1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright IBM Corporation 2001, 2005, 2006
4 * Copyright Dave Engebretsen & Todd Inglett 2001
5 * Copyright Linas Vepstas 2005, 2006
6 * Copyright 2001-2012 IBM Corporation.
7 *
8 * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
9 */
10
11#include <linux/delay.h>
12#include <linux/sched.h>
13#include <linux/init.h>
14#include <linux/list.h>
15#include <linux/pci.h>
16#include <linux/iommu.h>
17#include <linux/proc_fs.h>
18#include <linux/rbtree.h>
19#include <linux/reboot.h>
20#include <linux/seq_file.h>
21#include <linux/spinlock.h>
22#include <linux/export.h>
23#include <linux/of.h>
24#include <linux/debugfs.h>
25
26#include <linux/atomic.h>
27#include <asm/eeh.h>
28#include <asm/eeh_event.h>
29#include <asm/io.h>
30#include <asm/iommu.h>
31#include <asm/machdep.h>
32#include <asm/ppc-pci.h>
33#include <asm/rtas.h>
34#include <asm/pte-walk.h>
35
36
37/** Overview:
38 *  EEH, or "Enhanced Error Handling" is a PCI bridge technology for
39 *  dealing with PCI bus errors that can't be dealt with within the
40 *  usual PCI framework, except by check-stopping the CPU.  Systems
41 *  that are designed for high-availability/reliability cannot afford
42 *  to crash due to a "mere" PCI error, thus the need for EEH.
43 *  An EEH-capable bridge operates by converting a detected error
44 *  into a "slot freeze", taking the PCI adapter off-line, making
45 *  the slot behave, from the OS'es point of view, as if the slot
46 *  were "empty": all reads return 0xff's and all writes are silently
47 *  ignored.  EEH slot isolation events can be triggered by parity
48 *  errors on the address or data busses (e.g. during posted writes),
49 *  which in turn might be caused by low voltage on the bus, dust,
50 *  vibration, humidity, radioactivity or plain-old failed hardware.
51 *
52 *  Note, however, that one of the leading causes of EEH slot
53 *  freeze events are buggy device drivers, buggy device microcode,
54 *  or buggy device hardware.  This is because any attempt by the
55 *  device to bus-master data to a memory address that is not
56 *  assigned to the device will trigger a slot freeze.   (The idea
57 *  is to prevent devices-gone-wild from corrupting system memory).
58 *  Buggy hardware/drivers will have a miserable time co-existing
59 *  with EEH.
60 *
61 *  Ideally, a PCI device driver, when suspecting that an isolation
62 *  event has occurred (e.g. by reading 0xff's), will then ask EEH
63 *  whether this is the case, and then take appropriate steps to
64 *  reset the PCI slot, the PCI device, and then resume operations.
65 *  However, until that day,  the checking is done here, with the
66 *  eeh_check_failure() routine embedded in the MMIO macros.  If
67 *  the slot is found to be isolated, an "EEH Event" is synthesized
68 *  and sent out for processing.
69 */
70
71/* If a device driver keeps reading an MMIO register in an interrupt
72 * handler after a slot isolation event, it might be broken.
73 * This sets the threshold for how many read attempts we allow
74 * before printing an error message.
75 */
76#define EEH_MAX_FAILS	2100000
77
78/* Time to wait for a PCI slot to report status, in milliseconds */
79#define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
80
81/*
82 * EEH probe mode support, which is part of the flags,
83 * is to support multiple platforms for EEH. Some platforms
84 * like pSeries do PCI emunation based on device tree.
85 * However, other platforms like powernv probe PCI devices
86 * from hardware. The flag is used to distinguish that.
87 * In addition, struct eeh_ops::probe would be invoked for
88 * particular OF node or PCI device so that the corresponding
89 * PE would be created there.
90 */
91int eeh_subsystem_flags;
92EXPORT_SYMBOL(eeh_subsystem_flags);
93
94/*
95 * EEH allowed maximal frozen times. If one particular PE's
96 * frozen count in last hour exceeds this limit, the PE will
97 * be forced to be offline permanently.
98 */
99u32 eeh_max_freezes = 5;
100
101/*
102 * Controls whether a recovery event should be scheduled when an
103 * isolated device is discovered. This is only really useful for
104 * debugging problems with the EEH core.
105 */
106bool eeh_debugfs_no_recover;
107
108/* Platform dependent EEH operations */
109struct eeh_ops *eeh_ops = NULL;
110
111/* Lock to avoid races due to multiple reports of an error */
112DEFINE_RAW_SPINLOCK(confirm_error_lock);
113EXPORT_SYMBOL_GPL(confirm_error_lock);
114
115/* Lock to protect passed flags */
116static DEFINE_MUTEX(eeh_dev_mutex);
117
118/* Buffer for reporting pci register dumps. Its here in BSS, and
119 * not dynamically alloced, so that it ends up in RMO where RTAS
120 * can access it.
121 */
122#define EEH_PCI_REGS_LOG_LEN 8192
123static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
124
125/*
126 * The struct is used to maintain the EEH global statistic
127 * information. Besides, the EEH global statistics will be
128 * exported to user space through procfs
129 */
130struct eeh_stats {
131	u64 no_device;		/* PCI device not found		*/
132	u64 no_dn;		/* OF node not found		*/
133	u64 no_cfg_addr;	/* Config address not found	*/
134	u64 ignored_check;	/* EEH check skipped		*/
135	u64 total_mmio_ffs;	/* Total EEH checks		*/
136	u64 false_positives;	/* Unnecessary EEH checks	*/
137	u64 slot_resets;	/* PE reset			*/
138};
139
140static struct eeh_stats eeh_stats;
141
142static int __init eeh_setup(char *str)
143{
144	if (!strcmp(str, "off"))
145		eeh_add_flag(EEH_FORCE_DISABLED);
146	else if (!strcmp(str, "early_log"))
147		eeh_add_flag(EEH_EARLY_DUMP_LOG);
148
149	return 1;
150}
151__setup("eeh=", eeh_setup);
152
153void eeh_show_enabled(void)
154{
155	if (eeh_has_flag(EEH_FORCE_DISABLED))
156		pr_info("EEH: Recovery disabled by kernel parameter.\n");
157	else if (eeh_has_flag(EEH_ENABLED))
158		pr_info("EEH: Capable adapter found: recovery enabled.\n");
159	else
160		pr_info("EEH: No capable adapters found: recovery disabled.\n");
161}
162
163/*
164 * This routine captures assorted PCI configuration space data
165 * for the indicated PCI device, and puts them into a buffer
166 * for RTAS error logging.
