1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License.  See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Synthesize TLB refill handlers at runtime.
7 *
8 * Copyright (C) 2004, 2005, 2006, 2008	 Thiemo Seufer
9 * Copyright (C) 2005, 2007, 2008, 2009	 Maciej W. Rozycki
10 * Copyright (C) 2006  Ralf Baechle (ralf@linux-mips.org)
11 * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12 * Copyright (C) 2011  MIPS Technologies, Inc.
13 *
14 * ... and the days got worse and worse and now you see
15 * I've gone completely out of my mind.
16 *
17 * They're coming to take me a away haha
18 * they're coming to take me a away hoho hihi haha
19 * to the funny farm where code is beautiful all the time ...
20 *
21 * (Condolences to Napoleon XIV)
22 */
23
24#include <linux/bug.h>
25#include <linux/export.h>
26#include <linux/kernel.h>
27#include <linux/types.h>
28#include <linux/smp.h>
29#include <linux/string.h>
30#include <linux/cache.h>
31#include <linux/pgtable.h>
32
33#include <asm/cacheflush.h>
34#include <asm/cpu-type.h>
35#include <asm/mipsregs.h>
36#include <asm/mmu_context.h>
37#include <asm/regdef.h>
38#include <asm/uasm.h>
39#include <asm/setup.h>
40#include <asm/tlbex.h>
41
42static int mips_xpa_disabled;
43
44static int __init xpa_disable(char *s)
45{
46	mips_xpa_disabled = 1;
47
48	return 1;
49}
50
51__setup("noxpa", xpa_disable);
52
53/*
54 * TLB load/store/modify handlers.
55 *
56 * Only the fastpath gets synthesized at runtime, the slowpath for
57 * do_page_fault remains normal asm.
58 */
59extern void tlb_do_page_fault_0(void);
60extern void tlb_do_page_fault_1(void);
61
62struct work_registers {
63	int r1;
64	int r2;
65	int r3;
66};
67
68struct tlb_reg_save {
69	unsigned long a;
70	unsigned long b;
71} ____cacheline_aligned_in_smp;
72
73static struct tlb_reg_save handler_reg_save[NR_CPUS];
74
75static inline int r45k_bvahwbug(void)
76{
77	/* XXX: We should probe for the presence of this bug, but we don't. */
78	return 0;
79}
80
81static inline int r4k_250MHZhwbug(void)
82{
83	/* XXX: We should probe for the presence of this bug, but we don't. */
84	return 0;
85}
86
87extern int sb1250_m3_workaround_needed(void);
88
89static inline int __maybe_unused bcm1250_m3_war(void)
90{
91	if (IS_ENABLED(CONFIG_SB1_PASS_2_WORKAROUNDS))
92		return sb1250_m3_workaround_needed();
93	return 0;
94}
95
96static inline int __maybe_unused r10000_llsc_war(void)
97{
98	return IS_ENABLED(CONFIG_WAR_R10000_LLSC);
99}
100
101static int use_bbit_insns(void)
102{
103	switch (current_cpu_type()) {
104	case CPU_CAVIUM_OCTEON:
105	case CPU_CAVIUM_OCTEON_PLUS:
106	case CPU_CAVIUM_OCTEON2:
107	case CPU_CAVIUM_OCTEON3:
108		return 1;
109	default:
110		return 0;
111	}
112}
113
114static int use_lwx_insns(void)
115{
116	switch (current_cpu_type()) {
117	case CPU_CAVIUM_OCTEON2:
118	case CPU_CAVIUM_OCTEON3:
119		return 1;
120	default:
121		return 0;
122	}
123}
124#if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
125    CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
126static bool scratchpad_available(void)
127{
128	return true;
129}
130static int scratchpad_offset(int i)
131{
132	/*
133	 * CVMSEG starts at address -32768 and extends for
134	 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
135	 */
136	i += 1; /* Kernel use starts at the top and works down. */
137	return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
138}
139#else
140static bool scratchpad_available(void)
141{
142	return false;
143}
144static int scratchpad_offset(int i)
145{
146	BUG();
147	/* Really unreachable, but evidently some GCC want this. */
148	return 0;
149}
150#endif
151/*
152 * Found by experiment: At least some revisions of the 4kc throw under
153 * some circumstances a machine check exception, triggered by invalid
154 * values in the index register.  Delaying the tlbp instruction until
155 * after the next branch,  plus adding an additional nop in front of
156 * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
157 * why; it's not an issue caused by the core RTL.
158 *
159 */
160static int m4kc_tlbp_war(void)
161{
162	return current_cpu_type() == CPU_4KC;
163}
164
165/* Handle labels (which must be positive integers). */
166enum label_id {
167	label_second_part = 1,
168	label_leave,
169	label_vmalloc,
170	label_vmalloc_done,
171	label_tlbw_hazard_0,
172	label_split = label_tlbw_hazard_0 + 8,
173	label_tlbl_goaround1,
174	label_tlbl_goaround2,
175	label_nopage_tlbl,
176	label_nopage_tlbs,
177	label_nopage_tlbm,
178	label_smp_pgtable_change,
179	label_r3000_write_probe_fail,
180	label_large_segbits_fault,
181#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
182	label_tlb_huge_update,
183#endif
184};
185
186UASM_L_LA(_second_part)
187UASM_L_LA(_leave)
188UASM_L_LA(_vmalloc)
189UASM_L_LA(_vmalloc_done)
190/* _tlbw_hazard_x is handled differently.  */
191UASM_L_LA(_split)
192UASM_L_LA(_tlbl_goaround1)
193UASM_L_LA(_tlbl_goaround2)
194UASM_L_LA(_nopage_tlbl)
195UASM_L_LA(_nopage_tlbs)
196UASM_L_LA(_nopage_tlbm)
197UASM_L_LA(_smp_pgtable_change)
198UASM_L_LA(_r3000_write_probe_fail)
199UASM_L_LA(_large_segbits_fault)
200#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
201UASM_L_LA(_tlb_huge_update)
202#endif
203
204static int hazard_instance;
205
206static void uasm_bgezl_hazard(u32 **p, struct uasm_reloc **r, int instance)
207{
208	switch (instance) {
209	case 0 ... 7:
210		uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance);
211		return;
212	default:
213		BUG();
214	}
215}
216
217static void uasm_bgezl_label(struct uasm_label **l, u32 **p, int instance)
218{
219	switch (instance) {
220	case 0 ... 7:
221		uasm_build_label(l, *p, label_tlbw_hazard_0 + instance);
222		break;
223	default:
224		BUG();
225	}
226}
227
228/*
229 * pgtable bits are assigned dynamically depending on processor feature
230 * and statically based on kernel configuration.  This spits out the actual
231 * values the kernel is using.	Required to make sense from disassembled
232 * TLB exception handlers.
233 */
234static void output_pgtable_bits_defines(void)
235{
236#define pr_define(fmt, ...)					\
237	pr_debug("#define " fmt, ##__VA_ARGS__)
238
239	pr_debug("#include <asm/asm.h>\n");
240	pr_debug("#include <asm/regdef.h>\n");
241	pr_debug("\n");
242
243	pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT);
244	pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT);
245	pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT);
246	pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT);
247	pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT);
248#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
249	pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT);
250#endif
251#ifdef _PAGE_NO_EXEC_SHIFT
252	if (cpu_has_rixi)
253		pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT);
254#endif
255	pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT);
256	pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT);
257	pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT);
258	pr_define("PFN_PTE_SHIFT %d\n", PFN_PTE_SHIFT);
259	pr_debug("\n");
260}
261
262static inline void dump_handler(const char *symbol, const void *start, const void *end)
263{
264	unsigned int count = (end - start) / sizeof(u32);
265	const u32 *handler = start;
266	int i;
267
268	pr_debug("LEAF(%s)\n", symbol);
269
270	pr_debug("\t.set push\n");
271	pr_debug("\t.set noreorder\n");
272
273	for (i = 0; i < count; i++)
274		pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]);
275
276	pr_debug("\t.set\tpop\n");
277
278	pr_debug("\tEND(%s)\n", symbol);
279}
280
281#ifdef CONFIG_64BIT
282# define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
283#else
284# define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
285#endif
286
287/* The worst case length of the handler is around 18 instructions for
288 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
289 * Maximum space available is 32 instructions for R3000 and 64
290 * instructions for R4000.
291 *
292 * We deliberately chose a buffer size of 128, so we won't scribble
293 * over anything important on overflow before we panic.
294 */
295static u32 tlb_handler[128];
296
297/* simply assume worst case size for labels and relocs */
298static struct uasm_label labels[128];
299static struct uasm_reloc relocs[128];
300
301static int check_for_high_segbits;
302static bool fill_includes_sw_bits;
303
304static unsigned int kscratch_used_mask;
305
306static inline int __maybe_unused c0_kscratch(void)
307{
308	return 31;
309}
310
311static int allocate_kscratch(void)
312{
313	int r;
314	unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
315
316	r = ffs(a);
317
318	if (r == 0)
319		return -1;
320
321	r--; /* make it zero based */
322
323	kscratch_used_mask |= (1 << r);
324
325	return r;
326}
327
328static int scratch_reg;
329int pgd_reg;
330EXPORT_SYMBOL_GPL(pgd_reg);
331enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
332
333static struct work_registers build_get_work_registers(u32 **p)
334{
335	struct work_registers r;
336
337	if (scratch_reg >= 0) {
338		/* Save in CPU local C0_KScratch? */
339		UASM_i_MTC0(p, 1, c0_kscratch(), scratch_reg);
340		r.r1 = GPR_K0;
341		r.r2 = GPR_K1;
342		r.r3 = GPR_AT;
343		return r;
344	}
345
346	if (num_possible_cpus() > 1) {
347		/* Get smp_processor_id */
348		UASM_i_CPUID_MFC0(p, GPR_K0, SMP_CPUID_REG);
349		UASM_i_SRL_SAFE(p, GPR_K0, GPR_K0, SMP_CPUID_REGSHIFT);
350
351		/* handler_reg_save index in GPR_K0 */
352		UASM_i_SLL(p, GPR_K0, GPR_K0, ilog2(sizeof(struct tlb_reg_save)));
353
354		UASM_i_LA(p, GPR_K1, (long)&handler_reg_save);
355		UASM_i_ADDU(p, GPR_K0, GPR_K0, GPR_K1);
356	} else {
357		UASM_i_LA(p, GPR_K0, (long)&handler_reg_save);
358	}
359	/* GPR_K0 now points to save area, save $1 and $2  */
360	UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), GPR_K0);
361	UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), GPR_K0);
362
363	r.r1 = GPR_K1;
364	r.r2 = 1;
365	r.r3 = 2;
366	return r;
367}
368
369static void build_restore_work_registers(u32 **p)
370{
371	if (scratch_reg >= 0) {
372		uasm_i_ehb(p);
373		UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
374		return;
375	}
376	/* GPR_K0 already points to save area, restore $1 and $2  */
377	UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), GPR_K0);
378	UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), GPR_K0);
379}
380
381#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
382
383/*
384 * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
385 * we cannot do r3000 under these circumstances.
386 *
387 * The R3000 TLB handler is simple.
