1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Memory subsystem initialization for Hexagon
4 *
5 * Copyright (c) 2010-2013, The Linux Foundation. All rights reserved.
6 */
7
8#include <linux/init.h>
9#include <linux/mm.h>
10#include <linux/memblock.h>
11#include <asm/atomic.h>
12#include <linux/highmem.h>
13#include <asm/tlb.h>
14#include <asm/sections.h>
15#include <asm/setup.h>
16#include <asm/vm_mmu.h>
17
18/*
19 * Define a startpg just past the end of the kernel image and a lastpg
20 * that corresponds to the end of real or simulated platform memory.
21 */
22#define bootmem_startpg (PFN_UP(((unsigned long) _end) - PAGE_OFFSET + PHYS_OFFSET))
23
24unsigned long bootmem_lastpg;	/*  Should be set by platform code  */
25unsigned long __phys_offset;	/*  physical kernel offset >> 12  */
26
27/*  Set as variable to limit PMD copies  */
28int max_kernel_seg = 0x303;
29
30/*  indicate pfn's of high memory  */
31unsigned long highstart_pfn, highend_pfn;
32
33/* Default cache attribute for newly created page tables */
34unsigned long _dflt_cache_att = CACHEDEF;
35
36/*
37 * The current "generation" of kernel map, which should not roll
38 * over until Hell freezes over.  Actual bound in years needs to be
39 * calculated to confirm.
40 */
41DEFINE_SPINLOCK(kmap_gen_lock);
42
43/*  checkpatch says don't init this to 0.  */
44unsigned long long kmap_generation;
45
46/*
47 * mem_init - initializes memory
48 *
49 * Frees up bootmem
50 * Fixes up more stuff for HIGHMEM
51 * Calculates and displays memory available/used
52 */
53void __init mem_init(void)
54{
55	/*  No idea where this is actually declared.  Seems to evade LXR.  */
56	memblock_free_all();
57
58	/*
59	 *  To-Do:  someone somewhere should wipe out the bootmem map
60	 *  after we're done?
61	 */
62
63	/*
64	 * This can be moved to some more virtual-memory-specific
65	 * initialization hook at some point.  Set the init_mm
66	 * descriptors "context" value to point to the initial
67	 * kernel segment table's physical address.
68	 */
69	init_mm.context.ptbase = __pa(init_mm.pgd);
70}
71
72void sync_icache_dcache(pte_t pte)
73{
74	unsigned long addr;
75	struct page *page;
76
77	page = pte_page(pte);
78	addr = (unsigned long) page_address(page);
79
80	__vmcache_idsync(addr, PAGE_SIZE);
81}
82
83/*
84 * In order to set up page allocator "nodes",
85 * somebody has to call free_area_init() for UMA.
86 *
87 * In this mode, we only have one pg_data_t
88 * structure: contig_mem_data.
89 */
90static void __init paging_init(void)
91{
92	unsigned long max_zone_pfn[MAX_NR_ZONES] = {0, };
93
94	/*
95	 *  This is not particularly well documented anywhere, but
96	 *  give ZONE_NORMAL all the memory, including the big holes
97	 *  left by the kernel+bootmem_map which are already left as reserved
98	 *  in the bootmem_map; free_area_init should see those bits and
99	 *  adjust accordingly.
100	 */
101
102	max_zone_pfn[ZONE_NORMAL] = max_low_pfn;
103
104	free_area_init(max_zone_pfn);  /*  sets up the zonelists and mem_map  */
105
106	/*
107	 * Start of high memory area.  Will probably need something more
108	 * fancy if we...  get more fancy.
