIGURE_PE] = {
187		.name = "ibm,configure-pe",
188	},
189	[RTAS_FNIDX__IBM_CREATE_PE_DMA_WINDOW] = {
190		.name = "ibm,create-pe-dma-window",
191	},
192	[RTAS_FNIDX__IBM_DISPLAY_MESSAGE] = {
193		.name = "ibm,display-message",
194		.filter = &(const struct rtas_filter) {
195			.buf_idx1 = 0, .size_idx1 = -1,
196			.buf_idx2 = -1, .size_idx2 = -1,
197		},
198	},
199	[RTAS_FNIDX__IBM_ERRINJCT] = {
200		.name = "ibm,errinjct",
201		.filter = &(const struct rtas_filter) {
202			.buf_idx1 = 2, .size_idx1 = -1,
203			.buf_idx2 = -1, .size_idx2 = -1,
204			.fixed_size = 1024,
205		},
206	},
207	[RTAS_FNIDX__IBM_EXTI2C] = {
208		.name = "ibm,exti2c",
209	},
210	[RTAS_FNIDX__IBM_GET_CONFIG_ADDR_INFO] = {
211		.name = "ibm,get-config-addr-info",
212	},
213	[RTAS_FNIDX__IBM_GET_CONFIG_ADDR_INFO2] = {
214		.name = "ibm,get-config-addr-info2",
215		.filter = &(const struct rtas_filter) {
216			.buf_idx1 = -1, .size_idx1 = -1,
217			.buf_idx2 = -1, .size_idx2 = -1,
218		},
219	},
220	[RTAS_FNIDX__IBM_GET_DYNAMIC_SENSOR_STATE] = {
221		.name = "ibm,get-dynamic-sensor-state",
222		.filter = &(const struct rtas_filter) {
223			.buf_idx1 = 1, .size_idx1 = -1,
224			.buf_idx2 = -1, .size_idx2 = -1,
225		},
226		/*
227		 * PAPR+ v2.13 R1���7.3.19���3 is explicit that the OS
228		 * must not call ibm,get-dynamic-sensor-state with
229		 * different inputs until a non-retry status has been
230		 * returned.
231		 */
232		.lock = &rtas_ibm_get_dynamic_sensor_state_lock,
233	},
234	[RTAS_FNIDX__IBM_GET_INDICES] = {
235		.name = "ibm,get-indices",
236		.filter = &(const struct rtas_filter) {
237			.buf_idx1 = 2, .size_idx1 = 3,
238			.buf_idx2 = -1, .size_idx2 = -1,
239		},
240		/*
241		 * PAPR+ v2.13 R1���7.3.17���2 says that the OS must not
242		 * interleave ibm,get-indices call sequences with
243		 * different inputs.
244		 */
245		.lock = &rtas_ibm_get_indices_lock,
246	},
247	[RTAS_FNIDX__IBM_GET_RIO_TOPOLOGY] = {
248		.name = "ibm,get-rio-topology",
249	},
250	[RTAS_FNIDX__IBM_GET_SYSTEM_PARAMETER] = {
251		.name = "ibm,get-system-parameter",
252		.filter = &(const struct rtas_filter) {
253			.buf_idx1 = 1, .size_idx1 = 2,
254			.buf_idx2 = -1, .size_idx2 = -1,
255		},
256	},
257	[RTAS_FNIDX__IBM_GET_VPD] = {
258		.name = "ibm,get-vpd",
259		.filter = &(const struct rtas_filter) {
260			.buf_idx1 = 0, .size_idx1 = -1,
261			.buf_idx2 = 1, .size_idx2 = 2,
262		},
263		/*
264		 * PAPR+ v2.13 R1���7.3.20���4 indicates that sequences
265		 * should not be allowed to interleave.
266		 */
267		.lock = &rtas_ibm_get_vpd_lock,
268	},
269	[RTAS_FNIDX__IBM_GET_XIVE] = {
270		.name = "ibm,get-xive",
271	},
272	[RTAS_FNIDX__IBM_INT_OFF] = {
273		.name = "ibm,int-off",
274	},
275	[RTAS_FNIDX__IBM_INT_ON] = {
276		.name = "ibm,int-on",
277	},
278	[RTAS_FNIDX__IBM_IO_QUIESCE_ACK] = {
279		.name = "ibm,io-quiesce-ack",
280	},
281	[RTAS_FNIDX__IBM_LPAR_PERFTOOLS] = {
282		.name = "ibm,lpar-perftools",
283		.filter = &(const struct rtas_filter) {
284			.buf_idx1 = 2, .size_idx1 = 3,
285			.buf_idx2 = -1, .size_idx2 = -1,
286		},
287		/*
288		 * PAPR+ v2.13 R1���7.3.26���6 says the OS should allow
289		 * only one call sequence in progress at a time.
290		 */
291		.lock = &rtas_ibm_lpar_perftools_lock,
292	},
293	[RTAS_FNIDX__IBM_MANAGE_FLASH_IMAGE] = {
294		.name = "ibm,manage-flash-image",
295	},
296	[RTAS_FNIDX__IBM_MANAGE_STORAGE_PRESERVATION] = {
297		.name = "ibm,manage-storage-preservation",
298	},
299	[RTAS_FNIDX__IBM_NMI_INTERLOCK] = {
300		.name = "ibm,nmi-interlock",
301	},
302	[RTAS_FNIDX__IBM_NMI_REGISTER] = {
303		.name = "ibm,nmi-register",
304	},
305	[RTAS_FNIDX__IBM_OPEN_ERRINJCT] = {
306		.name = "ibm,open-errinjct",
307		.filter = &(const struct rtas_filter) {
308			.buf_idx1 = -1, .size_idx1 = -1,
309			.buf_idx2 = -1, .size_idx2 = -1,
310		},
311	},
312	[RTAS_FNIDX__IBM_OPEN_SRIOV_ALLOW_UNFREEZE] = {
313		.name = "ibm,open-sriov-allow-unfreeze",
314	},
315	[RTAS_FNIDX__IBM_OPEN_SRIOV_MAP_PE_NUMBER] = {
316		.name = "ibm,open-sriov-map-pe-number",
317	},
318	[RTAS_FNIDX__IBM_OS_TERM] = {
319		.name = "ibm,os-term",
320	},
321	[RTAS_FNIDX__IBM_PARTNER_CONTROL] = {
322		.name = "ibm,partner-control",
323	},
324	[RTAS_FNIDX__IBM_PHYSICAL_ATTESTATION] = {
325		.name = "ibm,physical-attestation",
326		.filter = &(const struct rtas_filter) {
327			.buf_idx1 = 0, .size_idx1 = 1,
328			.buf_idx2 = -1, .size_idx2 = -1,
329		},
330		/*
331		 * This follows a sequence-based pattern similar to
332		 * ibm,get-vpd et al. Since PAPR+ restricts
333		 * interleaving call sequences for other functions of
334		 * this style, assume the restriction applies here,
335		 * even though it's not explicit in the spec.
336		 */
337		.lock = &rtas_ibm_physical_attestation_lock,
338	},
339	[RTAS_FNIDX__IBM_PLATFORM_DUMP] = {
340		.name = "ibm,platform-dump",
341		.filter = &(const struct rtas_filter) {
342			.buf_idx1 = 4, .size_idx1 = 5,
343			.buf_idx2 = -1, .size_idx2 = -1,
344		},
345		/*
346		 * PAPR+ v2.13 7.3.3.4.1 indicates that concurrent
347		 * sequences of ibm,platform-dump are allowed if they
348		 * are operating on different dump tags. So leave the
349		 * lock pointer unset for now. This may need
350		 * reconsideration if kernel-internal users appear.
351		 */
352	},
353	[RTAS_FNIDX__IBM_POWER_OFF_UPS] = {
354		.name = "ibm,power-off-ups",
355	},
356	[RTAS_FNIDX__IBM_QUERY_INTERRUPT_SOURCE_NUMBER] = {
357		.name = "ibm,query-interrupt-source-number",
358	},
359	[RTAS_FNIDX__IBM_QUERY_PE_DMA_WINDOW] = {
360		.name = "ibm,query-pe-dma-window",
361	},
362	[RTAS_FNIDX__IBM_READ_PCI_CONFIG] = {
363		.name = "ibm,read-pci-config",
364	},
365	[RTAS_FNIDX__IBM_READ_SLOT_RESET_STATE] = {
366		.name = "ibm,read-slot-reset-state",
367		.filter = &(const struct rtas_filter) {
368			.buf_idx1 = -1, .size_idx1 = -1,
369			.buf_idx2 = -1, .size_idx2 = -1,
370		},
371	},
372	[RTAS_FNIDX__IBM_READ_SLOT_RESET_STATE2] = {
373		.name = "ibm,read-slot-reset-state2",
374	},
375	[RTAS_FNIDX__IBM_REMOVE_PE_DMA_WINDOW] = {
376		.name = "ibm,remove-pe-dma-window",
377	},
378	[RTAS_FNIDX__IBM_RESET_PE_DMA_WINDOW] = {
379		/*
380		 * Note: PAPR+ v2.13 7.3.31.4.1 spells this as
381		 * "ibm,reset-pe-dma-windows" (plural), but RTAS
382		 * implementations use the singular form in practice.
