1// SPDX-License-Identifier: GPL-2.0
2#include <linux/err.h>
3#include <linux/slab.h>
4#include <linux/mm_types.h>
5#include <linux/sched/task.h>
6
7#include <asm/branch.h>
8#include <asm/cacheflush.h>
9#include <asm/fpu_emulator.h>
10#include <asm/inst.h>
11#include <asm/mipsregs.h>
12#include <linux/uaccess.h>
13
14/**
15 * struct emuframe - The 'emulation' frame structure
16 * @emul:	The instruction to 'emulate'.
17 * @badinst:	A break instruction to cause a return to the kernel.
18 *
19 * This structure defines the frames placed within the delay slot emulation
20 * page in response to a call to mips_dsemul(). Each thread may be allocated
21 * only one frame at any given time. The kernel stores within it the
22 * instruction to be 'emulated' followed by a break instruction, then
23 * executes the frame in user mode. The break causes a trap to the kernel
24 * which leads to do_dsemulret() being called unless the instruction in
25 * @emul causes a trap itself, is a branch, or a signal is delivered to
26 * the thread. In these cases the allocated frame will either be reused by
27 * a subsequent delay slot 'emulation', or be freed during signal delivery or
28 * upon thread exit.
29 *
30 * This approach is used because:
31 *
32 * - Actually emulating all instructions isn't feasible. We would need to
33 *   be able to handle instructions from all revisions of the MIPS ISA,
34 *   all ASEs & all vendor instruction set extensions. This would be a
35 *   whole lot of work & continual maintenance burden as new instructions
36 *   are introduced, and in the case of some vendor extensions may not
37 *   even be possible. Thus we need to take the approach of actually
38 *   executing the instruction.
39 *
40 * - We must execute the instruction within user context. If we were to
41 *   execute the instruction in kernel mode then it would have access to
42 *   kernel resources without very careful checks, leaving us with a
43 *   high potential for security or stability issues to arise.
44 *
45 * - We used to place the frame on the users stack, but this requires
46 *   that the stack be executable. This is bad for security so the
47 *   per-process page is now used instead.
48 *
49 * - The instruction in @emul may be something entirely invalid for a
50 *   delay slot. The user may (intentionally or otherwise) place a branch
51 *   in a delay slot, or a kernel mode instruction, or something else
52 *   which generates an exception. Thus we can't rely upon the break in
53 *   @badinst always being hit. For this reason we track the index of the
54 *   frame allocated to each thread, allowing us to clean it up at later
55 *   points such as signal delivery or thread exit.
56 *
57 * - The user may generate a fake struct emuframe if they wish, invoking
58 *   the BRK_MEMU break instruction themselves. We must therefore not
59 *   trust that BRK_MEMU means there's actually a valid frame allocated
60 *   to the thread, and must not allow the user to do anything they
61 *   couldn't already.
62 */
63struct emuframe {
64	mips_instruction	emul;
65	mips_instruction	badinst;
66};
67
68static const int emupage_frame_count = PAGE_SIZE / sizeof(struct emuframe);
69
70static inline __user struct emuframe *dsemul_page(void)
71{
72	return (__user struct emuframe *)STACK_TOP;
73}
74
75static int alloc_emuframe(void)
76{
77	mm_context_t *mm_ctx = &current->mm->context;
78	int idx;
79
80retry:
81	spin_lock(&mm_ctx->bd_emupage_lock);
82
83	/* Ensure we have an allocation bitmap */
84	if (!mm_ctx->bd_emupage_allocmap) {
85		mm_ctx->bd_emupage_allocmap = bitmap_zalloc(emupage_frame_count,
86							    GFP_ATOMIC);
87		if (!mm_ctx->bd_emupage_allocmap) {
88			idx = BD_EMUFRAME_NONE;
89			goto out_unlock;
90		}
91	}
92
93	/* Attempt to allocate a single bit/frame */
94	idx = bitmap_find_free_region(mm_ctx->bd_emupage_allocmap,
95				      emupage_frame_count, 0);
96	if (idx < 0) {
97		/*
98		 * Failed to allocate a frame. We'll wait until one becomes
99		 * available. We unlock the page so that other threads actually
100		 * get the opportunity to free their frames, which means
101		 * technically the result of bitmap_full may be incorrect.