109	 */
110	high_memory = (void *)((bootmem_lastpg + 1) << PAGE_SHIFT);
111}
112
113#ifndef DMA_RESERVE
114#define DMA_RESERVE		(4)
115#endif
116
117#define DMA_CHUNKSIZE		(1<<22)
118#define DMA_RESERVED_BYTES	(DMA_RESERVE * DMA_CHUNKSIZE)
119
120/*
121 * Pick out the memory size.  We look for mem=size,
122 * where size is "size[KkMm]"
123 */
124static int __init early_mem(char *p)
125{
126	unsigned long size;
127	char *endp;
128
129	size = memparse(p, &endp);
130
131	bootmem_lastpg = PFN_DOWN(size);
132
133	return 0;
134}
135early_param("mem", early_mem);
136
137size_t hexagon_coherent_pool_size = (size_t) (DMA_RESERVE << 22);
138
139void __init setup_arch_memory(void)
140{
141	/*  XXX Todo: this probably should be cleaned up  */
142	u32 *segtable = (u32 *) &swapper_pg_dir[0];
143	u32 *segtable_end;
144
145	/*
146	 * Set up boot memory allocator
147	 *
148	 * The Gorman book also talks about these functions.
149	 * This needs to change for highmem setups.
150	 */
151
152	/*  Prior to this, bootmem_lastpg is actually mem size  */
153	bootmem_lastpg += ARCH_PFN_OFFSET;
154
155	/* Memory size needs to be a multiple of 16M */
156	bootmem_lastpg = PFN_DOWN((bootmem_lastpg << PAGE_SHIFT) &
157		~((BIG_KERNEL_PAGE_SIZE) - 1));
158
159	memblock_add(PHYS_OFFSET,
160		     (bootmem_lastpg - ARCH_PFN_OFFSET) << PAGE_SHIFT);
161
162	/* Reserve kernel text/data/bss */
163	memblock_reserve(PHYS_OFFSET,
164			 (bootmem_startpg - ARCH_PFN_OFFSET) << PAGE_SHIFT);
165	/*
166	 * Reserve the top DMA_RESERVE bytes of RAM for DMA (uncached)
167	 * memory allocation
168	 */
169	max_low_pfn = bootmem_lastpg - PFN_DOWN(DMA_RESERVED_BYTES);
170	min_low_pfn = ARCH_PFN_OFFSET;
171	memblock_reserve(PFN_PHYS(max_low_pfn), DMA_RESERVED_BYTES);
172
173	printk(KERN_INFO "bootmem_startpg:  0x%08lx\n", bootmem_startpg);
174	printk(KERN_INFO "bootmem_lastpg:  0x%08lx\n", bootmem_lastpg);
175	printk(KERN_INFO "min_low_pfn:  0x%08lx\n", min_low_pfn);
176	printk(KERN_INFO "max_low_pfn:  0x%08lx\n", max_low_pfn);
177
178	/*
179	 * The default VM page tables (will be) populated with
180	 * VA=PA+PAGE_OFFSET mapping.  We go in and invalidate entries
181	 * higher than what we have memory for.
182	 */
183
184	/*  this is pointer arithmetic; each entry covers 4MB  */
185	segtable = segtable + (PAGE_OFFSET >> 22);
186
187	/*  this actually only goes to the end of the first gig  */
188	segtable_end = segtable + (1<<(30-22));
189
190	/*
191	 * Move forward to the start of empty pages; take into account
192	 * phys_offset shift.
