1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License.  See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * KVM/MIPS: Instruction/Exception emulation
7 *
8 * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
10 */
11
12#include <linux/errno.h>
13#include <linux/err.h>
14#include <linux/ktime.h>
15#include <linux/kvm_host.h>
16#include <linux/vmalloc.h>
17#include <linux/fs.h>
18#include <linux/memblock.h>
19#include <linux/random.h>
20#include <asm/page.h>
21#include <asm/cacheflush.h>
22#include <asm/cacheops.h>
23#include <asm/cpu-info.h>
24#include <asm/mmu_context.h>
25#include <asm/tlbflush.h>
26#include <asm/inst.h>
27
28#undef CONFIG_MIPS_MT
29#include <asm/r4kcache.h>
30#define CONFIG_MIPS_MT
31
32#include "interrupt.h"
33
34#include "trace.h"
35
36/*
37 * Compute the return address and do emulate branch simulation, if required.
38 * This function should be called only in branch delay slot active.
39 */
40static int kvm_compute_return_epc(struct kvm_vcpu *vcpu, unsigned long instpc,
41				  unsigned long *out)
42{
43	unsigned int dspcontrol;
44	union mips_instruction insn;
45	struct kvm_vcpu_arch *arch = &vcpu->arch;
46	long epc = instpc;
47	long nextpc;
48	int err;
49
50	if (epc & 3) {
51		kvm_err("%s: unaligned epc\n", __func__);
52		return -EINVAL;
53	}
54
55	/* Read the instruction */
56	err = kvm_get_badinstrp((u32 *)epc, vcpu, &insn.word);
57	if (err)
58		return err;
59
60	switch (insn.i_format.opcode) {
61		/* jr and jalr are in r_format format. */
62	case spec_op:
63		switch (insn.r_format.func) {
64		case jalr_op:
65			arch->gprs[insn.r_format.rd] = epc + 8;
66			fallthrough;
67		case jr_op:
68			nextpc = arch->gprs[insn.r_format.rs];
69			break;
70		default:
71			return -EINVAL;
72		}
73		break;
74
75		/*
76		 * This group contains:
77		 * bltz_op, bgez_op, bltzl_op, bgezl_op,
78		 * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
79		 */
80	case bcond_op:
81		switch (insn.i_format.rt) {
82		case bltz_op:
83		case bltzl_op:
84			if ((long)arch->gprs[insn.i_format.rs] < 0)
85				epc = epc + 4 + (insn.i_format.simmediate << 2);
86			else
87				epc += 8;
88			nextpc = epc;
89			break;
90
91		case bgez_op:
92		case bgezl_op:
93			if ((long)arch->gprs[insn.i_format.rs] >= 0)
94				epc = epc + 4 + (insn.i_format.simmediate << 2);
95			else
96				epc += 8;
97			nextpc = epc;
98			break;
99
100		case bltzal_op:
101		case bltzall_op:
102			arch->gprs[31] = epc + 8;
103			if ((long)arch->gprs[insn.i_format.rs] < 0)
104				epc = epc + 4 + (insn.i_format.simmediate << 2);
105			else
106				epc += 8;
107			nextpc = epc;
108			break;
109
110		case bgezal_op:
111		case bgezall_op:
112			arch->gprs[31] = epc + 8;
113			if ((long)arch->gprs[insn.i_format.rs] >= 0)
114				epc = epc + 4 + (insn.i_format.simmediate << 2);
115			else
116				epc += 8;
117			nextpc = epc;
118			break;
119		case bposge32_op:
120			if (!cpu_has_dsp) {
121				kvm_err("%s: DSP branch but not DSP ASE\n",
122					__func__);
123				return -EINVAL;
124			}
125
126			dspcontrol = rddsp(0x01);
127
128			if (dspcontrol >= 32)
129				epc = epc + 4 + (insn.i_format.simmediate << 2);
130			else
131				epc += 8;
132			nextpc = epc;
133			break;
134		default:
135			return -EINVAL;
136		}
137		break;
138
139		/* These are unconditional and in j_format. */
140	case jal_op:
141		arch->gprs[31] = instpc + 8;
142		fallthrough;
143	case j_op:
144		epc += 4;
145		epc >>= 28;
146		epc <<= 28;
147		epc |= (insn.j_format.target << 2);
148		nextpc = epc;
149		break;
150
151		/* These are conditional and in i_format. */
152	case beq_op:
153	case beql_op:
154		if (arch->gprs[insn.i_format.rs] ==
155		    arch->gprs[insn.i_format.rt])
156			epc = epc + 4 + (insn.i_format.simmediate << 2);
157		else
158			epc += 8;
159		nextpc = epc;
160		break;
161
162	case bne_op:
163	case bnel_op:
164		if (arch->gprs[insn.i_format.rs] !=
165		    arch->gprs[insn.i_format.rt])
166			epc = epc + 4 + (insn.i_format.simmediate << 2);
167		else
168			epc += 8;
169		nextpc = epc;
170		break;
171
172	case blez_op:	/* POP06 */
173#ifndef CONFIG_CPU_MIPSR6
174	case blezl_op:	/* removed in R6 */
175#endif
176		if (insn.i_format.rt != 0)
177			goto compact_branch;
178		if ((long)arch->gprs[insn.i_format.rs] <= 0)
179			epc = epc + 4 + (insn.i_format.simmediate << 2);
180		else
181			epc += 8;
182		nextpc = epc;
183		break;
184
185	case bgtz_op:	/* POP07 */
186#ifndef CONFIG_CPU_MIPSR6
187	case bgtzl_op:	/* removed in R6 */
188#endif
189		if (insn.i_format.rt != 0)
190			goto compact_branch;
191		if ((long)arch->gprs[insn.i_format.rs] > 0)
192			epc = epc + 4 + (insn.i_format.simmediate << 2);
193		else
194			epc += 8;
195		nextpc = epc;
196		break;
197
198		/* And now the FPA/cp1 branch instructions. */
199	case cop1_op:
200		kvm_err("%s: unsupported cop1_op\n", __func__);
201		return -EINVAL;
202
203#ifdef CONFIG_CPU_MIPSR6
204	/* R6 added the following compact branches with forbidden slots */
205	case blezl_op:	/* POP26 */
206	case bgtzl_op:	/* POP27 */
207		/* only rt == 0 isn't compact branch */
208		if (insn.i_format.rt != 0)
209			goto compact_branch;
210		return -EINVAL;
211	case pop10_op:
212	case pop30_op:
213		/* only rs == rt == 0 is reserved, rest are compact branches */
214		if (insn.i_format.rs != 0 || insn.i_format.rt != 0)
215			goto compact_branch;
216		return -EINVAL;
217	case pop66_op:
218	case pop76_op:
219		/* only rs == 0 isn't compact branch */
220		if (insn.i_format.rs != 0)
221			goto compact_branch;
222		return -EINVAL;
223compact_branch:
224		/*
225		 * If we've hit an exception on the forbidden slot, then
226		 * the branch must not have been taken.
