1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2020-2023 Loongson Technology Corporation Limited
4 */
5
6#include <linux/highmem.h>
7#include <linux/hugetlb.h>
8#include <linux/kvm_host.h>
9#include <linux/page-flags.h>
10#include <linux/uaccess.h>
11#include <asm/mmu_context.h>
12#include <asm/pgalloc.h>
13#include <asm/tlb.h>
14#include <asm/kvm_mmu.h>
15
16static inline bool kvm_hugepage_capable(struct kvm_memory_slot *slot)
17{
18	return slot->arch.flags & KVM_MEM_HUGEPAGE_CAPABLE;
19}
20
21static inline bool kvm_hugepage_incapable(struct kvm_memory_slot *slot)
22{
23	return slot->arch.flags & KVM_MEM_HUGEPAGE_INCAPABLE;
24}
25
26static inline void kvm_ptw_prepare(struct kvm *kvm, kvm_ptw_ctx *ctx)
27{
28	ctx->level = kvm->arch.root_level;
29	/* pte table */
30	ctx->invalid_ptes  = kvm->arch.invalid_ptes;
31	ctx->pte_shifts    = kvm->arch.pte_shifts;
32	ctx->pgtable_shift = ctx->pte_shifts[ctx->level];
33	ctx->invalid_entry = ctx->invalid_ptes[ctx->level];
34	ctx->opaque        = kvm;
35}
36
37/*
38 * Mark a range of guest physical address space old (all accesses fault) in the
39 * VM's GPA page table to allow detection of commonly used pages.
40 */
41static int kvm_mkold_pte(kvm_pte_t *pte, phys_addr_t addr, kvm_ptw_ctx *ctx)
42{
43	if (kvm_pte_young(*pte)) {
44		*pte = kvm_pte_mkold(*pte);
45		return 1;
46	}
47
48	return 0;
49}
50
51/*
52 * Mark a range of guest physical address space clean (writes fault) in the VM's
53 * GPA page table to allow dirty page tracking.
54 */
55static int kvm_mkclean_pte(kvm_pte_t *pte, phys_addr_t addr, kvm_ptw_ctx *ctx)
56{
57	gfn_t offset;
58	kvm_pte_t val;
59
60	val = *pte;
61	/*
62	 * For kvm_arch_mmu_enable_log_dirty_pt_masked with mask, start and end
63	 * may cross hugepage, for first huge page parameter addr is equal to
64	 * start, however for the second huge page addr is base address of
65	 * this huge page, rather than start or end address
66	 */
67	if ((ctx->flag & _KVM_HAS_PGMASK) && !kvm_pte_huge(val)) {
68		offset = (addr >> PAGE_SHIFT) - ctx->gfn;
69		if (!(BIT(offset) & ctx->mask))
70			return 0;
71	}
72
73	/*
74	 * Need not split huge page now, just set write-proect pte bit
75	 * Split huge page until next write fault
76	 */
77	if (kvm_pte_dirty(val)) {
78		*pte = kvm_pte_mkclean(val);
79		return 1;
80	}
81
82	return 0;
83}
84
85/*
86 * Clear pte entry
87 */
88static int kvm_flush_pte(kvm_pte_t *pte, phys_addr_t addr, kvm_ptw_ctx *ctx)
89{
90	struct kvm *kvm;
91
92	kvm = ctx->opaque;
93	if (ctx->level)
94		kvm->stat.hugepages--;
95	else
96		kvm->stat.pages--;
97
98	*pte = ctx->invalid_entry;
99
100	return 1;
101}
102
103/*
104 * kvm_pgd_alloc() - Allocate and initialise a KVM GPA page directory.
105 *
106 * Allocate a blank KVM GPA page directory (PGD) for representing guest physical
107 * to host physical page mappings.
108 *
109 * Returns:	Pointer to new KVM GPA page directory.
110 *		NULL on allocation failure.
111 */
112kvm_pte_t *kvm_pgd_alloc(void)
113{
114	kvm_pte_t *pgd;
115
116	pgd = (kvm_pte_t *)__get_free_pages(GFP_KERNEL, 0);
117	if (pgd)
118		pgd_init((void *)pgd);
119
120	return pgd;
121}
122
123static void _kvm_pte_init(void *addr, unsigned long val)
124{
125	unsigned long *p, *end;
126
127	p = (unsigned long *)addr;
128	end = p + PTRS_PER_PTE;
129	do {
130		p[0] = val;
131		p[1] = val;
132		p[2] = val;
133		p[3] = val;
134		p[4] = val;
135		p += 8;
136		p[-3] = val;
137		p[-2] = val;
138		p[-1] = val;
139	} while (p != end);
140}
141
142/*
143 * Caller must hold kvm->mm_lock
144 *
145 * Walk the page tables of kvm to find the PTE corresponding to the
146 * address @addr. If page tables don't exist for @addr, they will be created
147 * from the MMU cache if @cache is not NULL.