167 */
168static size_t eeh_dump_dev_log(struct eeh_dev *edev, char *buf, size_t len)
169{
170	u32 cfg;
171	int cap, i;
172	int n = 0, l = 0;
173	char buffer[128];
174
175	n += scnprintf(buf+n, len-n, "%04x:%02x:%02x.%01x\n",
176			edev->pe->phb->global_number, edev->bdfn >> 8,
177			PCI_SLOT(edev->bdfn), PCI_FUNC(edev->bdfn));
178	pr_warn("EEH: of node=%04x:%02x:%02x.%01x\n",
179		edev->pe->phb->global_number, edev->bdfn >> 8,
180		PCI_SLOT(edev->bdfn), PCI_FUNC(edev->bdfn));
181
182	eeh_ops->read_config(edev, PCI_VENDOR_ID, 4, &cfg);
183	n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
184	pr_warn("EEH: PCI device/vendor: %08x\n", cfg);
185
186	eeh_ops->read_config(edev, PCI_COMMAND, 4, &cfg);
187	n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
188	pr_warn("EEH: PCI cmd/status register: %08x\n", cfg);
189
190	/* Gather bridge-specific registers */
191	if (edev->mode & EEH_DEV_BRIDGE) {
192		eeh_ops->read_config(edev, PCI_SEC_STATUS, 2, &cfg);
193		n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
194		pr_warn("EEH: Bridge secondary status: %04x\n", cfg);
195
196		eeh_ops->read_config(edev, PCI_BRIDGE_CONTROL, 2, &cfg);
197		n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
198		pr_warn("EEH: Bridge control: %04x\n", cfg);
199	}
200
201	/* Dump out the PCI-X command and status regs */
202	cap = edev->pcix_cap;
203	if (cap) {
204		eeh_ops->read_config(edev, cap, 4, &cfg);
205		n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
206		pr_warn("EEH: PCI-X cmd: %08x\n", cfg);
207
208		eeh_ops->read_config(edev, cap+4, 4, &cfg);
209		n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
210		pr_warn("EEH: PCI-X status: %08x\n", cfg);
211	}
212
213	/* If PCI-E capable, dump PCI-E cap 10 */
214	cap = edev->pcie_cap;
215	if (cap) {
216		n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
217		pr_warn("EEH: PCI-E capabilities and status follow:\n");
218
219		for (i=0; i<=8; i++) {
220			eeh_ops->read_config(edev, cap+4*i, 4, &cfg);
221			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
222
223			if ((i % 4) == 0) {
224				if (i != 0)
225					pr_warn("%s\n", buffer);
226
227				l = scnprintf(buffer, sizeof(buffer),
228					      "EEH: PCI-E %02x: %08x ",
229					      4*i, cfg);
230			} else {
231				l += scnprintf(buffer+l, sizeof(buffer)-l,
232					       "%08x ", cfg);
233			}
234
235		}
236
237		pr_warn("%s\n", buffer);
238	}
239
240	/* If AER capable, dump it */
241	cap = edev->aer_cap;
242	if (cap) {
243		n += scnprintf(buf+n, len-n, "pci-e AER:\n");
244		pr_warn("EEH: PCI-E AER capability register set follows:\n");
245
246		for (i=0; i<=13; i++) {
247			eeh_ops->read_config(edev, cap+4*i, 4, &cfg);
248			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
249
250			if ((i % 4) == 0) {
251				if (i != 0)
252					pr_warn("%s\n", buffer);
253
254				l = scnprintf(buffer, sizeof(buffer),
255					      "EEH: PCI-E AER %02x: %08x ",
256					      4*i, cfg);
257			} else {
258				l += scnprintf(buffer+l, sizeof(buffer)-l,
259					       "%08x ", cfg);
260			}
261		}
262
263		pr_warn("%s\n", buffer);
264	}
265
266	return n;
267}
268
269static void *eeh_dump_pe_log(struct eeh_pe *pe, void *flag)
270{
271	struct eeh_dev *edev, *tmp;
272	size_t *plen = flag;
273
274	eeh_pe_for_each_dev(pe, edev, tmp)
275		*plen += eeh_dump_dev_log(edev, pci_regs_buf + *plen,
276					  EEH_PCI_REGS_LOG_LEN - *plen);
277
278	return NULL;
279}
280
281/**
282 * eeh_slot_error_detail - Generate combined log including driver log and error log
283 * @pe: EEH PE
284 * @severity: temporary or permanent error log
285 *
286 * This routine should be called to generate the combined log, which
287 * is comprised of driver log and error log. The driver log is figured
288 * out from the config space of the corresponding PCI device, while
289 * the error log is fetched through platform dependent function call.
290 */
291void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
292{
293	size_t loglen = 0;
294
295	/*
296	 * When the PHB is fenced or dead, it's pointless to collect
297	 * the data from PCI config space because it should return
298	 * 0xFF's. For ER, we still retrieve the data from the PCI
299	 * config space.
300	 *
301	 * For pHyp, we have to enable IO for log retrieval. Otherwise,
302	 * 0xFF's is always returned from PCI config space.
303	 *
304	 * When the @severity is EEH_LOG_PERM, the PE is going to be
305	 * removed. Prior to that, the drivers for devices included in
306	 * the PE will be closed. The drivers rely on working IO path
307	 * to bring the devices to quiet state. Otherwise, PCI traffic
308	 * from those devices after they are removed is like to cause
309	 * another unexpected EEH error.
310	 */
311	if (!(pe->type & EEH_PE_PHB)) {
312		if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG) ||
313		    severity == EEH_LOG_PERM)
314			eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
315
316		/*
317		 * The config space of some PCI devices can't be accessed
318		 * when their PEs are in frozen state. Otherwise, fenced
319		 * PHB might be seen. Those PEs are identified with flag
320		 * EEH_PE_CFG_RESTRICTED, indicating EEH_PE_CFG_BLOCKED
321		 * is set automatically when the PE is put to EEH_PE_ISOLATED.
322		 *
323		 * Restoring BARs possibly triggers PCI config access in
324		 * (OPAL) firmware and then causes fenced PHB. If the
325		 * PCI config is blocked with flag EEH_PE_CFG_BLOCKED, it's
326		 * pointless to restore BARs and dump config space.
327		 */
328		eeh_ops->configure_bridge(pe);
329		if (!(pe->state & EEH_PE_CFG_BLOCKED)) {
330			eeh_pe_restore_bars(pe);
331
332			pci_regs_buf[0] = 0;
333			eeh_pe_traverse(pe, eeh_dump_pe_log, &loglen);
334		}
335	}
336
337	eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
338}
339
340/**
341 * eeh_token_to_phys - Convert EEH address token to phys address
342 * @token: I/O token, should be address in the form 0xA....
343 *
344 * This routine should be called to convert virtual I/O address
345 * to physical one.
346 */
347static inline unsigned long eeh_token_to_phys(unsigned long token)
348{
349	return ppc_find_vmap_phys(token);
350}
351
352/*
353 * On PowerNV platform, we might already have fenced PHB there.
354 * For that case, it's meaningless to recover frozen PE. Intead,
355 * We have to handle fenced PHB firstly.
356 */
357static int eeh_phb_check_failure(struct eeh_pe *pe)
358{
359	struct eeh_pe *phb_pe;
360	unsigned long flags;
361	int ret;
362
363	if (!eeh_has_flag(EEH_PROBE_MODE_DEV))
364		return -EPERM;
365
366	/* Find the PHB PE */
367	phb_pe = eeh_phb_pe_get(pe->phb);
368	if (!phb_pe) {
369		pr_warn("%s Can't find PE for PHB#%x\n",
370			__func__, pe->phb->global_number);
371		return -EEXIST;
372	}
373
374	/* If the PHB has been in problematic state */
375	eeh_serialize_lock(&flags);
376	if (phb_pe->state & EEH_PE_ISOLATED) {
377		ret = 0;
378		goto out;
379	}
380
381	/* Check PHB state */
382	ret = eeh_ops->get_state(phb_pe, NULL);
383	if ((ret < 0) ||
384	    (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) {
385		ret = 0;
386		goto out;
387	}
388
389	/* Isolate the PHB and send event */
390	eeh_pe_mark_isolated(phb_pe);
391	eeh_serialize_unlock(flags);
392
393	pr_debug("EEH: PHB#%x failure detected, location: %s\n",
394		phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe));
395	eeh_send_failure_event(phb_pe);
396	return 1;
397out:
398	eeh_serialize_unlock(flags);
399	return ret;
400}
401
402static inline const char *eeh_driver_name(struct pci_dev *pdev)
403{
404	if (pdev)
405		return dev_driver_string(&pdev->dev);
406
407	return "<null>";
408}
409
410/**
411 * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
412 * @edev: eeh device
413 *
414 * Check for an EEH failure for the given device node.  Call this
415 * routine if the result of a read was all 0xff's and you want to
416 * find out if this is due to an EEH slot freeze.  This routine
417 * will query firmware for the EEH status.
418 *
419 * Returns 0 if there has not been an EEH error; otherwise returns
420 * a non-zero value and queues up a slot isolation event notification.
421 *
422 * It is safe to call this routine in an interrupt context.
423 */
424int eeh_dev_check_failure(struct eeh_dev *edev)
425{
426	int ret;
427	unsigned long flags;
428	struct device_node *dn;
429	struct pci_dev *dev;
430	struct eeh_pe *pe, *parent_pe;
431	int rc = 0;
432	const char *location = NULL;
433
434	eeh_stats.total_mmio_ffs++;
435
436	if (!eeh_enabled())
437		return 0;
438
439	if (!edev) {
440		eeh_stats.no_dn++;
441		return 0;
442	}
443	dev = eeh_dev_to_pci_dev(edev);
444	pe = eeh_dev_to_pe(edev);
445
446	/* Access to IO BARs might get this far and still not want checking. */
447	if (!pe) {
448		eeh_stats.ignored_check++;
449		eeh_edev_dbg(edev, "Ignored check\n");
450		return 0;
451	}
452
453	/*
454	 * On PowerNV platform, we might already have fenced PHB
455	 * there and we need take care of that firstly.
456	 */
457	ret = eeh_phb_check_failure(pe);
458	if (ret > 0)
459		return ret;
460
461	/*
462	 * If the PE isn't owned by us, we shouldn't check the
463	 * state. Instead, let the owner handle it if the PE has
464	 * been frozen.