383		 */
384		.name = "ibm,reset-pe-dma-window",
385	},
386	[RTAS_FNIDX__IBM_SCAN_LOG_DUMP] = {
387		.name = "ibm,scan-log-dump",
388		.filter = &(const struct rtas_filter) {
389			.buf_idx1 = 0, .size_idx1 = 1,
390			.buf_idx2 = -1, .size_idx2 = -1,
391		},
392	},
393	[RTAS_FNIDX__IBM_SET_DYNAMIC_INDICATOR] = {
394		.name = "ibm,set-dynamic-indicator",
395		.filter = &(const struct rtas_filter) {
396			.buf_idx1 = 2, .size_idx1 = -1,
397			.buf_idx2 = -1, .size_idx2 = -1,
398		},
399		/*
400		 * PAPR+ v2.13 R1���7.3.18���3 says the OS must not call
401		 * this function with different inputs until a
402		 * non-retry status has been returned.
403		 */
404		.lock = &rtas_ibm_set_dynamic_indicator_lock,
405	},
406	[RTAS_FNIDX__IBM_SET_EEH_OPTION] = {
407		.name = "ibm,set-eeh-option",
408		.filter = &(const struct rtas_filter) {
409			.buf_idx1 = -1, .size_idx1 = -1,
410			.buf_idx2 = -1, .size_idx2 = -1,
411		},
412	},
413	[RTAS_FNIDX__IBM_SET_SLOT_RESET] = {
414		.name = "ibm,set-slot-reset",
415	},
416	[RTAS_FNIDX__IBM_SET_SYSTEM_PARAMETER] = {
417		.name = "ibm,set-system-parameter",
418		.filter = &(const struct rtas_filter) {
419			.buf_idx1 = 1, .size_idx1 = -1,
420			.buf_idx2 = -1, .size_idx2 = -1,
421		},
422	},
423	[RTAS_FNIDX__IBM_SET_XIVE] = {
424		.name = "ibm,set-xive",
425	},
426	[RTAS_FNIDX__IBM_SLOT_ERROR_DETAIL] = {
427		.name = "ibm,slot-error-detail",
428	},
429	[RTAS_FNIDX__IBM_SUSPEND_ME] = {
430		.name = "ibm,suspend-me",
431		.banned_for_syscall_on_le = true,
432		.filter = &(const struct rtas_filter) {
433			.buf_idx1 = -1, .size_idx1 = -1,
434			.buf_idx2 = -1, .size_idx2 = -1,
435		},
436	},
437	[RTAS_FNIDX__IBM_TUNE_DMA_PARMS] = {
438		.name = "ibm,tune-dma-parms",
439	},
440	[RTAS_FNIDX__IBM_UPDATE_FLASH_64_AND_REBOOT] = {
441		.name = "ibm,update-flash-64-and-reboot",
442	},
443	[RTAS_FNIDX__IBM_UPDATE_NODES] = {
444		.name = "ibm,update-nodes",
445		.banned_for_syscall_on_le = true,
446		.filter = &(const struct rtas_filter) {
447			.buf_idx1 = 0, .size_idx1 = -1,
448			.buf_idx2 = -1, .size_idx2 = -1,
449			.fixed_size = 4096,
450		},
451	},
452	[RTAS_FNIDX__IBM_UPDATE_PROPERTIES] = {
453		.name = "ibm,update-properties",
454		.banned_for_syscall_on_le = true,
455		.filter = &(const struct rtas_filter) {
456			.buf_idx1 = 0, .size_idx1 = -1,
457			.buf_idx2 = -1, .size_idx2 = -1,
458			.fixed_size = 4096,
459		},
460	},
461	[RTAS_FNIDX__IBM_VALIDATE_FLASH_IMAGE] = {
462		.name = "ibm,validate-flash-image",
463	},
464	[RTAS_FNIDX__IBM_WRITE_PCI_CONFIG] = {
465		.name = "ibm,write-pci-config",
466	},
467	[RTAS_FNIDX__NVRAM_FETCH] = {
468		.name = "nvram-fetch",
469	},
470	[RTAS_FNIDX__NVRAM_STORE] = {
471		.name = "nvram-store",
472	},
473	[RTAS_FNIDX__POWER_OFF] = {
474		.name = "power-off",
475	},
476	[RTAS_FNIDX__PUT_TERM_CHAR] = {
477		.name = "put-term-char",
478	},
479	[RTAS_FNIDX__QUERY_CPU_STOPPED_STATE] = {
480		.name = "query-cpu-stopped-state",
481	},
482	[RTAS_FNIDX__READ_PCI_CONFIG] = {
483		.name = "read-pci-config",
484	},
485	[RTAS_FNIDX__RTAS_LAST_ERROR] = {
486		.name = "rtas-last-error",
487	},
488	[RTAS_FNIDX__SET_INDICATOR] = {
489		.name = "set-indicator",
490		.filter = &(const struct rtas_filter) {
491			.buf_idx1 = -1, .size_idx1 = -1,
492			.buf_idx2 = -1, .size_idx2 = -1,
493		},
494	},
495	[RTAS_FNIDX__SET_POWER_LEVEL] = {
496		.name = "set-power-level",
497		.filter = &(const struct rtas_filter) {
498			.buf_idx1 = -1, .size_idx1 = -1,
499			.buf_idx2 = -1, .size_idx2 = -1,
500		},
501	},
502	[RTAS_FNIDX__SET_TIME_FOR_POWER_ON] = {
503		.name = "set-time-for-power-on",
504		.filter = &(const struct rtas_filter) {
505			.buf_idx1 = -1, .size_idx1 = -1,
506			.buf_idx2 = -1, .size_idx2 = -1,
507		},
508	},
509	[RTAS_FNIDX__SET_TIME_OF_DAY] = {
510		.name = "set-time-of-day",
511		.filter = &(const struct rtas_filter) {
512			.buf_idx1 = -1, .size_idx1 = -1,
513			.buf_idx2 = -1, .size_idx2 = -1,
514		},
515	},
516	[RTAS_FNIDX__START_CPU] = {
517		.name = "start-cpu",
518	},
519	[RTAS_FNIDX__STOP_SELF] = {
520		.name = "stop-self",
521	},
522	[RTAS_FNIDX__SYSTEM_REBOOT] = {
523		.name = "system-reboot",
524	},
525	[RTAS_FNIDX__THAW_TIME_BASE] = {
526		.name = "thaw-time-base",
527	},
528	[RTAS_FNIDX__WRITE_PCI_CONFIG] = {
529		.name = "write-pci-config",
530	},
531};
532
533#define for_each_rtas_function(funcp)                                       \
534	for (funcp = &rtas_function_table[0];                               \
535	     funcp < &rtas_function_table[ARRAY_SIZE(rtas_function_table)]; \
536	     ++funcp)
537
538/*
539 * Nearly all RTAS calls need to be serialized. All uses of the
540 * default rtas_args block must hold rtas_lock.
541 *
542 * Exceptions to the RTAS serialization requirement (e.g. stop-self)
543 * must use a separate rtas_args structure.
544 */
545static DEFINE_RAW_SPINLOCK(rtas_lock);
546static struct rtas_args rtas_args;
547
548/**
549 * rtas_function_token() - RTAS function token lookup.
550 * @handle: Function handle, e.g. RTAS_FN_EVENT_SCAN.
551 *
552 * Context: Any context.
553 * Return: the token value for the function if implemented by this platform,
554 *         otherwise RTAS_UNKNOWN_SERVICE.
555 */
556s32 rtas_function_token(const rtas_fn_handle_t handle)
557{
558	const size_t index = handle.index;
559	const bool out_of_bounds = index >= ARRAY_SIZE(rtas_function_table);
560
561	if (WARN_ONCE(out_of_bounds, "invalid function index %zu", index))
562		return RTAS_UNKNOWN_SERVICE;
563	/*
564	 * Various drivers attempt token lookups on non-RTAS
565	 * platforms.
566	 */
567	if (!rtas.dev)
568		return RTAS_UNKNOWN_SERVICE;
569
570	return rtas_function_table[index].token;
571}
572EXPORT_SYMBOL_GPL(rtas_function_token);
573
574static int rtas_function_cmp(const void *a, const void *b)
575{
576	const struct rtas_function *f1 = a;
577	const struct rtas_function *f2 = b;
578
579	return strcmp(f1->name, f2->name);
580}
581
582/*
583 * Boot-time initialization of the function table needs the lookup to
584 * return a non-const-qualified object. Use rtas_name_to_function()
585 * in all other contexts.
586 */
587static struct rtas_function *__rtas_name_to_function(const char *name)
588{
589	const struct rtas_function key = {
590		.name = name,
591	};
592	struct rtas_function *found;
593
594	found = bsearch(&key, rtas_function_table, ARRAY_SIZE(rtas_function_table),
595			sizeof(rtas_function_table[0]), rtas_function_cmp);
596
597	return found;
598}
599
600static const struct rtas_function *rtas_name_to_function(const char *name)
601{
602	return __rtas_name_to_function(name);
603}
604
605static DEFINE_XARRAY(rtas_token_to_function_xarray);
606
607static int __init rtas_token_to_function_xarray_init(void)
608{
609	const struct rtas_function *func;
610	int err = 0;
611
612	for_each_rtas_function(func) {
613		const s32 token = func->token;
614
615		if (token == RTAS_UNKNOWN_SERVICE)
616			continue;
617
618		err = xa_err(xa_store(&rtas_token_to_function_xarray,
619				      token, (void *)func, GFP_KERNEL));
620		if (err)
621			break;
622	}
623
624	return err;
625}
626arch_initcall(rtas_token_to_function_xarray_init);
627
628/*
629 * For use by sys_rtas(), where the token value is provided by user
630 * space and we don't want to warn on failed lookups.
