1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Based on arch/arm/mm/mmu.c
4 *
5 * Copyright (C) 1995-2005 Russell King
6 * Copyright (C) 2012 ARM Ltd.
7 */
8
9#include <linux/cache.h>
10#include <linux/export.h>
11#include <linux/kernel.h>
12#include <linux/errno.h>
13#include <linux/init.h>
14#include <linux/ioport.h>
15#include <linux/kexec.h>
16#include <linux/libfdt.h>
17#include <linux/mman.h>
18#include <linux/nodemask.h>
19#include <linux/memblock.h>
20#include <linux/memremap.h>
21#include <linux/memory.h>
22#include <linux/fs.h>
23#include <linux/io.h>
24#include <linux/mm.h>
25#include <linux/vmalloc.h>
26#include <linux/set_memory.h>
27#include <linux/kfence.h>
28
29#include <asm/barrier.h>
30#include <asm/cputype.h>
31#include <asm/fixmap.h>
32#include <asm/kasan.h>
33#include <asm/kernel-pgtable.h>
34#include <asm/sections.h>
35#include <asm/setup.h>
36#include <linux/sizes.h>
37#include <asm/tlb.h>
38#include <asm/mmu_context.h>
39#include <asm/ptdump.h>
40#include <asm/tlbflush.h>
41#include <asm/pgalloc.h>
42#include <asm/kfence.h>
43
44#define NO_BLOCK_MAPPINGS	BIT(0)
45#define NO_CONT_MAPPINGS	BIT(1)
46#define NO_EXEC_MAPPINGS	BIT(2)	/* assumes FEAT_HPDS is not used */
47
48u64 kimage_voffset __ro_after_init;
49EXPORT_SYMBOL(kimage_voffset);
50
51u32 __boot_cpu_mode[] = { BOOT_CPU_MODE_EL2, BOOT_CPU_MODE_EL1 };
52
53static bool rodata_is_rw __ro_after_init = true;
54
55/*
56 * The booting CPU updates the failed status @__early_cpu_boot_status,
57 * with MMU turned off.
58 */
59long __section(".mmuoff.data.write") __early_cpu_boot_status;
60
61/*
62 * Empty_zero_page is a special page that is used for zero-initialized data
63 * and COW.
64 */
65unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)] __page_aligned_bss;
66EXPORT_SYMBOL(empty_zero_page);
67
68static DEFINE_SPINLOCK(swapper_pgdir_lock);
69static DEFINE_MUTEX(fixmap_lock);
70
71void noinstr set_swapper_pgd(pgd_t *pgdp, pgd_t pgd)
72{
73	pgd_t *fixmap_pgdp;
74
75	/*
76	 * Don't bother with the fixmap if swapper_pg_dir is still mapped
77	 * writable in the kernel mapping.
78	 */
79	if (rodata_is_rw) {
80		WRITE_ONCE(*pgdp, pgd);
81		dsb(ishst);
82		isb();
83		return;
84	}
85
86	spin_lock(&swapper_pgdir_lock);
87	fixmap_pgdp = pgd_set_fixmap(__pa_symbol(pgdp));
88	WRITE_ONCE(*fixmap_pgdp, pgd);
89	/*
90	 * We need dsb(ishst) here to ensure the page-table-walker sees
91	 * our new entry before set_p?d() returns. The fixmap's
92	 * flush_tlb_kernel_range() via clear_fixmap() does this for us.
93	 */
94	pgd_clear_fixmap();
95	spin_unlock(&swapper_pgdir_lock);
96}
97
98pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
99			      unsigned long size, pgprot_t vma_prot)
100{
101	if (!pfn_is_map_memory(pfn))
102		return pgprot_noncached(vma_prot);
103	else if (file->f_flags & O_SYNC)
104		return pgprot_writecombine(vma_prot);
105	return vma_prot;
106}
107EXPORT_SYMBOL(phys_mem_access_prot);
108
109static phys_addr_t __init early_pgtable_alloc(int shift)
110{
111	phys_addr_t phys;
112	void *ptr;
113
114	phys = memblock_phys_alloc_range(PAGE_SIZE, PAGE_SIZE, 0,
115					 MEMBLOCK_ALLOC_NOLEAKTRACE);
116	if (!phys)
117		panic("Failed to allocate page table page\n");
118
119	/*
120	 * The FIX_{PGD,PUD,PMD} slots may be in active use, but the FIX_PTE
121	 * slot will be free, so we can (ab)use the FIX_PTE slot to initialise
122	 * any level of table.