465	 */
466	if (eeh_pe_passed(pe))
467		return 0;
468
469	/* If we already have a pending isolation event for this
470	 * slot, we know it's bad already, we don't need to check.
471	 * Do this checking under a lock; as multiple PCI devices
472	 * in one slot might report errors simultaneously, and we
473	 * only want one error recovery routine running.
474	 */
475	eeh_serialize_lock(&flags);
476	rc = 1;
477	if (pe->state & EEH_PE_ISOLATED) {
478		pe->check_count++;
479		if (pe->check_count == EEH_MAX_FAILS) {
480			dn = pci_device_to_OF_node(dev);
481			if (dn)
482				location = of_get_property(dn, "ibm,loc-code",
483						NULL);
484			eeh_edev_err(edev, "%d reads ignored for recovering device at location=%s driver=%s\n",
485				pe->check_count,
486				location ? location : "unknown",
487				eeh_driver_name(dev));
488			eeh_edev_err(edev, "Might be infinite loop in %s driver\n",
489				eeh_driver_name(dev));
490			dump_stack();
491		}
492		goto dn_unlock;
493	}
494
495	/*
496	 * Now test for an EEH failure.  This is VERY expensive.
497	 * Note that the eeh_config_addr may be a parent device
498	 * in the case of a device behind a bridge, or it may be
499	 * function zero of a multi-function device.
500	 * In any case they must share a common PHB.
501	 */
502	ret = eeh_ops->get_state(pe, NULL);
503
504	/* Note that config-io to empty slots may fail;
505	 * they are empty when they don't have children.
506	 * We will punt with the following conditions: Failure to get
507	 * PE's state, EEH not support and Permanently unavailable
508	 * state, PE is in good state.
509	 */
510	if ((ret < 0) ||
511	    (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) {
512		eeh_stats.false_positives++;
513		pe->false_positives++;
514		rc = 0;
515		goto dn_unlock;
516	}
517
518	/*
519	 * It should be corner case that the parent PE has been
520	 * put into frozen state as well. We should take care
521	 * that at first.
522	 */
523	parent_pe = pe->parent;
524	while (parent_pe) {
525		/* Hit the ceiling ? */
526		if (parent_pe->type & EEH_PE_PHB)
527			break;
528
529		/* Frozen parent PE ? */
530		ret = eeh_ops->get_state(parent_pe, NULL);
531		if (ret > 0 && !eeh_state_active(ret)) {
532			pe = parent_pe;
533			pr_err("EEH: Failure of PHB#%x-PE#%x will be handled at parent PHB#%x-PE#%x.\n",
534			       pe->phb->global_number, pe->addr,
535			       pe->phb->global_number, parent_pe->addr);
536		}
537
538		/* Next parent level */
539		parent_pe = parent_pe->parent;
540	}
541
542	eeh_stats.slot_resets++;
543
544	/* Avoid repeated reports of this failure, including problems
545	 * with other functions on this device, and functions under
546	 * bridges.
547	 */
548	eeh_pe_mark_isolated(pe);
549	eeh_serialize_unlock(flags);
550
551	/* Most EEH events are due to device driver bugs.  Having
552	 * a stack trace will help the device-driver authors figure
553	 * out what happened.  So print that out.
554	 */
555	pr_debug("EEH: %s: Frozen PHB#%x-PE#%x detected\n",
556		__func__, pe->phb->global_number, pe->addr);
557	eeh_send_failure_event(pe);
558
559	return 1;
560
561dn_unlock:
562	eeh_serialize_unlock(flags);
563	return rc;
564}
565
566EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
567
568/**
569 * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
570 * @token: I/O address
571 *
572 * Check for an EEH failure at the given I/O address. Call this
573 * routine if the result of a read was all 0xff's and you want to
574 * find out if this is due to an EEH slot freeze event. This routine
575 * will query firmware for the EEH status.
576 *
577 * Note this routine is safe to call in an interrupt context.
578 */
579int eeh_check_failure(const volatile void __iomem *token)
580{
581	unsigned long addr;
582	struct eeh_dev *edev;
583
584	/* Finding the phys addr + pci device; this is pretty quick. */
585	addr = eeh_token_to_phys((unsigned long __force) token);
586	edev = eeh_addr_cache_get_dev(addr);
587	if (!edev) {
588		eeh_stats.no_device++;
589		return 0;
590	}
591
592	return eeh_dev_check_failure(edev);
593}
594EXPORT_SYMBOL(eeh_check_failure);
595
596
597/**
598 * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
599 * @pe: EEH PE
600 * @function: EEH option
601 *
602 * This routine should be called to reenable frozen MMIO or DMA
603 * so that it would work correctly again. It's useful while doing
604 * recovery or log collection on the indicated device.
605 */
606int eeh_pci_enable(struct eeh_pe *pe, int function)
607{
608	int active_flag, rc;
609
610	/*
611	 * pHyp doesn't allow to enable IO or DMA on unfrozen PE.
612	 * Also, it's pointless to enable them on unfrozen PE. So
613	 * we have to check before enabling IO or DMA.
614	 */
615	switch (function) {
616	case EEH_OPT_THAW_MMIO:
617		active_flag = EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED;
618		break;
619	case EEH_OPT_THAW_DMA:
620		active_flag = EEH_STATE_DMA_ACTIVE;
621		break;
622	case EEH_OPT_DISABLE:
623	case EEH_OPT_ENABLE:
624	case EEH_OPT_FREEZE_PE:
625		active_flag = 0;
626		break;
627	default:
628		pr_warn("%s: Invalid function %d\n",
629			__func__, function);
630		return -EINVAL;
631	}
632
633	/*
634	 * Check if IO or DMA has been enabled before
635	 * enabling them.
636	 */
637	if (active_flag) {
638		rc = eeh_ops->get_state(pe, NULL);
639		if (rc < 0)
640			return rc;
641
642		/* Needn't enable it at all */
643		if (rc == EEH_STATE_NOT_SUPPORT)
644			return 0;
645
646		/* It's already enabled */
647		if (rc & active_flag)
648			return 0;
649	}
650
651
652	/* Issue the request */
653	rc = eeh_ops->set_option(pe, function);
654	if (rc)
655		pr_warn("%s: Unexpected state change %d on "
656			"PHB#%x-PE#%x, err=%d\n",
657			__func__, function, pe->phb->global_number,
658			pe->addr, rc);
659
660	/* Check if the request is finished successfully */
661	if (active_flag) {
662		rc = eeh_wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
663		if (rc < 0)
664			return rc;
665
666		if (rc & active_flag)
667			return 0;
668
669		return -EIO;
670	}
671
672	return rc;
673}
674
675static void eeh_disable_and_save_dev_state(struct eeh_dev *edev,
676					    void *userdata)
677{
678	struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
679	struct pci_dev *dev = userdata;
680
681	/*
682	 * The caller should have disabled and saved the
683	 * state for the specified device
684	 */
685	if (!pdev || pdev == dev)
686		return;
687
688	/* Ensure we have D0 power state */
689	pci_set_power_state(pdev, PCI_D0);
690
691	/* Save device state */
692	pci_save_state(pdev);
693
694	/*
695	 * Disable device to avoid any DMA traffic and
696	 * interrupt from the device
697	 */
698	pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
699}
700
701static void eeh_restore_dev_state(struct eeh_dev *edev, void *userdata)
702{
703	struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
704	struct pci_dev *dev = userdata;
705
706	if (!pdev)
707		return;
708
709	/* Apply customization from firmware */
710	if (eeh_ops->restore_config)
711		eeh_ops->restore_config(edev);
712
713	/* The caller should restore state for the specified device */
714	if (pdev != dev)
715		pci_restore_state(pdev);
716}
717
718/**
719 * pcibios_set_pcie_reset_state - Set PCI-E reset state
720 * @dev: pci device struct
721 * @state: reset state to enter
722 *
723 * Return value:
724 * 	0 if success
725 */
726int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
727{
728	struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
729	struct eeh_pe *pe = eeh_dev_to_pe(edev);
730
731	if (!pe) {
732		pr_err("%s: No PE found on PCI device %s\n",
733			__func__, pci_name(dev));
734		return -EINVAL;
735	}
736
737	switch (state) {
738	case pcie_deassert_reset:
739		eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
740		eeh_unfreeze_pe(pe);
741		if (!(pe->type & EEH_PE_VF))
742			eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
743		eeh_pe_dev_traverse(pe, eeh_restore_dev_state, dev);
744		eeh_pe_state_clear(pe, EEH_PE_ISOLATED, true);
745		break;
746	case pcie_hot_reset:
747		eeh_pe_mark_isolated(pe);
748		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
749		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
750		eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
751		if (!(pe->type & EEH_PE_VF))
752			eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
753		eeh_ops->reset(pe, EEH_RESET_HOT);
754		break;
755	case pcie_warm_reset:
756		eeh_pe_mark_isolated(pe);
757		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
758		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
759		eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
760		if (!(pe->type & EEH_PE_VF))
761			eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
762		eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
763		break;
764	default:
765		eeh_pe_state_clear(pe, EEH_PE_ISOLATED | EEH_PE_CFG_BLOCKED, true);
766		return -EINVAL;
767	}
768
769	return 0;
770}
771
772/**
773 * eeh_set_dev_freset - Check the required reset for the indicated device
774 * @edev: EEH device
775 * @flag: return value
776 *
777 * Each device might have its preferred reset type: fundamental or
778 * hot reset. The routine is used to collected the information for
779 * the indicated device and its children so that the bunch of the
780 * devices could be reset properly.