148 */
149static kvm_pte_t *kvm_populate_gpa(struct kvm *kvm,
150				struct kvm_mmu_memory_cache *cache,
151				unsigned long addr, int level)
152{
153	kvm_ptw_ctx ctx;
154	kvm_pte_t *entry, *child;
155
156	kvm_ptw_prepare(kvm, &ctx);
157	child = kvm->arch.pgd;
158	while (ctx.level > level) {
159		entry = kvm_pgtable_offset(&ctx, child, addr);
160		if (kvm_pte_none(&ctx, entry)) {
161			if (!cache)
162				return NULL;
163
164			child = kvm_mmu_memory_cache_alloc(cache);
165			_kvm_pte_init(child, ctx.invalid_ptes[ctx.level - 1]);
166			kvm_set_pte(entry, __pa(child));
167		} else if (kvm_pte_huge(*entry)) {
168			return entry;
169		} else
170			child = (kvm_pte_t *)__va(PHYSADDR(*entry));
171		kvm_ptw_enter(&ctx);
172	}
173
174	entry = kvm_pgtable_offset(&ctx, child, addr);
175
176	return entry;
177}
178
179/*
180 * Page walker for VM shadow mmu at last level
181 * The last level is small pte page or huge pmd page
182 */
183static int kvm_ptw_leaf(kvm_pte_t *dir, phys_addr_t addr, phys_addr_t end, kvm_ptw_ctx *ctx)
184{
185	int ret;
186	phys_addr_t next, start, size;
187	struct list_head *list;
188	kvm_pte_t *entry, *child;
189
190	ret = 0;
191	start = addr;
192	child = (kvm_pte_t *)__va(PHYSADDR(*dir));
193	entry = kvm_pgtable_offset(ctx, child, addr);
194	do {
195		next = addr + (0x1UL << ctx->pgtable_shift);
196		if (!kvm_pte_present(ctx, entry))
197			continue;
198
199		ret |= ctx->ops(entry, addr, ctx);
200	} while (entry++, addr = next, addr < end);
201
202	if (kvm_need_flush(ctx)) {
203		size = 0x1UL << (ctx->pgtable_shift + PAGE_SHIFT - 3);
204		if (start + size == end) {
205			list = (struct list_head *)child;
206			list_add_tail(list, &ctx->list);
207			*dir = ctx->invalid_ptes[ctx->level + 1];
208		}
209	}
210
211	return ret;
212}
213
214/*
215 * Page walker for VM shadow mmu at page table dir level
216 */
217static int kvm_ptw_dir(kvm_pte_t *dir, phys_addr_t addr, phys_addr_t end, kvm_ptw_ctx *ctx)
218{
219	int ret;
220	phys_addr_t next, start, size;
221	struct list_head *list;
222	kvm_pte_t *entry, *child;
223
224	ret = 0;
225	start = addr;
226	child = (kvm_pte_t *)__va(PHYSADDR(*dir));
227	entry = kvm_pgtable_offset(ctx, child, addr);
228	do {
229		next = kvm_pgtable_addr_end(ctx, addr, end);
230		if (!kvm_pte_present(ctx, entry))
231			continue;
232
233		if (kvm_pte_huge(*entry)) {
234			ret |= ctx->ops(entry, addr, ctx);
235			continue;
236		}
237
238		kvm_ptw_enter(ctx);
239		if (ctx->level == 0)
240			ret |= kvm_ptw_leaf(entry, addr, next, ctx);
241		else
242			ret |= kvm_ptw_dir(entry, addr, next, ctx);
243		kvm_ptw_exit(ctx);
244	}  while (entry++, addr = next, addr < end);
245
246	if (kvm_need_flush(ctx)) {
247		size = 0x1UL << (ctx->pgtable_shift + PAGE_SHIFT - 3);
248		if (start + size == end) {
249			list = (struct list_head *)child;
250			list_add_tail(list, &ctx->list);
251			*dir = ctx->invalid_ptes[ctx->level + 1];
252		}
253	}
254
255	return ret;
256}
257
258/*
259 * Page walker for VM shadow mmu at page root table
260 */
261static int kvm_ptw_top(kvm_pte_t *dir, phys_addr_t addr, phys_addr_t end, kvm_ptw_ctx *ctx)
262{
263	int ret;
264	phys_addr_t next;
265	kvm_pte_t *entry;
266
267	ret = 0;
268	entry = kvm_pgtable_offset(ctx, dir, addr);
269	do {
270		next = kvm_pgtable_addr_end(ctx, addr, end);
271		if (!kvm_pte_present(ctx, entry))
272			continue;
273
274		kvm_ptw_enter(ctx);
275		ret |= kvm_ptw_dir(entry, addr, next, ctx);
276		kvm_ptw_exit(ctx);
277	}  while (entry++, addr = next, addr < end);
278
279	return ret;
280}
281
282/*
283 * kvm_flush_range() - Flush a range of guest physical addresses.