102		 * However the worst case is that we repeat all this and end up
103		 * back here again.
104		 */
105		spin_unlock(&mm_ctx->bd_emupage_lock);
106		if (!wait_event_killable(mm_ctx->bd_emupage_queue,
107			!bitmap_full(mm_ctx->bd_emupage_allocmap,
108				     emupage_frame_count)))
109			goto retry;
110
111		/* Received a fatal signal - just give in */
112		return BD_EMUFRAME_NONE;
113	}
114
115	/* Success! */
116	pr_debug("allocate emuframe %d to %d\n", idx, current->pid);
117out_unlock:
118	spin_unlock(&mm_ctx->bd_emupage_lock);
119	return idx;
120}
121
122static void free_emuframe(int idx, struct mm_struct *mm)
123{
124	mm_context_t *mm_ctx = &mm->context;
125
126	spin_lock(&mm_ctx->bd_emupage_lock);
127
128	pr_debug("free emuframe %d from %d\n", idx, current->pid);
129	bitmap_clear(mm_ctx->bd_emupage_allocmap, idx, 1);
130
131	/* If some thread is waiting for a frame, now's its chance */
132	wake_up(&mm_ctx->bd_emupage_queue);
133
134	spin_unlock(&mm_ctx->bd_emupage_lock);
135}
136
137static bool within_emuframe(struct pt_regs *regs)
138{
139	unsigned long base = (unsigned long)dsemul_page();
140
141	if (regs->cp0_epc < base)
142		return false;
143	if (regs->cp0_epc >= (base + PAGE_SIZE))
144		return false;
145
146	return true;
147}
148
149bool dsemul_thread_cleanup(struct task_struct *tsk)
150{
151	int fr_idx;
152
153	/* Clear any allocated frame, retrieving its index */
154	fr_idx = atomic_xchg(&tsk->thread.bd_emu_frame, BD_EMUFRAME_NONE);
155
156	/* If no frame was allocated, we're done */
157	if (fr_idx == BD_EMUFRAME_NONE)
158		return false;
159
160	task_lock(tsk);
161
162	/* Free the frame that this thread had allocated */
163	if (tsk->mm)
164		free_emuframe(fr_idx, tsk->mm);
165
166	task_unlock(tsk);
167	return true;
168}
169
170bool dsemul_thread_rollback(struct pt_regs *regs)
171{
172	struct emuframe __user *fr;
173	int fr_idx;
174
175	/* Do nothing if we're not executing from a frame */
176	if (!within_emuframe(regs))
177		return false;
178
179	/* Find the frame being executed */
180	fr_idx = atomic_read(&current->thread.bd_emu_frame);
181	if (fr_idx == BD_EMUFRAME_NONE)
182		return false;
183	fr = &dsemul_page()[fr_idx];
184
185	/*
186	 * If the PC is at the emul instruction, roll back to the branch. If
187	 * PC is at the badinst (break) instruction, we've already emulated the
188	 * instruction so progress to the continue PC. If it's anything else
189	 * then something is amiss & the user has branched into some other area
190	 * of the emupage - we'll free the allocated frame anyway.