781 */
782static void eeh_set_dev_freset(struct eeh_dev *edev, void *flag)
783{
784	struct pci_dev *dev;
785	unsigned int *freset = (unsigned int *)flag;
786
787	dev = eeh_dev_to_pci_dev(edev);
788	if (dev)
789		*freset |= dev->needs_freset;
790}
791
792static void eeh_pe_refreeze_passed(struct eeh_pe *root)
793{
794	struct eeh_pe *pe;
795	int state;
796
797	eeh_for_each_pe(root, pe) {
798		if (eeh_pe_passed(pe)) {
799			state = eeh_ops->get_state(pe, NULL);
800			if (state &
801			   (EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED)) {
802				pr_info("EEH: Passed-through PE PHB#%x-PE#%x was thawed by reset, re-freezing for safety.\n",
803					pe->phb->global_number, pe->addr);
804				eeh_pe_set_option(pe, EEH_OPT_FREEZE_PE);
805			}
806		}
807	}
808}
809
810/**
811 * eeh_pe_reset_full - Complete a full reset process on the indicated PE
812 * @pe: EEH PE
813 * @include_passed: include passed-through devices?
814 *
815 * This function executes a full reset procedure on a PE, including setting
816 * the appropriate flags, performing a fundamental or hot reset, and then
817 * deactivating the reset status.  It is designed to be used within the EEH
818 * subsystem, as opposed to eeh_pe_reset which is exported to drivers and
819 * only performs a single operation at a time.
820 *
821 * This function will attempt to reset a PE three times before failing.
822 */
823int eeh_pe_reset_full(struct eeh_pe *pe, bool include_passed)
824{
825	int reset_state = (EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
826	int type = EEH_RESET_HOT;
827	unsigned int freset = 0;
828	int i, state = 0, ret;
829
830	/*
831	 * Determine the type of reset to perform - hot or fundamental.
832	 * Hot reset is the default operation, unless any device under the
833	 * PE requires a fundamental reset.
834	 */
835	eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
836
837	if (freset)
838		type = EEH_RESET_FUNDAMENTAL;
839
840	/* Mark the PE as in reset state and block config space accesses */
841	eeh_pe_state_mark(pe, reset_state);
842
843	/* Make three attempts at resetting the bus */
844	for (i = 0; i < 3; i++) {
845		ret = eeh_pe_reset(pe, type, include_passed);
846		if (!ret)
847			ret = eeh_pe_reset(pe, EEH_RESET_DEACTIVATE,
848					   include_passed);
849		if (ret) {
850			ret = -EIO;
851			pr_warn("EEH: Failure %d resetting PHB#%x-PE#%x (attempt %d)\n\n",
852				state, pe->phb->global_number, pe->addr, i + 1);
853			continue;
854		}
855		if (i)
856			pr_warn("EEH: PHB#%x-PE#%x: Successful reset (attempt %d)\n",
857				pe->phb->global_number, pe->addr, i + 1);
858
859		/* Wait until the PE is in a functioning state */
860		state = eeh_wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
861		if (state < 0) {
862			pr_warn("EEH: Unrecoverable slot failure on PHB#%x-PE#%x",
863				pe->phb->global_number, pe->addr);
864			ret = -ENOTRECOVERABLE;
865			break;
866		}
867		if (eeh_state_active(state))
868			break;
869		else
870			pr_warn("EEH: PHB#%x-PE#%x: Slot inactive after reset: 0x%x (attempt %d)\n",
871				pe->phb->global_number, pe->addr, state, i + 1);
872	}
873
874	/* Resetting the PE may have unfrozen child PEs. If those PEs have been
875	 * (potentially) passed through to a guest, re-freeze them:
876	 */
877	if (!include_passed)
878		eeh_pe_refreeze_passed(pe);
879
880	eeh_pe_state_clear(pe, reset_state, true);
881	return ret;
882}
883
884/**
885 * eeh_save_bars - Save device bars
886 * @edev: PCI device associated EEH device
887 *
888 * Save the values of the device bars. Unlike the restore
889 * routine, this routine is *not* recursive. This is because
890 * PCI devices are added individually; but, for the restore,
891 * an entire slot is reset at a time.
892 */
893void eeh_save_bars(struct eeh_dev *edev)
894{
895	int i;
896
897	if (!edev)
898		return;
899
900	for (i = 0; i < 16; i++)
901		eeh_ops->read_config(edev, i * 4, 4, &edev->config_space[i]);
902
903	/*
904	 * For PCI bridges including root port, we need enable bus
905	 * master explicitly. Otherwise, it can't fetch IODA table
906	 * entries correctly. So we cache the bit in advance so that
907	 * we can restore it after reset, either PHB range or PE range.
908	 */
909	if (edev->mode & EEH_DEV_BRIDGE)
910		edev->config_space[1] |= PCI_COMMAND_MASTER;
911}
912
913static int eeh_reboot_notifier(struct notifier_block *nb,
914			       unsigned long action, void *unused)
915{
916	eeh_clear_flag(EEH_ENABLED);
917	return NOTIFY_DONE;
918}
919
920static struct notifier_block eeh_reboot_nb = {
921	.notifier_call = eeh_reboot_notifier,
922};
923
924static int eeh_device_notifier(struct notifier_block *nb,
925			       unsigned long action, void *data)
926{
927	struct device *dev = data;
928
929	switch (action) {
930	/*
931	 * Note: It's not possible to perform EEH device addition (i.e.
932	 * {pseries,pnv}_pcibios_bus_add_device()) here because it depends on
933	 * the device's resources, which have not yet been set up.
934	 */
935	case BUS_NOTIFY_DEL_DEVICE:
936		eeh_remove_device(to_pci_dev(dev));
937		break;
938	default:
939		break;
940	}
941	return NOTIFY_DONE;
942}
943
944static struct notifier_block eeh_device_nb = {
945	.notifier_call = eeh_device_notifier,
946};
947
948/**
949 * eeh_init - System wide EEH initialization
950 * @ops: struct to trace EEH operation callback functions
951 *
952 * It's the platform's job to call this from an arch_initcall().
953 */
954int eeh_init(struct eeh_ops *ops)
955{
956	struct pci_controller *hose, *tmp;
957	int ret = 0;
958
959	/* the platform should only initialise EEH once */
960	if (WARN_ON(eeh_ops))
961		return -EEXIST;
962	if (WARN_ON(!ops))
963		return -ENOENT;
964	eeh_ops = ops;
965
966	/* Register reboot notifier */
967	ret = register_reboot_notifier(&eeh_reboot_nb);
968	if (ret) {
969		pr_warn("%s: Failed to register reboot notifier (%d)\n",
970			__func__, ret);
971		return ret;
972	}
973
974	ret = bus_register_notifier(&pci_bus_type, &eeh_device_nb);
975	if (ret) {
976		pr_warn("%s: Failed to register bus notifier (%d)\n",
977			__func__, ret);
978		return ret;
979	}
980
981	/* Initialize PHB PEs */
982	list_for_each_entry_safe(hose, tmp, &hose_list, list_node)
983		eeh_phb_pe_create(hose);
984
985	eeh_addr_cache_init();
986
987	/* Initialize EEH event */
988	return eeh_event_init();
989}
990
991/**
992 * eeh_probe_device() - Perform EEH initialization for the indicated pci device
993 * @dev: pci device for which to set up EEH
994 *
995 * This routine must be used to complete EEH initialization for PCI
996 * devices that were added after system boot (e.g. hotplug, dlpar).