227		 */
228		epc += 8;
229		nextpc = epc;
230		break;
231#else
232compact_branch:
233		/* Fall through - Compact branches not supported before R6 */
234#endif
235	default:
236		return -EINVAL;
237	}
238
239	*out = nextpc;
240	return 0;
241}
242
243enum emulation_result update_pc(struct kvm_vcpu *vcpu, u32 cause)
244{
245	int err;
246
247	if (cause & CAUSEF_BD) {
248		err = kvm_compute_return_epc(vcpu, vcpu->arch.pc,
249					     &vcpu->arch.pc);
250		if (err)
251			return EMULATE_FAIL;
252	} else {
253		vcpu->arch.pc += 4;
254	}
255
256	kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc);
257
258	return EMULATE_DONE;
259}
260
261/**
262 * kvm_get_badinstr() - Get bad instruction encoding.
263 * @opc:	Guest pointer to faulting instruction.
264 * @vcpu:	KVM VCPU information.
265 *
266 * Gets the instruction encoding of the faulting instruction, using the saved
267 * BadInstr register value if it exists, otherwise falling back to reading guest
268 * memory at @opc.
269 *
270 * Returns:	The instruction encoding of the faulting instruction.
271 */
272int kvm_get_badinstr(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
273{
274	if (cpu_has_badinstr) {
275		*out = vcpu->arch.host_cp0_badinstr;
276		return 0;
277	} else {
278		WARN_ONCE(1, "CPU doesn't have BadInstr register\n");
279		return -EINVAL;
280	}
281}
282
283/**
284 * kvm_get_badinstrp() - Get bad prior instruction encoding.
285 * @opc:	Guest pointer to prior faulting instruction.
286 * @vcpu:	KVM VCPU information.
287 *
288 * Gets the instruction encoding of the prior faulting instruction (the branch
289 * containing the delay slot which faulted), using the saved BadInstrP register
290 * value if it exists, otherwise falling back to reading guest memory at @opc.
291 *
292 * Returns:	The instruction encoding of the prior faulting instruction.
293 */
294int kvm_get_badinstrp(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
295{
296	if (cpu_has_badinstrp) {
297		*out = vcpu->arch.host_cp0_badinstrp;
298		return 0;
299	} else {
300		WARN_ONCE(1, "CPU doesn't have BadInstrp register\n");
301		return -EINVAL;
302	}
303}
304
305/**
306 * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled.
307 * @vcpu:	Virtual CPU.
308 *
309 * Returns:	1 if the CP0_Count timer is disabled by either the guest
310 *		CP0_Cause.DC bit or the count_ctl.DC bit.
311 *		0 otherwise (in which case CP0_Count timer is running).
312 */
313int kvm_mips_count_disabled(struct kvm_vcpu *vcpu)
314{
315	struct mips_coproc *cop0 = &vcpu->arch.cop0;
316
317	return	(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) ||
318		(kvm_read_c0_guest_cause(cop0) & CAUSEF_DC);
319}
320
321/**
322 * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count.
323 *
324 * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias.
325 *
326 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
327 */
328static u32 kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now)
329{
330	s64 now_ns, periods;
331	u64 delta;
332
333	now_ns = ktime_to_ns(now);
334	delta = now_ns + vcpu->arch.count_dyn_bias;
335
336	if (delta >= vcpu->arch.count_period) {
337		/* If delta is out of safe range the bias needs adjusting */
338		periods = div64_s64(now_ns, vcpu->arch.count_period);
339		vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period;
340		/* Recalculate delta with new bias */
341		delta = now_ns + vcpu->arch.count_dyn_bias;
342	}
343
344	/*
345	 * We've ensured that:
346	 *   delta < count_period
347	 *
348	 * Therefore the intermediate delta*count_hz will never overflow since
349	 * at the boundary condition:
350	 *   delta = count_period
351	 *   delta = NSEC_PER_SEC * 2^32 / count_hz
352	 *   delta * count_hz = NSEC_PER_SEC * 2^32
353	 */
354	return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC);
355}
356
357/**
358 * kvm_mips_count_time() - Get effective current time.
359 * @vcpu:	Virtual CPU.
360 *
361 * Get effective monotonic ktime. This is usually a straightforward ktime_get(),
362 * except when the master disable bit is set in count_ctl, in which case it is
363 * count_resume, i.e. the time that the count was disabled.
364 *
365 * Returns:	Effective monotonic ktime for CP0_Count.
366 */
367static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu)
368{
369	if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
370		return vcpu->arch.count_resume;
371
372	return ktime_get();
373}
374
375/**
376 * kvm_mips_read_count_running() - Read the current count value as if running.
377 * @vcpu:	Virtual CPU.
378 * @now:	Kernel time to read CP0_Count at.
379 *
380 * Returns the current guest CP0_Count register at time @now and handles if the
381 * timer interrupt is pending and hasn't been handled yet.
382 *
383 * Returns:	The current value of the guest CP0_Count register.
384 */
385static u32 kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now)
386{
387	struct mips_coproc *cop0 = &vcpu->arch.cop0;
388	ktime_t expires, threshold;
389	u32 count, compare;
390	int running;
391
392	/* Calculate the biased and scaled guest CP0_Count */
393	count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
394	compare = kvm_read_c0_guest_compare(cop0);
395
396	/*
397	 * Find whether CP0_Count has reached the closest timer interrupt. If
398	 * not, we shouldn't inject it.
399	 */
400	if ((s32)(count - compare) < 0)
401		return count;
402
403	/*
404	 * The CP0_Count we're going to return has already reached the closest
405	 * timer interrupt. Quickly check if it really is a new interrupt by
406	 * looking at whether the interval until the hrtimer expiry time is
407	 * less than 1/4 of the timer period.
408	 */
409	expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer);
410	threshold = ktime_add_ns(now, vcpu->arch.count_period / 4);
411	if (ktime_before(expires, threshold)) {
412		/*
413		 * Cancel it while we handle it so there's no chance of
414		 * interference with the timeout handler.
415		 */
416		running = hrtimer_cancel(&vcpu->arch.comparecount_timer);
417
418		/* Nothing should be waiting on the timeout */
419		kvm_mips_callbacks->queue_timer_int(vcpu);
420
421		/*
422		 * Restart the timer if it was running based on the expiry time
423		 * we read, so that we don't push it back 2 periods.
424		 */
425		if (running) {
426			expires = ktime_add_ns(expires,
427					       vcpu->arch.count_period);
428			hrtimer_start(&vcpu->arch.comparecount_timer, expires,
429				      HRTIMER_MODE_ABS);
430		}
431	}
432
433	return count;
434}
435
436/**
437 * kvm_mips_read_count() - Read the current count value.
438 * @vcpu:	Virtual CPU.
439 *
440 * Read the current guest CP0_Count value, taking into account whether the timer
441 * is stopped.
442 *
443 * Returns:	The current guest CP0_Count value.