631 */
632static const struct rtas_function *rtas_token_to_function_untrusted(s32 token)
633{
634	return xa_load(&rtas_token_to_function_xarray, token);
635}
636
637/*
638 * Reverse lookup for deriving the function descriptor from a
639 * known-good token value in contexts where the former is not already
640 * available. @token must be valid, e.g. derived from the result of a
641 * prior lookup against the function table.
642 */
643static const struct rtas_function *rtas_token_to_function(s32 token)
644{
645	const struct rtas_function *func;
646
647	if (WARN_ONCE(token < 0, "invalid token %d", token))
648		return NULL;
649
650	func = rtas_token_to_function_untrusted(token);
651	if (func)
652		return func;
653	/*
654	 * Fall back to linear scan in case the reverse mapping hasn't
655	 * been initialized yet.
656	 */
657	if (xa_empty(&rtas_token_to_function_xarray)) {
658		for_each_rtas_function(func) {
659			if (func->token == token)
660				return func;
661		}
662	}
663
664	WARN_ONCE(true, "unexpected failed lookup for token %d", token);
665	return NULL;
666}
667
668/* This is here deliberately so it's only used in this file */
669void enter_rtas(unsigned long);
670
671static void __do_enter_rtas(struct rtas_args *args)
672{
673	enter_rtas(__pa(args));
674	srr_regs_clobbered(); /* rtas uses SRRs, invalidate */
675}
676
677static void __do_enter_rtas_trace(struct rtas_args *args)
678{
679	const struct rtas_function *func = rtas_token_to_function(be32_to_cpu(args->token));
680
681	/*
682	 * If there is a per-function lock, it must be held by the
683	 * caller.
684	 */
685	if (func->lock)
686		lockdep_assert_held(func->lock);
687
688	if (args == &rtas_args)
689		lockdep_assert_held(&rtas_lock);
690
691	trace_rtas_input(args, func->name);
692	trace_rtas_ll_entry(args);
693
694	__do_enter_rtas(args);
695
696	trace_rtas_ll_exit(args);
697	trace_rtas_output(args, func->name);
698}
699
700static void do_enter_rtas(struct rtas_args *args)
701{
702	const unsigned long msr = mfmsr();
703	/*
704	 * Situations where we want to skip any active tracepoints for
705	 * safety reasons:
706	 *
707	 * 1. The last code executed on an offline CPU as it stops,
708	 *    i.e. we're about to call stop-self. The tracepoints'
709	 *    function name lookup uses xarray, which uses RCU, which
710	 *    isn't valid to call on an offline CPU.  Any events
711	 *    emitted on an offline CPU will be discarded anyway.
712	 *
713	 * 2. In real mode, as when invoking ibm,nmi-interlock from
714	 *    the pseries MCE handler. We cannot count on trace
715	 *    buffers or the entries in rtas_token_to_function_xarray
716	 *    to be contained in the RMO.
717	 */
718	const unsigned long mask = MSR_IR | MSR_DR;
719	const bool can_trace = likely(cpu_online(raw_smp_processor_id()) &&
720				      (msr & mask) == mask);
721	/*
722	 * Make sure MSR[RI] is currently enabled as it will be forced later
723	 * in enter_rtas.
724	 */
725	BUG_ON(!(msr & MSR_RI));
726
727	BUG_ON(!irqs_disabled());
728
729	hard_irq_disable(); /* Ensure MSR[EE] is disabled on PPC64 */
730
731	if (can_trace)
732		__do_enter_rtas_trace(args);
733	else
734		__do_enter_rtas(args);
735}
736
737struct rtas_t rtas;
738
739DEFINE_SPINLOCK(rtas_data_buf_lock);
740EXPORT_SYMBOL_GPL(rtas_data_buf_lock);
741
742char rtas_data_buf[RTAS_DATA_BUF_SIZE] __aligned(SZ_4K);
743EXPORT_SYMBOL_GPL(rtas_data_buf);
744
745unsigned long rtas_rmo_buf;
746
747/*
748 * If non-NULL, this gets called when the kernel terminates.
749 * This is done like this so rtas_flash can be a module.
750 */
751void (*rtas_flash_term_hook)(int);
752EXPORT_SYMBOL_GPL(rtas_flash_term_hook);
753
754/*
755 * call_rtas_display_status and call_rtas_display_status_delay
756 * are designed only for very early low-level debugging, which
757 * is why the token is hard-coded to 10.
758 */
759static void call_rtas_display_status(unsigned char c)
760{
761	unsigned long flags;
762
763	if (!rtas.base)
764		return;
765
766	raw_spin_lock_irqsave(&rtas_lock, flags);
767	rtas_call_unlocked(&rtas_args, 10, 1, 1, NULL, c);
768	raw_spin_unlock_irqrestore(&rtas_lock, flags);
769}
770
771static void call_rtas_display_status_delay(char c)
772{
773	static int pending_newline = 0;  /* did last write end with unprinted newline? */
774	static int width = 16;
775
776	if (c == '\n') {
777		while (width-- > 0)
778			call_rtas_display_status(' ');
779		width = 16;
780		mdelay(500);
781		pending_newline = 1;
782	} else {
783		if (pending_newline) {
784			call_rtas_display_status('\r');
785			call_rtas_display_status('\n');
786		}
787		pending_newline = 0;
788		if (width--) {
789			call_rtas_display_status(c);
790			udelay(10000);
791		}
792	}
793}
794
795void __init udbg_init_rtas_panel(void)
796{
797	udbg_putc = call_rtas_display_status_delay;
798}
799
800#ifdef CONFIG_UDBG_RTAS_CONSOLE
801
802/* If you think you're dying before early_init_dt_scan_rtas() does its
803 * work, you can hard code the token values for your firmware here and
804 * hardcode rtas.base/entry etc.
805 */
806static unsigned int rtas_putchar_token = RTAS_UNKNOWN_SERVICE;
807static unsigned int rtas_getchar_token = RTAS_UNKNOWN_SERVICE;
808
809static void udbg_rtascon_putc(char c)
810{
811	int tries;
812
813	if (!rtas.base)
814		return;
815
816	/* Add CRs before LFs */
817	if (c == '\n')
818		udbg_rtascon_putc('\r');
819
820	/* if there is more than one character to be displayed, wait a bit */
821	for (tries = 0; tries < 16; tries++) {
822		if (rtas_call(rtas_putchar_token, 1, 1, NULL, c) == 0)
823			break;
824		udelay(1000);
825	}
826}
827
828static int udbg_rtascon_getc_poll(void)
829{
830	int c;
831
832	if (!rtas.base)
833		return -1;
834
835	if (rtas_call(rtas_getchar_token, 0, 2, &c))
836		return -1;
837
838	return c;
839}
840
841static int udbg_rtascon_getc(void)
842{
843	int c;
844
845	while ((c = udbg_rtascon_getc_poll()) == -1)
846		;
847
848	return c;
849}
850
851
852void __init udbg_init_rtas_console(void)
853{
854	udbg_putc = udbg_rtascon_putc;
855	udbg_getc = udbg_rtascon_getc;
856	udbg_getc_poll = udbg_rtascon_getc_poll;
857}
858#endif /* CONFIG_UDBG_RTAS_CONSOLE */
859
860void rtas_progress(char *s, unsigned short hex)
861{
862	struct device_node *root;
863	int width;
864	const __be32 *p;
865	char *os;
866	static int display_character, set_indicator;
867	static int display_width, display_lines, form_feed;
868	static const int *row_width;
869	static DEFINE_SPINLOCK(progress_lock);
870	static int current_line;
871	static int pending_newline = 0;  /* did last write end with unprinted newline? */
872
873	if (!rtas.base)
874		return;
875
876	if (display_width == 0) {
877		display_width = 0x10;
878		if ((root = of_find_node_by_path("/rtas"))) {
879			if ((p = of_get_property(root,
880					"ibm,display-line-length", NULL)))
881				display_width = be32_to_cpu(*p);
882			if ((p = of_get_property(root,
883					"ibm,form-feed", NULL)))
884				form_feed = be32_to_cpu(*p);
885			if ((p = of_get_property(root,
886					"ibm,display-number-of-lines", NULL)))
887				display_lines = be32_to_cpu(*p);
888			row_width = of_get_property(root,
889					"ibm,display-truncation-length", NULL);
890			of_node_put(root);
891		}
892		display_character = rtas_function_token(RTAS_FN_DISPLAY_CHARACTER);
893		set_indicator = rtas_function_token(RTAS_FN_SET_INDICATOR);
894	}
895
896	if (display_character == RTAS_UNKNOWN_SERVICE) {
897		/* use hex display if available */
898		if (set_indicator != RTAS_UNKNOWN_SERVICE)
899			rtas_call(set_indicator, 3, 1, NULL, 6, 0, hex);
900		return;
901	}
902
903	spin_lock(&progress_lock);
904
905	/*
906	 * Last write ended with newline, but we didn't print it since
907	 * it would just clear the bottom line of output. Print it now
908	 * instead.
909	 *
910	 * If no newline is pending and form feed is supported, clear the
911	 * display with a form feed; otherwise, print a CR to start output
912	 * at the beginning of the line.