997 */
998void eeh_probe_device(struct pci_dev *dev)
999{
1000	struct eeh_dev *edev;
1001
1002	pr_debug("EEH: Adding device %s\n", pci_name(dev));
1003
1004	/*
1005	 * pci_dev_to_eeh_dev() can only work if eeh_probe_dev() was
1006	 * already called for this device.
1007	 */
1008	if (WARN_ON_ONCE(pci_dev_to_eeh_dev(dev))) {
1009		pci_dbg(dev, "Already bound to an eeh_dev!\n");
1010		return;
1011	}
1012
1013	edev = eeh_ops->probe(dev);
1014	if (!edev) {
1015		pr_debug("EEH: Adding device failed\n");
1016		return;
1017	}
1018
1019	/*
1020	 * FIXME: We rely on pcibios_release_device() to remove the
1021	 * existing EEH state. The release function is only called if
1022	 * the pci_dev's refcount drops to zero so if something is
1023	 * keeping a ref to a device (e.g. a filesystem) we need to
1024	 * remove the old EEH state.
1025	 *
1026	 * FIXME: HEY MA, LOOK AT ME, NO LOCKING!
1027	 */
1028	if (edev->pdev && edev->pdev != dev) {
1029		eeh_pe_tree_remove(edev);
1030		eeh_addr_cache_rmv_dev(edev->pdev);
1031		eeh_sysfs_remove_device(edev->pdev);
1032
1033		/*
1034		 * We definitely should have the PCI device removed
1035		 * though it wasn't correctly. So we needn't call
1036		 * into error handler afterwards.
1037		 */
1038		edev->mode |= EEH_DEV_NO_HANDLER;
1039	}
1040
1041	/* bind the pdev and the edev together */
1042	edev->pdev = dev;
1043	dev->dev.archdata.edev = edev;
1044	eeh_addr_cache_insert_dev(dev);
1045	eeh_sysfs_add_device(dev);
1046}
1047
1048/**
1049 * eeh_remove_device - Undo EEH setup for the indicated pci device
1050 * @dev: pci device to be removed
1051 *
1052 * This routine should be called when a device is removed from
1053 * a running system (e.g. by hotplug or dlpar).  It unregisters
1054 * the PCI device from the EEH subsystem.  I/O errors affecting
1055 * this device will no longer be detected after this call; thus,
1056 * i/o errors affecting this slot may leave this device unusable.
1057 */
1058void eeh_remove_device(struct pci_dev *dev)
1059{
1060	struct eeh_dev *edev;
1061
1062	if (!dev || !eeh_enabled())
1063		return;
1064	edev = pci_dev_to_eeh_dev(dev);
1065
1066	/* Unregister the device with the EEH/PCI address search system */
1067	dev_dbg(&dev->dev, "EEH: Removing device\n");
1068
1069	if (!edev || !edev->pdev || !edev->pe) {
1070		dev_dbg(&dev->dev, "EEH: Device not referenced!\n");
1071		return;
1072	}
1073
1074	/*
1075	 * During the hotplug for EEH error recovery, we need the EEH
1076	 * device attached to the parent PE in order for BAR restore
1077	 * a bit later. So we keep it for BAR restore and remove it
1078	 * from the parent PE during the BAR resotre.
1079	 */
1080	edev->pdev = NULL;
1081
1082	/*
1083	 * eeh_sysfs_remove_device() uses pci_dev_to_eeh_dev() so we need to
1084	 * remove the sysfs files before clearing dev.archdata.edev
1085	 */
1086	if (edev->mode & EEH_DEV_SYSFS)
1087		eeh_sysfs_remove_device(dev);
1088
1089	/*
1090	 * We're removing from the PCI subsystem, that means
1091	 * the PCI device driver can't support EEH or not
1092	 * well. So we rely on hotplug completely to do recovery
1093	 * for the specific PCI device.
1094	 */
1095	edev->mode |= EEH_DEV_NO_HANDLER;
1096
1097	eeh_addr_cache_rmv_dev(dev);
1098
1099	/*
1100	 * The flag "in_error" is used to trace EEH devices for VFs
1101	 * in error state or not. It's set in eeh_report_error(). If
1102	 * it's not set, eeh_report_{reset,resume}() won't be called
1103	 * for the VF EEH device.
1104	 */
1105	edev->in_error = false;
1106	dev->dev.archdata.edev = NULL;
1107	if (!(edev->pe->state & EEH_PE_KEEP))
1108		eeh_pe_tree_remove(edev);
1109	else
1110		edev->mode |= EEH_DEV_DISCONNECTED;
1111}
1112
1113int eeh_unfreeze_pe(struct eeh_pe *pe)
1114{
1115	int ret;
1116
1117	ret = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
1118	if (ret) {
1119		pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n",
1120			__func__, ret, pe->phb->global_number, pe->addr);
1121		return ret;
1122	}
1123
1124	ret = eeh_pci_enable(pe, EEH_OPT_THAW_DMA);
1125	if (ret) {
1126		pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n",
1127			__func__, ret, pe->phb->global_number, pe->addr);
1128		return ret;
1129	}
1130
1131	return ret;
1132}
1133
1134
1135static struct pci_device_id eeh_reset_ids[] = {
1136	{ PCI_DEVICE(0x19a2, 0x0710) },	/* Emulex, BE     */
1137	{ PCI_DEVICE(0x10df, 0xe220) },	/* Emulex, Lancer */
1138	{ PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */
1139	{ 0 }
1140};
1141
1142static int eeh_pe_change_owner(struct eeh_pe *pe)
1143{
1144	struct eeh_dev *edev, *tmp;
1145	struct pci_dev *pdev;
1146	struct pci_device_id *id;
1147	int ret;
1148
1149	/* Check PE state */
1150	ret = eeh_ops->get_state(pe, NULL);
1151	if (ret < 0 || ret == EEH_STATE_NOT_SUPPORT)
1152		return 0;
1153
1154	/* Unfrozen PE, nothing to do */
1155	if (eeh_state_active(ret))
1156		return 0;
1157
1158	/* Frozen PE, check if it needs PE level reset */
1159	eeh_pe_for_each_dev(pe, edev, tmp) {
1160		pdev = eeh_dev_to_pci_dev(edev);
1161		if (!pdev)
1162			continue;
1163
1164		for (id = &eeh_reset_ids[0]; id->vendor != 0; id++) {
1165			if (id->vendor != PCI_ANY_ID &&
1166			    id->vendor != pdev->vendor)
1167				continue;
1168			if (id->device != PCI_ANY_ID &&
1169			    id->device != pdev->device)
1170				continue;
1171			if (id->subvendor != PCI_ANY_ID &&
1172			    id->subvendor != pdev->subsystem_vendor)
1173				continue;
1174			if (id->subdevice != PCI_ANY_ID &&
1175			    id->subdevice != pdev->subsystem_device)
1176				continue;
1177
1178			return eeh_pe_reset_and_recover(pe);
1179		}
1180	}
1181
1182	ret = eeh_unfreeze_pe(pe);
1183	if (!ret)
1184		eeh_pe_state_clear(pe, EEH_PE_ISOLATED, true);
1185	return ret;
1186}
1187
1188/**
1189 * eeh_dev_open - Increase count of pass through devices for PE
1190 * @pdev: PCI device
1191 *
1192 * Increase count of passed through devices for the indicated
1193 * PE. In the result, the EEH errors detected on the PE won't be
1194 * reported. The PE owner will be responsible for detection
1195 * and recovery.
1196 */
1197int eeh_dev_open(struct pci_dev *pdev)
1198{
1199	struct eeh_dev *edev;
1200	int ret = -ENODEV;
1201
1202	mutex_lock(&eeh_dev_mutex);
1203
1204	/* No PCI device ? */
1205	if (!pdev)
1206		goto out;
1207
1208	/* No EEH device or PE ? */
1209	edev = pci_dev_to_eeh_dev(pdev);
1210	if (!edev || !edev->pe)
1211		goto out;
1212
1213	/*
1214	 * The PE might have been put into frozen state, but we
1215	 * didn't detect that yet. The passed through PCI devices
1216	 * in frozen PE won't work properly. Clear the frozen state
1217	 * in advance.
