1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * PCI address cache; allows the lookup of PCI devices based on I/O address
4 *
5 * Copyright IBM Corporation 2004
6 * Copyright Linas Vepstas <linas@austin.ibm.com> 2004
7 */
8
9#include <linux/list.h>
10#include <linux/pci.h>
11#include <linux/rbtree.h>
12#include <linux/slab.h>
13#include <linux/spinlock.h>
14#include <linux/atomic.h>
15#include <linux/debugfs.h>
16#include <asm/pci-bridge.h>
17#include <asm/ppc-pci.h>
18
19
20/**
21 * DOC: Overview
22 *
23 * The pci address cache subsystem.  This subsystem places
24 * PCI device address resources into a red-black tree, sorted
25 * according to the address range, so that given only an i/o
26 * address, the corresponding PCI device can be **quickly**
27 * found. It is safe to perform an address lookup in an interrupt
28 * context; this ability is an important feature.
29 *
30 * Currently, the only customer of this code is the EEH subsystem;
31 * thus, this code has been somewhat tailored to suit EEH better.
32 * In particular, the cache does *not* hold the addresses of devices
33 * for which EEH is not enabled.
34 *
35 * (Implementation Note: The RB tree seems to be better/faster
36 * than any hash algo I could think of for this problem, even
37 * with the penalty of slow pointer chases for d-cache misses).
38 */
39
40struct pci_io_addr_range {
41	struct rb_node rb_node;
42	resource_size_t addr_lo;
43	resource_size_t addr_hi;
44	struct eeh_dev *edev;
45	struct pci_dev *pcidev;
46	unsigned long flags;
47};
48
49static struct pci_io_addr_cache {
50	struct rb_root rb_root;
51	spinlock_t piar_lock;
52} pci_io_addr_cache_root;
53
54static inline struct eeh_dev *__eeh_addr_cache_get_device(unsigned long addr)
55{
56	struct rb_node *n = pci_io_addr_cache_root.rb_root.rb_node;
57
58	while (n) {
59		struct pci_io_addr_range *piar;
60		piar = rb_entry(n, struct pci_io_addr_range, rb_node);
61
62		if (addr < piar->addr_lo)
63			n = n->rb_left;
64		else if (addr > piar->addr_hi)
65			n = n->rb_right;
66		else
67			return piar->edev;
68	}
69
70	return NULL;
71}
72
73/**
74 * eeh_addr_cache_get_dev - Get device, given only address
75 * @addr: mmio (PIO) phys address or i/o port number
76 *
77 * Given an mmio phys address, or a port number, find a pci device
78 * that implements this address.  I/O port numbers are assumed to be offset
79 * from zero (that is, they do *not* have pci_io_addr added in).
80 * It is safe to call this function within an interrupt.
81 */
82struct eeh_dev *eeh_addr_cache_get_dev(unsigned long addr)
83{
84	struct eeh_dev *edev;
85	unsigned long flags;
86
87	spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
88	edev = __eeh_addr_cache_get_device(addr);
89	spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
90	return edev;
91}
92
93#ifdef DEBUG
94/*
95 * Handy-dandy debug print routine, does nothing more
96 * than print out the contents of our addr cache.
97 */
98static void eeh_addr_cache_print(struct pci_io_addr_cache *cache)
99{
100	struct rb_node *n;
101	int cnt = 0;
102
103	n = rb_first(&cache->rb_root);
104	while (n) {
105		struct pci_io_addr_range *piar;
106		piar = rb_entry(n, struct pci_io_addr_range, rb_node);
107		pr_info("PCI: %s addr range %d [%pap-%pap]: %s\n",
108		       (piar->flags & IORESOURCE_IO) ? "i/o" : "mem", cnt,
109		       &piar->addr_lo, &piar->addr_hi, pci_name(piar->pcidev));
110		cnt++;
111		n = rb_next(n);
112	}
113}
114#endif
115
116/* Insert address range into the rb tree. */
117static struct pci_io_addr_range *
118eeh_addr_cache_insert(struct pci_dev *dev, resource_size_t alo,
119		      resource_size_t ahi, unsigned long flags)
120{
121	struct rb_node **p = &pci_io_addr_cache_root.rb_root.rb_node;
122	struct rb_node *parent = NULL;
123	struct pci_io_addr_range *piar;
124
125	/* Walk tree, find a place to insert into tree */
126	while (*p) {
127		parent = *p;
128		piar = rb_entry(parent, struct pci_io_addr_range, rb_node);
129		if (ahi < piar->addr_lo) {
130			p = &parent->rb_left;
131		} else if (alo > piar->addr_hi) {
132			p = &parent->rb_right;
133		} else {
134			if (dev != piar->pcidev ||
135			    alo != piar->addr_lo || ahi != piar->addr_hi) {
136				pr_warn("PIAR: overlapping address range\n");
137			}
138			return piar;
139		}
140	}
141	piar = kzalloc(sizeof(struct pci_io_addr_range), GFP_ATOMIC);
142	if (!piar)
143		return NULL;
144
145	piar->addr_lo = alo;
146	piar->addr_hi = ahi;
147	piar->edev = pci_dev_to_eeh_dev(dev);
148	piar->pcidev = dev;
149	piar->flags = flags;
150
151	eeh_edev_dbg(piar->edev, "PIAR: insert range=[%pap:%pap]\n",
152		 &alo, &ahi);
153
154	rb_link_node(&piar->rb_node, parent, p);
155	rb_insert_color(&piar->rb_node, &pci_io_addr_cache_root.rb_root);
156
157	return piar;
158}
159
160static void __eeh_addr_cache_insert_dev(struct pci_dev *dev)
161{
162	struct eeh_dev *edev;
163	int i;
164
165	edev = pci_dev_to_eeh_dev(dev);
166	if (!edev) {
167		pr_warn("PCI: no EEH dev found for %s\n",
168			pci_name(dev));
169		return;
170	}
171
172	/* Skip any devices for which EEH is not enabled. */
173	if (!edev->pe) {
174		dev_dbg(&dev->dev, "EEH: Skip building address cache\n");
175		return;
176	}
177
178	/*
179	 * Walk resources on this device, poke the first 7 (6 normal BAR and 1
180	 * ROM BAR) into the tree.
