1/***********************license start***************
2 * Author: Cavium Networks
3 *
4 * Contact: support@caviumnetworks.com
5 * This file is part of the OCTEON SDK
6 *
7 * Copyright (c) 2003-2008 Cavium Networks
8 *
9 * This file is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License, Version 2, as
11 * published by the Free Software Foundation.
12 *
13 * This file is distributed in the hope that it will be useful, but
14 * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16 * NONINFRINGEMENT.  See the GNU General Public License for more
17 * details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this file; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22 * or visit http://www.gnu.org/licenses/.
23 *
24 * This file may also be available under a different license from Cavium.
25 * Contact Cavium Networks for more information
26 ***********************license end**************************************/
27
28/*
29 *
30 * Support library for the SPI
31 */
32#include <asm/octeon/octeon.h>
33
34#include <asm/octeon/cvmx-config.h>
35
36#include <asm/octeon/cvmx-pko.h>
37#include <asm/octeon/cvmx-spi.h>
38
39#include <asm/octeon/cvmx-spxx-defs.h>
40#include <asm/octeon/cvmx-stxx-defs.h>
41#include <asm/octeon/cvmx-srxx-defs.h>
42
43#define INVOKE_CB(function_p, args...)		\
44	do {					\
45		if (function_p) {		\
46			res = function_p(args); \
47			if (res)		\
48				return res;	\
49		}				\
50	} while (0)
51
52#if CVMX_ENABLE_DEBUG_PRINTS
53static const char *modes[] =
54    { "UNKNOWN", "TX Halfplex", "Rx Halfplex", "Duplex" };
55#endif
56
57/* Default callbacks, can be overridden
58 *  using cvmx_spi_get_callbacks/cvmx_spi_set_callbacks
59 */
60static cvmx_spi_callbacks_t cvmx_spi_callbacks = {
61	.reset_cb = cvmx_spi_reset_cb,
62	.calendar_setup_cb = cvmx_spi_calendar_setup_cb,
63	.clock_detect_cb = cvmx_spi_clock_detect_cb,
64	.training_cb = cvmx_spi_training_cb,
65	.calendar_sync_cb = cvmx_spi_calendar_sync_cb,
66	.interface_up_cb = cvmx_spi_interface_up_cb
67};
68
69/*
70 * Get current SPI4 initialization callbacks
71 *
72 * @callbacks:	Pointer to the callbacks structure.to fill
73 *
74 * Returns Pointer to cvmx_spi_callbacks_t structure.
75 */
76void cvmx_spi_get_callbacks(cvmx_spi_callbacks_t *callbacks)
77{
78	memcpy(callbacks, &cvmx_spi_callbacks, sizeof(cvmx_spi_callbacks));
79}
80
81/*
82 * Set new SPI4 initialization callbacks
83 *
84 * @new_callbacks:  Pointer to an updated callbacks structure.
85 */
86void cvmx_spi_set_callbacks(cvmx_spi_callbacks_t *new_callbacks)
87{
88	memcpy(&cvmx_spi_callbacks, new_callbacks, sizeof(cvmx_spi_callbacks));
89}
90
91/*
92 * Initialize and start the SPI interface.
93 *
94 * @interface: The identifier of the packet interface to configure and
95 *		    use as a SPI interface.
96 * @mode:      The operating mode for the SPI interface. The interface
97 *		    can operate as a full duplex (both Tx and Rx data paths
98 *		    active) or as a halfplex (either the Tx data path is
99 *		    active or the Rx data path is active, but not both).
100 * @timeout:   Timeout to wait for clock synchronization in seconds
101 * @num_ports: Number of SPI ports to configure
102 *
103 * Returns Zero on success, negative of failure.