1218	 */
1219	ret = eeh_pe_change_owner(edev->pe);
1220	if (ret)
1221		goto out;
1222
1223	/* Increase PE's pass through count */
1224	atomic_inc(&edev->pe->pass_dev_cnt);
1225	mutex_unlock(&eeh_dev_mutex);
1226
1227	return 0;
1228out:
1229	mutex_unlock(&eeh_dev_mutex);
1230	return ret;
1231}
1232EXPORT_SYMBOL_GPL(eeh_dev_open);
1233
1234/**
1235 * eeh_dev_release - Decrease count of pass through devices for PE
1236 * @pdev: PCI device
1237 *
1238 * Decrease count of pass through devices for the indicated PE. If
1239 * there is no passed through device in PE, the EEH errors detected
1240 * on the PE will be reported and handled as usual.
1241 */
1242void eeh_dev_release(struct pci_dev *pdev)
1243{
1244	struct eeh_dev *edev;
1245
1246	mutex_lock(&eeh_dev_mutex);
1247
1248	/* No PCI device ? */
1249	if (!pdev)
1250		goto out;
1251
1252	/* No EEH device ? */
1253	edev = pci_dev_to_eeh_dev(pdev);
1254	if (!edev || !edev->pe || !eeh_pe_passed(edev->pe))
1255		goto out;
1256
1257	/* Decrease PE's pass through count */
1258	WARN_ON(atomic_dec_if_positive(&edev->pe->pass_dev_cnt) < 0);
1259	eeh_pe_change_owner(edev->pe);
1260out:
1261	mutex_unlock(&eeh_dev_mutex);
1262}
1263EXPORT_SYMBOL(eeh_dev_release);
1264
1265#ifdef CONFIG_IOMMU_API
1266
1267static int dev_has_iommu_table(struct device *dev, void *data)
1268{
1269	struct pci_dev *pdev = to_pci_dev(dev);
1270	struct pci_dev **ppdev = data;
1271
1272	if (!dev)
1273		return 0;
1274
1275	if (device_iommu_mapped(dev)) {
1276		*ppdev = pdev;
1277		return 1;
1278	}
1279
1280	return 0;
1281}
1282
1283/**
1284 * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE
1285 * @group: IOMMU group
1286 *
1287 * The routine is called to convert IOMMU group to EEH PE.
1288 */
1289struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group)
1290{
1291	struct pci_dev *pdev = NULL;
1292	struct eeh_dev *edev;
1293	int ret;
1294
1295	/* No IOMMU group ? */
1296	if (!group)
1297		return NULL;
1298
1299	ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table);
1300	if (!ret || !pdev)
1301		return NULL;
1302
1303	/* No EEH device or PE ? */
1304	edev = pci_dev_to_eeh_dev(pdev);
1305	if (!edev || !edev->pe)
1306		return NULL;
1307
1308	return edev->pe;
1309}
1310EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe);
1311
1312#endif /* CONFIG_IOMMU_API */
1313
1314/**
1315 * eeh_pe_set_option - Set options for the indicated PE
1316 * @pe: EEH PE
1317 * @option: requested option
1318 *
1319 * The routine is called to enable or disable EEH functionality
1320 * on the indicated PE, to enable IO or DMA for the frozen PE.
1321 */
1322int eeh_pe_set_option(struct eeh_pe *pe, int option)
1323{
1324	int ret = 0;
1325
1326	/* Invalid PE ? */
1327	if (!pe)
1328		return -ENODEV;
1329
1330	/*
1331	 * EEH functionality could possibly be disabled, just
1332	 * return error for the case. And the EEH functionality
1333	 * isn't expected to be disabled on one specific PE.
1334	 */
1335	switch (option) {
1336	case EEH_OPT_ENABLE:
1337		if (eeh_enabled()) {
1338			ret = eeh_pe_change_owner(pe);
1339			break;
1340		}
1341		ret = -EIO;
1342		break;
1343	case EEH_OPT_DISABLE:
1344		break;
1345	case EEH_OPT_THAW_MMIO:
1346	case EEH_OPT_THAW_DMA:
1347	case EEH_OPT_FREEZE_PE:
1348		if (!eeh_ops || !eeh_ops->set_option) {
1349			ret = -ENOENT;
1350			break;
1351		}
1352
1353		ret = eeh_pci_enable(pe, option);
1354		break;
1355	default:
1356		pr_debug("%s: Option %d out of range (%d, %d)\n",
1357			__func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA);
1358		ret = -EINVAL;
1359	}
1360
1361	return ret;
1362}
1363EXPORT_SYMBOL_GPL(eeh_pe_set_option);
1364
1365/**
1366 * eeh_pe_get_state - Retrieve PE's state
1367 * @pe: EEH PE
1368 *
1369 * Retrieve the PE's state, which includes 3 aspects: enabled
1370 * DMA, enabled IO and asserted reset.
1371 */
1372int eeh_pe_get_state(struct eeh_pe *pe)
1373{
1374	int result, ret = 0;
1375	bool rst_active, dma_en, mmio_en;
1376
1377	/* Existing PE ? */
1378	if (!pe)
1379		return -ENODEV;
1380
1381	if (!eeh_ops || !eeh_ops->get_state)
1382		return -ENOENT;
1383
1384	/*
1385	 * If the parent PE is owned by the host kernel and is undergoing
1386	 * error recovery, we should return the PE state as temporarily
1387	 * unavailable so that the error recovery on the guest is suspended
1388	 * until the recovery completes on the host.
1389	 */
1390	if (pe->parent &&
1391	    !(pe->state & EEH_PE_REMOVED) &&
1392	    (pe->parent->state & (EEH_PE_ISOLATED | EEH_PE_RECOVERING)))
1393		return EEH_PE_STATE_UNAVAIL;
1394
1395	result = eeh_ops->get_state(pe, NULL);
1396	rst_active = !!(result & EEH_STATE_RESET_ACTIVE);
1397	dma_en = !!(result & EEH_STATE_DMA_ENABLED);
1398	mmio_en = !!(result & EEH_STATE_MMIO_ENABLED);
1399
1400	if (rst_active)
1401		ret = EEH_PE_STATE_RESET;
1402	else if (dma_en && mmio_en)
1403		ret = EEH_PE_STATE_NORMAL;
1404	else if (!dma_en && !mmio_en)
1405		ret = EEH_PE_STATE_STOPPED_IO_DMA;
1406	else if (!dma_en && mmio_en)
1407		ret = EEH_PE_STATE_STOPPED_DMA;
1408	else
1409		ret = EEH_PE_STATE_UNAVAIL;
1410
1411	return ret;
1412}
1413EXPORT_SYMBOL_GPL(eeh_pe_get_state);
1414
1415static int eeh_pe_reenable_devices(struct eeh_pe *pe, bool include_passed)
1416{
1417	struct eeh_dev *edev, *tmp;
1418	struct pci_dev *pdev;
1419	int ret = 0;
1420
1421	eeh_pe_restore_bars(pe);
1422
1423	/*
1424	 * Reenable PCI devices as the devices passed
1425	 * through are always enabled before the reset.
1426	 */
1427	eeh_pe_for_each_dev(pe, edev, tmp) {
1428		pdev = eeh_dev_to_pci_dev(edev);
1429		if (!pdev)
1430			continue;
1431
1432		ret = pci_reenable_device(pdev);
1433		if (ret) {
1434			pr_warn("%s: Failure %d reenabling %s\n",
1435				__func__, ret, pci_name(pdev));
1436			return ret;
1437		}
1438	}
1439
1440	/* The PE is still in frozen state */
1441	if (include_passed || !eeh_pe_passed(pe)) {
1442		ret = eeh_unfreeze_pe(pe);
1443	} else
1444		pr_info("EEH: Note: Leaving passthrough PHB#%x-PE#%x frozen.\n",
1445			pe->phb->global_number, pe->addr);
1446	if (!ret)
1447		eeh_pe_state_clear(pe, EEH_PE_ISOLATED, include_passed);
1448	return ret;
1449}
1450
1451
1452/**
1453 * eeh_pe_reset - Issue PE reset according to specified type
1454 * @pe: EEH PE
1455 * @option: reset type
1456 * @include_passed: include passed-through devices?
1457 *
1458 * The routine is called to reset the specified PE with the
1459 * indicated type, either fundamental reset or hot reset.
1460 * PE reset is the most important part for error recovery.