284 * @kvm:	KVM pointer.
285 * @start_gfn:	Guest frame number of first page in GPA range to flush.
286 * @end_gfn:	Guest frame number of last page in GPA range to flush.
287 * @lock:	Whether to hold mmu_lock or not
288 *
289 * Flushes a range of GPA mappings from the GPA page tables.
290 */
291static void kvm_flush_range(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn, int lock)
292{
293	int ret;
294	kvm_ptw_ctx ctx;
295	struct list_head *pos, *temp;
296
297	ctx.ops = kvm_flush_pte;
298	ctx.flag = _KVM_FLUSH_PGTABLE;
299	kvm_ptw_prepare(kvm, &ctx);
300	INIT_LIST_HEAD(&ctx.list);
301
302	if (lock) {
303		spin_lock(&kvm->mmu_lock);
304		ret = kvm_ptw_top(kvm->arch.pgd, start_gfn << PAGE_SHIFT,
305					end_gfn << PAGE_SHIFT, &ctx);
306		spin_unlock(&kvm->mmu_lock);
307	} else
308		ret = kvm_ptw_top(kvm->arch.pgd, start_gfn << PAGE_SHIFT,
309					end_gfn << PAGE_SHIFT, &ctx);
310
311	/* Flush vpid for each vCPU individually */
312	if (ret)
313		kvm_flush_remote_tlbs(kvm);
314
315	/*
316	 * free pte table page after mmu_lock
317	 * the pte table page is linked together with ctx.list
318	 */
319	list_for_each_safe(pos, temp, &ctx.list) {
320		list_del(pos);
321		free_page((unsigned long)pos);
322	}
323}
324
325/*
326 * kvm_mkclean_gpa_pt() - Make a range of guest physical addresses clean.
327 * @kvm:	KVM pointer.
328 * @start_gfn:	Guest frame number of first page in GPA range to flush.
329 * @end_gfn:	Guest frame number of last page in GPA range to flush.
330 *
331 * Make a range of GPA mappings clean so that guest writes will fault and
332 * trigger dirty page logging.
333 *
334 * The caller must hold the @kvm->mmu_lock spinlock.
335 *
336 * Returns:	Whether any GPA mappings were modified, which would require
337 *		derived mappings (GVA page tables & TLB enties) to be
338 *		invalidated.
339 */
340static int kvm_mkclean_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
341{
342	kvm_ptw_ctx ctx;
343
344	ctx.ops = kvm_mkclean_pte;
345	ctx.flag = 0;
346	kvm_ptw_prepare(kvm, &ctx);
347	return kvm_ptw_top(kvm->arch.pgd, start_gfn << PAGE_SHIFT, end_gfn << PAGE_SHIFT, &ctx);
348}
349
350/*
351 * kvm_arch_mmu_enable_log_dirty_pt_masked() - write protect dirty pages
352 * @kvm:	The KVM pointer
353 * @slot:	The memory slot associated with mask
354 * @gfn_offset:	The gfn offset in memory slot
355 * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
356 *		slot to be write protected
357 *
358 * Walks bits set in mask write protects the associated pte's. Caller must
359 * acquire @kvm->mmu_lock.