104 */
105int cvmx_spi_start_interface(int interface, cvmx_spi_mode_t mode, int timeout,
106			     int num_ports)
107{
108	int res = -1;
109
110	if (!(OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN58XX)))
111		return res;
112
113	/* Callback to perform SPI4 reset */
114	INVOKE_CB(cvmx_spi_callbacks.reset_cb, interface, mode);
115
116	/* Callback to perform calendar setup */
117	INVOKE_CB(cvmx_spi_callbacks.calendar_setup_cb, interface, mode,
118		  num_ports);
119
120	/* Callback to perform clock detection */
121	INVOKE_CB(cvmx_spi_callbacks.clock_detect_cb, interface, mode, timeout);
122
123	/* Callback to perform SPI4 link training */
124	INVOKE_CB(cvmx_spi_callbacks.training_cb, interface, mode, timeout);
125
126	/* Callback to perform calendar sync */
127	INVOKE_CB(cvmx_spi_callbacks.calendar_sync_cb, interface, mode,
128		  timeout);
129
130	/* Callback to handle interface coming up */
131	INVOKE_CB(cvmx_spi_callbacks.interface_up_cb, interface, mode);
132
133	return res;
134}
135
136/*
137 * This routine restarts the SPI interface after it has lost synchronization
138 * with its correspondent system.
139 *
140 * @interface: The identifier of the packet interface to configure and
141 *		    use as a SPI interface.
142 * @mode:      The operating mode for the SPI interface. The interface
143 *		    can operate as a full duplex (both Tx and Rx data paths
144 *		    active) or as a halfplex (either the Tx data path is
145 *		    active or the Rx data path is active, but not both).
146 * @timeout:   Timeout to wait for clock synchronization in seconds
147 *
148 * Returns Zero on success, negative of failure.
149 */
150int cvmx_spi_restart_interface(int interface, cvmx_spi_mode_t mode, int timeout)
151{
152	int res = -1;
153
154	if (!(OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN58XX)))
155		return res;
156
157	cvmx_dprintf("SPI%d: Restart %s\n", interface, modes[mode]);
158
159	/* Callback to perform SPI4 reset */
160	INVOKE_CB(cvmx_spi_callbacks.reset_cb, interface, mode);
161
162	/* NOTE: Calendar setup is not performed during restart */
163	/*	 Refer to cvmx_spi_start_interface() for the full sequence */
164
165	/* Callback to perform clock detection */
166	INVOKE_CB(cvmx_spi_callbacks.clock_detect_cb, interface, mode, timeout);
167
168	/* Callback to perform SPI4 link training */
169	INVOKE_CB(cvmx_spi_callbacks.training_cb, interface, mode, timeout);
170
171	/* Callback to perform calendar sync */
172	INVOKE_CB(cvmx_spi_callbacks.calendar_sync_cb, interface, mode,
173		  timeout);
174
175	/* Callback to handle interface coming up */
176	INVOKE_CB(cvmx_spi_callbacks.interface_up_cb, interface, mode);
177
178	return res;
179}
180EXPORT_SYMBOL_GPL(cvmx_spi_restart_interface);
181
182/*
183 * Callback to perform SPI4 reset
184 *
185 * @interface: The identifier of the packet interface to configure and
186 *		    use as a SPI interface.
187 * @mode:      The operating mode for the SPI interface. The interface
188 *		    can operate as a full duplex (both Tx and Rx data paths
189 *		    active) or as a halfplex (either the Tx data path is
190 *		    active or the Rx data path is active, but not both).