123	 */
124	ptr = pte_set_fixmap(phys);
125
126	memset(ptr, 0, PAGE_SIZE);
127
128	/*
129	 * Implicit barriers also ensure the zeroed page is visible to the page
130	 * table walker
131	 */
132	pte_clear_fixmap();
133
134	return phys;
135}
136
137bool pgattr_change_is_safe(u64 old, u64 new)
138{
139	/*
140	 * The following mapping attributes may be updated in live
141	 * kernel mappings without the need for break-before-make.
142	 */
143	pteval_t mask = PTE_PXN | PTE_RDONLY | PTE_WRITE | PTE_NG;
144
145	/* creating or taking down mappings is always safe */
146	if (!pte_valid(__pte(old)) || !pte_valid(__pte(new)))
147		return true;
148
149	/* A live entry's pfn should not change */
150	if (pte_pfn(__pte(old)) != pte_pfn(__pte(new)))
151		return false;
152
153	/* live contiguous mappings may not be manipulated at all */
154	if ((old | new) & PTE_CONT)
155		return false;
156
157	/* Transitioning from Non-Global to Global is unsafe */
158	if (old & ~new & PTE_NG)
159		return false;
160
161	/*
162	 * Changing the memory type between Normal and Normal-Tagged is safe
163	 * since Tagged is considered a permission attribute from the
164	 * mismatched attribute aliases perspective.
165	 */
166	if (((old & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL) ||
167	     (old & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL_TAGGED)) &&
168	    ((new & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL) ||
169	     (new & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL_TAGGED)))
170		mask |= PTE_ATTRINDX_MASK;
171
172	return ((old ^ new) & ~mask) == 0;
173}
174
175static void init_pte(pmd_t *pmdp, unsigned long addr, unsigned long end,
176		     phys_addr_t phys, pgprot_t prot)
177{
178	pte_t *ptep;
179
180	ptep = pte_set_fixmap_offset(pmdp, addr);
181	do {
182		pte_t old_pte = __ptep_get(ptep);
183
184		__set_pte(ptep, pfn_pte(__phys_to_pfn(phys), prot));
185
186		/*
187		 * After the PTE entry has been populated once, we
188		 * only allow updates to the permission attributes.
189		 */
190		BUG_ON(!pgattr_change_is_safe(pte_val(old_pte),
191					      pte_val(__ptep_get(ptep))));
192
193		phys += PAGE_SIZE;
194	} while (ptep++, addr += PAGE_SIZE, addr != end);
195
196	pte_clear_fixmap();
197}
198
199static void alloc_init_cont_pte(pmd_t *pmdp, unsigned long addr,
200				unsigned long end, phys_addr_t phys,
201				pgprot_t prot,
202				phys_addr_t (*pgtable_alloc)(int),
203				int flags)
204{
205	unsigned long next;
206	pmd_t pmd = READ_ONCE(*pmdp);
207
208	BUG_ON(pmd_sect(pmd));
209	if (pmd_none(pmd)) {
210		pmdval_t pmdval = PMD_TYPE_TABLE | PMD_TABLE_UXN;
211		phys_addr_t pte_phys;
212
213		if (flags & NO_EXEC_MAPPINGS)
214			pmdval |= PMD_TABLE_PXN;
215		BUG_ON(!pgtable_alloc);
216		pte_phys = pgtable_alloc(PAGE_SHIFT);
217		__pmd_populate(pmdp, pte_phys, pmdval);
218		pmd = READ_ONCE(*pmdp);
219	}
220	BUG_ON(pmd_bad(pmd));
221
222	do {
223		pgprot_t __prot = prot;
224
225		next = pte_cont_addr_end(addr, end);
226
227		/* use a contiguous mapping if the range is suitably aligned */
228		if ((((addr | next | phys) & ~CONT_PTE_MASK) == 0) &&
229		    (flags & NO_CONT_MAPPINGS) == 0)
230			__prot = __pgprot(pgprot_val(prot) | PTE_CONT);
231
232		init_pte(pmdp, addr, next, phys, __prot);
233
234		phys += next - addr;
235	} while (addr = next, addr != end);
236}
237
238static void init_pmd(pud_t *pudp, unsigned long addr, unsigned long end,
239		     phys_addr_t phys, pgprot_t prot,
240		     phys_addr_t (*pgtable_alloc)(int), int flags)
241{
242	unsigned long next;
243	pmd_t *pmdp;
244
245	pmdp = pmd_set_fixmap_offset(pudp, addr);
246	do {
247		pmd_t old_pmd = READ_ONCE(*pmdp);
248
249		next = pmd_addr_end(addr, end);
250
251		/* try section mapping first */
252		if (((addr | next | phys) & ~PMD_MASK) == 0 &&
253		    (flags & NO_BLOCK_MAPPINGS) == 0) {
254			pmd_set_huge(pmdp, phys, prot);
255
256			/*
257			 * After the PMD entry has been populated once, we
258			 * only allow updates to the permission attributes.