360 */
361void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
362		struct kvm_memory_slot *slot, gfn_t gfn_offset, unsigned long mask)
363{
364	kvm_ptw_ctx ctx;
365	gfn_t base_gfn = slot->base_gfn + gfn_offset;
366	gfn_t start = base_gfn + __ffs(mask);
367	gfn_t end = base_gfn + __fls(mask) + 1;
368
369	ctx.ops = kvm_mkclean_pte;
370	ctx.flag = _KVM_HAS_PGMASK;
371	ctx.mask = mask;
372	ctx.gfn = base_gfn;
373	kvm_ptw_prepare(kvm, &ctx);
374
375	kvm_ptw_top(kvm->arch.pgd, start << PAGE_SHIFT, end << PAGE_SHIFT, &ctx);
376}
377
378int kvm_arch_prepare_memory_region(struct kvm *kvm, const struct kvm_memory_slot *old,
379				   struct kvm_memory_slot *new, enum kvm_mr_change change)
380{
381	gpa_t gpa_start;
382	hva_t hva_start;
383	size_t size, gpa_offset, hva_offset;
384
385	if ((change != KVM_MR_MOVE) && (change != KVM_MR_CREATE))
386		return 0;
387	/*
388	 * Prevent userspace from creating a memory region outside of the
389	 * VM GPA address space
390	 */
391	if ((new->base_gfn + new->npages) > (kvm->arch.gpa_size >> PAGE_SHIFT))
392		return -ENOMEM;
393
394	new->arch.flags = 0;
395	size = new->npages * PAGE_SIZE;
396	gpa_start = new->base_gfn << PAGE_SHIFT;
397	hva_start = new->userspace_addr;
398	if (IS_ALIGNED(size, PMD_SIZE) && IS_ALIGNED(gpa_start, PMD_SIZE)
399			&& IS_ALIGNED(hva_start, PMD_SIZE))
400		new->arch.flags |= KVM_MEM_HUGEPAGE_CAPABLE;
401	else {
402		/*
403		 * Pages belonging to memslots that don't have the same
404		 * alignment within a PMD for userspace and GPA cannot be
405		 * mapped with PMD entries, because we'll end up mapping
406		 * the wrong pages.
407		 *
408		 * Consider a layout like the following:
409		 *
410		 *    memslot->userspace_addr:
411		 *    +-----+--------------------+--------------------+---+
412		 *    |abcde|fgh  Stage-1 block  |    Stage-1 block tv|xyz|
413		 *    +-----+--------------------+--------------------+---+
414		 *
415		 *    memslot->base_gfn << PAGE_SIZE:
416		 *      +---+--------------------+--------------------+-----+
417		 *      |abc|def  Stage-2 block  |    Stage-2 block   |tvxyz|
418		 *      +---+--------------------+--------------------+-----+
419		 *
420		 * If we create those stage-2 blocks, we'll end up with this
421		 * incorrect mapping:
422		 *   d -> f
423		 *   e -> g
424		 *   f -> h
425		 */
426		gpa_offset = gpa_start & (PMD_SIZE - 1);
427		hva_offset = hva_start & (PMD_SIZE - 1);
428		if (gpa_offset != hva_offset) {
429			new->arch.flags |= KVM_MEM_HUGEPAGE_INCAPABLE;
430		} else {
431			if (gpa_offset == 0)
432				gpa_offset = PMD_SIZE;
433			if ((size + gpa_offset) < (PMD_SIZE * 2))
434				new->arch.flags |= KVM_MEM_HUGEPAGE_INCAPABLE;
435		}
436	}
437
438	return 0;
439}
440
441void kvm_arch_commit_memory_region(struct kvm *kvm,
442				   struct kvm_memory_slot *old,
443				   const struct kvm_memory_slot *new,
444				   enum kvm_mr_change change)
445{
446	int needs_flush;
447
448	/*
449	 * If dirty page logging is enabled, write protect all pages in the slot
450	 * ready for dirty logging.
451	 *
452	 * There is no need to do this in any of the following cases:
453	 * CREATE:	No dirty mappings will already exist.
454	 * MOVE/DELETE:	The old mappings will already have been cleaned up by
455	 *		kvm_arch_flush_shadow_memslot()
456	 */
457	if (change == KVM_MR_FLAGS_ONLY &&
458	    (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
459	     new->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
460		spin_lock(&kvm->mmu_lock);
461		/* Write protect GPA page table entries */
462		needs_flush = kvm_mkclean_gpa_pt(kvm, new->base_gfn,
463					new->base_gfn + new->npages);
464		spin_unlock(&kvm->mmu_lock);
465		if (needs_flush)
466			kvm_flush_remote_tlbs(kvm);
467	}
468}
469
470void kvm_arch_flush_shadow_all(struct kvm *kvm)
471{
472	kvm_flush_range(kvm, 0, kvm->arch.gpa_size >> PAGE_SHIFT, 0);
473}
474
475void kvm_arch_flush_shadow_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
476{
477	/*
478	 * The slot has been made invalid (ready for moving or deletion), so we
479	 * need to ensure that it can no longer be accessed by any guest vCPUs.