191 *
192 * Returns Zero on success, non-zero error code on failure (will cause
193 * SPI initialization to abort)
194 */
195int cvmx_spi_reset_cb(int interface, cvmx_spi_mode_t mode)
196{
197	union cvmx_spxx_dbg_deskew_ctl spxx_dbg_deskew_ctl;
198	union cvmx_spxx_clk_ctl spxx_clk_ctl;
199	union cvmx_spxx_bist_stat spxx_bist_stat;
200	union cvmx_spxx_int_msk spxx_int_msk;
201	union cvmx_stxx_int_msk stxx_int_msk;
202	union cvmx_spxx_trn4_ctl spxx_trn4_ctl;
203	int index;
204	uint64_t MS = cvmx_sysinfo_get()->cpu_clock_hz / 1000;
205
206	/* Disable SPI error events while we run BIST */
207	spxx_int_msk.u64 = cvmx_read_csr(CVMX_SPXX_INT_MSK(interface));
208	cvmx_write_csr(CVMX_SPXX_INT_MSK(interface), 0);
209	stxx_int_msk.u64 = cvmx_read_csr(CVMX_STXX_INT_MSK(interface));
210	cvmx_write_csr(CVMX_STXX_INT_MSK(interface), 0);
211
212	/* Run BIST in the SPI interface */
213	cvmx_write_csr(CVMX_SRXX_COM_CTL(interface), 0);
214	cvmx_write_csr(CVMX_STXX_COM_CTL(interface), 0);
215	spxx_clk_ctl.u64 = 0;
216	spxx_clk_ctl.s.runbist = 1;
217	cvmx_write_csr(CVMX_SPXX_CLK_CTL(interface), spxx_clk_ctl.u64);
218	__delay(10 * MS);
219	spxx_bist_stat.u64 = cvmx_read_csr(CVMX_SPXX_BIST_STAT(interface));
220	if (spxx_bist_stat.s.stat0)
221		cvmx_dprintf
222		    ("ERROR SPI%d: BIST failed on receive datapath FIFO\n",
223		     interface);
224	if (spxx_bist_stat.s.stat1)
225		cvmx_dprintf("ERROR SPI%d: BIST failed on RX calendar table\n",
226			     interface);
227	if (spxx_bist_stat.s.stat2)
228		cvmx_dprintf("ERROR SPI%d: BIST failed on TX calendar table\n",
229			     interface);
230
231	/* Clear the calendar table after BIST to fix parity errors */
232	for (index = 0; index < 32; index++) {
233		union cvmx_srxx_spi4_calx srxx_spi4_calx;
234		union cvmx_stxx_spi4_calx stxx_spi4_calx;
235
236		srxx_spi4_calx.u64 = 0;
237		srxx_spi4_calx.s.oddpar = 1;
238		cvmx_write_csr(CVMX_SRXX_SPI4_CALX(index, interface),
239			       srxx_spi4_calx.u64);
240
241		stxx_spi4_calx.u64 = 0;
242		stxx_spi4_calx.s.oddpar = 1;
243		cvmx_write_csr(CVMX_STXX_SPI4_CALX(index, interface),
244			       stxx_spi4_calx.u64);
245	}
246
247	/* Re enable reporting of error interrupts */
248	cvmx_write_csr(CVMX_SPXX_INT_REG(interface),
249		       cvmx_read_csr(CVMX_SPXX_INT_REG(interface)));
250	cvmx_write_csr(CVMX_SPXX_INT_MSK(interface), spxx_int_msk.u64);
251	cvmx_write_csr(CVMX_STXX_INT_REG(interface),
252		       cvmx_read_csr(CVMX_STXX_INT_REG(interface)));
253	cvmx_write_csr(CVMX_STXX_INT_MSK(interface), stxx_int_msk.u64);
254
255	/* Setup the CLKDLY right in the middle */
256	spxx_clk_ctl.u64 = 0;
257	spxx_clk_ctl.s.seetrn = 0;
258	spxx_clk_ctl.s.clkdly = 0x10;
259	spxx_clk_ctl.s.runbist = 0;
260	spxx_clk_ctl.s.statdrv = 0;
261	/* This should always be on the opposite edge as statdrv */