913	 */
914	if (pending_newline) {
915		rtas_call(display_character, 1, 1, NULL, '\r');
916		rtas_call(display_character, 1, 1, NULL, '\n');
917		pending_newline = 0;
918	} else {
919		current_line = 0;
920		if (form_feed)
921			rtas_call(display_character, 1, 1, NULL,
922				  (char)form_feed);
923		else
924			rtas_call(display_character, 1, 1, NULL, '\r');
925	}
926
927	if (row_width)
928		width = row_width[current_line];
929	else
930		width = display_width;
931	os = s;
932	while (*os) {
933		if (*os == '\n' || *os == '\r') {
934			/* If newline is the last character, save it
935			 * until next call to avoid bumping up the
936			 * display output.
937			 */
938			if (*os == '\n' && !os[1]) {
939				pending_newline = 1;
940				current_line++;
941				if (current_line > display_lines-1)
942					current_line = display_lines-1;
943				spin_unlock(&progress_lock);
944				return;
945			}
946
947			/* RTAS wants CR-LF, not just LF */
948
949			if (*os == '\n') {
950				rtas_call(display_character, 1, 1, NULL, '\r');
951				rtas_call(display_character, 1, 1, NULL, '\n');
952			} else {
953				/* CR might be used to re-draw a line, so we'll
954				 * leave it alone and not add LF.
955				 */
956				rtas_call(display_character, 1, 1, NULL, *os);
957			}
958
959			if (row_width)
960				width = row_width[current_line];
961			else
962				width = display_width;
963		} else {
964			width--;
965			rtas_call(display_character, 1, 1, NULL, *os);
966		}
967
968		os++;
969
970		/* if we overwrite the screen length */
971		if (width <= 0)
972			while ((*os != 0) && (*os != '\n') && (*os != '\r'))
973				os++;
974	}
975
976	spin_unlock(&progress_lock);
977}
978EXPORT_SYMBOL_GPL(rtas_progress);		/* needed by rtas_flash module */
979
980int rtas_token(const char *service)
981{
982	const struct rtas_function *func;
983	const __be32 *tokp;
984
985	if (rtas.dev == NULL)
986		return RTAS_UNKNOWN_SERVICE;
987
988	func = rtas_name_to_function(service);
989	if (func)
990		return func->token;
991	/*
992	 * The caller is looking up a name that is not known to be an
993	 * RTAS function. Either it's a function that needs to be
994	 * added to the table, or they're misusing rtas_token() to
995	 * access non-function properties of the /rtas node. Warn and
996	 * fall back to the legacy behavior.
997	 */
998	WARN_ONCE(1, "unknown function `%s`, should it be added to rtas_function_table?\n",
999		  service);
1000
1001	tokp = of_get_property(rtas.dev, service, NULL);
1002	return tokp ? be32_to_cpu(*tokp) : RTAS_UNKNOWN_SERVICE;
1003}
1004EXPORT_SYMBOL_GPL(rtas_token);
1005
1006#ifdef CONFIG_RTAS_ERROR_LOGGING
1007
1008static u32 rtas_error_log_max __ro_after_init = RTAS_ERROR_LOG_MAX;
1009
1010/*
1011 * Return the firmware-specified size of the error log buffer
1012 *  for all rtas calls that require an error buffer argument.
1013 *  This includes 'check-exception' and 'rtas-last-error'.
1014 */
1015int rtas_get_error_log_max(void)
1016{
1017	return rtas_error_log_max;
1018}
1019
1020static void __init init_error_log_max(void)
1021{
1022	static const char propname[] __initconst = "rtas-error-log-max";
1023	u32 max;
1024
1025	if (of_property_read_u32(rtas.dev, propname, &max)) {
1026		pr_warn("%s not found, using default of %u\n",
1027			propname, RTAS_ERROR_LOG_MAX);
1028		max = RTAS_ERROR_LOG_MAX;
1029	}
1030
1031	if (max > RTAS_ERROR_LOG_MAX) {
1032		pr_warn("%s = %u, clamping max error log size to %u\n",
1033			propname, max, RTAS_ERROR_LOG_MAX);
1034		max = RTAS_ERROR_LOG_MAX;
1035	}
1036
1037	rtas_error_log_max = max;
1038}
1039
1040
1041static char rtas_err_buf[RTAS_ERROR_LOG_MAX];
1042
1043/** Return a copy of the detailed error text associated with the
1044 *  most recent failed call to rtas.  Because the error text
1045 *  might go stale if there are any other intervening rtas calls,
1046 *  this routine must be called atomically with whatever produced
1047 *  the error (i.e. with rtas_lock still held from the previous call).
1048 */
1049static char *__fetch_rtas_last_error(char *altbuf)
1050{
1051	const s32 token = rtas_function_token(RTAS_FN_RTAS_LAST_ERROR);
1052	struct rtas_args err_args, save_args;
1053	u32 bufsz;
1054	char *buf = NULL;
1055
1056	lockdep_assert_held(&rtas_lock);
1057
1058	if (token == -1)
1059		return NULL;
1060
1061	bufsz = rtas_get_error_log_max();
1062
1063	err_args.token = cpu_to_be32(token);
1064	err_args.nargs = cpu_to_be32(2);
1065	err_args.nret = cpu_to_be32(1);
1066	err_args.args[0] = cpu_to_be32(__pa(rtas_err_buf));
1067	err_args.args[1] = cpu_to_be32(bufsz);
1068	err_args.args[2] = 0;
1069
1070	save_args = rtas_args;
1071	rtas_args = err_args;
1072
1073	do_enter_rtas(&rtas_args);
1074
1075	err_args = rtas_args;
1076	rtas_args = save_args;
1077
1078	/* Log the error in the unlikely case that there was one. */
1079	if (unlikely(err_args.args[2] == 0)) {
1080		if (altbuf) {
1081			buf = altbuf;
1082		} else {
1083			buf = rtas_err_buf;
1084			if (slab_is_available())
1085				buf = kmalloc(RTAS_ERROR_LOG_MAX, GFP_ATOMIC);
1086		}
1087		if (buf)
1088			memmove(buf, rtas_err_buf, RTAS_ERROR_LOG_MAX);
1089	}
1090
1091	return buf;
1092}
1093
1094#define get_errorlog_buffer()	kmalloc(RTAS_ERROR_LOG_MAX, GFP_KERNEL)
1095
1096#else /* CONFIG_RTAS_ERROR_LOGGING */
1097#define __fetch_rtas_last_error(x)	NULL
1098#define get_errorlog_buffer()		NULL
1099static void __init init_error_log_max(void) {}
1100#endif
1101
1102
1103static void
1104va_rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret,
1105		      va_list list)
1106{
1107	int i;
1108
1109	args->token = cpu_to_be32(token);
1110	args->nargs = cpu_to_be32(nargs);
1111	args->nret  = cpu_to_be32(nret);
1112	args->rets  = &(args->args[nargs]);
1113
1114	for (i = 0; i < nargs; ++i)
1115		args->args[i] = cpu_to_be32(va_arg(list, __u32));
1116
1117	for (i = 0; i < nret; ++i)
1118		args->rets[i] = 0;
1119
1120	do_enter_rtas(args);
1121}
1122
1123/**
1124 * rtas_call_unlocked() - Invoke an RTAS firmware function without synchronization.
1125 * @args: RTAS parameter block to be used for the call, must obey RTAS addressing
1126 *        constraints.
1127 * @token: Identifies the function being invoked.
1128 * @nargs: Number of input parameters. Does not include token.
1129 * @nret: Number of output parameters, including the call status.
1130 * @....: List of @nargs input parameters.
1131 *
1132 * Invokes the RTAS function indicated by @token, which the caller
1133 * should obtain via rtas_function_token().
1134 *
1135 * This function is similar to rtas_call(), but must be used with a
1136 * limited set of RTAS calls specifically exempted from the general
1137 * requirement that only one RTAS call may be in progress at any
1138 * time. Examples include stop-self and ibm,nmi-interlock.
1139 */
1140void rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret, ...)
1141{
1142	va_list list;
1143
1144	va_start(list, nret);
1145	va_rtas_call_unlocked(args, token, nargs, nret, list);
1146	va_end(list);
1147}
1148
1149static bool token_is_restricted_errinjct(s32 token)
1150{
1151	return token == rtas_function_token(RTAS_FN_IBM_OPEN_ERRINJCT) ||
1152	       token == rtas_function_token(RTAS_FN_IBM_ERRINJCT);
1153}
1154
1155/**
1156 * rtas_call() - Invoke an RTAS firmware function.
1157 * @token: Identifies the function being invoked.
1158 * @nargs: Number of input parameters. Does not include token.
1159 * @nret: Number of output parameters, including the call status.
1160 * @outputs: Array of @nret output words.
1161 * @....: List of @nargs input parameters.
1162 *
1163 * Invokes the RTAS function indicated by @token, which the caller
1164 * should obtain via rtas_function_token().
1165 *
1166 * The @nargs and @nret arguments must match the number of input and
1167 * output parameters specified for the RTAS function.
1168 *
1169 * rtas_call() returns RTAS status codes, not conventional Linux errno
1170 * values. Callers must translate any failure to an appropriate errno
1171 * in syscall context. Most callers of RTAS functions that can return
1172 * -2 or 990x should use rtas_busy_delay() to correctly handle those
1173 * statuses before calling again.