1461 */
1462int eeh_pe_reset(struct eeh_pe *pe, int option, bool include_passed)
1463{
1464	int ret = 0;
1465
1466	/* Invalid PE ? */
1467	if (!pe)
1468		return -ENODEV;
1469
1470	if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset)
1471		return -ENOENT;
1472
1473	switch (option) {
1474	case EEH_RESET_DEACTIVATE:
1475		ret = eeh_ops->reset(pe, option);
1476		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, include_passed);
1477		if (ret)
1478			break;
1479
1480		ret = eeh_pe_reenable_devices(pe, include_passed);
1481		break;
1482	case EEH_RESET_HOT:
1483	case EEH_RESET_FUNDAMENTAL:
1484		/*
1485		 * Proactively freeze the PE to drop all MMIO access
1486		 * during reset, which should be banned as it's always
1487		 * cause recursive EEH error.
1488		 */
1489		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
1490
1491		eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
1492		ret = eeh_ops->reset(pe, option);
1493		break;
1494	default:
1495		pr_debug("%s: Unsupported option %d\n",
1496			__func__, option);
1497		ret = -EINVAL;
1498	}
1499
1500	return ret;
1501}
1502EXPORT_SYMBOL_GPL(eeh_pe_reset);
1503
1504/**
1505 * eeh_pe_configure - Configure PCI bridges after PE reset
1506 * @pe: EEH PE
1507 *
1508 * The routine is called to restore the PCI config space for
1509 * those PCI devices, especially PCI bridges affected by PE
1510 * reset issued previously.
1511 */
1512int eeh_pe_configure(struct eeh_pe *pe)
1513{
1514	int ret = 0;
1515
1516	/* Invalid PE ? */
1517	if (!pe)
1518		return -ENODEV;
1519
1520	return ret;
1521}
1522EXPORT_SYMBOL_GPL(eeh_pe_configure);
1523
1524/**
1525 * eeh_pe_inject_err - Injecting the specified PCI error to the indicated PE
1526 * @pe: the indicated PE
1527 * @type: error type
1528 * @func: error function
1529 * @addr: address
1530 * @mask: address mask
1531 *
1532 * The routine is called to inject the specified PCI error, which
1533 * is determined by @type and @func, to the indicated PE for
1534 * testing purpose.
1535 */
1536int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func,
1537		      unsigned long addr, unsigned long mask)
1538{
1539	/* Invalid PE ? */
1540	if (!pe)
1541		return -ENODEV;
1542
1543	/* Unsupported operation ? */
1544	if (!eeh_ops || !eeh_ops->err_inject)
1545		return -ENOENT;
1546
1547	/* Check on PCI error type */
1548	if (type != EEH_ERR_TYPE_32 && type != EEH_ERR_TYPE_64)
1549		return -EINVAL;
1550
1551	/* Check on PCI error function */
1552	if (func < EEH_ERR_FUNC_MIN || func > EEH_ERR_FUNC_MAX)
1553		return -EINVAL;
1554
1555	return eeh_ops->err_inject(pe, type, func, addr, mask);
1556}
1557EXPORT_SYMBOL_GPL(eeh_pe_inject_err);
1558
1559#ifdef CONFIG_PROC_FS
1560static int proc_eeh_show(struct seq_file *m, void *v)
1561{
1562	if (!eeh_enabled()) {
1563		seq_printf(m, "EEH Subsystem is globally disabled\n");
1564		seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
1565	} else {
1566		seq_printf(m, "EEH Subsystem is enabled\n");
1567		seq_printf(m,
1568				"no device=%llu\n"
1569				"no device node=%llu\n"
1570				"no config address=%llu\n"
1571				"check not wanted=%llu\n"
1572				"eeh_total_mmio_ffs=%llu\n"
1573				"eeh_false_positives=%llu\n"
1574				"eeh_slot_resets=%llu\n",
1575				eeh_stats.no_device,
1576				eeh_stats.no_dn,
1577				eeh_stats.no_cfg_addr,
1578				eeh_stats.ignored_check,
1579				eeh_stats.total_mmio_ffs,
1580				eeh_stats.false_positives,
1581				eeh_stats.slot_resets);
1582	}
1583
1584	return 0;
1585}
1586#endif /* CONFIG_PROC_FS */
1587
1588#ifdef CONFIG_DEBUG_FS
1589
1590
1591static struct pci_dev *eeh_debug_lookup_pdev(struct file *filp,
1592					     const char __user *user_buf,
1593					     size_t count, loff_t *ppos)
1594{
1595	uint32_t domain, bus, dev, fn;
1596	struct pci_dev *pdev;
1597	char buf[20];
1598	int ret;
1599
1600	memset(buf, 0, sizeof(buf));
1601	ret = simple_write_to_buffer(buf, sizeof(buf)-1, ppos, user_buf, count);
1602	if (!ret)
1603		return ERR_PTR(-EFAULT);
1604
1605	ret = sscanf(buf, "%x:%x:%x.%x", &domain, &bus, &dev, &fn);
1606	if (ret != 4) {
1607		pr_err("%s: expected 4 args, got %d\n", __func__, ret);
1608		return ERR_PTR(-EINVAL);
1609	}
1610
1611	pdev = pci_get_domain_bus_and_slot(domain, bus, (dev << 3) | fn);
1612	if (!pdev)
1613		return ERR_PTR(-ENODEV);
1614
1615	return pdev;
1616}
1617
1618static int eeh_enable_dbgfs_set(void *data, u64 val)
1619{
1620	if (val)
1621		eeh_clear_flag(EEH_FORCE_DISABLED);
1622	else
1623		eeh_add_flag(EEH_FORCE_DISABLED);
1624
1625	return 0;
1626}
1627
1628static int eeh_enable_dbgfs_get(void *data, u64 *val)
1629{
1630	if (eeh_enabled())
1631		*val = 0x1ul;
1632	else
1633		*val = 0x0ul;
1634	return 0;
1635}
1636
1637DEFINE_DEBUGFS_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get,
1638			 eeh_enable_dbgfs_set, "0x%llx\n");
1639
1640static ssize_t eeh_force_recover_write(struct file *filp,
1641				const char __user *user_buf,
1642				size_t count, loff_t *ppos)
1643{
1644	struct pci_controller *hose;
1645	uint32_t phbid, pe_no;
1646	struct eeh_pe *pe;
1647	char buf[20];
1648	int ret;
1649
1650	ret = simple_write_to_buffer(buf, sizeof(buf), ppos, user_buf, count);
1651	if (!ret)
1652		return -EFAULT;
1653
1654	/*
1655	 * When PE is NULL the event is a "special" event. Rather than
1656	 * recovering a specific PE it forces the EEH core to scan for failed
1657	 * PHBs and recovers each. This needs to be done before any device
1658	 * recoveries can occur.