444 */
445u32 kvm_mips_read_count(struct kvm_vcpu *vcpu)
446{
447	struct mips_coproc *cop0 = &vcpu->arch.cop0;
448
449	/* If count disabled just read static copy of count */
450	if (kvm_mips_count_disabled(vcpu))
451		return kvm_read_c0_guest_count(cop0);
452
453	return kvm_mips_read_count_running(vcpu, ktime_get());
454}
455
456/**
457 * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer.
458 * @vcpu:	Virtual CPU.
459 * @count:	Output pointer for CP0_Count value at point of freeze.
460 *
461 * Freeze the hrtimer safely and return both the ktime and the CP0_Count value
462 * at the point it was frozen. It is guaranteed that any pending interrupts at
463 * the point it was frozen are handled, and none after that point.
464 *
465 * This is useful where the time/CP0_Count is needed in the calculation of the
466 * new parameters.
467 *
468 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
469 *
470 * Returns:	The ktime at the point of freeze.
471 */
472ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu, u32 *count)
473{
474	ktime_t now;
475
476	/* stop hrtimer before finding time */
477	hrtimer_cancel(&vcpu->arch.comparecount_timer);
478	now = ktime_get();
479
480	/* find count at this point and handle pending hrtimer */
481	*count = kvm_mips_read_count_running(vcpu, now);
482
483	return now;
484}
485
486/**
487 * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry.
488 * @vcpu:	Virtual CPU.
489 * @now:	ktime at point of resume.
490 * @count:	CP0_Count at point of resume.
491 *
492 * Resumes the timer and updates the timer expiry based on @now and @count.
493 * This can be used in conjunction with kvm_mips_freeze_timer() when timer
494 * parameters need to be changed.
495 *
496 * It is guaranteed that a timer interrupt immediately after resume will be
497 * handled, but not if CP_Compare is exactly at @count. That case is already
498 * handled by kvm_mips_freeze_timer().
499 *
500 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
501 */
502static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu,
503				    ktime_t now, u32 count)
504{
505	struct mips_coproc *cop0 = &vcpu->arch.cop0;
506	u32 compare;
507	u64 delta;
508	ktime_t expire;
509
510	/* Calculate timeout (wrap 0 to 2^32) */
511	compare = kvm_read_c0_guest_compare(cop0);
512	delta = (u64)(u32)(compare - count - 1) + 1;
513	delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
514	expire = ktime_add_ns(now, delta);
515
516	/* Update hrtimer to use new timeout */
517	hrtimer_cancel(&vcpu->arch.comparecount_timer);
518	hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS);
519}
520
521/**
522 * kvm_mips_restore_hrtimer() - Restore hrtimer after a gap, updating expiry.
523 * @vcpu:	Virtual CPU.
524 * @before:	Time before Count was saved, lower bound of drift calculation.
525 * @count:	CP0_Count at point of restore.
526 * @min_drift:	Minimum amount of drift permitted before correction.
527 *		Must be <= 0.
528 *
529 * Restores the timer from a particular @count, accounting for drift. This can
530 * be used in conjunction with kvm_mips_freeze_timer() when a hardware timer is
531 * to be used for a period of time, but the exact ktime corresponding to the
532 * final Count that must be restored is not known.
533 *
534 * It is guaranteed that a timer interrupt immediately after restore will be
535 * handled, but not if CP0_Compare is exactly at @count. That case should
536 * already be handled when the hardware timer state is saved.
537 *
538 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is not
539 * stopped).
540 *
541 * Returns:	Amount of correction to count_bias due to drift.
542 */
543int kvm_mips_restore_hrtimer(struct kvm_vcpu *vcpu, ktime_t before,
544			     u32 count, int min_drift)
545{
546	ktime_t now, count_time;
547	u32 now_count, before_count;
548	u64 delta;
549	int drift, ret = 0;
550
551	/* Calculate expected count at before */
552	before_count = vcpu->arch.count_bias +
553			kvm_mips_ktime_to_count(vcpu, before);
554
555	/*
556	 * Detect significantly negative drift, where count is lower than
557	 * expected. Some negative drift is expected when hardware counter is
558	 * set after kvm_mips_freeze_timer(), and it is harmless to allow the
559	 * time to jump forwards a little, within reason. If the drift is too
560	 * significant, adjust the bias to avoid a big Guest.CP0_Count jump.
561	 */
562	drift = count - before_count;
563	if (drift < min_drift) {
564		count_time = before;
565		vcpu->arch.count_bias += drift;
566		ret = drift;
567		goto resume;
568	}
569
570	/* Calculate expected count right now */
571	now = ktime_get();
572	now_count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
573
574	/*
575	 * Detect positive drift, where count is higher than expected, and
576	 * adjust the bias to avoid guest time going backwards.
577	 */
578	drift = count - now_count;
579	if (drift > 0) {
580		count_time = now;
581		vcpu->arch.count_bias += drift;
582		ret = drift;
583		goto resume;
584	}
585
586	/* Subtract nanosecond delta to find ktime when count was read */
587	delta = (u64)(u32)(now_count - count);
588	delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
589	count_time = ktime_sub_ns(now, delta);
590
591resume:
592	/* Resume using the calculated ktime */
593	kvm_mips_resume_hrtimer(vcpu, count_time, count);
594	return ret;
595}
596
597/**
598 * kvm_mips_write_count() - Modify the count and update timer.
599 * @vcpu:	Virtual CPU.
600 * @count:	Guest CP0_Count value to set.
601 *
602 * Sets the CP0_Count value and updates the timer accordingly.
603 */
604void kvm_mips_write_count(struct kvm_vcpu *vcpu, u32 count)
605{
606	struct mips_coproc *cop0 = &vcpu->arch.cop0;
607	ktime_t now;
608
609	/* Calculate bias */
610	now = kvm_mips_count_time(vcpu);
611	vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
612
613	if (kvm_mips_count_disabled(vcpu))
614		/* The timer's disabled, adjust the static count */
615		kvm_write_c0_guest_count(cop0, count);
616	else
617		/* Update timeout */
618		kvm_mips_resume_hrtimer(vcpu, now, count);
619}
620
621/**
622 * kvm_mips_init_count() - Initialise timer.
623 * @vcpu:	Virtual CPU.
624 * @count_hz:	Frequency of timer.
625 *
626 * Initialise the timer to the specified frequency, zero it, and set it going if
627 * it's enabled.
628 */
629void kvm_mips_init_count(struct kvm_vcpu *vcpu, unsigned long count_hz)
630{
631	vcpu->arch.count_hz = count_hz;
632	vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
633	vcpu->arch.count_dyn_bias = 0;
634
635	/* Starting at 0 */
636	kvm_mips_write_count(vcpu, 0);
637}
638
639/**
640 * kvm_mips_set_count_hz() - Update the frequency of the timer.
641 * @vcpu:	Virtual CPU.
642 * @count_hz:	Frequency of CP0_Count timer in Hz.
643 *
644 * Change the frequency of the CP0_Count timer. This is done atomically so that
645 * CP0_Count is continuous and no timer interrupt is lost.
646 *
647 * Returns:	-EINVAL if @count_hz is out of range.
648 *		0 on success.