1174 *
1175 * The return value descriptions are adapted from 7.2.8 [RTAS] Return
1176 * Codes of the PAPR and CHRP specifications.
1177 *
1178 * Context: Process context preferably, interrupt context if
1179 *          necessary.  Acquires an internal spinlock and may perform
1180 *          GFP_ATOMIC slab allocation in error path. Unsafe for NMI
1181 *          context.
1182 * Return:
1183 * *                          0 - RTAS function call succeeded.
1184 * *                         -1 - RTAS function encountered a hardware or
1185 *                                platform error, or the token is invalid,
1186 *                                or the function is restricted by kernel policy.
1187 * *                         -2 - Specs say "A necessary hardware device was busy,
1188 *                                and the requested function could not be
1189 *                                performed. The operation should be retried at
1190 *                                a later time." This is misleading, at least with
1191 *                                respect to current RTAS implementations. What it
1192 *                                usually means in practice is that the function
1193 *                                could not be completed while meeting RTAS's
1194 *                                deadline for returning control to the OS (250us
1195 *                                for PAPR/PowerVM, typically), but the call may be
1196 *                                immediately reattempted to resume work on it.
1197 * *                         -3 - Parameter error.
1198 * *                         -7 - Unexpected state change.
1199 * *                9000...9899 - Vendor-specific success codes.
1200 * *                9900...9905 - Advisory extended delay. Caller should try
1201 *                                again after ~10^x ms has elapsed, where x is
1202 *                                the last digit of the status [0-5]. Again going
1203 *                                beyond the PAPR text, 990x on PowerVM indicates
1204 *                                contention for RTAS-internal resources. Other
1205 *                                RTAS call sequences in progress should be
1206 *                                allowed to complete before reattempting the
1207 *                                call.
1208 * *                      -9000 - Multi-level isolation error.
1209 * *              -9999...-9004 - Vendor-specific error codes.
1210 * * Additional negative values - Function-specific error.
1211 * * Additional positive values - Function-specific success.
1212 */
1213int rtas_call(int token, int nargs, int nret, int *outputs, ...)
1214{
1215	struct pin_cookie cookie;
1216	va_list list;
1217	int i;
1218	unsigned long flags;
1219	struct rtas_args *args;
1220	char *buff_copy = NULL;
1221	int ret;
1222
1223	if (!rtas.entry || token == RTAS_UNKNOWN_SERVICE)
1224		return -1;
1225
1226	if (token_is_restricted_errinjct(token)) {
1227		/*
1228		 * It would be nicer to not discard the error value
1229		 * from security_locked_down(), but callers expect an
1230		 * RTAS status, not an errno.
1231		 */
1232		if (security_locked_down(LOCKDOWN_RTAS_ERROR_INJECTION))
1233			return -1;
1234	}
1235
1236	if ((mfmsr() & (MSR_IR|MSR_DR)) != (MSR_IR|MSR_DR)) {
1237		WARN_ON_ONCE(1);
1238		return -1;
1239	}
1240
1241	raw_spin_lock_irqsave(&rtas_lock, flags);
1242	cookie = lockdep_pin_lock(&rtas_lock);
1243
1244	/* We use the global rtas args buffer */
1245	args = &rtas_args;
1246
1247	va_start(list, outputs);
1248	va_rtas_call_unlocked(args, token, nargs, nret, list);
1249	va_end(list);
1250
1251	/* A -1 return code indicates that the last command couldn't
1252	   be completed due to a hardware error. */
1253	if (be32_to_cpu(args->rets[0]) == -1)
1254		buff_copy = __fetch_rtas_last_error(NULL);
1255
1256	if (nret > 1 && outputs != NULL)
1257		for (i = 0; i < nret-1; ++i)
1258			outputs[i] = be32_to_cpu(args->rets[i + 1]);
1259	ret = (nret > 0) ? be32_to_cpu(args->rets[0]) : 0;
1260
1261	lockdep_unpin_lock(&rtas_lock, cookie);
1262	raw_spin_unlock_irqrestore(&rtas_lock, flags);
1263
1264	if (buff_copy) {
1265		log_error(buff_copy, ERR_TYPE_RTAS_LOG, 0);
1266		if (slab_is_available())
1267			kfree(buff_copy);
1268	}
1269	return ret;
1270}
1271EXPORT_SYMBOL_GPL(rtas_call);
1272
1273/**
1274 * rtas_busy_delay_time() - From an RTAS status value, calculate the
1275 *                          suggested delay time in milliseconds.
1276 *
1277 * @status: a value returned from rtas_call() or similar APIs which return
1278 *          the status of a RTAS function call.
1279 *
1280 * Context: Any context.
1281 *
1282 * Return:
1283 * * 100000 - If @status is 9905.
1284 * * 10000  - If @status is 9904.
1285 * * 1000   - If @status is 9903.
1286 * * 100    - If @status is 9902.
1287 * * 10     - If @status is 9901.
1288 * * 1      - If @status is either 9900 or -2. This is "wrong" for -2, but
1289 *            some callers depend on this behavior, and the worst outcome
1290 *            is that they will delay for longer than necessary.
1291 * * 0      - If @status is not a busy or extended delay value.
1292 */
1293unsigned int rtas_busy_delay_time(int status)
1294{
1295	int order;
1296	unsigned int ms = 0;
1297
1298	if (status == RTAS_BUSY) {
1299		ms = 1;
1300	} else if (status >= RTAS_EXTENDED_DELAY_MIN &&
1301		   status <= RTAS_EXTENDED_DELAY_MAX) {
1302		order = status - RTAS_EXTENDED_DELAY_MIN;
1303		for (ms = 1; order > 0; order--)
1304			ms *= 10;
1305	}
1306
1307	return ms;
1308}
1309
1310/*
1311 * Early boot fallback for rtas_busy_delay().
1312 */
1313static bool __init rtas_busy_delay_early(int status)
1314{
1315	static size_t successive_ext_delays __initdata;
1316	bool retry;
1317
1318	switch (status) {
1319	case RTAS_EXTENDED_DELAY_MIN...RTAS_EXTENDED_DELAY_MAX:
1320		/*
1321		 * In the unlikely case that we receive an extended
1322		 * delay status in early boot, the OS is probably not
1323		 * the cause, and there's nothing we can do to clear
1324		 * the condition. Best we can do is delay for a bit
1325		 * and hope it's transient. Lie to the caller if it
1326		 * seems like we're stuck in a retry loop.
1327		 */
1328		mdelay(1);
1329		retry = true;
1330		successive_ext_delays += 1;
1331		if (successive_ext_delays > 1000) {
1332			pr_err("too many extended delays, giving up\n");
1333			dump_stack();
1334			retry = false;
1335			successive_ext_delays = 0;
1336		}
1337		break;
1338	case RTAS_BUSY:
1339		retry = true;
1340		successive_ext_delays = 0;
1341		break;
1342	default:
1343		retry = false;
1344		successive_ext_delays = 0;
1345		break;
1346	}
1347
1348	return retry;
1349}
1350
1351/**
1352 * rtas_busy_delay() - helper for RTAS busy and extended delay statuses
1353 *
1354 * @status: a value returned from rtas_call() or similar APIs which return
1355 *          the status of a RTAS function call.
1356 *
1357 * Context: Process context. May sleep or schedule.
1358 *
1359 * Return:
1360 * * true  - @status is RTAS_BUSY or an extended delay hint. The
1361 *           caller may assume that the CPU has been yielded if necessary,
1362 *           and that an appropriate delay for @status has elapsed.
1363 *           Generally the caller should reattempt the RTAS call which
1364 *           yielded @status.
1365 *
1366 * * false - @status is not @RTAS_BUSY nor an extended delay hint. The
1367 *           caller is responsible for handling @status.
1368 */
1369bool __ref rtas_busy_delay(int status)
1370{
1371	unsigned int ms;
1372	bool ret;
1373
1374	/*
1375	 * Can't do timed sleeps before timekeeping is up.
1376	 */
1377	if (system_state < SYSTEM_SCHEDULING)
1378		return rtas_busy_delay_early(status);
1379
1380	switch (status) {
1381	case RTAS_EXTENDED_DELAY_MIN...RTAS_EXTENDED_DELAY_MAX:
1382		ret = true;
1383		ms = rtas_busy_delay_time(status);
1384		/*
1385		 * The extended delay hint can be as high as 100 seconds.
1386		 * Surely any function returning such a status is either
1387		 * buggy or isn't going to be significantly slowed by us
1388		 * polling at 1HZ. Clamp the sleep time to one second.
1389		 */
1390		ms = clamp(ms, 1U, 1000U);
1391		/*
1392		 * The delay hint is an order-of-magnitude suggestion, not
1393		 * a minimum. It is fine, possibly even advantageous, for
1394		 * us to pause for less time than hinted. For small values,
1395		 * use usleep_range() to ensure we don't sleep much longer
1396		 * than actually needed.
1397		 *
1398		 * See Documentation/timers/timers-howto.rst for
1399		 * explanation of the threshold used here. In effect we use
1400		 * usleep_range() for 9900 and 9901, msleep() for
1401		 * 9902-9905.
1402		 */
1403		if (ms <= 20)
1404			usleep_range(ms * 100, ms * 1000);
1405		else
1406			msleep(ms);
1407		break;
1408	case RTAS_BUSY:
1409		ret = true;
1410		/*
1411		 * We should call again immediately if there's no other
1412		 * work to do.