388 */
389static void build_r3000_tlb_refill_handler(void)
390{
391	long pgdc = (long)pgd_current;
392	u32 *p;
393
394	memset(tlb_handler, 0, sizeof(tlb_handler));
395	p = tlb_handler;
396
397	uasm_i_mfc0(&p, GPR_K0, C0_BADVADDR);
398	uasm_i_lui(&p, GPR_K1, uasm_rel_hi(pgdc)); /* cp0 delay */
399	uasm_i_lw(&p, GPR_K1, uasm_rel_lo(pgdc), GPR_K1);
400	uasm_i_srl(&p, GPR_K0, GPR_K0, 22); /* load delay */
401	uasm_i_sll(&p, GPR_K0, GPR_K0, 2);
402	uasm_i_addu(&p, GPR_K1, GPR_K1, GPR_K0);
403	uasm_i_mfc0(&p, GPR_K0, C0_CONTEXT);
404	uasm_i_lw(&p, GPR_K1, 0, GPR_K1); /* cp0 delay */
405	uasm_i_andi(&p, GPR_K0, GPR_K0, 0xffc); /* load delay */
406	uasm_i_addu(&p, GPR_K1, GPR_K1, GPR_K0);
407	uasm_i_lw(&p, GPR_K0, 0, GPR_K1);
408	uasm_i_nop(&p); /* load delay */
409	uasm_i_mtc0(&p, GPR_K0, C0_ENTRYLO0);
410	uasm_i_mfc0(&p, GPR_K1, C0_EPC); /* cp0 delay */
411	uasm_i_tlbwr(&p); /* cp0 delay */
412	uasm_i_jr(&p, GPR_K1);
413	uasm_i_rfe(&p); /* branch delay */
414
415	if (p > tlb_handler + 32)
416		panic("TLB refill handler space exceeded");
417
418	pr_debug("Wrote TLB refill handler (%u instructions).\n",
419		 (unsigned int)(p - tlb_handler));
420
421	memcpy((void *)ebase, tlb_handler, 0x80);
422	local_flush_icache_range(ebase, ebase + 0x80);
423	dump_handler("r3000_tlb_refill", (u32 *)ebase, (u32 *)(ebase + 0x80));
424}
425#endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
426
427/*
428 * The R4000 TLB handler is much more complicated. We have two
429 * consecutive handler areas with 32 instructions space each.
430 * Since they aren't used at the same time, we can overflow in the
431 * other one.To keep things simple, we first assume linear space,
432 * then we relocate it to the final handler layout as needed.
433 */
434static u32 final_handler[64];
435
436/*
437 * Hazards
438 *
439 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
440 * 2. A timing hazard exists for the TLBP instruction.
441 *
442 *	stalling_instruction
443 *	TLBP
444 *
445 * The JTLB is being read for the TLBP throughout the stall generated by the
446 * previous instruction. This is not really correct as the stalling instruction
447 * can modify the address used to access the JTLB.  The failure symptom is that
448 * the TLBP instruction will use an address created for the stalling instruction
449 * and not the address held in C0_ENHI and thus report the wrong results.
450 *
451 * The software work-around is to not allow the instruction preceding the TLBP
452 * to stall - make it an NOP or some other instruction guaranteed not to stall.
453 *
454 * Errata 2 will not be fixed.	This errata is also on the R5000.
455 *
456 * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
457 */
458static void __maybe_unused build_tlb_probe_entry(u32 **p)
459{
460	switch (current_cpu_type()) {
461	/* Found by experiment: R4600 v2.0/R4700 needs this, too.  */
462	case CPU_R4600:
463	case CPU_R4700:
464	case CPU_R5000:
465	case CPU_NEVADA:
466		uasm_i_nop(p);
467		uasm_i_tlbp(p);
468		break;
469
470	default:
471		uasm_i_tlbp(p);
472		break;
473	}
474}
475
476void build_tlb_write_entry(u32 **p, struct uasm_label **l,
477			   struct uasm_reloc **r,
478			   enum tlb_write_entry wmode)
479{
480	void(*tlbw)(u32 **) = NULL;
481
482	switch (wmode) {
483	case tlb_random: tlbw = uasm_i_tlbwr; break;
484	case tlb_indexed: tlbw = uasm_i_tlbwi; break;
485	}
486
487	if (cpu_has_mips_r2_r6) {
488		if (cpu_has_mips_r2_exec_hazard)
489			uasm_i_ehb(p);
490		tlbw(p);
491		return;
492	}
493
494	switch (current_cpu_type()) {
495	case CPU_R4000PC:
496	case CPU_R4000SC:
497	case CPU_R4000MC:
498	case CPU_R4400PC:
499	case CPU_R4400SC:
500	case CPU_R4400MC:
501		/*
502		 * This branch uses up a mtc0 hazard nop slot and saves
503		 * two nops after the tlbw instruction.
504		 */
505		uasm_bgezl_hazard(p, r, hazard_instance);
506		tlbw(p);
507		uasm_bgezl_label(l, p, hazard_instance);
508		hazard_instance++;
509		uasm_i_nop(p);
510		break;
511
512	case CPU_R4600:
513	case CPU_R4700:
514		uasm_i_nop(p);
515		tlbw(p);
516		uasm_i_nop(p);
517		break;
518
519	case CPU_R5000:
520	case CPU_NEVADA:
521		uasm_i_nop(p); /* QED specifies 2 nops hazard */
522		uasm_i_nop(p); /* QED specifies 2 nops hazard */
523		tlbw(p);
524		break;
525
526	case CPU_R4300:
527	case CPU_5KC:
528	case CPU_TX49XX:
529	case CPU_PR4450:
530		uasm_i_nop(p);
531		tlbw(p);
532		break;
533
534	case CPU_R10000:
535	case CPU_R12000:
536	case CPU_R14000:
537	case CPU_R16000:
538	case CPU_4KC:
539	case CPU_4KEC:
540	case CPU_M14KC:
541	case CPU_M14KEC:
542	case CPU_SB1:
543	case CPU_SB1A:
544	case CPU_4KSC:
545	case CPU_20KC:
546	case CPU_25KF:
547	case CPU_BMIPS32:
548	case CPU_BMIPS3300:
549	case CPU_BMIPS4350:
550	case CPU_BMIPS4380:
551	case CPU_BMIPS5000:
552	case CPU_LOONGSON2EF:
553	case CPU_LOONGSON64:
554	case CPU_R5500:
555		if (m4kc_tlbp_war())
556			uasm_i_nop(p);
557		fallthrough;
558	case CPU_ALCHEMY:
559		tlbw(p);
560		break;
561
562	case CPU_RM7000:
563		uasm_i_nop(p);
564		uasm_i_nop(p);
565		uasm_i_nop(p);
566		uasm_i_nop(p);
567		tlbw(p);
568		break;
569
570	case CPU_XBURST:
571		tlbw(p);
572		uasm_i_nop(p);
573		break;
574
575	default:
576		panic("No TLB refill handler yet (CPU type: %d)",
577		      current_cpu_type());
578		break;
579	}
580}
581EXPORT_SYMBOL_GPL(build_tlb_write_entry);
582
583static __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
584							unsigned int reg)
585{
586	if (_PAGE_GLOBAL_SHIFT == 0) {
587		/* pte_t is already in EntryLo format */
588		return;
589	}
590
591	if (cpu_has_rixi && _PAGE_NO_EXEC != 0) {
592		if (fill_includes_sw_bits) {
593			UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL));
594		} else {
595			UASM_i_SRL(p, reg, reg, ilog2(_PAGE_NO_EXEC));
596			UASM_i_ROTR(p, reg, reg,
597				    ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
598		}
599	} else {
600#ifdef CONFIG_PHYS_ADDR_T_64BIT
601		uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
602#else
603		UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
604#endif
605	}
606}
607
608#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
609
610static void build_restore_pagemask(u32 **p, struct uasm_reloc **r,
611				   unsigned int tmp, enum label_id lid,
612				   int restore_scratch)
613{
614	if (restore_scratch) {
615		/*
616		 * Ensure the MFC0 below observes the value written to the
617		 * KScratch register by the prior MTC0.
618		 */
619		if (scratch_reg >= 0)
620			uasm_i_ehb(p);
621
622		/* Reset default page size */
623		if (PM_DEFAULT_MASK >> 16) {
624			uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
625			uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
626			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
627			uasm_il_b(p, r, lid);
628		} else if (PM_DEFAULT_MASK) {
629			uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
630			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
631			uasm_il_b(p, r, lid);
632		} else {
633			uasm_i_mtc0(p, 0, C0_PAGEMASK);
634			uasm_il_b(p, r, lid);
635		}
636		if (scratch_reg >= 0)
637			UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
638		else
639			UASM_i_LW(p, 1, scratchpad_offset(0), 0);
640	} else {
641		/* Reset default page size */
642		if (PM_DEFAULT_MASK >> 16) {
643			uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
644			uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
645			uasm_il_b(p, r, lid);
646			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
647		} else if (PM_DEFAULT_MASK) {
648			uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
649			uasm_il_b(p, r, lid);
650			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
651		} else {
652			uasm_il_b(p, r, lid);
653			uasm_i_mtc0(p, 0, C0_PAGEMASK);
654		}
655	}
656}
657
658static void build_huge_tlb_write_entry(u32 **p, struct uasm_label **l,
659				       struct uasm_reloc **r,
660				       unsigned int tmp,
661				       enum tlb_write_entry wmode,
662				       int restore_scratch)
663{
664	/* Set huge page tlb entry size */
665	uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
666	uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
667	uasm_i_mtc0(p, tmp, C0_PAGEMASK);
668
669	build_tlb_write_entry(p, l, r, wmode);
670
671	build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
672}
673
674/*
675 * Check if Huge PTE is present, if so then jump to LABEL.
676 */
677static void
678build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
679		  unsigned int pmd, int lid)
680{
681	UASM_i_LW(p, tmp, 0, pmd);
682	if (use_bbit_insns()) {
683		uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
684	} else {
685		uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
686		uasm_il_bnez(p, r, tmp, lid);
687	}
688}
689
690static void build_huge_update_entries(u32 **p, unsigned int pte,
691				      unsigned int tmp)
692{
693	int small_sequence;
694
695	/*
696	 * A huge PTE describes an area the size of the
697	 * configured huge page size. This is twice the
698	 * of the large TLB entry size we intend to use.
699	 * A TLB entry half the size of the configured
700	 * huge page size is configured into entrylo0
701	 * and entrylo1 to cover the contiguous huge PTE
702	 * address space.
703	 */
704	small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
705
706	/* We can clobber tmp.	It isn't used after this.*/
707	if (!small_sequence)
708		uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
709
710	build_convert_pte_to_entrylo(p, pte);
711	UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
712	/* convert to entrylo1 */
713	if (small_sequence)
714		UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
715	else
716		UASM_i_ADDU(p, pte, pte, tmp);
717
718	UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
719}
720
721static void build_huge_handler_tail(u32 **p, struct uasm_reloc **r,
722				    struct uasm_label **l,
723				    unsigned int pte,
724				    unsigned int ptr,
725				    unsigned int flush)
726{
727#ifdef CONFIG_SMP
728	UASM_i_SC(p, pte, 0, ptr);
729	uasm_il_beqz(p, r, pte, label_tlb_huge_update);
730	UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
731#else
732	UASM_i_SW(p, pte, 0, ptr);
733#endif
734	if (cpu_has_ftlb && flush) {
735		BUG_ON(!cpu_has_tlbinv);
736
737		UASM_i_MFC0(p, ptr, C0_ENTRYHI);
738		uasm_i_ori(p, ptr, ptr, MIPS_ENTRYHI_EHINV);
739		UASM_i_MTC0(p, ptr, C0_ENTRYHI);
740		build_tlb_write_entry(p, l, r, tlb_indexed);
741
742		uasm_i_xori(p, ptr, ptr, MIPS_ENTRYHI_EHINV);
743		UASM_i_MTC0(p, ptr, C0_ENTRYHI);
744		build_huge_update_entries(p, pte, ptr);
745		build_huge_tlb_write_entry(p, l, r, pte, tlb_random, 0);
746
747		return;
748	}
749
750	build_huge_update_entries(p, pte, ptr);
751	build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
752}
753#endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
754
755#ifdef CONFIG_64BIT
756/*
757 * TMP and PTR are scratch.
758 * TMP will be clobbered, PTR will hold the pmd entry.
759 */
760void build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
761		      unsigned int tmp, unsigned int ptr)
762{
763#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
764	long pgdc = (long)pgd_current;
765#endif
766	/*
767	 * The vmalloc handling is not in the hotpath.