649 */
650int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz)
651{
652	struct mips_coproc *cop0 = &vcpu->arch.cop0;
653	int dc;
654	ktime_t now;
655	u32 count;
656
657	/* ensure the frequency is in a sensible range... */
658	if (count_hz <= 0 || count_hz > NSEC_PER_SEC)
659		return -EINVAL;
660	/* ... and has actually changed */
661	if (vcpu->arch.count_hz == count_hz)
662		return 0;
663
664	/* Safely freeze timer so we can keep it continuous */
665	dc = kvm_mips_count_disabled(vcpu);
666	if (dc) {
667		now = kvm_mips_count_time(vcpu);
668		count = kvm_read_c0_guest_count(cop0);
669	} else {
670		now = kvm_mips_freeze_hrtimer(vcpu, &count);
671	}
672
673	/* Update the frequency */
674	vcpu->arch.count_hz = count_hz;
675	vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
676	vcpu->arch.count_dyn_bias = 0;
677
678	/* Calculate adjusted bias so dynamic count is unchanged */
679	vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
680
681	/* Update and resume hrtimer */
682	if (!dc)
683		kvm_mips_resume_hrtimer(vcpu, now, count);
684	return 0;
685}
686
687/**
688 * kvm_mips_write_compare() - Modify compare and update timer.
689 * @vcpu:	Virtual CPU.
690 * @compare:	New CP0_Compare value.
691 * @ack:	Whether to acknowledge timer interrupt.
692 *
693 * Update CP0_Compare to a new value and update the timeout.
694 * If @ack, atomically acknowledge any pending timer interrupt, otherwise ensure
695 * any pending timer interrupt is preserved.
696 */
697void kvm_mips_write_compare(struct kvm_vcpu *vcpu, u32 compare, bool ack)
698{
699	struct mips_coproc *cop0 = &vcpu->arch.cop0;
700	int dc;
701	u32 old_compare = kvm_read_c0_guest_compare(cop0);
702	s32 delta = compare - old_compare;
703	u32 cause;
704	ktime_t now = ktime_set(0, 0); /* silence bogus GCC warning */
705	u32 count;
706
707	/* if unchanged, must just be an ack */
708	if (old_compare == compare) {
709		if (!ack)
710			return;
711		kvm_mips_callbacks->dequeue_timer_int(vcpu);
712		kvm_write_c0_guest_compare(cop0, compare);
713		return;
714	}
715
716	/*
717	 * If guest CP0_Compare moves forward, CP0_GTOffset should be adjusted
718	 * too to prevent guest CP0_Count hitting guest CP0_Compare.
719	 *
720	 * The new GTOffset corresponds to the new value of CP0_Compare, and is
721	 * set prior to it being written into the guest context. We disable
722	 * preemption until the new value is written to prevent restore of a
723	 * GTOffset corresponding to the old CP0_Compare value.
724	 */
725	if (delta > 0) {
726		preempt_disable();
727		write_c0_gtoffset(compare - read_c0_count());
728		back_to_back_c0_hazard();
729	}
730
731	/* freeze_hrtimer() takes care of timer interrupts <= count */
732	dc = kvm_mips_count_disabled(vcpu);
733	if (!dc)
734		now = kvm_mips_freeze_hrtimer(vcpu, &count);
735
736	if (ack)
737		kvm_mips_callbacks->dequeue_timer_int(vcpu);
738	else
739		/*
740		 * With VZ, writing CP0_Compare acks (clears) CP0_Cause.TI, so
741		 * preserve guest CP0_Cause.TI if we don't want to ack it.
742		 */
743		cause = kvm_read_c0_guest_cause(cop0);
744
745	kvm_write_c0_guest_compare(cop0, compare);
746
747	if (delta > 0)
748		preempt_enable();
749
750	back_to_back_c0_hazard();
751
752	if (!ack && cause & CAUSEF_TI)
753		kvm_write_c0_guest_cause(cop0, cause);
754
755	/* resume_hrtimer() takes care of timer interrupts > count */
756	if (!dc)
757		kvm_mips_resume_hrtimer(vcpu, now, count);
758
759	/*
760	 * If guest CP0_Compare is moving backward, we delay CP0_GTOffset change
761	 * until after the new CP0_Compare is written, otherwise new guest
762	 * CP0_Count could hit new guest CP0_Compare.
763	 */
764	if (delta <= 0)
765		write_c0_gtoffset(compare - read_c0_count());
766}
767
768/**
769 * kvm_mips_count_disable() - Disable count.
770 * @vcpu:	Virtual CPU.
771 *
772 * Disable the CP0_Count timer. A timer interrupt on or before the final stop
773 * time will be handled but not after.
774 *
775 * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or
776 * count_ctl.DC has been set (count disabled).
777 *
778 * Returns:	The time that the timer was stopped.
779 */
780static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu)
781{
782	struct mips_coproc *cop0 = &vcpu->arch.cop0;
783	u32 count;
784	ktime_t now;
785
786	/* Stop hrtimer */
787	hrtimer_cancel(&vcpu->arch.comparecount_timer);
788
789	/* Set the static count from the dynamic count, handling pending TI */
790	now = ktime_get();
791	count = kvm_mips_read_count_running(vcpu, now);
792	kvm_write_c0_guest_count(cop0, count);
793
794	return now;
795}
796
797/**
798 * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC.
799 * @vcpu:	Virtual CPU.
800 *
801 * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or
802 * before the final stop time will be handled if the timer isn't disabled by
803 * count_ctl.DC, but not after.
804 *
805 * Assumes CP0_Cause.DC is clear (count enabled).
806 */
807void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu)
808{
809	struct mips_coproc *cop0 = &vcpu->arch.cop0;
810
811	kvm_set_c0_guest_cause(cop0, CAUSEF_DC);
812	if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
813		kvm_mips_count_disable(vcpu);
814}
815
816/**
817 * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC.
818 * @vcpu:	Virtual CPU.
819 *
820 * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after
821 * the start time will be handled if the timer isn't disabled by count_ctl.DC,
822 * potentially before even returning, so the caller should be careful with
823 * ordering of CP0_Cause modifications so as not to lose it.
824 *
825 * Assumes CP0_Cause.DC is set (count disabled).
826 */
827void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu)
828{
829	struct mips_coproc *cop0 = &vcpu->arch.cop0;
830	u32 count;
831
832	kvm_clear_c0_guest_cause(cop0, CAUSEF_DC);
833
834	/*
835	 * Set the dynamic count to match the static count.
836	 * This starts the hrtimer if count_ctl.DC allows it.
837	 * Otherwise it conveniently updates the biases.
838	 */
839	count = kvm_read_c0_guest_count(cop0);
840	kvm_mips_write_count(vcpu, count);
841}
842
843/**
844 * kvm_mips_set_count_ctl() - Update the count control KVM register.
845 * @vcpu:	Virtual CPU.
846 * @count_ctl:	Count control register new value.
847 *
848 * Set the count control KVM register. The timer is updated accordingly.
849 *
850 * Returns:	-EINVAL if reserved bits are set.
851 *		0 on success.