262	spxx_clk_ctl.s.statrcv = 1;
263	spxx_clk_ctl.s.sndtrn = 0;
264	spxx_clk_ctl.s.drptrn = 0;
265	spxx_clk_ctl.s.rcvtrn = 0;
266	spxx_clk_ctl.s.srxdlck = 0;
267	cvmx_write_csr(CVMX_SPXX_CLK_CTL(interface), spxx_clk_ctl.u64);
268	__delay(100 * MS);
269
270	/* Reset SRX0 DLL */
271	spxx_clk_ctl.s.srxdlck = 1;
272	cvmx_write_csr(CVMX_SPXX_CLK_CTL(interface), spxx_clk_ctl.u64);
273
274	/* Waiting for Inf0 Spi4 RX DLL to lock */
275	__delay(100 * MS);
276
277	/* Enable dynamic alignment */
278	spxx_trn4_ctl.s.trntest = 0;
279	spxx_trn4_ctl.s.jitter = 1;
280	spxx_trn4_ctl.s.clr_boot = 1;
281	spxx_trn4_ctl.s.set_boot = 0;
282	if (OCTEON_IS_MODEL(OCTEON_CN58XX))
283		spxx_trn4_ctl.s.maxdist = 3;
284	else
285		spxx_trn4_ctl.s.maxdist = 8;
286	spxx_trn4_ctl.s.macro_en = 1;
287	spxx_trn4_ctl.s.mux_en = 1;
288	cvmx_write_csr(CVMX_SPXX_TRN4_CTL(interface), spxx_trn4_ctl.u64);
289
290	spxx_dbg_deskew_ctl.u64 = 0;
291	cvmx_write_csr(CVMX_SPXX_DBG_DESKEW_CTL(interface),
292		       spxx_dbg_deskew_ctl.u64);
293
294	return 0;
295}
296
297/*
298 * Callback to setup calendar and miscellaneous settings before clock detection
299 *
300 * @interface: The identifier of the packet interface to configure and
301 *		    use as a SPI interface.
302 * @mode:      The operating mode for the SPI interface. The interface
303 *		    can operate as a full duplex (both Tx and Rx data paths
304 *		    active) or as a halfplex (either the Tx data path is
305 *		    active or the Rx data path is active, but not both).
306 * @num_ports: Number of ports to configure on SPI
307 *
308 * Returns Zero on success, non-zero error code on failure (will cause
309 * SPI initialization to abort)
310 */
311int cvmx_spi_calendar_setup_cb(int interface, cvmx_spi_mode_t mode,
312			       int num_ports)
313{
314	int port;
315	int index;
316	if (mode & CVMX_SPI_MODE_RX_HALFPLEX) {
317		union cvmx_srxx_com_ctl srxx_com_ctl;
318		union cvmx_srxx_spi4_stat srxx_spi4_stat;
319
320		/* SRX0 number of Ports */
321		srxx_com_ctl.u64 = 0;
322		srxx_com_ctl.s.prts = num_ports - 1;
323		srxx_com_ctl.s.st_en = 0;
324		srxx_com_ctl.s.inf_en = 0;
325		cvmx_write_csr(CVMX_SRXX_COM_CTL(interface), srxx_com_ctl.u64);
326
327		/* SRX0 Calendar Table. This round robbins through all ports */
328		port = 0;
329		index = 0;
330		while (port < num_ports) {
331			union cvmx_srxx_spi4_calx srxx_spi4_calx;
332			srxx_spi4_calx.u64 = 0;
333			srxx_spi4_calx.s.prt0 = port++;
334			srxx_spi4_calx.s.prt1 = port++;
335			srxx_spi4_calx.s.prt2 = port++;
336			srxx_spi4_calx.s.prt3 = port++;
337			srxx_spi4_calx.s.oddpar =
338			    ~(cvmx_dpop(srxx_spi4_calx.u64) & 1);
339			cvmx_write_csr(CVMX_SRXX_SPI4_CALX(index, interface),
340				       srxx_spi4_calx.u64);
341			index++;
342		}
343		srxx_spi4_stat.u64 = 0;