768	 */
769	uasm_i_dmfc0(p, tmp, C0_BADVADDR);
770
771	if (check_for_high_segbits) {
772		/*
773		 * The kernel currently implicitly assumes that the
774		 * MIPS SEGBITS parameter for the processor is
775		 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
776		 * allocate virtual addresses outside the maximum
777		 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
778		 * that doesn't prevent user code from accessing the
779		 * higher xuseg addresses.  Here, we make sure that
780		 * everything but the lower xuseg addresses goes down
781		 * the module_alloc/vmalloc path.
782		 */
783		uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_TABLE_ORDER + PAGE_SHIFT - 3);
784		uasm_il_bnez(p, r, ptr, label_vmalloc);
785	} else {
786		uasm_il_bltz(p, r, tmp, label_vmalloc);
787	}
788	/* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
789
790	if (pgd_reg != -1) {
791		/* pgd is in pgd_reg */
792		if (cpu_has_ldpte)
793			UASM_i_MFC0(p, ptr, C0_PWBASE);
794		else
795			UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
796	} else {
797#if defined(CONFIG_MIPS_PGD_C0_CONTEXT)
798		/*
799		 * &pgd << 11 stored in CONTEXT [23..63].
800		 */
801		UASM_i_MFC0(p, ptr, C0_CONTEXT);
802
803		/* Clear lower 23 bits of context. */
804		uasm_i_dins(p, ptr, 0, 0, 23);
805
806		/* insert bit[63:59] of CAC_BASE into bit[11:6] of ptr */
807		uasm_i_ori(p, ptr, ptr, ((u64)(CAC_BASE) >> 53));
808		uasm_i_drotr(p, ptr, ptr, 11);
809#elif defined(CONFIG_SMP)
810		UASM_i_CPUID_MFC0(p, ptr, SMP_CPUID_REG);
811		uasm_i_dsrl_safe(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
812		UASM_i_LA_mostly(p, tmp, pgdc);
813		uasm_i_daddu(p, ptr, ptr, tmp);
814		uasm_i_dmfc0(p, tmp, C0_BADVADDR);
815		uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
816#else
817		UASM_i_LA_mostly(p, ptr, pgdc);
818		uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
819#endif
820	}
821
822	uasm_l_vmalloc_done(l, *p);
823
824	/* get pgd offset in bytes */
825	uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
826
827	uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
828	uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
829#ifndef __PAGETABLE_PUD_FOLDED
830	uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
831	uasm_i_ld(p, ptr, 0, ptr); /* get pud pointer */
832	uasm_i_dsrl_safe(p, tmp, tmp, PUD_SHIFT - 3); /* get pud offset in bytes */
833	uasm_i_andi(p, tmp, tmp, (PTRS_PER_PUD - 1) << 3);
834	uasm_i_daddu(p, ptr, ptr, tmp); /* add in pud offset */
835#endif
836#ifndef __PAGETABLE_PMD_FOLDED
837	uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
838	uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
839	uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
840	uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
841	uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
842#endif
843}
844EXPORT_SYMBOL_GPL(build_get_pmde64);
845
846/*
847 * BVADDR is the faulting address, PTR is scratch.
848 * PTR will hold the pgd for vmalloc.
849 */
850static void
851build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
852			unsigned int bvaddr, unsigned int ptr,
853			enum vmalloc64_mode mode)
854{
855	long swpd = (long)swapper_pg_dir;
856	int single_insn_swpd;
857	int did_vmalloc_branch = 0;
858
859	single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
860
861	uasm_l_vmalloc(l, *p);
862
863	if (mode != not_refill && check_for_high_segbits) {
864		if (single_insn_swpd) {
865			uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
866			uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
867			did_vmalloc_branch = 1;
868			/* fall through */
869		} else {
870			uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
871		}
872	}
873	if (!did_vmalloc_branch) {
874		if (single_insn_swpd) {
875			uasm_il_b(p, r, label_vmalloc_done);
876			uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
877		} else {
878			UASM_i_LA_mostly(p, ptr, swpd);
879			uasm_il_b(p, r, label_vmalloc_done);
880			if (uasm_in_compat_space_p(swpd))
881				uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
882			else
883				uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
884		}
885	}
886	if (mode != not_refill && check_for_high_segbits) {
887		uasm_l_large_segbits_fault(l, *p);
888
889		if (mode == refill_scratch && scratch_reg >= 0)
890			uasm_i_ehb(p);
891
892		/*
893		 * We get here if we are an xsseg address, or if we are
894		 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
895		 *
896		 * Ignoring xsseg (assume disabled so would generate
897		 * (address errors?), the only remaining possibility
898		 * is the upper xuseg addresses.  On processors with
899		 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
900		 * addresses would have taken an address error. We try
901		 * to mimic that here by taking a load/istream page
902		 * fault.
903		 */
904		if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
905			uasm_i_sync(p, 0);
906		UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
907		uasm_i_jr(p, ptr);
908
909		if (mode == refill_scratch) {
910			if (scratch_reg >= 0)
911				UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
912			else
913				UASM_i_LW(p, 1, scratchpad_offset(0), 0);
914		} else {
915			uasm_i_nop(p);
916		}
917	}
918}
919
920#else /* !CONFIG_64BIT */
921
922/*
923 * TMP and PTR are scratch.
924 * TMP will be clobbered, PTR will hold the pgd entry.
925 */
926void build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
927{
928	if (pgd_reg != -1) {
929		/* pgd is in pgd_reg */
930		uasm_i_mfc0(p, ptr, c0_kscratch(), pgd_reg);
931		uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
932	} else {
933		long pgdc = (long)pgd_current;
934
935		/* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
936#ifdef CONFIG_SMP
937		uasm_i_mfc0(p, ptr, SMP_CPUID_REG);
938		UASM_i_LA_mostly(p, tmp, pgdc);
939		uasm_i_srl(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
940		uasm_i_addu(p, ptr, tmp, ptr);
941#else
942		UASM_i_LA_mostly(p, ptr, pgdc);
943#endif
944		uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
945		uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
946	}
947	uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
948	uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
949	uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
950}
951EXPORT_SYMBOL_GPL(build_get_pgde32);
952
953#endif /* !CONFIG_64BIT */
954
955static void build_adjust_context(u32 **p, unsigned int ctx)
956{
957	unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
958	unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
959
960	if (shift)
961		UASM_i_SRL(p, ctx, ctx, shift);
962	uasm_i_andi(p, ctx, ctx, mask);
963}
964
965void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
966{
967	/*
968	 * Bug workaround for the Nevada. It seems as if under certain
969	 * circumstances the move from cp0_context might produce a
970	 * bogus result when the mfc0 instruction and its consumer are
971	 * in a different cacheline or a load instruction, probably any
972	 * memory reference, is between them.
973	 */
974	switch (current_cpu_type()) {
975	case CPU_NEVADA:
976		UASM_i_LW(p, ptr, 0, ptr);
977		GET_CONTEXT(p, tmp); /* get context reg */
978		break;
979
980	default:
981		GET_CONTEXT(p, tmp); /* get context reg */
982		UASM_i_LW(p, ptr, 0, ptr);
983		break;
984	}
985
986	build_adjust_context(p, tmp);
987	UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
988}
989EXPORT_SYMBOL_GPL(build_get_ptep);
990
991void build_update_entries(u32 **p, unsigned int tmp, unsigned int ptep)
992{
993	int pte_off_even = 0;
994	int pte_off_odd = sizeof(pte_t);
995
996#if defined(CONFIG_CPU_MIPS32) && defined(CONFIG_PHYS_ADDR_T_64BIT)
997	/* The low 32 bits of EntryLo is stored in pte_high */
998	pte_off_even += offsetof(pte_t, pte_high);
999	pte_off_odd += offsetof(pte_t, pte_high);
1000#endif
1001
1002	if (IS_ENABLED(CONFIG_XPA)) {
1003		uasm_i_lw(p, tmp, pte_off_even, ptep); /* even pte */
1004		UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1005		UASM_i_MTC0(p, tmp, C0_ENTRYLO0);
1006
1007		if (cpu_has_xpa && !mips_xpa_disabled) {
1008			uasm_i_lw(p, tmp, 0, ptep);
1009			uasm_i_ext(p, tmp, tmp, 0, 24);
1010			uasm_i_mthc0(p, tmp, C0_ENTRYLO0);
1011		}
1012
1013		uasm_i_lw(p, tmp, pte_off_odd, ptep); /* odd pte */
1014		UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1015		UASM_i_MTC0(p, tmp, C0_ENTRYLO1);
1016
1017		if (cpu_has_xpa && !mips_xpa_disabled) {
1018			uasm_i_lw(p, tmp, sizeof(pte_t), ptep);
1019			uasm_i_ext(p, tmp, tmp, 0, 24);
1020			uasm_i_mthc0(p, tmp, C0_ENTRYLO1);
1021		}
1022		return;
1023	}
1024
1025	UASM_i_LW(p, tmp, pte_off_even, ptep); /* get even pte */
1026	UASM_i_LW(p, ptep, pte_off_odd, ptep); /* get odd pte */
1027	if (r45k_bvahwbug())
1028		build_tlb_probe_entry(p);
1029	build_convert_pte_to_entrylo(p, tmp);
1030	if (r4k_250MHZhwbug())
1031		UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1032	UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1033	build_convert_pte_to_entrylo(p, ptep);
1034	if (r45k_bvahwbug())
1035		uasm_i_mfc0(p, tmp, C0_INDEX);
1036	if (r4k_250MHZhwbug())
1037		UASM_i_MTC0(p, 0, C0_ENTRYLO1);
1038	UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1039}
1040EXPORT_SYMBOL_GPL(build_update_entries);
1041
1042struct mips_huge_tlb_info {
1043	int huge_pte;
1044	int restore_scratch;
1045	bool need_reload_pte;
1046};
1047
1048static struct mips_huge_tlb_info
1049build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
1050			       struct uasm_reloc **r, unsigned int tmp,
1051			       unsigned int ptr, int c0_scratch_reg)
1052{
1053	struct mips_huge_tlb_info rv;
1054	unsigned int even, odd;
1055	int vmalloc_branch_delay_filled = 0;
1056	const int scratch = 1; /* Our extra working register */
1057
1058	rv.huge_pte = scratch;
1059	rv.restore_scratch = 0;
1060	rv.need_reload_pte = false;
1061
1062	if (check_for_high_segbits) {
1063		UASM_i_MFC0(p, tmp, C0_BADVADDR);
1064
1065		if (pgd_reg != -1)
1066			UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1067		else
1068			UASM_i_MFC0(p, ptr, C0_CONTEXT);
1069
1070		if (c0_scratch_reg >= 0)
1071			UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1072		else
1073			UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1074
1075		uasm_i_dsrl_safe(p, scratch, tmp,
1076				 PGDIR_SHIFT + PGD_TABLE_ORDER + PAGE_SHIFT - 3);
1077		uasm_il_bnez(p, r, scratch, label_vmalloc);
1078
1079		if (pgd_reg == -1) {
1080			vmalloc_branch_delay_filled = 1;
1081			/* Clear lower 23 bits of context. */
1082			uasm_i_dins(p, ptr, 0, 0, 23);
1083		}
1084	} else {
1085		if (pgd_reg != -1)
1086			UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1087		else
1088			UASM_i_MFC0(p, ptr, C0_CONTEXT);
1089
1090		UASM_i_MFC0(p, tmp, C0_BADVADDR);
1091
1092		if (c0_scratch_reg >= 0)
1093			UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1094		else
1095			UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1096
1097		if (pgd_reg == -1)
1098			/* Clear lower 23 bits of context. */
1099			uasm_i_dins(p, ptr, 0, 0, 23);
1100
1101		uasm_il_bltz(p, r, tmp, label_vmalloc);
1102	}
1103
1104	if (pgd_reg == -1) {
1105		vmalloc_branch_delay_filled = 1;
1106		/* insert bit[63:59] of CAC_BASE into bit[11:6] of ptr */
1107		uasm_i_ori(p, ptr, ptr, ((u64)(CAC_BASE) >> 53));
1108
1109		uasm_i_drotr(p, ptr, ptr, 11);
1110	}
1111
1112#ifdef __PAGETABLE_PMD_FOLDED
1113#define LOC_PTEP scratch
1114#else
1115#define LOC_PTEP ptr
1116#endif
1117
1118	if (!vmalloc_branch_delay_filled)
1119		/* get pgd offset in bytes */
1120		uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1121
1122	uasm_l_vmalloc_done(l, *p);
1123
1124	/*
1125	 *			   tmp		ptr
1126	 * fall-through case =	 badvaddr  *pgd_current
1127	 * vmalloc case	     =	 badvaddr  swapper_pg_dir
1128	 */
1129
1130	if (vmalloc_branch_delay_filled)
1131		/* get pgd offset in bytes */
1132		uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1133
1134#ifdef __PAGETABLE_PMD_FOLDED
1135	GET_CONTEXT(p, tmp); /* get context reg */
1136#endif
1137	uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
1138
1139	if (use_lwx_insns()) {
1140		UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
1141	} else {
1142		uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
1143		uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
1144	}
1145
1146#ifndef __PAGETABLE_PUD_FOLDED
1147	/* get pud offset in bytes */
1148	uasm_i_dsrl_safe(p, scratch, tmp, PUD_SHIFT - 3);
1149	uasm_i_andi(p, scratch, scratch, (PTRS_PER_PUD - 1) << 3);
1150
1151	if (use_lwx_insns()) {
1152		UASM_i_LWX(p, ptr, scratch, ptr);
1153	} else {
1154		uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1155		UASM_i_LW(p, ptr, 0, ptr);
1156	}
1157	/* ptr contains a pointer to PMD entry */
1158	/* tmp contains the address */
1159#endif
1160
1161#ifndef __PAGETABLE_PMD_FOLDED
1162	/* get pmd offset in bytes */
1163	uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
1164	uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
1165	GET_CONTEXT(p, tmp); /* get context reg */
1166
1167	if (use_lwx_insns()) {
1168		UASM_i_LWX(p, scratch, scratch, ptr);
1169	} else {
1170		uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1171		UASM_i_LW(p, scratch, 0, ptr);
1172	}
1173#endif
1174	/* Adjust the context during the load latency. */
1175	build_adjust_context(p, tmp);
1176
1177#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1178	uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
1179	/*
1180	 * The in the LWX case we don't want to do the load in the
1181	 * delay slot.	It cannot issue in the same cycle and may be
1182	 * speculative and unneeded.