852 */
853int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl)
854{
855	struct mips_coproc *cop0 = &vcpu->arch.cop0;
856	s64 changed = count_ctl ^ vcpu->arch.count_ctl;
857	s64 delta;
858	ktime_t expire, now;
859	u32 count, compare;
860
861	/* Only allow defined bits to be changed */
862	if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC))
863		return -EINVAL;
864
865	/* Apply new value */
866	vcpu->arch.count_ctl = count_ctl;
867
868	/* Master CP0_Count disable */
869	if (changed & KVM_REG_MIPS_COUNT_CTL_DC) {
870		/* Is CP0_Cause.DC already disabling CP0_Count? */
871		if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) {
872			if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)
873				/* Just record the current time */
874				vcpu->arch.count_resume = ktime_get();
875		} else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) {
876			/* disable timer and record current time */
877			vcpu->arch.count_resume = kvm_mips_count_disable(vcpu);
878		} else {
879			/*
880			 * Calculate timeout relative to static count at resume
881			 * time (wrap 0 to 2^32).
882			 */
883			count = kvm_read_c0_guest_count(cop0);
884			compare = kvm_read_c0_guest_compare(cop0);
885			delta = (u64)(u32)(compare - count - 1) + 1;
886			delta = div_u64(delta * NSEC_PER_SEC,
887					vcpu->arch.count_hz);
888			expire = ktime_add_ns(vcpu->arch.count_resume, delta);
889
890			/* Handle pending interrupt */
891			now = ktime_get();
892			if (ktime_compare(now, expire) >= 0)
893				/* Nothing should be waiting on the timeout */
894				kvm_mips_callbacks->queue_timer_int(vcpu);
895
896			/* Resume hrtimer without changing bias */
897			count = kvm_mips_read_count_running(vcpu, now);
898			kvm_mips_resume_hrtimer(vcpu, now, count);
899		}
900	}
901
902	return 0;
903}
904
905/**
906 * kvm_mips_set_count_resume() - Update the count resume KVM register.
907 * @vcpu:		Virtual CPU.
908 * @count_resume:	Count resume register new value.
909 *
910 * Set the count resume KVM register.
911 *
912 * Returns:	-EINVAL if out of valid range (0..now).
913 *		0 on success.
914 */
915int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume)
916{
917	/*
918	 * It doesn't make sense for the resume time to be in the future, as it
919	 * would be possible for the next interrupt to be more than a full
920	 * period in the future.
921	 */
922	if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get()))
923		return -EINVAL;
924
925	vcpu->arch.count_resume = ns_to_ktime(count_resume);
926	return 0;
927}
928
929/**
930 * kvm_mips_count_timeout() - Push timer forward on timeout.
931 * @vcpu:	Virtual CPU.
932 *
933 * Handle an hrtimer event by push the hrtimer forward a period.
934 *
935 * Returns:	The hrtimer_restart value to return to the hrtimer subsystem.
936 */
937enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu)
938{
939	/* Add the Count period to the current expiry time */
940	hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer,
941			       vcpu->arch.count_period);
942	return HRTIMER_RESTART;
943}
944
945enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu)
946{
947	kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc,
948		  vcpu->arch.pending_exceptions);
949
950	++vcpu->stat.wait_exits;
951	trace_kvm_exit(vcpu, KVM_TRACE_EXIT_WAIT);
952	if (!vcpu->arch.pending_exceptions) {
953		kvm_vz_lose_htimer(vcpu);
954		vcpu->arch.wait = 1;
955		kvm_vcpu_halt(vcpu);
956
957		/*
958		 * We are runnable, then definitely go off to user space to
959		 * check if any I/O interrupts are pending.
960		 */
961		if (kvm_arch_vcpu_runnable(vcpu))
962			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
963	}
964
965	return EMULATE_DONE;
966}
967
968enum emulation_result kvm_mips_emulate_store(union mips_instruction inst,
969					     u32 cause,
970					     struct kvm_vcpu *vcpu)
971{
972	int r;
973	enum emulation_result er;
974	u32 rt;
975	struct kvm_run *run = vcpu->run;
976	void *data = run->mmio.data;
977	unsigned int imme;
978	unsigned long curr_pc;
979
980	/*
981	 * Update PC and hold onto current PC in case there is
982	 * an error and we want to rollback the PC
983	 */
984	curr_pc = vcpu->arch.pc;
985	er = update_pc(vcpu, cause);
986	if (er == EMULATE_FAIL)
987		return er;
988
989	rt = inst.i_format.rt;
990
991	run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
992						vcpu->arch.host_cp0_badvaddr);
993	if (run->mmio.phys_addr == KVM_INVALID_ADDR)
994		goto out_fail;
995
996	switch (inst.i_format.opcode) {
997#if defined(CONFIG_64BIT)
998	case sd_op:
999		run->mmio.len = 8;
1000		*(u64 *)data = vcpu->arch.gprs[rt];
1001
1002		kvm_debug("[%#lx] OP_SD: eaddr: %#lx, gpr: %#lx, data: %#llx\n",
1003			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1004			  vcpu->arch.gprs[rt], *(u64 *)data);
1005		break;
1006#endif
1007
1008	case sw_op:
1009		run->mmio.len = 4;
1010		*(u32 *)data = vcpu->arch.gprs[rt];
1011
1012		kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1013			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1014			  vcpu->arch.gprs[rt], *(u32 *)data);
1015		break;
1016
1017	case sh_op:
1018		run->mmio.len = 2;
1019		*(u16 *)data = vcpu->arch.gprs[rt];
1020
1021		kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1022			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1023			  vcpu->arch.gprs[rt], *(u16 *)data);