259			 */
260			BUG_ON(!pgattr_change_is_safe(pmd_val(old_pmd),
261						      READ_ONCE(pmd_val(*pmdp))));
262		} else {
263			alloc_init_cont_pte(pmdp, addr, next, phys, prot,
264					    pgtable_alloc, flags);
265
266			BUG_ON(pmd_val(old_pmd) != 0 &&
267			       pmd_val(old_pmd) != READ_ONCE(pmd_val(*pmdp)));
268		}
269		phys += next - addr;
270	} while (pmdp++, addr = next, addr != end);
271
272	pmd_clear_fixmap();
273}
274
275static void alloc_init_cont_pmd(pud_t *pudp, unsigned long addr,
276				unsigned long end, phys_addr_t phys,
277				pgprot_t prot,
278				phys_addr_t (*pgtable_alloc)(int), int flags)
279{
280	unsigned long next;
281	pud_t pud = READ_ONCE(*pudp);
282
283	/*
284	 * Check for initial section mappings in the pgd/pud.
285	 */
286	BUG_ON(pud_sect(pud));
287	if (pud_none(pud)) {
288		pudval_t pudval = PUD_TYPE_TABLE | PUD_TABLE_UXN;
289		phys_addr_t pmd_phys;
290
291		if (flags & NO_EXEC_MAPPINGS)
292			pudval |= PUD_TABLE_PXN;
293		BUG_ON(!pgtable_alloc);
294		pmd_phys = pgtable_alloc(PMD_SHIFT);
295		__pud_populate(pudp, pmd_phys, pudval);
296		pud = READ_ONCE(*pudp);
297	}
298	BUG_ON(pud_bad(pud));
299
300	do {
301		pgprot_t __prot = prot;
302
303		next = pmd_cont_addr_end(addr, end);
304
305		/* use a contiguous mapping if the range is suitably aligned */
306		if ((((addr | next | phys) & ~CONT_PMD_MASK) == 0) &&
307		    (flags & NO_CONT_MAPPINGS) == 0)
308			__prot = __pgprot(pgprot_val(prot) | PTE_CONT);
309
310		init_pmd(pudp, addr, next, phys, __prot, pgtable_alloc, flags);
311
312		phys += next - addr;
313	} while (addr = next, addr != end);
314}
315
316static void alloc_init_pud(p4d_t *p4dp, unsigned long addr, unsigned long end,
317			   phys_addr_t phys, pgprot_t prot,
318			   phys_addr_t (*pgtable_alloc)(int),
319			   int flags)
320{
321	unsigned long next;
322	p4d_t p4d = READ_ONCE(*p4dp);
323	pud_t *pudp;
324
325	if (p4d_none(p4d)) {
326		p4dval_t p4dval = P4D_TYPE_TABLE | P4D_TABLE_UXN;
327		phys_addr_t pud_phys;
328
329		if (flags & NO_EXEC_MAPPINGS)
330			p4dval |= P4D_TABLE_PXN;
331		BUG_ON(!pgtable_alloc);
332		pud_phys = pgtable_alloc(PUD_SHIFT);
333		__p4d_populate(p4dp, pud_phys, p4dval);
334		p4d = READ_ONCE(*p4dp);
335	}
336	BUG_ON(p4d_bad(p4d));
337
338	pudp = pud_set_fixmap_offset(p4dp, addr);
339	do {
340		pud_t old_pud = READ_ONCE(*pudp);
341
342		next = pud_addr_end(addr, end);
343
344		/*
345		 * For 4K granule only, attempt to put down a 1GB block
346		 */
347		if (pud_sect_supported() &&
348		   ((addr | next | phys) & ~PUD_MASK) == 0 &&
349		    (flags & NO_BLOCK_MAPPINGS) == 0) {
350			pud_set_huge(pudp, phys, prot);
351
352			/*
353			 * After the PUD entry has been populated once, we
354			 * only allow updates to the permission attributes.