344		srxx_spi4_stat.s.len = num_ports;
345		srxx_spi4_stat.s.m = 1;
346		cvmx_write_csr(CVMX_SRXX_SPI4_STAT(interface),
347			       srxx_spi4_stat.u64);
348	}
349
350	if (mode & CVMX_SPI_MODE_TX_HALFPLEX) {
351		union cvmx_stxx_arb_ctl stxx_arb_ctl;
352		union cvmx_gmxx_tx_spi_max gmxx_tx_spi_max;
353		union cvmx_gmxx_tx_spi_thresh gmxx_tx_spi_thresh;
354		union cvmx_gmxx_tx_spi_ctl gmxx_tx_spi_ctl;
355		union cvmx_stxx_spi4_stat stxx_spi4_stat;
356		union cvmx_stxx_spi4_dat stxx_spi4_dat;
357
358		/* STX0 Config */
359		stxx_arb_ctl.u64 = 0;
360		stxx_arb_ctl.s.igntpa = 0;
361		stxx_arb_ctl.s.mintrn = 0;
362		cvmx_write_csr(CVMX_STXX_ARB_CTL(interface), stxx_arb_ctl.u64);
363
364		gmxx_tx_spi_max.u64 = 0;
365		gmxx_tx_spi_max.s.max1 = 8;
366		gmxx_tx_spi_max.s.max2 = 4;
367		gmxx_tx_spi_max.s.slice = 0;
368		cvmx_write_csr(CVMX_GMXX_TX_SPI_MAX(interface),
369			       gmxx_tx_spi_max.u64);
370
371		gmxx_tx_spi_thresh.u64 = 0;
372		gmxx_tx_spi_thresh.s.thresh = 4;
373		cvmx_write_csr(CVMX_GMXX_TX_SPI_THRESH(interface),
374			       gmxx_tx_spi_thresh.u64);
375
376		gmxx_tx_spi_ctl.u64 = 0;
377		gmxx_tx_spi_ctl.s.tpa_clr = 0;
378		gmxx_tx_spi_ctl.s.cont_pkt = 0;
379		cvmx_write_csr(CVMX_GMXX_TX_SPI_CTL(interface),
380			       gmxx_tx_spi_ctl.u64);
381
382		/* STX0 Training Control */
383		stxx_spi4_dat.u64 = 0;
384		/*Minimum needed by dynamic alignment */
385		stxx_spi4_dat.s.alpha = 32;
386		stxx_spi4_dat.s.max_t = 0xFFFF; /*Minimum interval is 0x20 */
387		cvmx_write_csr(CVMX_STXX_SPI4_DAT(interface),
388			       stxx_spi4_dat.u64);
389
390		/* STX0 Calendar Table. This round robbins through all ports */
391		port = 0;
392		index = 0;
393		while (port < num_ports) {
394			union cvmx_stxx_spi4_calx stxx_spi4_calx;
395			stxx_spi4_calx.u64 = 0;
396			stxx_spi4_calx.s.prt0 = port++;
397			stxx_spi4_calx.s.prt1 = port++;
398			stxx_spi4_calx.s.prt2 = port++;
399			stxx_spi4_calx.s.prt3 = port++;
400			stxx_spi4_calx.s.oddpar =
401			    ~(cvmx_dpop(stxx_spi4_calx.u64) & 1);
402			cvmx_write_csr(CVMX_STXX_SPI4_CALX(index, interface),
403				       stxx_spi4_calx.u64);
404			index++;
405		}
406		stxx_spi4_stat.u64 = 0;
407		stxx_spi4_stat.s.len = num_ports;
408		stxx_spi4_stat.s.m = 1;
409		cvmx_write_csr(CVMX_STXX_SPI4_STAT(interface),
410			       stxx_spi4_stat.u64);
411	}
412
413	return 0;
414}
415
416/*
417 * Callback to perform clock detection
418 *
419 * @interface: The identifier of the packet interface to configure and
420 *		    use as a SPI interface.
421 * @mode:      The operating mode for the SPI interface. The interface
422 *		    can operate as a full duplex (both Tx and Rx data paths
423 *		    active) or as a halfplex (either the Tx data path is
424 *		    active or the Rx data path is active, but not both).