1024		break;
1025
1026	case sb_op:
1027		run->mmio.len = 1;
1028		*(u8 *)data = vcpu->arch.gprs[rt];
1029
1030		kvm_debug("[%#lx] OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1031			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1032			  vcpu->arch.gprs[rt], *(u8 *)data);
1033		break;
1034
1035	case swl_op:
1036		run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1037					vcpu->arch.host_cp0_badvaddr) & (~0x3);
1038		run->mmio.len = 4;
1039		imme = vcpu->arch.host_cp0_badvaddr & 0x3;
1040		switch (imme) {
1041		case 0:
1042			*(u32 *)data = ((*(u32 *)data) & 0xffffff00) |
1043					(vcpu->arch.gprs[rt] >> 24);
1044			break;
1045		case 1:
1046			*(u32 *)data = ((*(u32 *)data) & 0xffff0000) |
1047					(vcpu->arch.gprs[rt] >> 16);
1048			break;
1049		case 2:
1050			*(u32 *)data = ((*(u32 *)data) & 0xff000000) |
1051					(vcpu->arch.gprs[rt] >> 8);
1052			break;
1053		case 3:
1054			*(u32 *)data = vcpu->arch.gprs[rt];
1055			break;
1056		default:
1057			break;
1058		}
1059
1060		kvm_debug("[%#lx] OP_SWL: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1061			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1062			  vcpu->arch.gprs[rt], *(u32 *)data);
1063		break;
1064
1065	case swr_op:
1066		run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1067					vcpu->arch.host_cp0_badvaddr) & (~0x3);
1068		run->mmio.len = 4;
1069		imme = vcpu->arch.host_cp0_badvaddr & 0x3;
1070		switch (imme) {
1071		case 0:
1072			*(u32 *)data = vcpu->arch.gprs[rt];
1073			break;
1074		case 1:
1075			*(u32 *)data = ((*(u32 *)data) & 0xff) |
1076					(vcpu->arch.gprs[rt] << 8);
1077			break;
1078		case 2:
1079			*(u32 *)data = ((*(u32 *)data) & 0xffff) |
1080					(vcpu->arch.gprs[rt] << 16);
1081			break;
1082		case 3:
1083			*(u32 *)data = ((*(u32 *)data) & 0xffffff) |
1084					(vcpu->arch.gprs[rt] << 24);
1085			break;
1086		default:
1087			break;
1088		}
1089
1090		kvm_debug("[%#lx] OP_SWR: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1091			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1092			  vcpu->arch.gprs[rt], *(u32 *)data);
1093		break;
1094
1095#if defined(CONFIG_64BIT)
1096	case sdl_op:
1097		run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1098					vcpu->arch.host_cp0_badvaddr) & (~0x7);
1099
1100		run->mmio.len = 8;
1101		imme = vcpu->arch.host_cp0_badvaddr & 0x7;
1102		switch (imme) {
1103		case 0:
1104			*(u64 *)data = ((*(u64 *)data) & 0xffffffffffffff00) |
1105					((vcpu->arch.gprs[rt] >> 56) & 0xff);
1106			break;
1107		case 1:
1108			*(u64 *)data = ((*(u64 *)data) & 0xffffffffffff0000) |
1109					((vcpu->arch.gprs[rt] >> 48) & 0xffff);
1110			break;
1111		case 2:
1112			*(u64 *)data = ((*(u64 *)data) & 0xffffffffff000000) |
1113					((vcpu->arch.gprs[rt] >> 40) & 0xffffff);
1114			break;
1115		case 3:
1116			*(u64 *)data = ((*(u64 *)data) & 0xffffffff00000000) |
1117					((vcpu->arch.gprs[rt] >> 32) & 0xffffffff);
1118			break;
1119		case 4:
1120			*(u64 *)data = ((*(u64 *)data) & 0xffffff0000000000) |
1121					((vcpu->arch.gprs[rt] >> 24) & 0xffffffffff);
1122			break;
1123		case 5:
1124			*(u64 *)data = ((*(u64 *)data) & 0xffff000000000000) |
1125					((vcpu->arch.gprs[rt] >> 16) & 0xffffffffffff);
1126			break;
1127		case 6:
1128			*(u64 *)data = ((*(u64 *)data) & 0xff00000000000000) |
1129					((vcpu->arch.gprs[rt] >> 8) & 0xffffffffffffff);
1130			break;
1131		case 7:
1132			*(u64 *)data = vcpu->arch.gprs[rt];
1133			break;
1134		default:
1135			break;
1136		}
1137
1138		kvm_debug("[%#lx] OP_SDL: eaddr: %#lx, gpr: %#lx, data: %llx\n",
1139			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1140			  vcpu->arch.gprs[rt], *(u64 *)data);
1141		break;
1142
1143	case sdr_op:
1144		run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1145					vcpu->arch.host_cp0_badvaddr) & (~0x7);
1146
1147		run->mmio.len = 8;
1148		imme = vcpu->arch.host_cp0_badvaddr & 0x7;
1149		switch (imme) {
1150		case 0:
1151			*(u64 *)data = vcpu->arch.gprs[rt];
1152			break;
1153		case 1:
1154			*(u64 *)data = ((*(u64 *)data) & 0xff) |
1155					(vcpu->arch.gprs[rt] << 8);
1156			break;
1157		case 2:
1158			*(u64 *)data = ((*(u64 *)data) & 0xffff) |
1159					(vcpu->arch.gprs[rt] << 16);
1160			break;
1161		case 3:
1162			*(u64 *)data = ((*(u64 *)data) & 0xffffff) |
1163					(vcpu->arch.gprs[rt] << 24);
1164			break;
1165		case 4:
1166			*(u64 *)data = ((*(u64 *)data) & 0xffffffff) |
1167					(vcpu->arch.gprs[rt] << 32);
1168			break;
1169		case 5:
1170			*(u64 *)data = ((*(u64 *)data) & 0xffffffffff) |
1171					(vcpu->arch.gprs[rt] << 40);
1172			break;
1173		case 6:
1174			*(u64 *)data = ((*(u64 *)data) & 0xffffffffffff) |
1175					(vcpu->arch.gprs[rt] << 48);
1176			break;
1177		case 7:
1178			*(u64 *)data = ((*(u64 *)data) & 0xffffffffffffff) |
1179					(vcpu->arch.gprs[rt] << 56);
1180			break;
1181		default:
1182			break;
1183		}
1184
1185		kvm_debug("[%#lx] OP_SDR: eaddr: %#lx, gpr: %#lx, data: %llx\n",
1186			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1187			  vcpu->arch.gprs[rt], *(u64 *)data);
1188		break;
1189#endif
1190
1191#ifdef CONFIG_CPU_LOONGSON64
1192	case sdc2_op:
1193		rt = inst.loongson3_lsdc2_format.rt;
1194		switch (inst.loongson3_lsdc2_format.opcode1) {
1195		/*
1196		 * Loongson-3 overridden sdc2 instructions.