191	 */
192	if (msk_isa16_mode(regs->cp0_epc) == (unsigned long)&fr->emul)
193		regs->cp0_epc = current->thread.bd_emu_branch_pc;
194	else if (msk_isa16_mode(regs->cp0_epc) == (unsigned long)&fr->badinst)
195		regs->cp0_epc = current->thread.bd_emu_cont_pc;
196
197	atomic_set(&current->thread.bd_emu_frame, BD_EMUFRAME_NONE);
198	free_emuframe(fr_idx, current->mm);
199	return true;
200}
201
202void dsemul_mm_cleanup(struct mm_struct *mm)
203{
204	mm_context_t *mm_ctx = &mm->context;
205
206	bitmap_free(mm_ctx->bd_emupage_allocmap);
207}
208
209int mips_dsemul(struct pt_regs *regs, mips_instruction ir,
210		unsigned long branch_pc, unsigned long cont_pc)
211{
212	int isa16 = get_isa16_mode(regs->cp0_epc);
213	mips_instruction break_math;
214	unsigned long fr_uaddr;
215	struct emuframe fr;
216	int fr_idx, ret;
217
218	/* NOP is easy */
219	if (ir == 0)
220		return -1;
221
222	/* microMIPS instructions */
223	if (isa16) {
224		union mips_instruction insn = { .word = ir };
225
226		/* NOP16 aka MOVE16 $0, $0 */
227		if ((ir >> 16) == MM_NOP16)
228			return -1;
229
230		/* ADDIUPC */
231		if (insn.mm_a_format.opcode == mm_addiupc_op) {
232			unsigned int rs;
233			s32 v;
234
235			rs = (((insn.mm_a_format.rs + 0xe) & 0xf) + 2);
236			v = regs->cp0_epc & ~3;
237			v += insn.mm_a_format.simmediate << 2;
238			regs->regs[rs] = (long)v;
239			return -1;
240		}
241	}
242
243	pr_debug("dsemul 0x%08lx cont at 0x%08lx\n", regs->cp0_epc, cont_pc);
244
245	/* Allocate a frame if we don't already have one */
246	fr_idx = atomic_read(&current->thread.bd_emu_frame);
247	if (fr_idx == BD_EMUFRAME_NONE)
248		fr_idx = alloc_emuframe();
249	if (fr_idx == BD_EMUFRAME_NONE)
250		return SIGBUS;
251
252	/* Retrieve the appropriately encoded break instruction */
253	break_math = BREAK_MATH(isa16);
254
255	/* Write the instructions to the frame */
256	if (isa16) {
257		union mips_instruction _emul = {
258			.halfword = { ir >> 16, ir }
259		};
260		union mips_instruction _badinst = {
261			.halfword = { break_math >> 16, break_math }
262		};
263
264		fr.emul = _emul.word;
265		fr.badinst = _badinst.word;
266	} else {
267		fr.emul = ir;
268		fr.badinst = break_math;
269	}
270
271	/* Write the frame to user memory */
272	fr_uaddr = (unsigned long)&dsemul_page()[fr_idx];
273	ret = access_process_vm(current, fr_uaddr, &fr, sizeof(fr),
274				FOLL_FORCE | FOLL_WRITE);
275	if (unlikely(ret != sizeof(fr))) {
276		MIPS_FPU_EMU_INC_STATS(errors);
277		free_emuframe(fr_idx, current->mm);
278		return SIGBUS;
279	}
280
281	/* Record the PC of the branch, PC to continue from & frame index */
282	current->thread.bd_emu_branch_pc = branch_pc;
283	current->thread.bd_emu_cont_pc = cont_pc;
284	atomic_set(&current->thread.bd_emu_frame, fr_idx);
285
286	/* Change user register context to execute the frame */
287	regs->cp0_epc = fr_uaddr | isa16;
288
289	return 0;
290}
291
292bool do_dsemulret(struct pt_regs *xcp)
293{
294	/* Cleanup the allocated frame, returning if there wasn't one */
295	if (!dsemul_thread_cleanup(current)) {
296		MIPS_FPU_EMU_INC_STATS(errors);
297		return false;
298	}
299
300	/* Set EPC to return to post-branch instruction */
301	xcp->cp0_epc = current->thread.bd_emu_cont_pc;
302	pr_debug("dsemulret to 0x%08lx\n", xcp->cp0_epc);
303	MIPS_FPU_EMU_INC_STATS(ds_emul);
304	return true;
305}
306