425 * @timeout:   Timeout to wait for clock synchronization in seconds
426 *
427 * Returns Zero on success, non-zero error code on failure (will cause
428 * SPI initialization to abort)
429 */
430int cvmx_spi_clock_detect_cb(int interface, cvmx_spi_mode_t mode, int timeout)
431{
432	int clock_transitions;
433	union cvmx_spxx_clk_stat stat;
434	uint64_t timeout_time;
435	uint64_t MS = cvmx_sysinfo_get()->cpu_clock_hz / 1000;
436
437	/*
438	 * Regardless of operating mode, both Tx and Rx clocks must be
439	 * present for the SPI interface to operate.
440	 */
441	cvmx_dprintf("SPI%d: Waiting to see TsClk...\n", interface);
442	timeout_time = cvmx_get_cycle() + 1000ull * MS * timeout;
443	/*
444	 * Require 100 clock transitions in order to avoid any noise
445	 * in the beginning.
446	 */
447	clock_transitions = 100;
448	do {
449		stat.u64 = cvmx_read_csr(CVMX_SPXX_CLK_STAT(interface));
450		if (stat.s.s4clk0 && stat.s.s4clk1 && clock_transitions) {
451			/*
452			 * We've seen a clock transition, so decrement
453			 * the number we still need.
454			 */
455			clock_transitions--;
456			cvmx_write_csr(CVMX_SPXX_CLK_STAT(interface), stat.u64);
457			stat.s.s4clk0 = 0;
458			stat.s.s4clk1 = 0;
459		}
460		if (cvmx_get_cycle() > timeout_time) {
461			cvmx_dprintf("SPI%d: Timeout\n", interface);
462			return -1;
463		}
464	} while (stat.s.s4clk0 == 0 || stat.s.s4clk1 == 0);
465
466	cvmx_dprintf("SPI%d: Waiting to see RsClk...\n", interface);
467	timeout_time = cvmx_get_cycle() + 1000ull * MS * timeout;
468	/*
469	 * Require 100 clock transitions in order to avoid any noise in the
470	 * beginning.
471	 */
472	clock_transitions = 100;
473	do {
474		stat.u64 = cvmx_read_csr(CVMX_SPXX_CLK_STAT(interface));
475		if (stat.s.d4clk0 && stat.s.d4clk1 && clock_transitions) {
476			/*
477			 * We've seen a clock transition, so decrement
478			 * the number we still need
479			 */
480			clock_transitions--;
481			cvmx_write_csr(CVMX_SPXX_CLK_STAT(interface), stat.u64);
482			stat.s.d4clk0 = 0;
483			stat.s.d4clk1 = 0;
484		}
485		if (cvmx_get_cycle() > timeout_time) {
486			cvmx_dprintf("SPI%d: Timeout\n", interface);
487			return -1;
488		}
489	} while (stat.s.d4clk0 == 0 || stat.s.d4clk1 == 0);
490
491	return 0;
492}
493
494/*
495 * Callback to perform link training
496 *
497 * @interface: The identifier of the packet interface to configure and
498 *		    use as a SPI interface.
499 * @mode:      The operating mode for the SPI interface. The interface
500 *		    can operate as a full duplex (both Tx and Rx data paths
501 *		    active) or as a halfplex (either the Tx data path is
502 *		    active or the Rx data path is active, but not both).