1197		 * opcode1              instruction
1198		 *   0x0          gssbx: store 1 bytes from GPR
1199		 *   0x1          gsshx: store 2 bytes from GPR
1200		 *   0x2          gsswx: store 4 bytes from GPR
1201		 *   0x3          gssdx: store 8 bytes from GPR
1202		 */
1203		case 0x0:
1204			run->mmio.len = 1;
1205			*(u8 *)data = vcpu->arch.gprs[rt];
1206
1207			kvm_debug("[%#lx] OP_GSSBX: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1208				  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1209				  vcpu->arch.gprs[rt], *(u8 *)data);
1210			break;
1211		case 0x1:
1212			run->mmio.len = 2;
1213			*(u16 *)data = vcpu->arch.gprs[rt];
1214
1215			kvm_debug("[%#lx] OP_GSSSHX: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1216				  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1217				  vcpu->arch.gprs[rt], *(u16 *)data);
1218			break;
1219		case 0x2:
1220			run->mmio.len = 4;
1221			*(u32 *)data = vcpu->arch.gprs[rt];
1222
1223			kvm_debug("[%#lx] OP_GSSWX: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1224				  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1225				  vcpu->arch.gprs[rt], *(u32 *)data);
1226			break;
1227		case 0x3:
1228			run->mmio.len = 8;
1229			*(u64 *)data = vcpu->arch.gprs[rt];
1230
1231			kvm_debug("[%#lx] OP_GSSDX: eaddr: %#lx, gpr: %#lx, data: %#llx\n",
1232				  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1233				  vcpu->arch.gprs[rt], *(u64 *)data);
1234			break;
1235		default:
1236			kvm_err("Godson Extended GS-Store not yet supported (inst=0x%08x)\n",
1237				inst.word);
1238			break;
1239		}
1240		break;
1241#endif
1242	default:
1243		kvm_err("Store not yet supported (inst=0x%08x)\n",
1244			inst.word);
1245		goto out_fail;
1246	}
1247
1248	vcpu->mmio_needed = 1;
1249	run->mmio.is_write = 1;
1250	vcpu->mmio_is_write = 1;
1251
1252	r = kvm_io_bus_write(vcpu, KVM_MMIO_BUS,
1253			run->mmio.phys_addr, run->mmio.len, data);
1254
1255	if (!r) {
1256		vcpu->mmio_needed = 0;
1257		return EMULATE_DONE;
1258	}
1259
1260	return EMULATE_DO_MMIO;
1261
1262out_fail:
1263	/* Rollback PC if emulation was unsuccessful */
1264	vcpu->arch.pc = curr_pc;
1265	return EMULATE_FAIL;
1266}
1267
1268enum emulation_result kvm_mips_emulate_load(union mips_instruction inst,
1269					    u32 cause, struct kvm_vcpu *vcpu)
1270{
1271	struct kvm_run *run = vcpu->run;
1272	int r;
1273	enum emulation_result er;
1274	unsigned long curr_pc;
1275	u32 op, rt;
1276	unsigned int imme;
1277
1278	rt = inst.i_format.rt;
1279	op = inst.i_format.opcode;
1280
1281	/*
1282	 * Find the resume PC now while we have safe and easy access to the
1283	 * prior branch instruction, and save it for
1284	 * kvm_mips_complete_mmio_load() to restore later.
1285	 */
1286	curr_pc = vcpu->arch.pc;
1287	er = update_pc(vcpu, cause);
1288	if (er == EMULATE_FAIL)
1289		return er;
1290	vcpu->arch.io_pc = vcpu->arch.pc;
1291	vcpu->arch.pc = curr_pc;
1292
1293	vcpu->arch.io_gpr = rt;
1294
1295	run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1296						vcpu->arch.host_cp0_badvaddr);
1297	if (run->mmio.phys_addr == KVM_INVALID_ADDR)
1298		return EMULATE_FAIL;
1299
1300	vcpu->mmio_needed = 2;	/* signed */
1301	switch (op) {
1302#if defined(CONFIG_64BIT)
1303	case ld_op:
1304		run->mmio.len = 8;
1305		break;
1306
1307	case lwu_op:
1308		vcpu->mmio_needed = 1;	/* unsigned */
1309		fallthrough;
1310#endif
1311	case lw_op:
1312		run->mmio.len = 4;
1313		break;
1314
1315	case lhu_op:
1316		vcpu->mmio_needed = 1;	/* unsigned */
1317		fallthrough;
1318	case lh_op:
1319		run->mmio.len = 2;
1320		break;
1321
1322	case lbu_op:
1323		vcpu->mmio_needed = 1;	/* unsigned */
1324		fallthrough;
1325	case lb_op:
1326		run->mmio.len = 1;
1327		break;
1328
1329	case lwl_op:
1330		run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1331					vcpu->arch.host_cp0_badvaddr) & (~0x3);
1332
1333		run->mmio.len = 4;
1334		imme = vcpu->arch.host_cp0_badvaddr & 0x3;
1335		switch (imme) {
1336		case 0:
1337			vcpu->mmio_needed = 3;	/* 1 byte */
1338			break;
1339		case 1:
1340			vcpu->mmio_needed = 4;	/* 2 bytes */
1341			break;
1342		case 2:
1343			vcpu->mmio_needed = 5;	/* 3 bytes */
1344			break;
1345		case 3:
1346			vcpu->mmio_needed = 6;	/* 4 bytes */
1347			break;
1348		default:
1349			break;
1350		}
1351		break;
1352
1353	case lwr_op:
1354		run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1355					vcpu->arch.host_cp0_badvaddr) & (~0x3);
1356
1357		run->mmio.len = 4;
1358		imme = vcpu->arch.host_cp0_badvaddr & 0x3;
1359		switch (imme) {
1360		case 0:
1361			vcpu->mmio_needed = 7;	/* 4 bytes */
1362			break;
1363		case 1:
1364			vcpu->mmio_needed = 8;	/* 3 bytes */
1365			break;
1366		case 2:
1367			vcpu->mmio_needed = 9;	/* 2 bytes */
1368			break;
1369		case 3:
1370			vcpu->mmio_needed = 10;	/* 1 byte */
1371			break;
1372		default:
1373			break;
1374		}
1375		break;
1376
1377#if defined(CONFIG_64BIT)
1378	case ldl_op:
1379		run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1380					vcpu->arch.host_cp0_badvaddr) & (~0x7);
1381
1382		run->mmio.len = 8;
1383		imme = vcpu->arch.host_cp0_badvaddr & 0x7;
1384		switch (imme) {
1385		case 0:
1386			vcpu->mmio_needed = 11;	/* 1 byte */
1387			break;
1388		case 1:
1389			vcpu->mmio_needed = 12;	/* 2 bytes */
1390			break;
1391		case 2:
1392			vcpu->mmio_needed = 13;	/* 3 bytes */
1393			break;
1394		case 3:
1395			vcpu->mmio_needed = 14;	/* 4 bytes */
1396			break;
1397		case 4:
1398			vcpu->mmio_needed = 15;	/* 5 bytes */
1399			break;
1400		case 5:
1401			vcpu->mmio_needed = 16;	/* 6 bytes */
1402			break;
1403		case 6:
1404			vcpu->mmio_needed = 17;	/* 7 bytes */
1405			break;
1406		case 7:
1407			vcpu->mmio_needed = 18;	/* 8 bytes */
1408			break;
1409		default:
1410			break;
1411		}
1412		break;
1413
1414	case ldr_op:
1415		run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1416					vcpu->arch.host_cp0_badvaddr) & (~0x7);
1417
1418		run->mmio.len = 8;
1419		imme = vcpu->arch.host_cp0_badvaddr & 0x7;
1420		switch (imme) {
1421		case 0:
1422			vcpu->mmio_needed = 19;	/* 8 bytes */
1423			break;
1424		case 1:
1425			vcpu->mmio_needed = 20;	/* 7 bytes */
1426			break;
1427		case 2:
1428			vcpu->mmio_needed = 21;	/* 6 bytes */
1429			break;
1430		case 3:
1431			vcpu->mmio_needed = 22;	/* 5 bytes */
1432			break;
1433		case 4:
1434			vcpu->mmio_needed = 23;	/* 4 bytes */
1435			break;
1436		case 5:
1437			vcpu->mmio_needed = 24;	/* 3 bytes */
1438			break;
1439		case 6:
1440			vcpu->mmio_needed = 25;	/* 2 bytes */
1441			break;
1442		case 7:
1443			vcpu->mmio_needed = 26;	/* 1 byte */
1444			break;
1445		default:
1446			break;
1447		}
1448		break;
1449#endif
1450
1451#ifdef CONFIG_CPU_LOONGSON64
1452	case ldc2_op:
1453		rt = inst.loongson3_lsdc2_format.rt;
1454		switch (inst.loongson3_lsdc2_format.opcode1) {
1455		/*
1456		 * Loongson-3 overridden ldc2 instructions.