1183	 */
1184	if (use_lwx_insns())
1185		uasm_i_nop(p);
1186#endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
1187
1188
1189	/* build_update_entries */
1190	if (use_lwx_insns()) {
1191		even = ptr;
1192		odd = tmp;
1193		UASM_i_LWX(p, even, scratch, tmp);
1194		UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
1195		UASM_i_LWX(p, odd, scratch, tmp);
1196	} else {
1197		UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
1198		even = tmp;
1199		odd = ptr;
1200		UASM_i_LW(p, even, 0, ptr); /* get even pte */
1201		UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
1202	}
1203	if (cpu_has_rixi) {
1204		uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL));
1205		UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1206		uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL));
1207	} else {
1208		uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
1209		UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1210		uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
1211	}
1212	UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
1213
1214	if (c0_scratch_reg >= 0) {
1215		uasm_i_ehb(p);
1216		UASM_i_MFC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1217		build_tlb_write_entry(p, l, r, tlb_random);
1218		uasm_l_leave(l, *p);
1219		rv.restore_scratch = 1;
1220	} else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13)  {
1221		build_tlb_write_entry(p, l, r, tlb_random);
1222		uasm_l_leave(l, *p);
1223		UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1224	} else {
1225		UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1226		build_tlb_write_entry(p, l, r, tlb_random);
1227		uasm_l_leave(l, *p);
1228		rv.restore_scratch = 1;
1229	}
1230
1231	uasm_i_eret(p); /* return from trap */
1232
1233	return rv;
1234}
1235
1236/*
1237 * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
1238 * because EXL == 0.  If we wrap, we can also use the 32 instruction
1239 * slots before the XTLB refill exception handler which belong to the
1240 * unused TLB refill exception.
1241 */
1242#define MIPS64_REFILL_INSNS 32
1243
1244static void build_r4000_tlb_refill_handler(void)
1245{
1246	u32 *p = tlb_handler;
1247	struct uasm_label *l = labels;
1248	struct uasm_reloc *r = relocs;
1249	u32 *f;
1250	unsigned int final_len;
1251	struct mips_huge_tlb_info htlb_info __maybe_unused;
1252	enum vmalloc64_mode vmalloc_mode __maybe_unused;
1253
1254	memset(tlb_handler, 0, sizeof(tlb_handler));
1255	memset(labels, 0, sizeof(labels));
1256	memset(relocs, 0, sizeof(relocs));
1257	memset(final_handler, 0, sizeof(final_handler));
1258
1259	if (IS_ENABLED(CONFIG_64BIT) && (scratch_reg >= 0 || scratchpad_available()) && use_bbit_insns()) {
1260		htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, GPR_K0, GPR_K1,
1261							  scratch_reg);
1262		vmalloc_mode = refill_scratch;
1263	} else {
1264		htlb_info.huge_pte = GPR_K0;
1265		htlb_info.restore_scratch = 0;
1266		htlb_info.need_reload_pte = true;
1267		vmalloc_mode = refill_noscratch;
1268		/*
1269		 * create the plain linear handler
1270		 */
1271		if (bcm1250_m3_war()) {
1272			unsigned int segbits = 44;
1273
1274			uasm_i_dmfc0(&p, GPR_K0, C0_BADVADDR);
1275			uasm_i_dmfc0(&p, GPR_K1, C0_ENTRYHI);
1276			uasm_i_xor(&p, GPR_K0, GPR_K0, GPR_K1);
1277			uasm_i_dsrl_safe(&p, GPR_K1, GPR_K0, 62);
1278			uasm_i_dsrl_safe(&p, GPR_K0, GPR_K0, 12 + 1);
1279			uasm_i_dsll_safe(&p, GPR_K0, GPR_K0, 64 + 12 + 1 - segbits);
1280			uasm_i_or(&p, GPR_K0, GPR_K0, GPR_K1);
1281			uasm_il_bnez(&p, &r, GPR_K0, label_leave);
1282			/* No need for uasm_i_nop */
1283		}
1284
1285#ifdef CONFIG_64BIT
1286		build_get_pmde64(&p, &l, &r, GPR_K0, GPR_K1); /* get pmd in GPR_K1 */
1287#else
1288		build_get_pgde32(&p, GPR_K0, GPR_K1); /* get pgd in GPR_K1 */
1289#endif
1290
1291#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1292		build_is_huge_pte(&p, &r, GPR_K0, GPR_K1, label_tlb_huge_update);
1293#endif
1294
1295		build_get_ptep(&p, GPR_K0, GPR_K1);
1296		build_update_entries(&p, GPR_K0, GPR_K1);
1297		build_tlb_write_entry(&p, &l, &r, tlb_random);
1298		uasm_l_leave(&l, p);
1299		uasm_i_eret(&p); /* return from trap */
1300	}
1301#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1302	uasm_l_tlb_huge_update(&l, p);
1303	if (htlb_info.need_reload_pte)
1304		UASM_i_LW(&p, htlb_info.huge_pte, 0, GPR_K1);
1305	build_huge_update_entries(&p, htlb_info.huge_pte, GPR_K1);
1306	build_huge_tlb_write_entry(&p, &l, &r, GPR_K0, tlb_random,
1307				   htlb_info.restore_scratch);
1308#endif
1309
1310#ifdef CONFIG_64BIT
1311	build_get_pgd_vmalloc64(&p, &l, &r, GPR_K0, GPR_K1, vmalloc_mode);
1312#endif
1313
1314	/*
1315	 * Overflow check: For the 64bit handler, we need at least one
1316	 * free instruction slot for the wrap-around branch. In worst
1317	 * case, if the intended insertion point is a delay slot, we
1318	 * need three, with the second nop'ed and the third being
1319	 * unused.
1320	 */
1321	switch (boot_cpu_type()) {
1322	default:
1323		if (sizeof(long) == 4) {
1324		fallthrough;
1325	case CPU_LOONGSON2EF:
1326		/* Loongson2 ebase is different than r4k, we have more space */
1327			if ((p - tlb_handler) > 64)
1328				panic("TLB refill handler space exceeded");
1329			/*
1330			 * Now fold the handler in the TLB refill handler space.
1331			 */
1332			f = final_handler;
1333			/* Simplest case, just copy the handler. */
1334			uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1335			final_len = p - tlb_handler;
1336			break;
1337		} else {
1338			if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
1339			    || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
1340				&& uasm_insn_has_bdelay(relocs,
1341							tlb_handler + MIPS64_REFILL_INSNS - 3)))
1342				panic("TLB refill handler space exceeded");
1343			/*
1344			 * Now fold the handler in the TLB refill handler space.
1345			 */
1346			f = final_handler + MIPS64_REFILL_INSNS;
1347			if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
1348				/* Just copy the handler. */
1349				uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1350				final_len = p - tlb_handler;
1351			} else {
1352#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1353				const enum label_id ls = label_tlb_huge_update;
1354#else
1355				const enum label_id ls = label_vmalloc;
1356#endif
1357				u32 *split;
1358				int ov = 0;
1359				int i;
1360
1361				for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
1362					;
1363				BUG_ON(i == ARRAY_SIZE(labels));
1364				split = labels[i].addr;
1365
1366				/*
1367				 * See if we have overflown one way or the other.
1368				 */
1369				if (split > tlb_handler + MIPS64_REFILL_INSNS ||
1370				    split < p - MIPS64_REFILL_INSNS)
1371					ov = 1;
1372
1373				if (ov) {
1374					/*
1375					 * Split two instructions before the end.  One
1376					 * for the branch and one for the instruction
1377					 * in the delay slot.
1378					 */
1379					split = tlb_handler + MIPS64_REFILL_INSNS - 2;
1380
1381					/*
1382					 * If the branch would fall in a delay slot,
1383					 * we must back up an additional instruction
1384					 * so that it is no longer in a delay slot.