503 * @timeout:   Timeout to wait for link to be trained (in seconds)
504 *
505 * Returns Zero on success, non-zero error code on failure (will cause
506 * SPI initialization to abort)
507 */
508int cvmx_spi_training_cb(int interface, cvmx_spi_mode_t mode, int timeout)
509{
510	union cvmx_spxx_trn4_ctl spxx_trn4_ctl;
511	union cvmx_spxx_clk_stat stat;
512	uint64_t MS = cvmx_sysinfo_get()->cpu_clock_hz / 1000;
513	uint64_t timeout_time = cvmx_get_cycle() + 1000ull * MS * timeout;
514	int rx_training_needed;
515
516	/* SRX0 & STX0 Inf0 Links are configured - begin training */
517	union cvmx_spxx_clk_ctl spxx_clk_ctl;
518	spxx_clk_ctl.u64 = 0;
519	spxx_clk_ctl.s.seetrn = 0;
520	spxx_clk_ctl.s.clkdly = 0x10;
521	spxx_clk_ctl.s.runbist = 0;
522	spxx_clk_ctl.s.statdrv = 0;
523	/* This should always be on the opposite edge as statdrv */
524	spxx_clk_ctl.s.statrcv = 1;
525	spxx_clk_ctl.s.sndtrn = 1;
526	spxx_clk_ctl.s.drptrn = 1;
527	spxx_clk_ctl.s.rcvtrn = 1;
528	spxx_clk_ctl.s.srxdlck = 1;
529	cvmx_write_csr(CVMX_SPXX_CLK_CTL(interface), spxx_clk_ctl.u64);
530	__delay(1000 * MS);
531
532	/* SRX0 clear the boot bit */
533	spxx_trn4_ctl.u64 = cvmx_read_csr(CVMX_SPXX_TRN4_CTL(interface));
534	spxx_trn4_ctl.s.clr_boot = 1;
535	cvmx_write_csr(CVMX_SPXX_TRN4_CTL(interface), spxx_trn4_ctl.u64);
536
537	/* Wait for the training sequence to complete */
538	cvmx_dprintf("SPI%d: Waiting for training\n", interface);
539	__delay(1000 * MS);
540	/* Wait a really long time here */
541	timeout_time = cvmx_get_cycle() + 1000ull * MS * 600;
542	/*
543	 * The HRM says we must wait for 34 + 16 * MAXDIST training sequences.
544	 * We'll be pessimistic and wait for a lot more.
545	 */
546	rx_training_needed = 500;
547	do {
548		stat.u64 = cvmx_read_csr(CVMX_SPXX_CLK_STAT(interface));
549		if (stat.s.srxtrn && rx_training_needed) {
550			rx_training_needed--;
551			cvmx_write_csr(CVMX_SPXX_CLK_STAT(interface), stat.u64);
552			stat.s.srxtrn = 0;
553		}
554		if (cvmx_get_cycle() > timeout_time) {
555			cvmx_dprintf("SPI%d: Timeout\n", interface);
556			return -1;
557		}
558	} while (stat.s.srxtrn == 0);
559
560	return 0;
561}
562
563/*
564 * Callback to perform calendar data synchronization
565 *
566 * @interface: The identifier of the packet interface to configure and
567 *		    use as a SPI interface.
568 * @mode:      The operating mode for the SPI interface. The interface
569 *		    can operate as a full duplex (both Tx and Rx data paths
570 *		    active) or as a halfplex (either the Tx data path is
571 *		    active or the Rx data path is active, but not both).
572 * @timeout:   Timeout to wait for calendar data in seconds
573 *
574 * Returns Zero on success, non-zero error code on failure (will cause
575 * SPI initialization to abort)
576 */
577int cvmx_spi_calendar_sync_cb(int interface, cvmx_spi_mode_t mode, int timeout)
578{
579	uint64_t MS = cvmx_sysinfo_get()->cpu_clock_hz / 1000;
580	if (mode & CVMX_SPI_MODE_RX_HALFPLEX) {
581		/* SRX0 interface should be good, send calendar data */
582		union cvmx_srxx_com_ctl srxx_com_ctl;
583		cvmx_dprintf
584		    ("SPI%d: Rx is synchronized, start sending calendar data\n",