480	 */
481	kvm_flush_range(kvm, slot->base_gfn, slot->base_gfn + slot->npages, 1);
482}
483
484bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
485{
486	kvm_ptw_ctx ctx;
487
488	ctx.flag = 0;
489	ctx.ops = kvm_flush_pte;
490	kvm_ptw_prepare(kvm, &ctx);
491	INIT_LIST_HEAD(&ctx.list);
492
493	return kvm_ptw_top(kvm->arch.pgd, range->start << PAGE_SHIFT,
494			range->end << PAGE_SHIFT, &ctx);
495}
496
497bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
498{
499	unsigned long prot_bits;
500	kvm_pte_t *ptep;
501	kvm_pfn_t pfn = pte_pfn(range->arg.pte);
502	gpa_t gpa = range->start << PAGE_SHIFT;
503
504	ptep = kvm_populate_gpa(kvm, NULL, gpa, 0);
505	if (!ptep)
506		return false;
507
508	/* Replacing an absent or old page doesn't need flushes */
509	if (!kvm_pte_present(NULL, ptep) || !kvm_pte_young(*ptep)) {
510		kvm_set_pte(ptep, 0);
511		return false;
512	}
513
514	/* Fill new pte if write protected or page migrated */
515	prot_bits = _PAGE_PRESENT | __READABLE;
516	prot_bits |= _CACHE_MASK & pte_val(range->arg.pte);
517
518	/*
519	 * Set _PAGE_WRITE or _PAGE_DIRTY iff old and new pte both support
520	 * _PAGE_WRITE for map_page_fast if next page write fault
521	 * _PAGE_DIRTY since gpa has already recorded as dirty page
522	 */
523	prot_bits |= __WRITEABLE & *ptep & pte_val(range->arg.pte);
524	kvm_set_pte(ptep, kvm_pfn_pte(pfn, __pgprot(prot_bits)));
525
526	return true;
527}
528
529bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
530{
531	kvm_ptw_ctx ctx;
532
533	ctx.flag = 0;
534	ctx.ops = kvm_mkold_pte;
535	kvm_ptw_prepare(kvm, &ctx);
536
537	return kvm_ptw_top(kvm->arch.pgd, range->start << PAGE_SHIFT,
538				range->end << PAGE_SHIFT, &ctx);
539}
540
541bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
542{
543	gpa_t gpa = range->start << PAGE_SHIFT;
544	kvm_pte_t *ptep = kvm_populate_gpa(kvm, NULL, gpa, 0);
545
546	if (ptep && kvm_pte_present(NULL, ptep) && kvm_pte_young(*ptep))
547		return true;
548
549	return false;
550}
551
552/*
553 * kvm_map_page_fast() - Fast path GPA fault handler.
554 * @vcpu:		vCPU pointer.
555 * @gpa:		Guest physical address of fault.
556 * @write:	Whether the fault was due to a write.
557 *
558 * Perform fast path GPA fault handling, doing all that can be done without
559 * calling into KVM. This handles marking old pages young (for idle page
560 * tracking), and dirtying of clean pages (for dirty page logging).
561 *
562 * Returns:	0 on success, in which case we can update derived mappings and
563 *		resume guest execution.
564 *		-EFAULT on failure due to absent GPA mapping or write to
565 *		read-only page, in which case KVM must be consulted.
566 */
567static int kvm_map_page_fast(struct kvm_vcpu *vcpu, unsigned long gpa, bool write)
568{
569	int ret = 0;
570	kvm_pfn_t pfn = 0;
571	kvm_pte_t *ptep, changed, new;
572	gfn_t gfn = gpa >> PAGE_SHIFT;
573	struct kvm *kvm = vcpu->kvm;
574	struct kvm_memory_slot *slot;
575
576	spin_lock(&kvm->mmu_lock);
577
578	/* Fast path - just check GPA page table for an existing entry */
579	ptep = kvm_populate_gpa(kvm, NULL, gpa, 0);
580	if (!ptep || !kvm_pte_present(NULL, ptep)) {
581		ret = -EFAULT;
582		goto out;
583	}
584
585	/* Track access to pages marked old */
586	new = *ptep;
587	if (!kvm_pte_young(new))
588		new = kvm_pte_mkyoung(new);
589		/* call kvm_set_pfn_accessed() after unlock */
590
591	if (write && !kvm_pte_dirty(new)) {
592		if (!kvm_pte_write(new)) {
593			ret = -EFAULT;
594			goto out;
595		}
596
597		if (kvm_pte_huge(new)) {
598			/*
599			 * Do not set write permission when dirty logging is
600			 * enabled for HugePages
601			 */
602			slot = gfn_to_memslot(kvm, gfn);
603			if (kvm_slot_dirty_track_enabled(slot)) {
604				ret = -EFAULT;
605				goto out;
606			}
607		}
608
609		/* Track dirtying of writeable pages */
610		new = kvm_pte_mkdirty(new);
611	}
612
613	changed = new ^ (*ptep);
614	if (changed) {
615		kvm_set_pte(ptep, new);
616		pfn = kvm_pte_pfn(new);
617	}
618	spin_unlock(&kvm->mmu_lock);
619
620	/*
621	 * Fixme: pfn may be freed after mmu_lock
622	 * kvm_try_get_pfn(pfn)/kvm_release_pfn pair to prevent this?