355			 */
356			BUG_ON(!pgattr_change_is_safe(pud_val(old_pud),
357						      READ_ONCE(pud_val(*pudp))));
358		} else {
359			alloc_init_cont_pmd(pudp, addr, next, phys, prot,
360					    pgtable_alloc, flags);
361
362			BUG_ON(pud_val(old_pud) != 0 &&
363			       pud_val(old_pud) != READ_ONCE(pud_val(*pudp)));
364		}
365		phys += next - addr;
366	} while (pudp++, addr = next, addr != end);
367
368	pud_clear_fixmap();
369}
370
371static void alloc_init_p4d(pgd_t *pgdp, unsigned long addr, unsigned long end,
372			   phys_addr_t phys, pgprot_t prot,
373			   phys_addr_t (*pgtable_alloc)(int),
374			   int flags)
375{
376	unsigned long next;
377	pgd_t pgd = READ_ONCE(*pgdp);
378	p4d_t *p4dp;
379
380	if (pgd_none(pgd)) {
381		pgdval_t pgdval = PGD_TYPE_TABLE | PGD_TABLE_UXN;
382		phys_addr_t p4d_phys;
383
384		if (flags & NO_EXEC_MAPPINGS)
385			pgdval |= PGD_TABLE_PXN;
386		BUG_ON(!pgtable_alloc);
387		p4d_phys = pgtable_alloc(P4D_SHIFT);
388		__pgd_populate(pgdp, p4d_phys, pgdval);
389		pgd = READ_ONCE(*pgdp);
390	}
391	BUG_ON(pgd_bad(pgd));
392
393	p4dp = p4d_set_fixmap_offset(pgdp, addr);
394	do {
395		p4d_t old_p4d = READ_ONCE(*p4dp);
396
397		next = p4d_addr_end(addr, end);
398
399		alloc_init_pud(p4dp, addr, next, phys, prot,
400			       pgtable_alloc, flags);
401
402		BUG_ON(p4d_val(old_p4d) != 0 &&
403		       p4d_val(old_p4d) != READ_ONCE(p4d_val(*p4dp)));
404
405		phys += next - addr;
406	} while (p4dp++, addr = next, addr != end);
407
408	p4d_clear_fixmap();
409}
410
411static void __create_pgd_mapping_locked(pgd_t *pgdir, phys_addr_t phys,
412					unsigned long virt, phys_addr_t size,
413					pgprot_t prot,
414					phys_addr_t (*pgtable_alloc)(int),
415					int flags)
416{
417	unsigned long addr, end, next;
418	pgd_t *pgdp = pgd_offset_pgd(pgdir, virt);
419
420	/*
421	 * If the virtual and physical address don't have the same offset
422	 * within a page, we cannot map the region as the caller expects.