1413		 */
1414		cond_resched();
1415		break;
1416	default:
1417		ret = false;
1418		/*
1419		 * Not a busy or extended delay status; the caller should
1420		 * handle @status itself. Ensure we warn on misuses in
1421		 * atomic context regardless.
1422		 */
1423		might_sleep();
1424		break;
1425	}
1426
1427	return ret;
1428}
1429EXPORT_SYMBOL_GPL(rtas_busy_delay);
1430
1431int rtas_error_rc(int rtas_rc)
1432{
1433	int rc;
1434
1435	switch (rtas_rc) {
1436	case RTAS_HARDWARE_ERROR:	/* Hardware Error */
1437		rc = -EIO;
1438		break;
1439	case RTAS_INVALID_PARAMETER:	/* Bad indicator/domain/etc */
1440		rc = -EINVAL;
1441		break;
1442	case -9000:			/* Isolation error */
1443		rc = -EFAULT;
1444		break;
1445	case -9001:			/* Outstanding TCE/PTE */
1446		rc = -EEXIST;
1447		break;
1448	case -9002:			/* No usable slot */
1449		rc = -ENODEV;
1450		break;
1451	default:
1452		pr_err("%s: unexpected error %d\n", __func__, rtas_rc);
1453		rc = -ERANGE;
1454		break;
1455	}
1456	return rc;
1457}
1458EXPORT_SYMBOL_GPL(rtas_error_rc);
1459
1460int rtas_get_power_level(int powerdomain, int *level)
1461{
1462	int token = rtas_function_token(RTAS_FN_GET_POWER_LEVEL);
1463	int rc;
1464
1465	if (token == RTAS_UNKNOWN_SERVICE)
1466		return -ENOENT;
1467
1468	while ((rc = rtas_call(token, 1, 2, level, powerdomain)) == RTAS_BUSY)
1469		udelay(1);
1470
1471	if (rc < 0)
1472		return rtas_error_rc(rc);
1473	return rc;
1474}
1475EXPORT_SYMBOL_GPL(rtas_get_power_level);
1476
1477int rtas_set_power_level(int powerdomain, int level, int *setlevel)
1478{
1479	int token = rtas_function_token(RTAS_FN_SET_POWER_LEVEL);
1480	int rc;
1481
1482	if (token == RTAS_UNKNOWN_SERVICE)
1483		return -ENOENT;
1484
1485	do {
1486		rc = rtas_call(token, 2, 2, setlevel, powerdomain, level);
1487	} while (rtas_busy_delay(rc));
1488
1489	if (rc < 0)
1490		return rtas_error_rc(rc);
1491	return rc;
1492}
1493EXPORT_SYMBOL_GPL(rtas_set_power_level);
1494
1495int rtas_get_sensor(int sensor, int index, int *state)
1496{
1497	int token = rtas_function_token(RTAS_FN_GET_SENSOR_STATE);
1498	int rc;
1499
1500	if (token == RTAS_UNKNOWN_SERVICE)
1501		return -ENOENT;
1502
1503	do {
1504		rc = rtas_call(token, 2, 2, state, sensor, index);
1505	} while (rtas_busy_delay(rc));
1506
1507	if (rc < 0)
1508		return rtas_error_rc(rc);
1509	return rc;
1510}
1511EXPORT_SYMBOL_GPL(rtas_get_sensor);
1512
1513int rtas_get_sensor_fast(int sensor, int index, int *state)
1514{
1515	int token = rtas_function_token(RTAS_FN_GET_SENSOR_STATE);
1516	int rc;
1517
1518	if (token == RTAS_UNKNOWN_SERVICE)
1519		return -ENOENT;
1520
1521	rc = rtas_call(token, 2, 2, state, sensor, index);
1522	WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN &&
1523				    rc <= RTAS_EXTENDED_DELAY_MAX));
1524
1525	if (rc < 0)
1526		return rtas_error_rc(rc);
1527	return rc;
1528}
1529
1530bool rtas_indicator_present(int token, int *maxindex)
1531{
1532	int proplen, count, i;
1533	const struct indicator_elem {
1534		__be32 token;
1535		__be32 maxindex;
1536	} *indicators;
1537
1538	indicators = of_get_property(rtas.dev, "rtas-indicators", &proplen);
1539	if (!indicators)
1540		return false;
1541
1542	count = proplen / sizeof(struct indicator_elem);
1543
1544	for (i = 0; i < count; i++) {
1545		if (__be32_to_cpu(indicators[i].token) != token)
1546			continue;
1547		if (maxindex)
1548			*maxindex = __be32_to_cpu(indicators[i].maxindex);
1549		return true;
1550	}
1551
1552	return false;
1553}
1554
1555int rtas_set_indicator(int indicator, int index, int new_value)
1556{
1557	int token = rtas_function_token(RTAS_FN_SET_INDICATOR);
1558	int rc;
1559
1560	if (token == RTAS_UNKNOWN_SERVICE)
1561		return -ENOENT;
1562
1563	do {
1564		rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value);
1565	} while (rtas_busy_delay(rc));
1566
1567	if (rc < 0)
1568		return rtas_error_rc(rc);
1569	return rc;
1570}
1571EXPORT_SYMBOL_GPL(rtas_set_indicator);
1572
1573/*
1574 * Ignoring RTAS extended delay
1575 */
1576int rtas_set_indicator_fast(int indicator, int index, int new_value)
1577{
1578	int token = rtas_function_token(RTAS_FN_SET_INDICATOR);
1579	int rc;
1580
1581	if (token == RTAS_UNKNOWN_SERVICE)
1582		return -ENOENT;
1583
1584	rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value);
1585
1586	WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN &&
1587				    rc <= RTAS_EXTENDED_DELAY_MAX));
1588
1589	if (rc < 0)
1590		return rtas_error_rc(rc);
1591
1592	return rc;
1593}
1594
1595/**
1596 * rtas_ibm_suspend_me() - Call ibm,suspend-me to suspend the LPAR.
1597 *
1598 * @fw_status: RTAS call status will be placed here if not NULL.
1599 *
1600 * rtas_ibm_suspend_me() should be called only on a CPU which has
1601 * received H_CONTINUE from the H_JOIN hcall. All other active CPUs
1602 * should be waiting to return from H_JOIN.
1603 *
1604 * rtas_ibm_suspend_me() may suspend execution of the OS
1605 * indefinitely. Callers should take appropriate measures upon return, such as
1606 * resetting watchdog facilities.
1607 *
1608 * Callers may choose to retry this call if @fw_status is
1609 * %RTAS_THREADS_ACTIVE.
1610 *
1611 * Return:
1612 * 0          - The partition has resumed from suspend, possibly after
1613 *              migration to a different host.
1614 * -ECANCELED - The operation was aborted.
1615 * -EAGAIN    - There were other CPUs not in H_JOIN at the time of the call.
1616 * -EBUSY     - Some other condition prevented the suspend from succeeding.
1617 * -EIO       - Hardware/platform error.
1618 */
1619int rtas_ibm_suspend_me(int *fw_status)
1620{
1621	int token = rtas_function_token(RTAS_FN_IBM_SUSPEND_ME);
1622	int fwrc;
1623	int ret;
1624
1625	fwrc = rtas_call(token, 0, 1, NULL);
1626
1627	switch (fwrc) {
1628	case 0:
1629		ret = 0;
1630		break;
1631	case RTAS_SUSPEND_ABORTED:
1632		ret = -ECANCELED;
1633		break;
1634	case RTAS_THREADS_ACTIVE:
1635		ret = -EAGAIN;
1636		break;
1637	case RTAS_NOT_SUSPENDABLE:
1638	case RTAS_OUTSTANDING_COPROC:
1639		ret = -EBUSY;
1640		break;
1641	case -1:
1642	default:
1643		ret = -EIO;
1644		break;
1645	}
1646
1647	if (fw_status)
1648		*fw_status = fwrc;
1649
1650	return ret;
1651}
1652
1653void __noreturn rtas_restart(char *cmd)
1654{
1655	if (rtas_flash_term_hook)
1656		rtas_flash_term_hook(SYS_RESTART);
1657	pr_emerg("system-reboot returned %d\n",
1658		 rtas_call(rtas_function_token(RTAS_FN_SYSTEM_REBOOT), 0, 1, NULL));
1659	for (;;);
1660}
1661
1662void rtas_power_off(void)
1663{
1664	if (rtas_flash_term_hook)
1665		rtas_flash_term_hook(SYS_POWER_OFF);
1666	/* allow power on only with power button press */
1667	pr_emerg("power-off returned %d\n",
1668		 rtas_call(rtas_function_token(RTAS_FN_POWER_OFF), 2, 1, NULL, -1, -1));
1669	for (;;);
1670}
1671
1672void __noreturn rtas_halt(void)
1673{
1674	if (rtas_flash_term_hook)
1675		rtas_flash_term_hook(SYS_HALT);
1676	/* allow power on only with power button press */
1677	pr_emerg("power-off returned %d\n",
1678		 rtas_call(rtas_function_token(RTAS_FN_POWER_OFF), 2, 1, NULL, -1, -1));
1679	for (;;);
1680}
1681
1682/* Must be in the RMO region, so we place it here */
1683static char rtas_os_term_buf[2048];
1684static bool ibm_extended_os_term;
1685
1686void rtas_os_term(char *str)
1687{
1688	s32 token = rtas_function_token(RTAS_FN_IBM_OS_TERM);
1689	static struct rtas_args args;
1690	int status;
1691
1692	/*
1693	 * Firmware with the ibm,extended-os-term property is guaranteed
1694	 * to always return from an ibm,os-term call. Earlier versions without
1695	 * this property may terminate the partition which we want to avoid
1696	 * since it interferes with panic_timeout.