193	 */
194
195	segtable += (bootmem_lastpg-ARCH_PFN_OFFSET)>>(22-PAGE_SHIFT);
196	{
197		int i;
198
199		for (i = 1 ; i <= DMA_RESERVE ; i++)
200			segtable[-i] = ((segtable[-i] & __HVM_PTE_PGMASK_4MB)
201				| __HVM_PTE_R | __HVM_PTE_W | __HVM_PTE_X
202				| __HEXAGON_C_UNC << 6
203				| __HVM_PDE_S_4MB);
204	}
205
206	printk(KERN_INFO "clearing segtable from %p to %p\n", segtable,
207		segtable_end);
208	while (segtable < (segtable_end-8))
209		*(segtable++) = __HVM_PDE_S_INVALID;
210	/* stop the pointer at the device I/O 4MB page  */
211
212	printk(KERN_INFO "segtable = %p (should be equal to _K_io_map)\n",
213		segtable);
214
215#if 0
216	/*  Other half of the early device table from vm_init_segtable. */
217	printk(KERN_INFO "&_K_init_devicetable = 0x%08x\n",
218		(unsigned long) _K_init_devicetable-PAGE_OFFSET);
219	*segtable = ((u32) (unsigned long) _K_init_devicetable-PAGE_OFFSET) |
220		__HVM_PDE_S_4KB;
221	printk(KERN_INFO "*segtable = 0x%08x\n", *segtable);
222#endif
223
224	/*
225	 *  The bootmem allocator seemingly just lives to feed memory
226	 *  to the paging system
227	 */
228	printk(KERN_INFO "PAGE_SIZE=%lu\n", PAGE_SIZE);
229	paging_init();  /*  See Gorman Book, 2.3  */
230
231	/*
232	 *  At this point, the page allocator is kind of initialized, but
233	 *  apparently no pages are available (just like with the bootmem
234	 *  allocator), and need to be freed themselves via mem_init(),
235	 *  which is called by start_kernel() later on in the process
236	 */
237}
238
239static const pgprot_t protection_map[16] = {
240	[VM_NONE]					= __pgprot(_PAGE_PRESENT | _PAGE_USER |
241								   CACHEDEF),
242	[VM_READ]					= __pgprot(_PAGE_PRESENT | _PAGE_USER |
243								   _PAGE_READ | CACHEDEF),
244	[VM_WRITE]					= __pgprot(_PAGE_PRESENT | _PAGE_USER |
245								   CACHEDEF),
246	[VM_WRITE | VM_READ]				= __pgprot(_PAGE_PRESENT | _PAGE_USER |
247								   _PAGE_READ | CACHEDEF),
248	[VM_EXEC]					= __pgprot(_PAGE_PRESENT | _PAGE_USER |
249								   _PAGE_EXECUTE | CACHEDEF),
250	[VM_EXEC | VM_READ]				= __pgprot(_PAGE_PRESENT | _PAGE_USER |
251								   _PAGE_EXECUTE | _PAGE_READ |
252								   CACHEDEF),
253	[VM_EXEC | VM_WRITE]				= __pgprot(_PAGE_PRESENT | _PAGE_USER |
254								   _PAGE_EXECUTE | CACHEDEF),
255	[VM_EXEC | VM_WRITE | VM_READ]			= __pgprot(_PAGE_PRESENT | _PAGE_USER |
256								   _PAGE_EXECUTE | _PAGE_READ |
257								   CACHEDEF),
258	[VM_SHARED]                                     = __pgprot(_PAGE_PRESENT | _PAGE_USER |
259								   CACHEDEF),
260	[VM_SHARED | VM_READ]				= __pgprot(_PAGE_PRESENT | _PAGE_USER |
261								   _PAGE_READ | CACHEDEF),
262	[VM_SHARED | VM_WRITE]				= __pgprot(_PAGE_PRESENT | _PAGE_USER |
263								   _PAGE_WRITE | CACHEDEF),
264	[VM_SHARED | VM_WRITE | VM_READ]		= __pgprot(_PAGE_PRESENT | _PAGE_USER |
265								   _PAGE_READ | _PAGE_WRITE |
266								   CACHEDEF),
267	[VM_SHARED | VM_EXEC]				= __pgprot(_PAGE_PRESENT | _PAGE_USER |
268								   _PAGE_EXECUTE | CACHEDEF),
269	[VM_SHARED | VM_EXEC | VM_READ]			= __pgprot(_PAGE_PRESENT | _PAGE_USER |
270								   _PAGE_EXECUTE | _PAGE_READ |
271								   CACHEDEF),
272	[VM_SHARED | VM_EXEC | VM_WRITE]		= __pgprot(_PAGE_PRESENT | _PAGE_USER |
273								   _PAGE_EXECUTE | _PAGE_WRITE |
274								   CACHEDEF),
275	[VM_SHARED | VM_EXEC | VM_WRITE | VM_READ]	= __pgprot(_PAGE_PRESENT | _PAGE_USER |
276								   _PAGE_READ | _PAGE_EXECUTE |
277								   _PAGE_WRITE | CACHEDEF)
278};
279DECLARE_VM_GET_PAGE_PROT
280