1385					 */
1386					if (uasm_insn_has_bdelay(relocs, split - 1))
1387						split--;
1388				}
1389				/* Copy first part of the handler. */
1390				uasm_copy_handler(relocs, labels, tlb_handler, split, f);
1391				f += split - tlb_handler;
1392
1393				if (ov) {
1394					/* Insert branch. */
1395					uasm_l_split(&l, final_handler);
1396					uasm_il_b(&f, &r, label_split);
1397					if (uasm_insn_has_bdelay(relocs, split))
1398						uasm_i_nop(&f);
1399					else {
1400						uasm_copy_handler(relocs, labels,
1401								  split, split + 1, f);
1402						uasm_move_labels(labels, f, f + 1, -1);
1403						f++;
1404						split++;
1405					}
1406				}
1407
1408				/* Copy the rest of the handler. */
1409				uasm_copy_handler(relocs, labels, split, p, final_handler);
1410				final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
1411					    (p - split);
1412			}
1413		}
1414		break;
1415	}
1416
1417	uasm_resolve_relocs(relocs, labels);
1418	pr_debug("Wrote TLB refill handler (%u instructions).\n",
1419		 final_len);
1420
1421	memcpy((void *)ebase, final_handler, 0x100);
1422	local_flush_icache_range(ebase, ebase + 0x100);
1423	dump_handler("r4000_tlb_refill", (u32 *)ebase, (u32 *)(ebase + 0x100));
1424}
1425
1426static void setup_pw(void)
1427{
1428	unsigned int pwctl;
1429	unsigned long pgd_i, pgd_w;
1430#ifndef __PAGETABLE_PMD_FOLDED
1431	unsigned long pmd_i, pmd_w;
1432#endif
1433	unsigned long pt_i, pt_w;
1434	unsigned long pte_i, pte_w;
1435#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1436	unsigned long psn;
1437
1438	psn = ilog2(_PAGE_HUGE);     /* bit used to indicate huge page */
1439#endif
1440	pgd_i = PGDIR_SHIFT;  /* 1st level PGD */
1441#ifndef __PAGETABLE_PMD_FOLDED
1442	pgd_w = PGDIR_SHIFT - PMD_SHIFT + PGD_TABLE_ORDER;
1443
1444	pmd_i = PMD_SHIFT;    /* 2nd level PMD */
1445	pmd_w = PMD_SHIFT - PAGE_SHIFT;
1446#else
1447	pgd_w = PGDIR_SHIFT - PAGE_SHIFT + PGD_TABLE_ORDER;
1448#endif
1449
1450	pt_i  = PAGE_SHIFT;    /* 3rd level PTE */
1451	pt_w  = PAGE_SHIFT - 3;
1452
1453	pte_i = ilog2(_PAGE_GLOBAL);
1454	pte_w = 0;
1455	pwctl = 1 << 30; /* Set PWDirExt */
1456
1457#ifndef __PAGETABLE_PMD_FOLDED
1458	write_c0_pwfield(pgd_i << 24 | pmd_i << 12 | pt_i << 6 | pte_i);
1459	write_c0_pwsize(1 << 30 | pgd_w << 24 | pmd_w << 12 | pt_w << 6 | pte_w);
1460#else
1461	write_c0_pwfield(pgd_i << 24 | pt_i << 6 | pte_i);
1462	write_c0_pwsize(1 << 30 | pgd_w << 24 | pt_w << 6 | pte_w);
1463#endif
1464
1465#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1466	pwctl |= (1 << 6 | psn);
1467#endif
1468	write_c0_pwctl(pwctl);
1469	write_c0_kpgd((long)swapper_pg_dir);
1470	kscratch_used_mask |= (1 << 7); /* KScratch6 is used for KPGD */
1471}
1472
1473static void build_loongson3_tlb_refill_handler(void)
1474{
1475	u32 *p = tlb_handler;
1476	struct uasm_label *l = labels;
1477	struct uasm_reloc *r = relocs;
1478
1479	memset(labels, 0, sizeof(labels));
1480	memset(relocs, 0, sizeof(relocs));
1481	memset(tlb_handler, 0, sizeof(tlb_handler));
1482
1483	if (check_for_high_segbits) {
1484		uasm_i_dmfc0(&p, GPR_K0, C0_BADVADDR);
1485		uasm_i_dsrl_safe(&p, GPR_K1, GPR_K0,
1486				PGDIR_SHIFT + PGD_TABLE_ORDER + PAGE_SHIFT - 3);
1487		uasm_il_beqz(&p, &r, GPR_K1, label_vmalloc);
1488		uasm_i_nop(&p);
1489
1490		uasm_il_bgez(&p, &r, GPR_K0, label_large_segbits_fault);
1491		uasm_i_nop(&p);
1492		uasm_l_vmalloc(&l, p);
1493	}
1494
1495	uasm_i_dmfc0(&p, GPR_K1, C0_PGD);
1496
1497	uasm_i_lddir(&p, GPR_K0, GPR_K1, 3);  /* global page dir */
1498#ifndef __PAGETABLE_PMD_FOLDED
1499	uasm_i_lddir(&p, GPR_K1, GPR_K0, 1);  /* middle page dir */
1500#endif
1501	uasm_i_ldpte(&p, GPR_K1, 0);      /* even */
1502	uasm_i_ldpte(&p, GPR_K1, 1);      /* odd */
1503	uasm_i_tlbwr(&p);
1504
1505	/* restore page mask */
1506	if (PM_DEFAULT_MASK >> 16) {
1507		uasm_i_lui(&p, GPR_K0, PM_DEFAULT_MASK >> 16);
1508		uasm_i_ori(&p, GPR_K0, GPR_K0, PM_DEFAULT_MASK & 0xffff);
1509		uasm_i_mtc0(&p, GPR_K0, C0_PAGEMASK);
1510	} else if (PM_DEFAULT_MASK) {
1511		uasm_i_ori(&p, GPR_K0, 0, PM_DEFAULT_MASK);
1512		uasm_i_mtc0(&p, GPR_K0, C0_PAGEMASK);
1513	} else {
1514		uasm_i_mtc0(&p, 0, C0_PAGEMASK);
1515	}
1516
1517	uasm_i_eret(&p);
1518
1519	if (check_for_high_segbits) {
1520		uasm_l_large_segbits_fault(&l, p);
1521		UASM_i_LA(&p, GPR_K1, (unsigned long)tlb_do_page_fault_0);
1522		uasm_i_jr(&p, GPR_K1);
1523		uasm_i_nop(&p);
1524	}
1525
1526	uasm_resolve_relocs(relocs, labels);
1527	memcpy((void *)(ebase + 0x80), tlb_handler, 0x80);
1528	local_flush_icache_range(ebase + 0x80, ebase + 0x100);
1529	dump_handler("loongson3_tlb_refill",
1530		     (u32 *)(ebase + 0x80), (u32 *)(ebase + 0x100));
1531}
1532
1533static void build_setup_pgd(void)
1534{
1535	const int a0 = 4;
1536	const int __maybe_unused a1 = 5;
1537	const int __maybe_unused a2 = 6;
1538	u32 *p = (u32 *)msk_isa16_mode((ulong)tlbmiss_handler_setup_pgd);
1539#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1540	long pgdc = (long)pgd_current;
1541#endif
1542
1543	memset(p, 0, tlbmiss_handler_setup_pgd_end - (char *)p);
1544	memset(labels, 0, sizeof(labels));
1545	memset(relocs, 0, sizeof(relocs));
1546	pgd_reg = allocate_kscratch();
1547#ifdef CONFIG_MIPS_PGD_C0_CONTEXT
1548	if (pgd_reg == -1) {
1549		struct uasm_label *l = labels;
1550		struct uasm_reloc *r = relocs;
1551
1552		/* PGD << 11 in c0_Context */
1553		/*
1554		 * If it is a ckseg0 address, convert to a physical
1555		 * address.  Shifting right by 29 and adding 4 will
1556		 * result in zero for these addresses.
1557		 *
1558		 */
1559		UASM_i_SRA(&p, a1, a0, 29);
1560		UASM_i_ADDIU(&p, a1, a1, 4);
1561		uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
1562		uasm_i_nop(&p);
1563		uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
1564		uasm_l_tlbl_goaround1(&l, p);
1565		UASM_i_SLL(&p, a0, a0, 11);
1566		UASM_i_MTC0(&p, a0, C0_CONTEXT);
1567		uasm_i_jr(&p, 31);
1568		uasm_i_ehb(&p);
1569	} else {
1570		/* PGD in c0_KScratch */
1571		if (cpu_has_ldpte)
1572			UASM_i_MTC0(&p, a0, C0_PWBASE);
1573		else
1574			UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1575		uasm_i_jr(&p, 31);
1576		uasm_i_ehb(&p);
1577	}
1578#else
1579#ifdef CONFIG_SMP
1580	/* Save PGD to pgd_current[smp_processor_id()] */
1581	UASM_i_CPUID_MFC0(&p, a1, SMP_CPUID_REG);
1582	UASM_i_SRL_SAFE(&p, a1, a1, SMP_CPUID_PTRSHIFT);
1583	UASM_i_LA_mostly(&p, a2, pgdc);
1584	UASM_i_ADDU(&p, a2, a2, a1);
1585	UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1586#else
1587	UASM_i_LA_mostly(&p, a2, pgdc);
1588	UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1589#endif /* SMP */
1590
1591	/* if pgd_reg is allocated, save PGD also to scratch register */
1592	if (pgd_reg != -1) {
1593		UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1594		uasm_i_jr(&p, 31);
1595		uasm_i_ehb(&p);
1596	} else {
1597		uasm_i_jr(&p, 31);
1598		uasm_i_nop(&p);
1599	}
1600#endif
1601	if (p >= (u32 *)tlbmiss_handler_setup_pgd_end)
1602		panic("tlbmiss_handler_setup_pgd space exceeded");
1603
1604	uasm_resolve_relocs(relocs, labels);
1605	pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
1606		 (unsigned int)(p - (u32 *)tlbmiss_handler_setup_pgd));
1607
1608	dump_handler("tlbmiss_handler", tlbmiss_handler_setup_pgd,
1609					tlbmiss_handler_setup_pgd_end);
1610}
1611
1612static void
1613iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
1614{
1615#ifdef CONFIG_SMP
1616	if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
1617		uasm_i_sync(p, 0);
1618# ifdef CONFIG_PHYS_ADDR_T_64BIT
1619	if (cpu_has_64bits)
1620		uasm_i_lld(p, pte, 0, ptr);
1621	else
1622# endif
1623		UASM_i_LL(p, pte, 0, ptr);
1624#else
1625# ifdef CONFIG_PHYS_ADDR_T_64BIT
1626	if (cpu_has_64bits)
1627		uasm_i_ld(p, pte, 0, ptr);
1628	else
1629# endif
1630		UASM_i_LW(p, pte, 0, ptr);
1631#endif
1632}
1633
1634static void
1635iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
1636	unsigned int mode, unsigned int scratch)
1637{
1638	unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1639	unsigned int swmode = mode & ~hwmode;
1640
1641	if (IS_ENABLED(CONFIG_XPA) && !cpu_has_64bits) {
1642		uasm_i_lui(p, scratch, swmode >> 16);
1643		uasm_i_or(p, pte, pte, scratch);
1644		BUG_ON(swmode & 0xffff);
1645	} else {
1646		uasm_i_ori(p, pte, pte, mode);
1647	}
1648
1649#ifdef CONFIG_SMP
1650# ifdef CONFIG_PHYS_ADDR_T_64BIT
1651	if (cpu_has_64bits)
1652		uasm_i_scd(p, pte, 0, ptr);
1653	else
1654# endif
1655		UASM_i_SC(p, pte, 0, ptr);
1656
1657	if (r10000_llsc_war())
1658		uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
1659	else
1660		uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1661
1662# ifdef CONFIG_PHYS_ADDR_T_64BIT
1663	if (!cpu_has_64bits) {
1664		/* no uasm_i_nop needed */
1665		uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1666		uasm_i_ori(p, pte, pte, hwmode);
1667		BUG_ON(hwmode & ~0xffff);
1668		uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1669		uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1670		/* no uasm_i_nop needed */
1671		uasm_i_lw(p, pte, 0, ptr);
1672	} else
1673		uasm_i_nop(p);
1674# else
1675	uasm_i_nop(p);
1676# endif
1677#else
1678# ifdef CONFIG_PHYS_ADDR_T_64BIT
1679	if (cpu_has_64bits)
1680		uasm_i_sd(p, pte, 0, ptr);
1681	else
1682# endif
1683		UASM_i_SW(p, pte, 0, ptr);
1684
1685# ifdef CONFIG_PHYS_ADDR_T_64BIT
1686	if (!cpu_has_64bits) {
1687		uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1688		uasm_i_ori(p, pte, pte, hwmode);
1689		BUG_ON(hwmode & ~0xffff);
1690		uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1691		uasm_i_lw(p, pte, 0, ptr);
1692	}
1693# endif
1694#endif
1695}
1696
1697/*
1698 * Check if PTE is present, if not then jump to LABEL. PTR points to
1699 * the page table where this PTE is located, PTE will be re-loaded
1700 * with its original value.