1697	 */
1698
1699	if (token == RTAS_UNKNOWN_SERVICE || !ibm_extended_os_term)
1700		return;
1701
1702	snprintf(rtas_os_term_buf, 2048, "OS panic: %s", str);
1703
1704	/*
1705	 * Keep calling as long as RTAS returns a "try again" status,
1706	 * but don't use rtas_busy_delay(), which potentially
1707	 * schedules.
1708	 */
1709	do {
1710		rtas_call_unlocked(&args, token, 1, 1, NULL, __pa(rtas_os_term_buf));
1711		status = be32_to_cpu(args.rets[0]);
1712	} while (rtas_busy_delay_time(status));
1713
1714	if (status != 0)
1715		pr_emerg("ibm,os-term call failed %d\n", status);
1716}
1717
1718/**
1719 * rtas_activate_firmware() - Activate a new version of firmware.
1720 *
1721 * Context: This function may sleep.
1722 *
1723 * Activate a new version of partition firmware. The OS must call this
1724 * after resuming from a partition hibernation or migration in order
1725 * to maintain the ability to perform live firmware updates. It's not
1726 * catastrophic for this method to be absent or to fail; just log the
1727 * condition in that case.
1728 */
1729void rtas_activate_firmware(void)
1730{
1731	int token = rtas_function_token(RTAS_FN_IBM_ACTIVATE_FIRMWARE);
1732	int fwrc;
1733
1734	if (token == RTAS_UNKNOWN_SERVICE) {
1735		pr_notice("ibm,activate-firmware method unavailable\n");
1736		return;
1737	}
1738
1739	mutex_lock(&rtas_ibm_activate_firmware_lock);
1740
1741	do {
1742		fwrc = rtas_call(token, 0, 1, NULL);
1743	} while (rtas_busy_delay(fwrc));
1744
1745	mutex_unlock(&rtas_ibm_activate_firmware_lock);
1746
1747	if (fwrc)
1748		pr_err("ibm,activate-firmware failed (%i)\n", fwrc);
1749}
1750
1751/**
1752 * get_pseries_errorlog() - Find a specific pseries error log in an RTAS
1753 *                          extended event log.
1754 * @log: RTAS error/event log
1755 * @section_id: two character section identifier
1756 *
1757 * Return: A pointer to the specified errorlog or NULL if not found.
1758 */
1759noinstr struct pseries_errorlog *get_pseries_errorlog(struct rtas_error_log *log,
1760						      uint16_t section_id)
1761{
1762	struct rtas_ext_event_log_v6 *ext_log =
1763		(struct rtas_ext_event_log_v6 *)log->buffer;
1764	struct pseries_errorlog *sect;
1765	unsigned char *p, *log_end;
1766	uint32_t ext_log_length = rtas_error_extended_log_length(log);
1767	uint8_t log_format = rtas_ext_event_log_format(ext_log);
1768	uint32_t company_id = rtas_ext_event_company_id(ext_log);
1769
1770	/* Check that we understand the format */
1771	if (ext_log_length < sizeof(struct rtas_ext_event_log_v6) ||
1772	    log_format != RTAS_V6EXT_LOG_FORMAT_EVENT_LOG ||
1773	    company_id != RTAS_V6EXT_COMPANY_ID_IBM)
1774		return NULL;
1775
1776	log_end = log->buffer + ext_log_length;
1777	p = ext_log->vendor_log;
1778
1779	while (p < log_end) {
1780		sect = (struct pseries_errorlog *)p;
1781		if (pseries_errorlog_id(sect) == section_id)
1782			return sect;
1783		p += pseries_errorlog_length(sect);
1784	}
1785
1786	return NULL;
1787}
1788
1789/*
1790 * The sys_rtas syscall, as originally designed, allows root to pass
1791 * arbitrary physical addresses to RTAS calls. A number of RTAS calls
1792 * can be abused to write to arbitrary memory and do other things that
1793 * are potentially harmful to system integrity, and thus should only
1794 * be used inside the kernel and not exposed to userspace.
1795 *
1796 * All known legitimate users of the sys_rtas syscall will only ever
1797 * pass addresses that fall within the RMO buffer, and use a known
1798 * subset of RTAS calls.
1799 *
1800 * Accordingly, we filter RTAS requests to check that the call is
1801 * permitted, and that provided pointers fall within the RMO buffer.
1802 * If a function is allowed to be invoked via the syscall, then its
1803 * entry in the rtas_functions table points to a rtas_filter that
1804 * describes its constraints, with the indexes of the parameters which
1805 * are expected to contain addresses and sizes of buffers allocated
1806 * inside the RMO buffer.
1807 */
1808
1809static bool in_rmo_buf(u32 base, u32 end)
1810{
1811	return base >= rtas_rmo_buf &&
1812		base < (rtas_rmo_buf + RTAS_USER_REGION_SIZE) &&
1813		base <= end &&
1814		end >= rtas_rmo_buf &&
1815		end < (rtas_rmo_buf + RTAS_USER_REGION_SIZE);
1816}
1817
1818static bool block_rtas_call(const struct rtas_function *func, int nargs,
1819			    struct rtas_args *args)
1820{
1821	const struct rtas_filter *f;
1822	const bool is_platform_dump =
1823		func == &rtas_function_table[RTAS_FNIDX__IBM_PLATFORM_DUMP];
1824	const bool is_config_conn =
1825		func == &rtas_function_table[RTAS_FNIDX__IBM_CONFIGURE_CONNECTOR];
1826	u32 base, size, end;
1827
1828	/*
1829	 * Only functions with filters attached are allowed.
1830	 */
1831	f = func->filter;
1832	if (!f)
1833		goto err;
1834	/*
1835	 * And some functions aren't allowed on LE.
1836	 */
1837	if (IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN) && func->banned_for_syscall_on_le)
1838		goto err;
1839
1840	if (f->buf_idx1 != -1) {
1841		base = be32_to_cpu(args->args[f->buf_idx1]);
1842		if (f->size_idx1 != -1)
1843			size = be32_to_cpu(args->args[f->size_idx1]);
1844		else if (f->fixed_size)
1845			size = f->fixed_size;
1846		else
1847			size = 1;
1848
1849		end = base + size - 1;
1850
1851		/*
1852		 * Special case for ibm,platform-dump - NULL buffer
1853		 * address is used to indicate end of dump processing
1854		 */
1855		if (is_platform_dump && base == 0)
1856			return false;
1857
1858		if (!in_rmo_buf(base, end))
1859			goto err;
1860	}
1861
1862	if (f->buf_idx2 != -1) {
1863		base = be32_to_cpu(args->args[f->buf_idx2]);
1864		if (f->size_idx2 != -1)
1865			size = be32_to_cpu(args->args[f->size_idx2]);
1866		else if (f->fixed_size)
1867			size = f->fixed_size;
1868		else
1869			size = 1;
1870		end = base + size - 1;
1871
1872		/*
1873		 * Special case for ibm,configure-connector where the
1874		 * address can be 0
1875		 */
1876		if (is_config_conn && base == 0)
1877			return false;
1878
1879		if (!in_rmo_buf(base, end))
1880			goto err;
1881	}
1882
1883	return false;
1884err:
1885	pr_err_ratelimited("sys_rtas: RTAS call blocked - exploit attempt?\n");
1886	pr_err_ratelimited("sys_rtas: %s nargs=%d (called by %s)\n",
1887			   func->name, nargs, current->comm);
1888	return true;
1889}
1890
1891/* We assume to be passed big endian arguments */
1892SYSCALL_DEFINE1(rtas, struct rtas_args __user *, uargs)
1893{
1894	const struct rtas_function *func;
1895	struct pin_cookie cookie;
1896	struct rtas_args args;
1897	unsigned long flags;
1898	char *buff_copy, *errbuf = NULL;
1899	int nargs, nret, token;
1900
1901	if (!capable(CAP_SYS_ADMIN))
1902		return -EPERM;
1903
1904	if (!rtas.entry)
1905		return -EINVAL;
1906
1907	if (copy_from_user(&args, uargs, 3 * sizeof(u32)) != 0)
1908		return -EFAULT;
1909
1910	nargs = be32_to_cpu(args.nargs);
1911	nret  = be32_to_cpu(args.nret);
1912	token = be32_to_cpu(args.token);
1913
1914	if (nargs >= ARRAY_SIZE(args.args)
1915	    || nret > ARRAY_SIZE(args.args)
1916	    || nargs + nret > ARRAY_SIZE(args.args))
1917		return -EINVAL;
1918
1919	/* Copy in args. */
1920	if (copy_from_user(args.args, uargs->args,
1921			   nargs * sizeof(rtas_arg_t)) != 0)
1922		return -EFAULT;
1923
1924	/*
1925	 * If this token doesn't correspond to a function the kernel
1926	 * understands, you're not allowed to call it.