423	 */
424	if (WARN_ON((phys ^ virt) & ~PAGE_MASK))
425		return;
426
427	phys &= PAGE_MASK;
428	addr = virt & PAGE_MASK;
429	end = PAGE_ALIGN(virt + size);
430
431	do {
432		next = pgd_addr_end(addr, end);
433		alloc_init_p4d(pgdp, addr, next, phys, prot, pgtable_alloc,
434			       flags);
435		phys += next - addr;
436	} while (pgdp++, addr = next, addr != end);
437}
438
439static void __create_pgd_mapping(pgd_t *pgdir, phys_addr_t phys,
440				 unsigned long virt, phys_addr_t size,
441				 pgprot_t prot,
442				 phys_addr_t (*pgtable_alloc)(int),
443				 int flags)
444{
445	mutex_lock(&fixmap_lock);
446	__create_pgd_mapping_locked(pgdir, phys, virt, size, prot,
447				    pgtable_alloc, flags);
448	mutex_unlock(&fixmap_lock);
449}
450
451#ifdef CONFIG_UNMAP_KERNEL_AT_EL0
452extern __alias(__create_pgd_mapping_locked)
453void create_kpti_ng_temp_pgd(pgd_t *pgdir, phys_addr_t phys, unsigned long virt,
454			     phys_addr_t size, pgprot_t prot,
455			     phys_addr_t (*pgtable_alloc)(int), int flags);
456#endif
457
458static phys_addr_t __pgd_pgtable_alloc(int shift)
459{
460	void *ptr = (void *)__get_free_page(GFP_PGTABLE_KERNEL);
461	BUG_ON(!ptr);
462
463	/* Ensure the zeroed page is visible to the page table walker */
464	dsb(ishst);
465	return __pa(ptr);
466}
467
468static phys_addr_t pgd_pgtable_alloc(int shift)
469{
470	phys_addr_t pa = __pgd_pgtable_alloc(shift);
471	struct ptdesc *ptdesc = page_ptdesc(phys_to_page(pa));
472
473	/*
474	 * Call proper page table ctor in case later we need to
475	 * call core mm functions like apply_to_page_range() on
476	 * this pre-allocated page table.
477	 *
478	 * We don't select ARCH_ENABLE_SPLIT_PMD_PTLOCK if pmd is
479	 * folded, and if so pagetable_pte_ctor() becomes nop.
480	 */
481	if (shift == PAGE_SHIFT)
482		BUG_ON(!pagetable_pte_ctor(ptdesc));
483	else if (shift == PMD_SHIFT)
484		BUG_ON(!pagetable_pmd_ctor(ptdesc));
485
486	return pa;
487}
488
489/*
490 * This function can only be used to modify existing table entries,
491 * without allocating new levels of table. Note that this permits the
492 * creation of new section or page entries.
493 */
494void __init create_mapping_noalloc(phys_addr_t phys, unsigned long virt,
495				   phys_addr_t size, pgprot_t prot)
496{
497	if (virt < PAGE_OFFSET) {
498		pr_warn("BUG: not creating mapping for %pa at 0x%016lx - outside kernel range\n",
499			&phys, virt);
500		return;
501	}
502	__create_pgd_mapping(init_mm.pgd, phys, virt, size, prot, NULL,
503			     NO_CONT_MAPPINGS);
504}
505
506void __init create_pgd_mapping(struct mm_struct *mm, phys_addr_t phys,
507			       unsigned long virt, phys_addr_t size,
508			       pgprot_t prot, bool page_mappings_only)
509{
510	int flags = 0;
511
512	BUG_ON(mm == &init_mm);
513
514	if (page_mappings_only)
515		flags = NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
516
517	__create_pgd_mapping(mm->pgd, phys, virt, size, prot,
518			     pgd_pgtable_alloc, flags);
519}
520
521static void update_mapping_prot(phys_addr_t phys, unsigned long virt,
522				phys_addr_t size, pgprot_t prot)
523{
524	if (virt < PAGE_OFFSET) {
525		pr_warn("BUG: not updating mapping for %pa at 0x%016lx - outside kernel range\n",
526			&phys, virt);
527		return;
528	}
529
530	__create_pgd_mapping(init_mm.pgd, phys, virt, size, prot, NULL,
531			     NO_CONT_MAPPINGS);
532
533	/* flush the TLBs after updating live kernel mappings */
534	flush_tlb_kernel_range(virt, virt + size);
535}
536
537static void __init __map_memblock(pgd_t *pgdp, phys_addr_t start,
538				  phys_addr_t end, pgprot_t prot, int flags)
539{
540	__create_pgd_mapping(pgdp, start, __phys_to_virt(start), end - start,
541			     prot, early_pgtable_alloc, flags);
542}
543
544void __init mark_linear_text_alias_ro(void)
545{
546	/*
547	 * Remove the write permissions from the linear alias of .text/.rodata
548	 */
549	update_mapping_prot(__pa_symbol(_stext), (unsigned long)lm_alias(_stext),
550			    (unsigned long)__init_begin - (unsigned long)_stext,
551			    PAGE_KERNEL_RO);