1457		 * opcode1              instruction
1458		 *   0x0          gslbx: store 1 bytes from GPR
1459		 *   0x1          gslhx: store 2 bytes from GPR
1460		 *   0x2          gslwx: store 4 bytes from GPR
1461		 *   0x3          gsldx: store 8 bytes from GPR
1462		 */
1463		case 0x0:
1464			run->mmio.len = 1;
1465			vcpu->mmio_needed = 27;	/* signed */
1466			break;
1467		case 0x1:
1468			run->mmio.len = 2;
1469			vcpu->mmio_needed = 28;	/* signed */
1470			break;
1471		case 0x2:
1472			run->mmio.len = 4;
1473			vcpu->mmio_needed = 29;	/* signed */
1474			break;
1475		case 0x3:
1476			run->mmio.len = 8;
1477			vcpu->mmio_needed = 30;	/* signed */
1478			break;
1479		default:
1480			kvm_err("Godson Extended GS-Load for float not yet supported (inst=0x%08x)\n",
1481				inst.word);
1482			break;
1483		}
1484		break;
1485#endif
1486
1487	default:
1488		kvm_err("Load not yet supported (inst=0x%08x)\n",
1489			inst.word);
1490		vcpu->mmio_needed = 0;
1491		return EMULATE_FAIL;
1492	}
1493
1494	run->mmio.is_write = 0;
1495	vcpu->mmio_is_write = 0;
1496
1497	r = kvm_io_bus_read(vcpu, KVM_MMIO_BUS,
1498			run->mmio.phys_addr, run->mmio.len, run->mmio.data);
1499
1500	if (!r) {
1501		kvm_mips_complete_mmio_load(vcpu);
1502		vcpu->mmio_needed = 0;
1503		return EMULATE_DONE;
1504	}
1505
1506	return EMULATE_DO_MMIO;
1507}
1508
1509enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu)
1510{
1511	struct kvm_run *run = vcpu->run;
1512	unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr];
1513	enum emulation_result er = EMULATE_DONE;
1514
1515	if (run->mmio.len > sizeof(*gpr)) {
1516		kvm_err("Bad MMIO length: %d", run->mmio.len);
1517		er = EMULATE_FAIL;
1518		goto done;
1519	}
1520
1521	/* Restore saved resume PC */
1522	vcpu->arch.pc = vcpu->arch.io_pc;
1523
1524	switch (run->mmio.len) {
1525	case 8:
1526		switch (vcpu->mmio_needed) {
1527		case 11:
1528			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffffff) |
1529				(((*(s64 *)run->mmio.data) & 0xff) << 56);
1530			break;
1531		case 12:
1532			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffff) |
1533				(((*(s64 *)run->mmio.data) & 0xffff) << 48);
1534			break;
1535		case 13:
1536			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffff) |
1537				(((*(s64 *)run->mmio.data) & 0xffffff) << 40);
1538			break;
1539		case 14:
1540			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffff) |
1541				(((*(s64 *)run->mmio.data) & 0xffffffff) << 32);
1542			break;
1543		case 15:
1544			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff) |
1545				(((*(s64 *)run->mmio.data) & 0xffffffffff) << 24);
1546			break;
1547		case 16:
1548			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff) |
1549				(((*(s64 *)run->mmio.data) & 0xffffffffffff) << 16);
1550			break;
1551		case 17:
1552			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff) |
1553				(((*(s64 *)run->mmio.data) & 0xffffffffffffff) << 8);
1554			break;
1555		case 18:
1556		case 19:
1557			*gpr = *(s64 *)run->mmio.data;
1558			break;
1559		case 20:
1560			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff00000000000000) |
1561				((((*(s64 *)run->mmio.data)) >> 8) & 0xffffffffffffff);
1562			break;
1563		case 21:
1564			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff000000000000) |
1565				((((*(s64 *)run->mmio.data)) >> 16) & 0xffffffffffff);
1566			break;
1567		case 22:
1568			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff0000000000) |
1569				((((*(s64 *)run->mmio.data)) >> 24) & 0xffffffffff);
1570			break;
1571		case 23:
1572			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffff00000000) |
1573				((((*(s64 *)run->mmio.data)) >> 32) & 0xffffffff);
1574			break;
1575		case 24:
1576			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffff000000) |
1577				((((*(s64 *)run->mmio.data)) >> 40) & 0xffffff);
1578			break;
1579		case 25:
1580			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffff0000) |
1581				((((*(s64 *)run->mmio.data)) >> 48) & 0xffff);
1582			break;
1583		case 26:
1584			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffffff00) |
1585				((((*(s64 *)run->mmio.data)) >> 56) & 0xff);
1586			break;
1587		default:
1588			*gpr = *(s64 *)run->mmio.data;
1589		}
1590		break;
1591
1592	case 4:
1593		switch (vcpu->mmio_needed) {
1594		case 1:
1595			*gpr = *(u32 *)run->mmio.data;
1596			break;
1597		case 2:
1598			*gpr = *(s32 *)run->mmio.data;
1599			break;
1600		case 3:
1601			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff) |
1602				(((*(s32 *)run->mmio.data) & 0xff) << 24);
1603			break;
1604		case 4:
1605			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff) |
1606				(((*(s32 *)run->mmio.data) & 0xffff) << 16);
1607			break;
1608		case 5:
1609			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff) |
1610				(((*(s32 *)run->mmio.data) & 0xffffff) << 8);
1611			break;
1612		case 6:
1613		case 7:
1614			*gpr = *(s32 *)run->mmio.data;
1615			break;
1616		case 8:
1617			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff000000) |
1618				((((*(s32 *)run->mmio.data)) >> 8) & 0xffffff);
1619			break;
1620		case 9:
1621			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff0000) |
1622				((((*(s32 *)run->mmio.data)) >> 16) & 0xffff);
1623			break;
1624		case 10:
1625			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff00) |
1626				((((*(s32 *)run->mmio.data)) >> 24) & 0xff);
1627			break;
1628		default:
1629			*gpr = *(s32 *)run->mmio.data;
1630		}
1631		break;
1632
1633	case 2:
1634		if (vcpu->mmio_needed == 1)
1635			*gpr = *(u16 *)run->mmio.data;
1636		else
1637			*gpr = *(s16 *)run->mmio.data;
1638
1639		break;
1640	case 1:
1641		if (vcpu->mmio_needed == 1)
1642			*gpr = *(u8 *)run->mmio.data;
1643		else
1644			*gpr = *(s8 *)run->mmio.data;
1645		break;
1646	}
1647
1648done:
1649	return er;
1650}
1651