1701 */
1702static void
1703build_pte_present(u32 **p, struct uasm_reloc **r,
1704		  int pte, int ptr, int scratch, enum label_id lid)
1705{
1706	int t = scratch >= 0 ? scratch : pte;
1707	int cur = pte;
1708
1709	if (cpu_has_rixi) {
1710		if (use_bbit_insns()) {
1711			uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
1712			uasm_i_nop(p);
1713		} else {
1714			if (_PAGE_PRESENT_SHIFT) {
1715				uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1716				cur = t;
1717			}
1718			uasm_i_andi(p, t, cur, 1);
1719			uasm_il_beqz(p, r, t, lid);
1720			if (pte == t)
1721				/* You lose the SMP race :-(*/
1722				iPTE_LW(p, pte, ptr);
1723		}
1724	} else {
1725		if (_PAGE_PRESENT_SHIFT) {
1726			uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1727			cur = t;
1728		}
1729		uasm_i_andi(p, t, cur,
1730			(_PAGE_PRESENT | _PAGE_NO_READ) >> _PAGE_PRESENT_SHIFT);
1731		uasm_i_xori(p, t, t, _PAGE_PRESENT >> _PAGE_PRESENT_SHIFT);
1732		uasm_il_bnez(p, r, t, lid);
1733		if (pte == t)
1734			/* You lose the SMP race :-(*/
1735			iPTE_LW(p, pte, ptr);
1736	}
1737}
1738
1739/* Make PTE valid, store result in PTR. */
1740static void
1741build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
1742		 unsigned int ptr, unsigned int scratch)
1743{
1744	unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1745
1746	iPTE_SW(p, r, pte, ptr, mode, scratch);
1747}
1748
1749/*
1750 * Check if PTE can be written to, if not branch to LABEL. Regardless
1751 * restore PTE with value from PTR when done.
1752 */
1753static void
1754build_pte_writable(u32 **p, struct uasm_reloc **r,
1755		   unsigned int pte, unsigned int ptr, int scratch,
1756		   enum label_id lid)
1757{
1758	int t = scratch >= 0 ? scratch : pte;
1759	int cur = pte;
1760
1761	if (_PAGE_PRESENT_SHIFT) {
1762		uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1763		cur = t;
1764	}
1765	uasm_i_andi(p, t, cur,
1766		    (_PAGE_PRESENT | _PAGE_WRITE) >> _PAGE_PRESENT_SHIFT);
1767	uasm_i_xori(p, t, t,
1768		    (_PAGE_PRESENT | _PAGE_WRITE) >> _PAGE_PRESENT_SHIFT);
1769	uasm_il_bnez(p, r, t, lid);
1770	if (pte == t)
1771		/* You lose the SMP race :-(*/
1772		iPTE_LW(p, pte, ptr);
1773	else
1774		uasm_i_nop(p);
1775}
1776
1777/* Make PTE writable, update software status bits as well, then store
1778 * at PTR.
1779 */
1780static void
1781build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1782		 unsigned int ptr, unsigned int scratch)
1783{
1784	unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1785			     | _PAGE_DIRTY);
1786
1787	iPTE_SW(p, r, pte, ptr, mode, scratch);
1788}
1789
1790/*
1791 * Check if PTE can be modified, if not branch to LABEL. Regardless
1792 * restore PTE with value from PTR when done.
1793 */
1794static void
1795build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1796		     unsigned int pte, unsigned int ptr, int scratch,
1797		     enum label_id lid)
1798{
1799	if (use_bbit_insns()) {
1800		uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
1801		uasm_i_nop(p);
1802	} else {
1803		int t = scratch >= 0 ? scratch : pte;
1804		uasm_i_srl(p, t, pte, _PAGE_WRITE_SHIFT);
1805		uasm_i_andi(p, t, t, 1);
1806		uasm_il_beqz(p, r, t, lid);
1807		if (pte == t)
1808			/* You lose the SMP race :-(*/
1809			iPTE_LW(p, pte, ptr);
1810	}
1811}
1812
1813#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1814
1815
1816/*
1817 * R3000 style TLB load/store/modify handlers.
1818 */
1819
1820/*
1821 * This places the pte into ENTRYLO0 and writes it with tlbwi.
1822 * Then it returns.
1823 */
1824static void
1825build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1826{
1827	uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1828	uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1829	uasm_i_tlbwi(p);
1830	uasm_i_jr(p, tmp);
1831	uasm_i_rfe(p); /* branch delay */
1832}
1833
1834/*
1835 * This places the pte into ENTRYLO0 and writes it with tlbwi
1836 * or tlbwr as appropriate.  This is because the index register
1837 * may have the probe fail bit set as a result of a trap on a
1838 * kseg2 access, i.e. without refill.  Then it returns.
1839 */
1840static void
1841build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1842			     struct uasm_reloc **r, unsigned int pte,
1843			     unsigned int tmp)
1844{
1845	uasm_i_mfc0(p, tmp, C0_INDEX);
1846	uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1847	uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1848	uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1849	uasm_i_tlbwi(p); /* cp0 delay */
1850	uasm_i_jr(p, tmp);
1851	uasm_i_rfe(p); /* branch delay */
1852	uasm_l_r3000_write_probe_fail(l, *p);
1853	uasm_i_tlbwr(p); /* cp0 delay */
1854	uasm_i_jr(p, tmp);
1855	uasm_i_rfe(p); /* branch delay */
1856}
1857
1858static void
1859build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1860				   unsigned int ptr)
1861{
1862	long pgdc = (long)pgd_current;
1863
1864	uasm_i_mfc0(p, pte, C0_BADVADDR);
1865	uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1866	uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1867	uasm_i_srl(p, pte, pte, 22); /* load delay */
1868	uasm_i_sll(p, pte, pte, 2);
1869	uasm_i_addu(p, ptr, ptr, pte);
1870	uasm_i_mfc0(p, pte, C0_CONTEXT);
1871	uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1872	uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1873	uasm_i_addu(p, ptr, ptr, pte);
1874	uasm_i_lw(p, pte, 0, ptr);
1875	uasm_i_tlbp(p); /* load delay */
1876}
1877
1878static void build_r3000_tlb_load_handler(void)
1879{
1880	u32 *p = (u32 *)handle_tlbl;
1881	struct uasm_label *l = labels;
1882	struct uasm_reloc *r = relocs;
1883
1884	memset(p, 0, handle_tlbl_end - (char *)p);
1885	memset(labels, 0, sizeof(labels));
1886	memset(relocs, 0, sizeof(relocs));
1887
1888	build_r3000_tlbchange_handler_head(&p, GPR_K0, GPR_K1);
1889	build_pte_present(&p, &r, GPR_K0, GPR_K1, -1, label_nopage_tlbl);
1890	uasm_i_nop(&p); /* load delay */
1891	build_make_valid(&p, &r, GPR_K0, GPR_K1, -1);
1892	build_r3000_tlb_reload_write(&p, &l, &r, GPR_K0, GPR_K1);
1893
1894	uasm_l_nopage_tlbl(&l, p);
1895	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1896	uasm_i_nop(&p);
1897
1898	if (p >= (u32 *)handle_tlbl_end)
1899		panic("TLB load handler fastpath space exceeded");
1900
1901	uasm_resolve_relocs(relocs, labels);
1902	pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1903		 (unsigned int)(p - (u32 *)handle_tlbl));
1904
1905	dump_handler("r3000_tlb_load", handle_tlbl, handle_tlbl_end);
1906}
1907
1908static void build_r3000_tlb_store_handler(void)
1909{
1910	u32 *p = (u32 *)handle_tlbs;
1911	struct uasm_label *l = labels;
1912	struct uasm_reloc *r = relocs;
1913
1914	memset(p, 0, handle_tlbs_end - (char *)p);
1915	memset(labels, 0, sizeof(labels));
1916	memset(relocs, 0, sizeof(relocs));
1917
1918	build_r3000_tlbchange_handler_head(&p, GPR_K0, GPR_K1);
1919	build_pte_writable(&p, &r, GPR_K0, GPR_K1, -1, label_nopage_tlbs);
1920	uasm_i_nop(&p); /* load delay */
1921	build_make_write(&p, &r, GPR_K0, GPR_K1, -1);
1922	build_r3000_tlb_reload_write(&p, &l, &r, GPR_K0, GPR_K1);
1923
1924	uasm_l_nopage_tlbs(&l, p);
1925	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1926	uasm_i_nop(&p);
1927
1928	if (p >= (u32 *)handle_tlbs_end)
1929		panic("TLB store handler fastpath space exceeded");
1930
1931	uasm_resolve_relocs(relocs, labels);
1932	pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1933		 (unsigned int)(p - (u32 *)handle_tlbs));
1934
1935	dump_handler("r3000_tlb_store", handle_tlbs, handle_tlbs_end);
1936}
1937
1938static void build_r3000_tlb_modify_handler(void)
1939{
1940	u32 *p = (u32 *)handle_tlbm;
1941	struct uasm_label *l = labels;
1942	struct uasm_reloc *r = relocs;
1943
1944	memset(p, 0, handle_tlbm_end - (char *)p);
1945	memset(labels, 0, sizeof(labels));
1946	memset(relocs, 0, sizeof(relocs));
1947
1948	build_r3000_tlbchange_handler_head(&p, GPR_K0, GPR_K1);
1949	build_pte_modifiable(&p, &r, GPR_K0, GPR_K1,  -1, label_nopage_tlbm);
1950	uasm_i_nop(&p); /* load delay */
1951	build_make_write(&p, &r, GPR_K0, GPR_K1, -1);
1952	build_r3000_pte_reload_tlbwi(&p, GPR_K0, GPR_K1);
1953
1954	uasm_l_nopage_tlbm(&l, p);
1955	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1956	uasm_i_nop(&p);
1957
1958	if (p >= (u32 *)handle_tlbm_end)
1959		panic("TLB modify handler fastpath space exceeded");
1960
1961	uasm_resolve_relocs(relocs, labels);
1962	pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1963		 (unsigned int)(p - (u32 *)handle_tlbm));
1964
1965	dump_handler("r3000_tlb_modify", handle_tlbm, handle_tlbm_end);
1966}
1967#endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
1968
1969static bool cpu_has_tlbex_tlbp_race(void)
1970{
1971	/*
1972	 * When a Hardware Table Walker is running it can replace TLB entries
1973	 * at any time, leading to a race between it & the CPU.
1974	 */
1975	if (cpu_has_htw)
1976		return true;
1977
1978	/*
1979	 * If the CPU shares FTLB RAM with its siblings then our entry may be
1980	 * replaced at any time by a sibling performing a write to the FTLB.
1981	 */
1982	if (cpu_has_shared_ftlb_ram)
1983		return true;
1984
1985	/* In all other cases there ought to be no race condition to handle */
1986	return false;
1987}
1988
1989/*
1990 * R4000 style TLB load/store/modify handlers.
1991 */
1992static struct work_registers
1993build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
1994				   struct uasm_reloc **r)
1995{
1996	struct work_registers wr = build_get_work_registers(p);
1997
1998#ifdef CONFIG_64BIT
1999	build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
2000#else
2001	build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
2002#endif
2003
2004#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2005	/*
2006	 * For huge tlb entries, pmd doesn't contain an address but
2007	 * instead contains the tlb pte. Check the PAGE_HUGE bit and
2008	 * see if we need to jump to huge tlb processing.