552}
553
554#ifdef CONFIG_KFENCE
555
556bool __ro_after_init kfence_early_init = !!CONFIG_KFENCE_SAMPLE_INTERVAL;
557
558/* early_param() will be parsed before map_mem() below. */
559static int __init parse_kfence_early_init(char *arg)
560{
561	int val;
562
563	if (get_option(&arg, &val))
564		kfence_early_init = !!val;
565	return 0;
566}
567early_param("kfence.sample_interval", parse_kfence_early_init);
568
569static phys_addr_t __init arm64_kfence_alloc_pool(void)
570{
571	phys_addr_t kfence_pool;
572
573	if (!kfence_early_init)
574		return 0;
575
576	kfence_pool = memblock_phys_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
577	if (!kfence_pool) {
578		pr_err("failed to allocate kfence pool\n");
579		kfence_early_init = false;
580		return 0;
581	}
582
583	/* Temporarily mark as NOMAP. */
584	memblock_mark_nomap(kfence_pool, KFENCE_POOL_SIZE);
585
586	return kfence_pool;
587}
588
589static void __init arm64_kfence_map_pool(phys_addr_t kfence_pool, pgd_t *pgdp)
590{
591	if (!kfence_pool)
592		return;
593
594	/* KFENCE pool needs page-level mapping. */
595	__map_memblock(pgdp, kfence_pool, kfence_pool + KFENCE_POOL_SIZE,
596			pgprot_tagged(PAGE_KERNEL),
597			NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS);
598	memblock_clear_nomap(kfence_pool, KFENCE_POOL_SIZE);
599	__kfence_pool = phys_to_virt(kfence_pool);
600}
601#else /* CONFIG_KFENCE */
602
603static inline phys_addr_t arm64_kfence_alloc_pool(void) { return 0; }
604static inline void arm64_kfence_map_pool(phys_addr_t kfence_pool, pgd_t *pgdp) { }
605
606#endif /* CONFIG_KFENCE */
607
608static void __init map_mem(pgd_t *pgdp)
609{
610	static const u64 direct_map_end = _PAGE_END(VA_BITS_MIN);
611	phys_addr_t kernel_start = __pa_symbol(_stext);
612	phys_addr_t kernel_end = __pa_symbol(__init_begin);
613	phys_addr_t start, end;
614	phys_addr_t early_kfence_pool;
615	int flags = NO_EXEC_MAPPINGS;
616	u64 i;
617
618	/*
619	 * Setting hierarchical PXNTable attributes on table entries covering
620	 * the linear region is only possible if it is guaranteed that no table
621	 * entries at any level are being shared between the linear region and
622	 * the vmalloc region. Check whether this is true for the PGD level, in
623	 * which case it is guaranteed to be true for all other levels as well.
624	 * (Unless we are running with support for LPA2, in which case the
625	 * entire reduced VA space is covered by a single pgd_t which will have
626	 * been populated without the PXNTable attribute by the time we get here.)
627	 */
628	BUILD_BUG_ON(pgd_index(direct_map_end - 1) == pgd_index(direct_map_end) &&
629		     pgd_index(_PAGE_OFFSET(VA_BITS_MIN)) != PTRS_PER_PGD - 1);
630
631	early_kfence_pool = arm64_kfence_alloc_pool();
632
633	if (can_set_direct_map())
634		flags |= NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
635
636	/*
637	 * Take care not to create a writable alias for the
638	 * read-only text and rodata sections of the kernel image.
639	 * So temporarily mark them as NOMAP to skip mappings in
640	 * the following for-loop
641	 */
642	memblock_mark_nomap(kernel_start, kernel_end - kernel_start);
643
644	/* map all the memory banks */
645	for_each_mem_range(i, &start, &end) {
646		if (start >= end)
647			break;
648		/*
649		 * The linear map must allow allocation tags reading/writing
650		 * if MTE is present. Otherwise, it has the same attributes as
651		 * PAGE_KERNEL.
652		 */
653		__map_memblock(pgdp, start, end, pgprot_tagged(PAGE_KERNEL),
654			       flags);
655	}
656
657	/*
658	 * Map the linear alias of the [_stext, __init_begin) interval
659	 * as non-executable now, and remove the write permission in
660	 * mark_linear_text_alias_ro() below (which will be called after
661	 * alternative patching has completed). This makes the contents
662	 * of the region accessible to subsystems such as hibernate,
663	 * but protects it from inadvertent modification or execution.
664	 * Note that contiguous mappings cannot be remapped in this way,
665	 * so we should avoid them here.