623	 */
624	if (kvm_pte_young(changed))
625		kvm_set_pfn_accessed(pfn);
626
627	if (kvm_pte_dirty(changed)) {
628		mark_page_dirty(kvm, gfn);
629		kvm_set_pfn_dirty(pfn);
630	}
631	return ret;
632out:
633	spin_unlock(&kvm->mmu_lock);
634	return ret;
635}
636
637static bool fault_supports_huge_mapping(struct kvm_memory_slot *memslot,
638				unsigned long hva, bool write)
639{
640	hva_t start, end;
641
642	/* Disable dirty logging on HugePages */
643	if (kvm_slot_dirty_track_enabled(memslot) && write)
644		return false;
645
646	if (kvm_hugepage_capable(memslot))
647		return true;
648
649	if (kvm_hugepage_incapable(memslot))
650		return false;
651
652	start = memslot->userspace_addr;
653	end = start + memslot->npages * PAGE_SIZE;
654
655	/*
656	 * Next, let's make sure we're not trying to map anything not covered
657	 * by the memslot. This means we have to prohibit block size mappings
658	 * for the beginning and end of a non-block aligned and non-block sized
659	 * memory slot (illustrated by the head and tail parts of the
660	 * userspace view above containing pages 'abcde' and 'xyz',
661	 * respectively).
662	 *
663	 * Note that it doesn't matter if we do the check using the
664	 * userspace_addr or the base_gfn, as both are equally aligned (per
665	 * the check above) and equally sized.
666	 */
667	return (hva >= ALIGN(start, PMD_SIZE)) && (hva < ALIGN_DOWN(end, PMD_SIZE));
668}
669
670/*
671 * Lookup the mapping level for @gfn in the current mm.
672 *
673 * WARNING!  Use of host_pfn_mapping_level() requires the caller and the end
674 * consumer to be tied into KVM's handlers for MMU notifier events!
675 *
676 * There are several ways to safely use this helper:
677 *
678 * - Check mmu_invalidate_retry_gfn() after grabbing the mapping level, before
679 *   consuming it.  In this case, mmu_lock doesn't need to be held during the
680 *   lookup, but it does need to be held while checking the MMU notifier.
681 *
682 * - Hold mmu_lock AND ensure there is no in-progress MMU notifier invalidation
683 *   event for the hva.  This can be done by explicit checking the MMU notifier
684 *   or by ensuring that KVM already has a valid mapping that covers the hva.
685 *
686 * - Do not use the result to install new mappings, e.g. use the host mapping
687 *   level only to decide whether or not to zap an entry.  In this case, it's
688 *   not required to hold mmu_lock (though it's highly likely the caller will
689 *   want to hold mmu_lock anyways, e.g. to modify SPTEs).
690 *
691 * Note!  The lookup can still race with modifications to host page tables, but
692 * the above "rules" ensure KVM will not _consume_ the result of the walk if a
693 * race with the primary MMU occurs.
694 */
695static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn,
696				const struct kvm_memory_slot *slot)
697{
698	int level = 0;
699	unsigned long hva;
700	unsigned long flags;
701	pgd_t pgd;
702	p4d_t p4d;
703	pud_t pud;
704	pmd_t pmd;
705
706	/*
707	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
708	 * is not solely for performance, it's also necessary to avoid the
709	 * "writable" check in __gfn_to_hva_many(), which will always fail on
710	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
711	 * page fault steps have already verified the guest isn't writing a
712	 * read-only memslot.
713	 */
714	hva = __gfn_to_hva_memslot(slot, gfn);
715
716	/*
717	 * Disable IRQs to prevent concurrent tear down of host page tables,
718	 * e.g. if the primary MMU promotes a P*D to a huge page and then frees
719	 * the original page table.