2009	 */
2010	build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
2011#endif
2012
2013	UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
2014	UASM_i_LW(p, wr.r2, 0, wr.r2);
2015	UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT - PTE_T_LOG2);
2016	uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
2017	UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
2018
2019#ifdef CONFIG_SMP
2020	uasm_l_smp_pgtable_change(l, *p);
2021#endif
2022	iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
2023	if (!m4kc_tlbp_war()) {
2024		build_tlb_probe_entry(p);
2025		if (cpu_has_tlbex_tlbp_race()) {
2026			/* race condition happens, leaving */
2027			uasm_i_ehb(p);
2028			uasm_i_mfc0(p, wr.r3, C0_INDEX);
2029			uasm_il_bltz(p, r, wr.r3, label_leave);
2030			uasm_i_nop(p);
2031		}
2032	}
2033	return wr;
2034}
2035
2036static void
2037build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
2038				   struct uasm_reloc **r, unsigned int tmp,
2039				   unsigned int ptr)
2040{
2041	uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
2042	uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
2043	build_update_entries(p, tmp, ptr);
2044	build_tlb_write_entry(p, l, r, tlb_indexed);
2045	uasm_l_leave(l, *p);
2046	build_restore_work_registers(p);
2047	uasm_i_eret(p); /* return from trap */
2048
2049#ifdef CONFIG_64BIT
2050	build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
2051#endif
2052}
2053
2054static void build_r4000_tlb_load_handler(void)
2055{
2056	u32 *p = (u32 *)msk_isa16_mode((ulong)handle_tlbl);
2057	struct uasm_label *l = labels;
2058	struct uasm_reloc *r = relocs;
2059	struct work_registers wr;
2060
2061	memset(p, 0, handle_tlbl_end - (char *)p);
2062	memset(labels, 0, sizeof(labels));
2063	memset(relocs, 0, sizeof(relocs));
2064
2065	if (bcm1250_m3_war()) {
2066		unsigned int segbits = 44;
2067
2068		uasm_i_dmfc0(&p, GPR_K0, C0_BADVADDR);
2069		uasm_i_dmfc0(&p, GPR_K1, C0_ENTRYHI);
2070		uasm_i_xor(&p, GPR_K0, GPR_K0, GPR_K1);
2071		uasm_i_dsrl_safe(&p, GPR_K1, GPR_K0, 62);
2072		uasm_i_dsrl_safe(&p, GPR_K0, GPR_K0, 12 + 1);
2073		uasm_i_dsll_safe(&p, GPR_K0, GPR_K0, 64 + 12 + 1 - segbits);
2074		uasm_i_or(&p, GPR_K0, GPR_K0, GPR_K1);
2075		uasm_il_bnez(&p, &r, GPR_K0, label_leave);
2076		/* No need for uasm_i_nop */
2077	}
2078
2079	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2080	build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
2081	if (m4kc_tlbp_war())
2082		build_tlb_probe_entry(&p);
2083
2084	if (cpu_has_rixi && !cpu_has_rixiex) {
2085		/*
2086		 * If the page is not _PAGE_VALID, RI or XI could not
2087		 * have triggered it.  Skip the expensive test..
2088		 */
2089		if (use_bbit_insns()) {
2090			uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
2091				      label_tlbl_goaround1);
2092		} else {
2093			uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
2094			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
2095		}
2096		uasm_i_nop(&p);
2097
2098		/*
2099		 * Warn if something may race with us & replace the TLB entry
2100		 * before we read it here. Everything with such races should
2101		 * also have dedicated RiXi exception handlers, so this
2102		 * shouldn't be hit.
2103		 */
2104		WARN(cpu_has_tlbex_tlbp_race(), "Unhandled race in RiXi path");
2105
2106		uasm_i_tlbr(&p);
2107
2108		if (cpu_has_mips_r2_exec_hazard)
2109			uasm_i_ehb(&p);
2110
2111		/* Examine  entrylo 0 or 1 based on ptr. */
2112		if (use_bbit_insns()) {
2113			uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2114		} else {
2115			uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2116			uasm_i_beqz(&p, wr.r3, 8);
2117		}
2118		/* load it in the delay slot*/
2119		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2120		/* load it if ptr is odd */
2121		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2122		/*
2123		 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2124		 * XI must have triggered it.
2125		 */
2126		if (use_bbit_insns()) {
2127			uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
2128			uasm_i_nop(&p);
2129			uasm_l_tlbl_goaround1(&l, p);
2130		} else {
2131			uasm_i_andi(&p, wr.r3, wr.r3, 2);
2132			uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
2133			uasm_i_nop(&p);
2134		}
2135		uasm_l_tlbl_goaround1(&l, p);
2136	}
2137	build_make_valid(&p, &r, wr.r1, wr.r2, wr.r3);
2138	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2139
2140#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2141	/*
2142	 * This is the entry point when build_r4000_tlbchange_handler_head
2143	 * spots a huge page.
2144	 */
2145	uasm_l_tlb_huge_update(&l, p);
2146	iPTE_LW(&p, wr.r1, wr.r2);
2147	build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
2148	build_tlb_probe_entry(&p);
2149
2150	if (cpu_has_rixi && !cpu_has_rixiex) {
2151		/*
2152		 * If the page is not _PAGE_VALID, RI or XI could not
2153		 * have triggered it.  Skip the expensive test..
2154		 */
2155		if (use_bbit_insns()) {
2156			uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
2157				      label_tlbl_goaround2);
2158		} else {
2159			uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
2160			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2161		}
2162		uasm_i_nop(&p);
2163
2164		/*
2165		 * Warn if something may race with us & replace the TLB entry
2166		 * before we read it here. Everything with such races should
2167		 * also have dedicated RiXi exception handlers, so this
2168		 * shouldn't be hit.
2169		 */
2170		WARN(cpu_has_tlbex_tlbp_race(), "Unhandled race in RiXi path");
2171
2172		uasm_i_tlbr(&p);
2173
2174		if (cpu_has_mips_r2_exec_hazard)
2175			uasm_i_ehb(&p);
2176
2177		/* Examine  entrylo 0 or 1 based on ptr. */
2178		if (use_bbit_insns()) {
2179			uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2180		} else {
2181			uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2182			uasm_i_beqz(&p, wr.r3, 8);
2183		}
2184		/* load it in the delay slot*/
2185		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2186		/* load it if ptr is odd */
2187		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2188		/*
2189		 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2190		 * XI must have triggered it.
2191		 */
2192		if (use_bbit_insns()) {
2193			uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
2194		} else {
2195			uasm_i_andi(&p, wr.r3, wr.r3, 2);
2196			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2197		}
2198		if (PM_DEFAULT_MASK == 0)
2199			uasm_i_nop(&p);
2200		/*
2201		 * We clobbered C0_PAGEMASK, restore it.  On the other branch
2202		 * it is restored in build_huge_tlb_write_entry.
2203		 */
2204		build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
2205
2206		uasm_l_tlbl_goaround2(&l, p);
2207	}
2208	uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
2209	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2, 1);
2210#endif
2211
2212	uasm_l_nopage_tlbl(&l, p);
2213	if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
2214		uasm_i_sync(&p, 0);
2215	build_restore_work_registers(&p);
2216#ifdef CONFIG_CPU_MICROMIPS
2217	if ((unsigned long)tlb_do_page_fault_0 & 1) {
2218		uasm_i_lui(&p, GPR_K0, uasm_rel_hi((long)tlb_do_page_fault_0));
2219		uasm_i_addiu(&p, GPR_K0, GPR_K0, uasm_rel_lo((long)tlb_do_page_fault_0));
2220		uasm_i_jr(&p, GPR_K0);
2221	} else
2222#endif
2223	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
2224	uasm_i_nop(&p);
2225
2226	if (p >= (u32 *)handle_tlbl_end)
2227		panic("TLB load handler fastpath space exceeded");
2228
2229	uasm_resolve_relocs(relocs, labels);
2230	pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
2231		 (unsigned int)(p - (u32 *)handle_tlbl));
2232
2233	dump_handler("r4000_tlb_load", handle_tlbl, handle_tlbl_end);
2234}
2235
2236static void build_r4000_tlb_store_handler(void)
2237{
2238	u32 *p = (u32 *)msk_isa16_mode((ulong)handle_tlbs);
2239	struct uasm_label *l = labels;
2240	struct uasm_reloc *r = relocs;
2241	struct work_registers wr;
2242
2243	memset(p, 0, handle_tlbs_end - (char *)p);
2244	memset(labels, 0, sizeof(labels));
2245	memset(relocs, 0, sizeof(relocs));
2246
2247	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2248	build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2249	if (m4kc_tlbp_war())
2250		build_tlb_probe_entry(&p);
2251	build_make_write(&p, &r, wr.r1, wr.r2, wr.r3);
2252	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2253
2254#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2255	/*
2256	 * This is the entry point when
2257	 * build_r4000_tlbchange_handler_head spots a huge page.
2258	 */
2259	uasm_l_tlb_huge_update(&l, p);
2260	iPTE_LW(&p, wr.r1, wr.r2);
2261	build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2262	build_tlb_probe_entry(&p);
2263	uasm_i_ori(&p, wr.r1, wr.r1,
2264		   _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2265	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2, 1);
2266#endif
2267
2268	uasm_l_nopage_tlbs(&l, p);
2269	if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
2270		uasm_i_sync(&p, 0);
2271	build_restore_work_registers(&p);
2272#ifdef CONFIG_CPU_MICROMIPS
2273	if ((unsigned long)tlb_do_page_fault_1 & 1) {
2274		uasm_i_lui(&p, GPR_K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2275		uasm_i_addiu(&p, GPR_K0, GPR_K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2276		uasm_i_jr(&p, GPR_K0);
2277	} else
2278#endif
2279	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2280	uasm_i_nop(&p);
2281
2282	if (p >= (u32 *)handle_tlbs_end)
2283		panic("TLB store handler fastpath space exceeded");
2284
2285	uasm_resolve_relocs(relocs, labels);
2286	pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
2287		 (unsigned int)(p - (u32 *)handle_tlbs));
2288
2289	dump_handler("r4000_tlb_store", handle_tlbs, handle_tlbs_end);
2290}
2291
2292static void build_r4000_tlb_modify_handler(void)
2293{
2294	u32 *p = (u32 *)msk_isa16_mode((ulong)handle_tlbm);
2295	struct uasm_label *l = labels;
2296	struct uasm_reloc *r = relocs;
2297	struct work_registers wr;
2298
2299	memset(p, 0, handle_tlbm_end - (char *)p);
2300	memset(labels, 0, sizeof(labels));
2301	memset(relocs, 0, sizeof(relocs));
2302
2303	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2304	build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2305	if (m4kc_tlbp_war())
2306		build_tlb_probe_entry(&p);
2307	/* Present and writable bits set, set accessed and dirty bits. */
2308	build_make_write(&p, &r, wr.r1, wr.r2, wr.r3);
2309	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2310
2311#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2312	/*
2313	 * This is the entry point when
2314	 * build_r4000_tlbchange_handler_head spots a huge page.