666	 */
667	__map_memblock(pgdp, kernel_start, kernel_end,
668		       PAGE_KERNEL, NO_CONT_MAPPINGS);
669	memblock_clear_nomap(kernel_start, kernel_end - kernel_start);
670	arm64_kfence_map_pool(early_kfence_pool, pgdp);
671}
672
673void mark_rodata_ro(void)
674{
675	unsigned long section_size;
676
677	/*
678	 * mark .rodata as read only. Use __init_begin rather than __end_rodata
679	 * to cover NOTES and EXCEPTION_TABLE.
680	 */
681	section_size = (unsigned long)__init_begin - (unsigned long)__start_rodata;
682	WRITE_ONCE(rodata_is_rw, false);
683	update_mapping_prot(__pa_symbol(__start_rodata), (unsigned long)__start_rodata,
684			    section_size, PAGE_KERNEL_RO);
685}
686
687static void __init declare_vma(struct vm_struct *vma,
688			       void *va_start, void *va_end,
689			       unsigned long vm_flags)
690{
691	phys_addr_t pa_start = __pa_symbol(va_start);
692	unsigned long size = va_end - va_start;
693
694	BUG_ON(!PAGE_ALIGNED(pa_start));
695	BUG_ON(!PAGE_ALIGNED(size));
696
697	if (!(vm_flags & VM_NO_GUARD))
698		size += PAGE_SIZE;
699
700	vma->addr	= va_start;
701	vma->phys_addr	= pa_start;
702	vma->size	= size;
703	vma->flags	= VM_MAP | vm_flags;
704	vma->caller	= __builtin_return_address(0);
705
706	vm_area_add_early(vma);
707}
708
709#ifdef CONFIG_UNMAP_KERNEL_AT_EL0
710static pgprot_t kernel_exec_prot(void)
711{
712	return rodata_enabled ? PAGE_KERNEL_ROX : PAGE_KERNEL_EXEC;
713}
714
715static int __init map_entry_trampoline(void)
716{
717	int i;
718
719	if (!arm64_kernel_unmapped_at_el0())
720		return 0;
721
722	pgprot_t prot = kernel_exec_prot();
723	phys_addr_t pa_start = __pa_symbol(__entry_tramp_text_start);
724
725	/* The trampoline is always mapped and can therefore be global */
726	pgprot_val(prot) &= ~PTE_NG;
727
728	/* Map only the text into the trampoline page table */
729	memset(tramp_pg_dir, 0, PGD_SIZE);
730	__create_pgd_mapping(tramp_pg_dir, pa_start, TRAMP_VALIAS,
731			     entry_tramp_text_size(), prot,
732			     __pgd_pgtable_alloc, NO_BLOCK_MAPPINGS);
733
734	/* Map both the text and data into the kernel page table */
735	for (i = 0; i < DIV_ROUND_UP(entry_tramp_text_size(), PAGE_SIZE); i++)
736		__set_fixmap(FIX_ENTRY_TRAMP_TEXT1 - i,
737			     pa_start + i * PAGE_SIZE, prot);
738
739	if (IS_ENABLED(CONFIG_RELOCATABLE))
740		__set_fixmap(FIX_ENTRY_TRAMP_TEXT1 - i,
741			     pa_start + i * PAGE_SIZE, PAGE_KERNEL_RO);
742
743	return 0;
744}
745core_initcall(map_entry_trampoline);
746#endif
747
748/*
749 * Declare the VMA areas for the kernel
750 */
751static void __init declare_kernel_vmas(void)
752{
753	static struct vm_struct vmlinux_seg[KERNEL_SEGMENT_COUNT];
754
755	declare_vma(&vmlinux_seg[0], _stext, _etext, VM_NO_GUARD);
756	declare_vma(&vmlinux_seg[1], __start_rodata, __inittext_begin, VM_NO_GUARD);
757	declare_vma(&vmlinux_seg[2], __inittext_begin, __inittext_end, VM_NO_GUARD);
758	declare_vma(&vmlinux_seg[3], __initdata_begin, __initdata_end, VM_NO_GUARD);
759	declare_vma(&vmlinux_seg[4], _data, _end, 0);
760}
761
762void __pi_map_range(u64 *pgd, u64 start, u64 end, u64 pa, pgprot_t prot,
763		    int level, pte_t *tbl, bool may_use_cont, u64 va_offset);
764
765static u8 idmap_ptes[IDMAP_LEVELS - 1][PAGE_SIZE] __aligned(PAGE_SIZE) __ro_after_init,
766	  kpti_ptes[IDMAP_LEVELS - 1][PAGE_SIZE] __aligned(PAGE_SIZE) __ro_after_init;
767
768static void __init create_idmap(void)
769{
770	u64 start = __pa_symbol(__idmap_text_start);
771	u64 end   = __pa_symbol(__idmap_text_end);
772	u64 ptep  = __pa_symbol(idmap_ptes);
773
774	__pi_map_range(&ptep, start, end, start, PAGE_KERNEL_ROX,
775		       IDMAP_ROOT_LEVEL, (pte_t *)idmap_pg_dir, false,
776		       __phys_to_virt(ptep) - ptep);
777
778	if (IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0) && !arm64_use_ng_mappings) {
779		extern u32 __idmap_kpti_flag;
780		u64 pa = __pa_symbol(&__idmap_kpti_flag);
781
782		/*
783		 * The KPTI G-to-nG conversion code needs a read-write mapping
784		 * of its synchronization flag in the ID map.