720	 */
721	local_irq_save(flags);
722
723	/*
724	 * Read each entry once.  As above, a non-leaf entry can be promoted to
725	 * a huge page _during_ this walk.  Re-reading the entry could send the
726	 * walk into the weeks, e.g. p*d_leaf() returns false (sees the old
727	 * value) and then p*d_offset() walks into the target huge page instead
728	 * of the old page table (sees the new value).
729	 */
730	pgd = READ_ONCE(*pgd_offset(kvm->mm, hva));
731	if (pgd_none(pgd))
732		goto out;
733
734	p4d = READ_ONCE(*p4d_offset(&pgd, hva));
735	if (p4d_none(p4d) || !p4d_present(p4d))
736		goto out;
737
738	pud = READ_ONCE(*pud_offset(&p4d, hva));
739	if (pud_none(pud) || !pud_present(pud))
740		goto out;
741
742	pmd = READ_ONCE(*pmd_offset(&pud, hva));
743	if (pmd_none(pmd) || !pmd_present(pmd))
744		goto out;
745
746	if (kvm_pte_huge(pmd_val(pmd)))
747		level = 1;
748
749out:
750	local_irq_restore(flags);
751	return level;
752}
753
754/*
755 * Split huge page
756 */
757static kvm_pte_t *kvm_split_huge(struct kvm_vcpu *vcpu, kvm_pte_t *ptep, gfn_t gfn)
758{
759	int i;
760	kvm_pte_t val, *child;
761	struct kvm *kvm = vcpu->kvm;
762	struct kvm_mmu_memory_cache *memcache;
763
764	memcache = &vcpu->arch.mmu_page_cache;
765	child = kvm_mmu_memory_cache_alloc(memcache);
766	val = kvm_pte_mksmall(*ptep);
767	for (i = 0; i < PTRS_PER_PTE; i++) {
768		kvm_set_pte(child + i, val);
769		val += PAGE_SIZE;
770	}
771
772	/* The later kvm_flush_tlb_gpa() will flush hugepage tlb */
773	kvm_set_pte(ptep, __pa(child));
774
775	kvm->stat.hugepages--;
776	kvm->stat.pages += PTRS_PER_PTE;
777
778	return child + (gfn & (PTRS_PER_PTE - 1));
779}
780
781/*
782 * kvm_map_page() - Map a guest physical page.
783 * @vcpu:		vCPU pointer.
784 * @gpa:		Guest physical address of fault.
785 * @write:	Whether the fault was due to a write.
786 *
787 * Handle GPA faults by creating a new GPA mapping (or updating an existing
788 * one).
789 *
790 * This takes care of marking pages young or dirty (idle/dirty page tracking),
791 * asking KVM for the corresponding PFN, and creating a mapping in the GPA page
792 * tables. Derived mappings (GVA page tables and TLBs) must be handled by the
793 * caller.
794 *
795 * Returns:	0 on success
796 *		-EFAULT if there is no memory region at @gpa or a write was
797 *		attempted to a read-only memory region. This is usually handled
798 *		as an MMIO access.
799 */
800static int kvm_map_page(struct kvm_vcpu *vcpu, unsigned long gpa, bool write)
801{
802	bool writeable;
803	int srcu_idx, err, retry_no = 0, level;
804	unsigned long hva, mmu_seq, prot_bits;
805	kvm_pfn_t pfn;
806	kvm_pte_t *ptep, new_pte;
807	gfn_t gfn = gpa >> PAGE_SHIFT;
808	struct kvm *kvm = vcpu->kvm;
809	struct kvm_memory_slot *memslot;
810	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
811
812	/* Try the fast path to handle old / clean pages */
813	srcu_idx = srcu_read_lock(&kvm->srcu);
814	err = kvm_map_page_fast(vcpu, gpa, write);
815	if (!err)
816		goto out;
817
818	memslot = gfn_to_memslot(kvm, gfn);
819	hva = gfn_to_hva_memslot_prot(memslot, gfn, &writeable);
820	if (kvm_is_error_hva(hva) || (write && !writeable)) {
821		err = -EFAULT;
822		goto out;
823	}
824
825	/* We need a minimum of cached pages ready for page table creation */
826	err = kvm_mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES);
827	if (err)
828		goto out;
829
830retry:
831	/*
832	 * Used to check for invalidations in progress, of the pfn that is
833	 * returned by pfn_to_pfn_prot below.