2315	 */
2316	uasm_l_tlb_huge_update(&l, p);
2317	iPTE_LW(&p, wr.r1, wr.r2);
2318	build_pte_modifiable(&p, &r, wr.r1, wr.r2,  wr.r3, label_nopage_tlbm);
2319	build_tlb_probe_entry(&p);
2320	uasm_i_ori(&p, wr.r1, wr.r1,
2321		   _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2322	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2, 0);
2323#endif
2324
2325	uasm_l_nopage_tlbm(&l, p);
2326	if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
2327		uasm_i_sync(&p, 0);
2328	build_restore_work_registers(&p);
2329#ifdef CONFIG_CPU_MICROMIPS
2330	if ((unsigned long)tlb_do_page_fault_1 & 1) {
2331		uasm_i_lui(&p, GPR_K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2332		uasm_i_addiu(&p, GPR_K0, GPR_K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2333		uasm_i_jr(&p, GPR_K0);
2334	} else
2335#endif
2336	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2337	uasm_i_nop(&p);
2338
2339	if (p >= (u32 *)handle_tlbm_end)
2340		panic("TLB modify handler fastpath space exceeded");
2341
2342	uasm_resolve_relocs(relocs, labels);
2343	pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2344		 (unsigned int)(p - (u32 *)handle_tlbm));
2345
2346	dump_handler("r4000_tlb_modify", handle_tlbm, handle_tlbm_end);
2347}
2348
2349static void flush_tlb_handlers(void)
2350{
2351	local_flush_icache_range((unsigned long)handle_tlbl,
2352			   (unsigned long)handle_tlbl_end);
2353	local_flush_icache_range((unsigned long)handle_tlbs,
2354			   (unsigned long)handle_tlbs_end);
2355	local_flush_icache_range((unsigned long)handle_tlbm,
2356			   (unsigned long)handle_tlbm_end);
2357	local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
2358			   (unsigned long)tlbmiss_handler_setup_pgd_end);
2359}
2360
2361static void print_htw_config(void)
2362{
2363	unsigned long config;
2364	unsigned int pwctl;
2365	const int field = 2 * sizeof(unsigned long);
2366
2367	config = read_c0_pwfield();
2368	pr_debug("PWField (0x%0*lx): GDI: 0x%02lx  UDI: 0x%02lx  MDI: 0x%02lx  PTI: 0x%02lx  PTEI: 0x%02lx\n",
2369		field, config,
2370		(config & MIPS_PWFIELD_GDI_MASK) >> MIPS_PWFIELD_GDI_SHIFT,
2371		(config & MIPS_PWFIELD_UDI_MASK) >> MIPS_PWFIELD_UDI_SHIFT,
2372		(config & MIPS_PWFIELD_MDI_MASK) >> MIPS_PWFIELD_MDI_SHIFT,
2373		(config & MIPS_PWFIELD_PTI_MASK) >> MIPS_PWFIELD_PTI_SHIFT,
2374		(config & MIPS_PWFIELD_PTEI_MASK) >> MIPS_PWFIELD_PTEI_SHIFT);
2375
2376	config = read_c0_pwsize();
2377	pr_debug("PWSize  (0x%0*lx): PS: 0x%lx  GDW: 0x%02lx  UDW: 0x%02lx  MDW: 0x%02lx  PTW: 0x%02lx  PTEW: 0x%02lx\n",
2378		field, config,
2379		(config & MIPS_PWSIZE_PS_MASK) >> MIPS_PWSIZE_PS_SHIFT,
2380		(config & MIPS_PWSIZE_GDW_MASK) >> MIPS_PWSIZE_GDW_SHIFT,
2381		(config & MIPS_PWSIZE_UDW_MASK) >> MIPS_PWSIZE_UDW_SHIFT,
2382		(config & MIPS_PWSIZE_MDW_MASK) >> MIPS_PWSIZE_MDW_SHIFT,
2383		(config & MIPS_PWSIZE_PTW_MASK) >> MIPS_PWSIZE_PTW_SHIFT,
2384		(config & MIPS_PWSIZE_PTEW_MASK) >> MIPS_PWSIZE_PTEW_SHIFT);
2385
2386	pwctl = read_c0_pwctl();
2387	pr_debug("PWCtl   (0x%x): PWEn: 0x%x  XK: 0x%x  XS: 0x%x  XU: 0x%x  DPH: 0x%x  HugePg: 0x%x  Psn: 0x%x\n",
2388		pwctl,
2389		(pwctl & MIPS_PWCTL_PWEN_MASK) >> MIPS_PWCTL_PWEN_SHIFT,
2390		(pwctl & MIPS_PWCTL_XK_MASK) >> MIPS_PWCTL_XK_SHIFT,
2391		(pwctl & MIPS_PWCTL_XS_MASK) >> MIPS_PWCTL_XS_SHIFT,
2392		(pwctl & MIPS_PWCTL_XU_MASK) >> MIPS_PWCTL_XU_SHIFT,
2393		(pwctl & MIPS_PWCTL_DPH_MASK) >> MIPS_PWCTL_DPH_SHIFT,
2394		(pwctl & MIPS_PWCTL_HUGEPG_MASK) >> MIPS_PWCTL_HUGEPG_SHIFT,
2395		(pwctl & MIPS_PWCTL_PSN_MASK) >> MIPS_PWCTL_PSN_SHIFT);
2396}
2397
2398static void config_htw_params(void)
2399{
2400	unsigned long pwfield, pwsize, ptei;
2401	unsigned int config;
2402
2403	/*
2404	 * We are using 2-level page tables, so we only need to
2405	 * setup GDW and PTW appropriately. UDW and MDW will remain 0.
2406	 * The default value of GDI/UDI/MDI/PTI is 0xc. It is illegal to
2407	 * write values less than 0xc in these fields because the entire
2408	 * write will be dropped. As a result of which, we must preserve
2409	 * the original reset values and overwrite only what we really want.
2410	 */
2411
2412	pwfield = read_c0_pwfield();
2413	/* re-initialize the GDI field */
2414	pwfield &= ~MIPS_PWFIELD_GDI_MASK;
2415	pwfield |= PGDIR_SHIFT << MIPS_PWFIELD_GDI_SHIFT;
2416	/* re-initialize the PTI field including the even/odd bit */
2417	pwfield &= ~MIPS_PWFIELD_PTI_MASK;
2418	pwfield |= PAGE_SHIFT << MIPS_PWFIELD_PTI_SHIFT;
2419	if (CONFIG_PGTABLE_LEVELS >= 3) {
2420		pwfield &= ~MIPS_PWFIELD_MDI_MASK;
2421		pwfield |= PMD_SHIFT << MIPS_PWFIELD_MDI_SHIFT;
2422	}
2423	/* Set the PTEI right shift */
2424	ptei = _PAGE_GLOBAL_SHIFT << MIPS_PWFIELD_PTEI_SHIFT;
2425	pwfield |= ptei;
2426	write_c0_pwfield(pwfield);
2427	/* Check whether the PTEI value is supported */
2428	back_to_back_c0_hazard();
2429	pwfield = read_c0_pwfield();
2430	if (((pwfield & MIPS_PWFIELD_PTEI_MASK) << MIPS_PWFIELD_PTEI_SHIFT)
2431		!= ptei) {
2432		pr_warn("Unsupported PTEI field value: 0x%lx. HTW will not be enabled",
2433			ptei);
2434		/*
2435		 * Drop option to avoid HTW being enabled via another path
2436		 * (eg htw_reset())
2437		 */
2438		current_cpu_data.options &= ~MIPS_CPU_HTW;
2439		return;
2440	}
2441
2442	pwsize = ilog2(PTRS_PER_PGD) << MIPS_PWSIZE_GDW_SHIFT;
2443	pwsize |= ilog2(PTRS_PER_PTE) << MIPS_PWSIZE_PTW_SHIFT;
2444	if (CONFIG_PGTABLE_LEVELS >= 3)
2445		pwsize |= ilog2(PTRS_PER_PMD) << MIPS_PWSIZE_MDW_SHIFT;
2446
2447	/* Set pointer size to size of directory pointers */
2448	if (IS_ENABLED(CONFIG_64BIT))
2449		pwsize |= MIPS_PWSIZE_PS_MASK;
2450	/* PTEs may be multiple pointers long (e.g. with XPA) */
2451	pwsize |= ((PTE_T_LOG2 - PGD_T_LOG2) << MIPS_PWSIZE_PTEW_SHIFT)
2452			& MIPS_PWSIZE_PTEW_MASK;
2453
2454	write_c0_pwsize(pwsize);
2455
2456	/* Make sure everything is set before we enable the HTW */
2457	back_to_back_c0_hazard();
2458
2459	/*
2460	 * Enable HTW (and only for XUSeg on 64-bit), and disable the rest of
2461	 * the pwctl fields.
2462	 */
2463	config = 1 << MIPS_PWCTL_PWEN_SHIFT;
2464	if (IS_ENABLED(CONFIG_64BIT))
2465		config |= MIPS_PWCTL_XU_MASK;
2466	write_c0_pwctl(config);
2467	pr_info("Hardware Page Table Walker enabled\n");
2468
2469	print_htw_config();
2470}
2471
2472static void config_xpa_params(void)
2473{
2474#ifdef CONFIG_XPA
2475	unsigned int pagegrain;
2476
2477	if (mips_xpa_disabled) {
2478		pr_info("Extended Physical Addressing (XPA) disabled\n");
2479		return;
2480	}
2481
2482	pagegrain = read_c0_pagegrain();
2483	write_c0_pagegrain(pagegrain | PG_ELPA);
2484	back_to_back_c0_hazard();
2485	pagegrain = read_c0_pagegrain();
2486
2487	if (pagegrain & PG_ELPA)
2488		pr_info("Extended Physical Addressing (XPA) enabled\n");
2489	else
2490		panic("Extended Physical Addressing (XPA) disabled");
2491#endif
2492}
2493
2494static void check_pabits(void)
2495{
2496	unsigned long entry;
2497	unsigned pabits, fillbits;
2498
2499	if (!cpu_has_rixi || _PAGE_NO_EXEC == 0) {
2500		/*
2501		 * We'll only be making use of the fact that we can rotate bits
2502		 * into the fill if the CPU supports RIXI, so don't bother
2503		 * probing this for CPUs which don't.
2504		 */
2505		return;
2506	}
2507
2508	write_c0_entrylo0(~0ul);
2509	back_to_back_c0_hazard();
2510	entry = read_c0_entrylo0();
2511
2512	/* clear all non-PFN bits */
2513	entry &= ~((1 << MIPS_ENTRYLO_PFN_SHIFT) - 1);
2514	entry &= ~(MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI);
2515
2516	/* find a lower bound on PABITS, and upper bound on fill bits */
2517	pabits = fls_long(entry) + 6;
2518	fillbits = max_t(int, (int)BITS_PER_LONG - pabits, 0);
2519
2520	/* minus the RI & XI bits */
2521	fillbits -= min_t(unsigned, fillbits, 2);
2522
2523	if (fillbits >= ilog2(_PAGE_NO_EXEC))
2524		fill_includes_sw_bits = true;
2525
2526	pr_debug("Entry* registers contain %u fill bits\n", fillbits);
2527}
2528
2529void build_tlb_refill_handler(void)
2530{
2531	/*
2532	 * The refill handler is generated per-CPU, multi-node systems
2533	 * may have local storage for it. The other handlers are only
2534	 * needed once.
2535	 */
2536	static int run_once = 0;
2537
2538	if (IS_ENABLED(CONFIG_XPA) && !cpu_has_rixi)
2539		panic("Kernels supporting XPA currently require CPUs with RIXI");
2540
2541	output_pgtable_bits_defines();
2542	check_pabits();
2543
2544#ifdef CONFIG_64BIT
2545	check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_TABLE_ORDER + PAGE_SHIFT - 3);
2546#endif
2547
2548	if (cpu_has_3kex) {
2549#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
2550		if (!run_once) {
2551			build_setup_pgd();
2552			build_r3000_tlb_refill_handler();
2553			build_r3000_tlb_load_handler();
2554			build_r3000_tlb_store_handler();
2555			build_r3000_tlb_modify_handler();
2556			flush_tlb_handlers();
2557			run_once++;
2558		}
2559#else
2560		panic("No R3000 TLB refill handler");
2561#endif
2562		return;
2563	}
2564
2565	if (cpu_has_ldpte)
2566		setup_pw();
2567
2568	if (!run_once) {
2569		scratch_reg = allocate_kscratch();
2570		build_setup_pgd();
2571		build_r4000_tlb_load_handler();
2572		build_r4000_tlb_store_handler();
2573		build_r4000_tlb_modify_handler();
2574		if (cpu_has_ldpte)
2575			build_loongson3_tlb_refill_handler();
2576		else
2577			build_r4000_tlb_refill_handler();
2578		flush_tlb_handlers();
2579		run_once++;
2580	}
2581	if (cpu_has_xpa)
2582		config_xpa_params();
2583	if (cpu_has_htw)
2584		config_htw_params();
2585}
2586