181	 */
182	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
183		resource_size_t start = pci_resource_start(dev,i);
184		resource_size_t end = pci_resource_end(dev,i);
185		unsigned long flags = pci_resource_flags(dev,i);
186
187		/* We are interested only bus addresses, not dma or other stuff */
188		if (0 == (flags & (IORESOURCE_IO | IORESOURCE_MEM)))
189			continue;
190		if (start == 0 || ~start == 0 || end == 0 || ~end == 0)
191			 continue;
192		eeh_addr_cache_insert(dev, start, end, flags);
193	}
194}
195
196/**
197 * eeh_addr_cache_insert_dev - Add a device to the address cache
198 * @dev: PCI device whose I/O addresses we are interested in.
199 *
200 * In order to support the fast lookup of devices based on addresses,
201 * we maintain a cache of devices that can be quickly searched.
202 * This routine adds a device to that cache.
203 */
204void eeh_addr_cache_insert_dev(struct pci_dev *dev)
205{
206	unsigned long flags;
207
208	spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
209	__eeh_addr_cache_insert_dev(dev);
210	spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
211}
212
213static inline void __eeh_addr_cache_rmv_dev(struct pci_dev *dev)
214{
215	struct rb_node *n;
216
217restart:
218	n = rb_first(&pci_io_addr_cache_root.rb_root);
219	while (n) {
220		struct pci_io_addr_range *piar;
221		piar = rb_entry(n, struct pci_io_addr_range, rb_node);
222
223		if (piar->pcidev == dev) {
224			eeh_edev_dbg(piar->edev, "PIAR: remove range=[%pap:%pap]\n",
225				 &piar->addr_lo, &piar->addr_hi);
226			rb_erase(n, &pci_io_addr_cache_root.rb_root);
227			kfree(piar);
228			goto restart;
229		}
230		n = rb_next(n);
231	}
232}
233
234/**
235 * eeh_addr_cache_rmv_dev - remove pci device from addr cache
236 * @dev: device to remove
237 *
238 * Remove a device from the addr-cache tree.
239 * This is potentially expensive, since it will walk
240 * the tree multiple times (once per resource).
241 * But so what; device removal doesn't need to be that fast.
242 */
243void eeh_addr_cache_rmv_dev(struct pci_dev *dev)
244{
245	unsigned long flags;
246
247	spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
248	__eeh_addr_cache_rmv_dev(dev);
249	spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
250}
251
252/**
253 * eeh_addr_cache_init - Initialize a cache of I/O addresses
254 *
255 * Initialize a cache of pci i/o addresses.  This cache will be used to
256 * find the pci device that corresponds to a given address.
257 */
258void eeh_addr_cache_init(void)
259{
260	spin_lock_init(&pci_io_addr_cache_root.piar_lock);
261}
262
263static int eeh_addr_cache_show(struct seq_file *s, void *v)
264{
265	struct pci_io_addr_range *piar;
266	struct rb_node *n;
267	unsigned long flags;
268
269	spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
270	for (n = rb_first(&pci_io_addr_cache_root.rb_root); n; n = rb_next(n)) {
271		piar = rb_entry(n, struct pci_io_addr_range, rb_node);
272
273		seq_printf(s, "%s addr range [%pap-%pap]: %s\n",
274		       (piar->flags & IORESOURCE_IO) ? "i/o" : "mem",
275		       &piar->addr_lo, &piar->addr_hi, pci_name(piar->pcidev));
276	}
277	spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
278
279	return 0;
280}
281DEFINE_SHOW_ATTRIBUTE(eeh_addr_cache);
282
283void __init eeh_cache_debugfs_init(void)
284{
285	debugfs_create_file_unsafe("eeh_address_cache", 0400,
286			arch_debugfs_dir, NULL,
287			&eeh_addr_cache_fops);
288}
289