834	 */
835	mmu_seq = kvm->mmu_invalidate_seq;
836	/*
837	 * Ensure the read of mmu_invalidate_seq isn't reordered with PTE reads in
838	 * gfn_to_pfn_prot() (which calls get_user_pages()), so that we don't
839	 * risk the page we get a reference to getting unmapped before we have a
840	 * chance to grab the mmu_lock without mmu_invalidate_retry() noticing.
841	 *
842	 * This smp_rmb() pairs with the effective smp_wmb() of the combination
843	 * of the pte_unmap_unlock() after the PTE is zapped, and the
844	 * spin_lock() in kvm_mmu_invalidate_invalidate_<page|range_end>() before
845	 * mmu_invalidate_seq is incremented.
846	 */
847	smp_rmb();
848
849	/* Slow path - ask KVM core whether we can access this GPA */
850	pfn = gfn_to_pfn_prot(kvm, gfn, write, &writeable);
851	if (is_error_noslot_pfn(pfn)) {
852		err = -EFAULT;
853		goto out;
854	}
855
856	/* Check if an invalidation has taken place since we got pfn */
857	spin_lock(&kvm->mmu_lock);
858	if (mmu_invalidate_retry_gfn(kvm, mmu_seq, gfn)) {
859		/*
860		 * This can happen when mappings are changed asynchronously, but
861		 * also synchronously if a COW is triggered by
862		 * gfn_to_pfn_prot().
863		 */
864		spin_unlock(&kvm->mmu_lock);
865		kvm_release_pfn_clean(pfn);
866		if (retry_no > 100) {
867			retry_no = 0;
868			schedule();
869		}
870		retry_no++;
871		goto retry;
872	}
873
874	/*
875	 * For emulated devices such virtio device, actual cache attribute is
876	 * determined by physical machine.
877	 * For pass through physical device, it should be uncachable
878	 */
879	prot_bits = _PAGE_PRESENT | __READABLE;
880	if (pfn_valid(pfn))
881		prot_bits |= _CACHE_CC;
882	else
883		prot_bits |= _CACHE_SUC;
884
885	if (writeable) {
886		prot_bits |= _PAGE_WRITE;
887		if (write)
888			prot_bits |= __WRITEABLE;
889	}
890
891	/* Disable dirty logging on HugePages */
892	level = 0;
893	if (!fault_supports_huge_mapping(memslot, hva, write)) {
894		level = 0;
895	} else {
896		level = host_pfn_mapping_level(kvm, gfn, memslot);
897		if (level == 1) {
898			gfn = gfn & ~(PTRS_PER_PTE - 1);
899			pfn = pfn & ~(PTRS_PER_PTE - 1);
900		}
901	}
902
903	/* Ensure page tables are allocated */
904	ptep = kvm_populate_gpa(kvm, memcache, gpa, level);
905	new_pte = kvm_pfn_pte(pfn, __pgprot(prot_bits));
906	if (level == 1) {
907		new_pte = kvm_pte_mkhuge(new_pte);
908		/*
909		 * previous pmd entry is invalid_pte_table
910		 * there is invalid tlb with small page
911		 * need flush these invalid tlbs for current vcpu
912		 */
913		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
914		++kvm->stat.hugepages;
915	}  else if (kvm_pte_huge(*ptep) && write)
916		ptep = kvm_split_huge(vcpu, ptep, gfn);
917	else
918		++kvm->stat.pages;
919	kvm_set_pte(ptep, new_pte);
920	spin_unlock(&kvm->mmu_lock);
921
922	if (prot_bits & _PAGE_DIRTY) {
923		mark_page_dirty_in_slot(kvm, memslot, gfn);
924		kvm_set_pfn_dirty(pfn);
925	}
926
927	kvm_set_pfn_accessed(pfn);
928	kvm_release_pfn_clean(pfn);
929out:
930	srcu_read_unlock(&kvm->srcu, srcu_idx);
931	return err;
932}
933
934int kvm_handle_mm_fault(struct kvm_vcpu *vcpu, unsigned long gpa, bool write)
935{
936	int ret;
937
938	ret = kvm_map_page(vcpu, gpa, write);
939	if (ret)
940		return ret;
941
942	/* Invalidate this entry in the TLB */
943	kvm_flush_tlb_gpa(vcpu, gpa);
944
945	return 0;
946}
947
948void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
949{
950}
951
952void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
953					const struct kvm_memory_slot *memslot)
954{
955	kvm_flush_remote_tlbs(kvm);
956}
957