585		     interface);
586		srxx_com_ctl.u64 = cvmx_read_csr(CVMX_SRXX_COM_CTL(interface));
587		srxx_com_ctl.s.inf_en = 1;
588		srxx_com_ctl.s.st_en = 1;
589		cvmx_write_csr(CVMX_SRXX_COM_CTL(interface), srxx_com_ctl.u64);
590	}
591
592	if (mode & CVMX_SPI_MODE_TX_HALFPLEX) {
593		/* STX0 has achieved sync */
594		/* The corespondant board should be sending calendar data */
595		/* Enable the STX0 STAT receiver. */
596		union cvmx_spxx_clk_stat stat;
597		uint64_t timeout_time;
598		union cvmx_stxx_com_ctl stxx_com_ctl;
599		stxx_com_ctl.u64 = 0;
600		stxx_com_ctl.s.st_en = 1;
601		cvmx_write_csr(CVMX_STXX_COM_CTL(interface), stxx_com_ctl.u64);
602
603		/* Waiting for calendar sync on STX0 STAT */
604		cvmx_dprintf("SPI%d: Waiting to sync on STX[%d] STAT\n",
605			     interface, interface);
606		timeout_time = cvmx_get_cycle() + 1000ull * MS * timeout;
607		/* SPX0_CLK_STAT - SPX0_CLK_STAT[STXCAL] should be 1 (bit10) */
608		do {
609			stat.u64 = cvmx_read_csr(CVMX_SPXX_CLK_STAT(interface));
610			if (cvmx_get_cycle() > timeout_time) {
611				cvmx_dprintf("SPI%d: Timeout\n", interface);
612				return -1;
613			}
614		} while (stat.s.stxcal == 0);
615	}
616
617	return 0;
618}
619
620/*
621 * Callback to handle interface up
622 *
623 * @interface: The identifier of the packet interface to configure and
624 *		    use as a SPI interface.
625 * @mode:      The operating mode for the SPI interface. The interface
626 *		    can operate as a full duplex (both Tx and Rx data paths
627 *		    active) or as a halfplex (either the Tx data path is
628 *		    active or the Rx data path is active, but not both).
629 *
630 * Returns Zero on success, non-zero error code on failure (will cause
631 * SPI initialization to abort)
632 */
633int cvmx_spi_interface_up_cb(int interface, cvmx_spi_mode_t mode)
634{
635	union cvmx_gmxx_rxx_frm_min gmxx_rxx_frm_min;
636	union cvmx_gmxx_rxx_frm_max gmxx_rxx_frm_max;
637	union cvmx_gmxx_rxx_jabber gmxx_rxx_jabber;
638
639	if (mode & CVMX_SPI_MODE_RX_HALFPLEX) {
640		union cvmx_srxx_com_ctl srxx_com_ctl;
641		srxx_com_ctl.u64 = cvmx_read_csr(CVMX_SRXX_COM_CTL(interface));
642		srxx_com_ctl.s.inf_en = 1;
643		cvmx_write_csr(CVMX_SRXX_COM_CTL(interface), srxx_com_ctl.u64);
644		cvmx_dprintf("SPI%d: Rx is now up\n", interface);
645	}
646
647	if (mode & CVMX_SPI_MODE_TX_HALFPLEX) {
648		union cvmx_stxx_com_ctl stxx_com_ctl;
649		stxx_com_ctl.u64 = cvmx_read_csr(CVMX_STXX_COM_CTL(interface));
650		stxx_com_ctl.s.inf_en = 1;
651		cvmx_write_csr(CVMX_STXX_COM_CTL(interface), stxx_com_ctl.u64);
652		cvmx_dprintf("SPI%d: Tx is now up\n", interface);
653	}
654
655	gmxx_rxx_frm_min.u64 = 0;
656	gmxx_rxx_frm_min.s.len = 64;
657	cvmx_write_csr(CVMX_GMXX_RXX_FRM_MIN(0, interface),
658		       gmxx_rxx_frm_min.u64);
659	gmxx_rxx_frm_max.u64 = 0;
660	gmxx_rxx_frm_max.s.len = 64 * 1024 - 4;
661	cvmx_write_csr(CVMX_GMXX_RXX_FRM_MAX(0, interface),
662		       gmxx_rxx_frm_max.u64);
663	gmxx_rxx_jabber.u64 = 0;
664	gmxx_rxx_jabber.s.cnt = 64 * 1024 - 4;
665	cvmx_write_csr(CVMX_GMXX_RXX_JABBER(0, interface), gmxx_rxx_jabber.u64);
666
667	return 0;
668}
669