1927	 */
1928	func = rtas_token_to_function_untrusted(token);
1929	if (!func)
1930		return -EINVAL;
1931
1932	args.rets = &args.args[nargs];
1933	memset(args.rets, 0, nret * sizeof(rtas_arg_t));
1934
1935	if (block_rtas_call(func, nargs, &args))
1936		return -EINVAL;
1937
1938	if (token_is_restricted_errinjct(token)) {
1939		int err;
1940
1941		err = security_locked_down(LOCKDOWN_RTAS_ERROR_INJECTION);
1942		if (err)
1943			return err;
1944	}
1945
1946	/* Need to handle ibm,suspend_me call specially */
1947	if (token == rtas_function_token(RTAS_FN_IBM_SUSPEND_ME)) {
1948
1949		/*
1950		 * rtas_ibm_suspend_me assumes the streamid handle is in cpu
1951		 * endian, or at least the hcall within it requires it.
1952		 */
1953		int rc = 0;
1954		u64 handle = ((u64)be32_to_cpu(args.args[0]) << 32)
1955		              | be32_to_cpu(args.args[1]);
1956		rc = rtas_syscall_dispatch_ibm_suspend_me(handle);
1957		if (rc == -EAGAIN)
1958			args.rets[0] = cpu_to_be32(RTAS_NOT_SUSPENDABLE);
1959		else if (rc == -EIO)
1960			args.rets[0] = cpu_to_be32(-1);
1961		else if (rc)
1962			return rc;
1963		goto copy_return;
1964	}
1965
1966	buff_copy = get_errorlog_buffer();
1967
1968	/*
1969	 * If this function has a mutex assigned to it, we must
1970	 * acquire it to avoid interleaving with any kernel-based uses
1971	 * of the same function. Kernel-based sequences acquire the
1972	 * appropriate mutex explicitly.
1973	 */
1974	if (func->lock)
1975		mutex_lock(func->lock);
1976
1977	raw_spin_lock_irqsave(&rtas_lock, flags);
1978	cookie = lockdep_pin_lock(&rtas_lock);
1979
1980	rtas_args = args;
1981	do_enter_rtas(&rtas_args);
1982	args = rtas_args;
1983
1984	/* A -1 return code indicates that the last command couldn't
1985	   be completed due to a hardware error. */
1986	if (be32_to_cpu(args.rets[0]) == -1)
1987		errbuf = __fetch_rtas_last_error(buff_copy);
1988
1989	lockdep_unpin_lock(&rtas_lock, cookie);
1990	raw_spin_unlock_irqrestore(&rtas_lock, flags);
1991
1992	if (func->lock)
1993		mutex_unlock(func->lock);
1994
1995	if (buff_copy) {
1996		if (errbuf)
1997			log_error(errbuf, ERR_TYPE_RTAS_LOG, 0);
1998		kfree(buff_copy);
1999	}
2000
2001 copy_return:
2002	/* Copy out args. */
2003	if (copy_to_user(uargs->args + nargs,
2004			 args.args + nargs,
2005			 nret * sizeof(rtas_arg_t)) != 0)
2006		return -EFAULT;
2007
2008	return 0;
2009}
2010
2011static void __init rtas_function_table_init(void)
2012{
2013	struct property *prop;
2014
2015	for (size_t i = 0; i < ARRAY_SIZE(rtas_function_table); ++i) {
2016		struct rtas_function *curr = &rtas_function_table[i];
2017		struct rtas_function *prior;
2018		int cmp;
2019
2020		curr->token = RTAS_UNKNOWN_SERVICE;
2021
2022		if (i == 0)
2023			continue;
2024		/*
2025		 * Ensure table is sorted correctly for binary search
2026		 * on function names.
2027		 */
2028		prior = &rtas_function_table[i - 1];
2029
2030		cmp = strcmp(prior->name, curr->name);
2031		if (cmp < 0)
2032			continue;
2033
2034		if (cmp == 0) {
2035			pr_err("'%s' has duplicate function table entries\n",
2036			       curr->name);
2037		} else {
2038			pr_err("function table unsorted: '%s' wrongly precedes '%s'\n",
2039			       prior->name, curr->name);
2040		}
2041	}
2042
2043	for_each_property_of_node(rtas.dev, prop) {
2044		struct rtas_function *func;
2045
2046		if (prop->length != sizeof(u32))
2047			continue;
2048
2049		func = __rtas_name_to_function(prop->name);
2050		if (!func)
2051			continue;
2052
2053		func->token = be32_to_cpup((__be32 *)prop->value);
2054
2055		pr_debug("function %s has token %u\n", func->name, func->token);
2056	}
2057}
2058
2059/*
2060 * Call early during boot, before mem init, to retrieve the RTAS
2061 * information from the device-tree and allocate the RMO buffer for userland
2062 * accesses.
2063 */
2064void __init rtas_initialize(void)
2065{
2066	unsigned long rtas_region = RTAS_INSTANTIATE_MAX;
2067	u32 base, size, entry;
2068	int no_base, no_size, no_entry;
2069
2070	/* Get RTAS dev node and fill up our "rtas" structure with infos
2071	 * about it.
2072	 */
2073	rtas.dev = of_find_node_by_name(NULL, "rtas");
2074	if (!rtas.dev)
2075		return;
2076
2077	no_base = of_property_read_u32(rtas.dev, "linux,rtas-base", &base);
2078	no_size = of_property_read_u32(rtas.dev, "rtas-size", &size);
2079	if (no_base || no_size) {
2080		of_node_put(rtas.dev);
2081		rtas.dev = NULL;
2082		return;
2083	}
2084
2085	rtas.base = base;
2086	rtas.size = size;
2087	no_entry = of_property_read_u32(rtas.dev, "linux,rtas-entry", &entry);
2088	rtas.entry = no_entry ? rtas.base : entry;
2089
2090	init_error_log_max();
2091
2092	/* Must be called before any function token lookups */
2093	rtas_function_table_init();
2094
2095	/*
2096	 * Discover this now to avoid a device tree lookup in the
2097	 * panic path.
2098	 */
2099	ibm_extended_os_term = of_property_read_bool(rtas.dev, "ibm,extended-os-term");
2100
2101	/* If RTAS was found, allocate the RMO buffer for it and look for
2102	 * the stop-self token if any
2103	 */
2104#ifdef CONFIG_PPC64
2105	if (firmware_has_feature(FW_FEATURE_LPAR))
2106		rtas_region = min(ppc64_rma_size, RTAS_INSTANTIATE_MAX);
2107#endif
2108	rtas_rmo_buf = memblock_phys_alloc_range(RTAS_USER_REGION_SIZE, PAGE_SIZE,
2109						 0, rtas_region);
2110	if (!rtas_rmo_buf)
2111		panic("ERROR: RTAS: Failed to allocate %lx bytes below %pa\n",
2112		      PAGE_SIZE, &rtas_region);
2113
2114	rtas_work_area_reserve_arena(rtas_region);
2115}
2116
2117int __init early_init_dt_scan_rtas(unsigned long node,
2118		const char *uname, int depth, void *data)
2119{
2120	const u32 *basep, *entryp, *sizep;
2121
2122	if (depth != 1 || strcmp(uname, "rtas") != 0)
2123		return 0;
2124
2125	basep  = of_get_flat_dt_prop(node, "linux,rtas-base", NULL);
2126	entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL);
2127	sizep  = of_get_flat_dt_prop(node, "rtas-size", NULL);
2128
2129#ifdef CONFIG_PPC64
2130	/* need this feature to decide the crashkernel offset */
2131	if (of_get_flat_dt_prop(node, "ibm,hypertas-functions", NULL))
2132		powerpc_firmware_features |= FW_FEATURE_LPAR;
2133#endif
2134
2135	if (basep && entryp && sizep) {
2136		rtas.base = *basep;
2137		rtas.entry = *entryp;
2138		rtas.size = *sizep;
2139	}
2140
2141#ifdef CONFIG_UDBG_RTAS_CONSOLE
2142	basep = of_get_flat_dt_prop(node, "put-term-char", NULL);
2143	if (basep)
2144		rtas_putchar_token = *basep;
2145
2146	basep = of_get_flat_dt_prop(node, "get-term-char", NULL);
2147	if (basep)
2148		rtas_getchar_token = *basep;
2149
2150	if (rtas_putchar_token != RTAS_UNKNOWN_SERVICE &&
2151	    rtas_getchar_token != RTAS_UNKNOWN_SERVICE)
2152		udbg_init_rtas_console();
2153
2154#endif
2155
2156	/* break now */
2157	return 1;
2158}
2159
2160static DEFINE_RAW_SPINLOCK(timebase_lock);
2161static u64 timebase = 0;
2162
2163void rtas_give_timebase(void)
2164{
2165	unsigned long flags;
2166
2167	raw_spin_lock_irqsave(&timebase_lock, flags);
2168	hard_irq_disable();
2169	rtas_call(rtas_function_token(RTAS_FN_FREEZE_TIME_BASE), 0, 1, NULL);
2170	timebase = get_tb();
2171	raw_spin_unlock(&timebase_lock);
2172
2173	while (timebase)
2174		barrier();
2175	rtas_call(rtas_function_token(RTAS_FN_THAW_TIME_BASE), 0, 1, NULL);
2176	local_irq_restore(flags);
2177}
2178
2179void rtas_take_timebase(void)
2180{
2181	while (!timebase)
2182		barrier();
2183	raw_spin_lock(&timebase_lock);
2184	set_tb(timebase >> 32, timebase & 0xffffffff);
2185	timebase = 0;
2186	raw_spin_unlock(&timebase_lock);
2187}
2188