1659	 */
1660	if (!strncmp(buf, "hwcheck", 7)) {
1661		__eeh_send_failure_event(NULL);
1662		return count;
1663	}
1664
1665	ret = sscanf(buf, "%x:%x", &phbid, &pe_no);
1666	if (ret != 2)
1667		return -EINVAL;
1668
1669	hose = pci_find_controller_for_domain(phbid);
1670	if (!hose)
1671		return -ENODEV;
1672
1673	/* Retrieve PE */
1674	pe = eeh_pe_get(hose, pe_no);
1675	if (!pe)
1676		return -ENODEV;
1677
1678	/*
1679	 * We don't do any state checking here since the detection
1680	 * process is async to the recovery process. The recovery
1681	 * thread *should* not break even if we schedule a recovery
1682	 * from an odd state (e.g. PE removed, or recovery of a
1683	 * non-isolated PE)
1684	 */
1685	__eeh_send_failure_event(pe);
1686
1687	return ret < 0 ? ret : count;
1688}
1689
1690static const struct file_operations eeh_force_recover_fops = {
1691	.open	= simple_open,
1692	.llseek	= no_llseek,
1693	.write	= eeh_force_recover_write,
1694};
1695
1696static ssize_t eeh_debugfs_dev_usage(struct file *filp,
1697				char __user *user_buf,
1698				size_t count, loff_t *ppos)
1699{
1700	static const char usage[] = "input format: <domain>:<bus>:<dev>.<fn>\n";
1701
1702	return simple_read_from_buffer(user_buf, count, ppos,
1703				       usage, sizeof(usage) - 1);
1704}
1705
1706static ssize_t eeh_dev_check_write(struct file *filp,
1707				const char __user *user_buf,
1708				size_t count, loff_t *ppos)
1709{
1710	struct pci_dev *pdev;
1711	struct eeh_dev *edev;
1712	int ret;
1713
1714	pdev = eeh_debug_lookup_pdev(filp, user_buf, count, ppos);
1715	if (IS_ERR(pdev))
1716		return PTR_ERR(pdev);
1717
1718	edev = pci_dev_to_eeh_dev(pdev);
1719	if (!edev) {
1720		pci_err(pdev, "No eeh_dev for this device!\n");
1721		pci_dev_put(pdev);
1722		return -ENODEV;
1723	}
1724
1725	ret = eeh_dev_check_failure(edev);
1726	pci_info(pdev, "eeh_dev_check_failure(%s) = %d\n",
1727			pci_name(pdev), ret);
1728
1729	pci_dev_put(pdev);
1730
1731	return count;
1732}
1733
1734static const struct file_operations eeh_dev_check_fops = {
1735	.open	= simple_open,
1736	.llseek	= no_llseek,
1737	.write	= eeh_dev_check_write,
1738	.read   = eeh_debugfs_dev_usage,
1739};
1740
1741static int eeh_debugfs_break_device(struct pci_dev *pdev)
1742{
1743	struct resource *bar = NULL;
1744	void __iomem *mapped;
1745	u16 old, bit;
1746	int i, pos;
1747
1748	/* Do we have an MMIO BAR to disable? */
1749	for (i = 0; i <= PCI_STD_RESOURCE_END; i++) {
1750		struct resource *r = &pdev->resource[i];
1751
1752		if (!r->flags || !r->start)
1753			continue;
1754		if (r->flags & IORESOURCE_IO)
1755			continue;
1756		if (r->flags & IORESOURCE_UNSET)
1757			continue;
1758
1759		bar = r;
1760		break;
1761	}
1762
1763	if (!bar) {
1764		pci_err(pdev, "Unable to find Memory BAR to cause EEH with\n");
1765		return -ENXIO;
1766	}
1767
1768	pci_err(pdev, "Going to break: %pR\n", bar);
1769
1770	if (pdev->is_virtfn) {
1771#ifndef CONFIG_PCI_IOV
1772		return -ENXIO;
1773#else
1774		/*
1775		 * VFs don't have a per-function COMMAND register, so the best
1776		 * we can do is clear the Memory Space Enable bit in the PF's
1777		 * SRIOV control reg.
1778		 *
1779		 * Unfortunately, this requires that we have a PF (i.e doesn't
1780		 * work for a passed-through VF) and it has the potential side
1781		 * effect of also causing an EEH on every other VF under the
1782		 * PF. Oh well.
1783		 */
1784		pdev = pdev->physfn;
1785		if (!pdev)
1786			return -ENXIO; /* passed through VFs have no PF */
1787
1788		pos  = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
1789		pos += PCI_SRIOV_CTRL;
1790		bit  = PCI_SRIOV_CTRL_MSE;
1791#endif /* !CONFIG_PCI_IOV */
1792	} else {
1793		bit = PCI_COMMAND_MEMORY;
1794		pos = PCI_COMMAND;
1795	}
1796
1797	/*
1798	 * Process here is:
1799	 *
1800	 * 1. Disable Memory space.
1801	 *
1802	 * 2. Perform an MMIO to the device. This should result in an error
1803	 *    (CA  / UR) being raised by the device which results in an EEH
1804	 *    PE freeze. Using the in_8() accessor skips the eeh detection hook
1805	 *    so the freeze hook so the EEH Detection machinery won't be
1806	 *    triggered here. This is to match the usual behaviour of EEH
1807	 *    where the HW will asynchronously freeze a PE and it's up to
1808	 *    the kernel to notice and deal with it.
1809	 *
1810	 * 3. Turn Memory space back on. This is more important for VFs
1811	 *    since recovery will probably fail if we don't. For normal
1812	 *    the COMMAND register is reset as a part of re-initialising
1813	 *    the device.
1814	 *
1815	 * Breaking stuff is the point so who cares if it's racy ;)
1816	 */
1817	pci_read_config_word(pdev, pos, &old);
1818
1819	mapped = ioremap(bar->start, PAGE_SIZE);
1820	if (!mapped) {
1821		pci_err(pdev, "Unable to map MMIO BAR %pR\n", bar);
1822		return -ENXIO;
1823	}
1824
1825	pci_write_config_word(pdev, pos, old & ~bit);
1826	in_8(mapped);
1827	pci_write_config_word(pdev, pos, old);
1828
1829	iounmap(mapped);
1830
1831	return 0;
1832}
1833
1834static ssize_t eeh_dev_break_write(struct file *filp,
1835				const char __user *user_buf,
1836				size_t count, loff_t *ppos)
1837{
1838	struct pci_dev *pdev;
1839	int ret;
1840
1841	pdev = eeh_debug_lookup_pdev(filp, user_buf, count, ppos);
1842	if (IS_ERR(pdev))
1843		return PTR_ERR(pdev);
1844
1845	ret = eeh_debugfs_break_device(pdev);
1846	pci_dev_put(pdev);
1847
1848	if (ret < 0)
1849		return ret;
1850
1851	return count;
1852}
1853
1854static const struct file_operations eeh_dev_break_fops = {
1855	.open	= simple_open,
1856	.llseek	= no_llseek,
1857	.write	= eeh_dev_break_write,
1858	.read   = eeh_debugfs_dev_usage,
1859};
1860
1861static ssize_t eeh_dev_can_recover(struct file *filp,
1862				   const char __user *user_buf,
1863				   size_t count, loff_t *ppos)
1864{
1865	struct pci_driver *drv;
1866	struct pci_dev *pdev;
1867	size_t ret;
1868
1869	pdev = eeh_debug_lookup_pdev(filp, user_buf, count, ppos);
1870	if (IS_ERR(pdev))
1871		return PTR_ERR(pdev);
1872
1873	/*
1874	 * In order for error recovery to work the driver needs to implement
1875	 * .error_detected(), so it can quiesce IO to the device, and
1876	 * .slot_reset() so it can re-initialise the device after a reset.
1877	 *
1878	 * Ideally they'd implement .resume() too, but some drivers which
1879	 * we need to support (notably IPR) don't so I guess we can tolerate
1880	 * that.
1881	 *
1882	 * .mmio_enabled() is mostly there as a work-around for devices which
1883	 * take forever to re-init after a hot reset. Implementing that is
1884	 * strictly optional.
1885	 */
1886	drv = pci_dev_driver(pdev);
1887	if (drv &&
1888	    drv->err_handler &&
1889	    drv->err_handler->error_detected &&
1890	    drv->err_handler->slot_reset) {
1891		ret = count;
1892	} else {
1893		ret = -EOPNOTSUPP;
1894	}
1895
1896	pci_dev_put(pdev);
1897
1898	return ret;
1899}
1900
1901static const struct file_operations eeh_dev_can_recover_fops = {
1902	.open	= simple_open,
1903	.llseek	= no_llseek,
1904	.write	= eeh_dev_can_recover,
1905	.read   = eeh_debugfs_dev_usage,
1906};
1907
1908#endif
1909
1910static int __init eeh_init_proc(void)
1911{
1912	if (machine_is(pseries) || machine_is(powernv)) {
1913		proc_create_single("powerpc/eeh", 0, NULL, proc_eeh_show);
1914#ifdef CONFIG_DEBUG_FS
1915		debugfs_create_file_unsafe("eeh_enable", 0600,
1916					   arch_debugfs_dir, NULL,
1917					   &eeh_enable_dbgfs_ops);
1918		debugfs_create_u32("eeh_max_freezes", 0600,
1919				arch_debugfs_dir, &eeh_max_freezes);
1920		debugfs_create_bool("eeh_disable_recovery", 0600,
1921				arch_debugfs_dir,
1922				&eeh_debugfs_no_recover);
1923		debugfs_create_file_unsafe("eeh_dev_check", 0600,
1924				arch_debugfs_dir, NULL,
1925				&eeh_dev_check_fops);
1926		debugfs_create_file_unsafe("eeh_dev_break", 0600,
1927				arch_debugfs_dir, NULL,
1928				&eeh_dev_break_fops);
1929		debugfs_create_file_unsafe("eeh_force_recover", 0600,
1930				arch_debugfs_dir, NULL,
1931				&eeh_force_recover_fops);
1932		debugfs_create_file_unsafe("eeh_dev_can_recover", 0600,
1933				arch_debugfs_dir, NULL,
1934				&eeh_dev_can_recover_fops);
1935		eeh_cache_debugfs_init();
1936#endif
1937	}
1938
1939	return 0;
1940}
1941__initcall(eeh_init_proc);
1942