785		 */
786		ptep = __pa_symbol(kpti_ptes);
787		__pi_map_range(&ptep, pa, pa + sizeof(u32), pa, PAGE_KERNEL,
788			       IDMAP_ROOT_LEVEL, (pte_t *)idmap_pg_dir, false,
789			       __phys_to_virt(ptep) - ptep);
790	}
791}
792
793void __init paging_init(void)
794{
795	map_mem(swapper_pg_dir);
796
797	memblock_allow_resize();
798
799	create_idmap();
800	declare_kernel_vmas();
801}
802
803#ifdef CONFIG_MEMORY_HOTPLUG
804static void free_hotplug_page_range(struct page *page, size_t size,
805				    struct vmem_altmap *altmap)
806{
807	if (altmap) {
808		vmem_altmap_free(altmap, size >> PAGE_SHIFT);
809	} else {
810		WARN_ON(PageReserved(page));
811		free_pages((unsigned long)page_address(page), get_order(size));
812	}
813}
814
815static void free_hotplug_pgtable_page(struct page *page)
816{
817	free_hotplug_page_range(page, PAGE_SIZE, NULL);
818}
819
820static bool pgtable_range_aligned(unsigned long start, unsigned long end,
821				  unsigned long floor, unsigned long ceiling,
822				  unsigned long mask)
823{
824	start &= mask;
825	if (start < floor)
826		return false;
827
828	if (ceiling) {
829		ceiling &= mask;
830		if (!ceiling)
831			return false;
832	}
833
834	if (end - 1 > ceiling - 1)
835		return false;
836	return true;
837}
838
839static void unmap_hotplug_pte_range(pmd_t *pmdp, unsigned long addr,
840				    unsigned long end, bool free_mapped,
841				    struct vmem_altmap *altmap)
842{
843	pte_t *ptep, pte;
844
845	do {
846		ptep = pte_offset_kernel(pmdp, addr);
847		pte = __ptep_get(ptep);
848		if (pte_none(pte))
849			continue;
850
851		WARN_ON(!pte_present(pte));
852		__pte_clear(&init_mm, addr, ptep);
853		flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
854		if (free_mapped)
855			free_hotplug_page_range(pte_page(pte),
856						PAGE_SIZE, altmap);
857	} while (addr += PAGE_SIZE, addr < end);
858}
859
860static void unmap_hotplug_pmd_range(pud_t *pudp, unsigned long addr,
861				    unsigned long end, bool free_mapped,
862				    struct vmem_altmap *altmap)
863{
864	unsigned long next;
865	pmd_t *pmdp, pmd;
866
867	do {
868		next = pmd_addr_end(addr, end);
869		pmdp = pmd_offset(pudp, addr);
870		pmd = READ_ONCE(*pmdp);
871		if (pmd_none(pmd))
872			continue;
873
874		WARN_ON(!pmd_present(pmd));
875		if (pmd_sect(pmd)) {
876			pmd_clear(pmdp);
877
878			/*
879			 * One TLBI should be sufficient here as the PMD_SIZE
880			 * range is mapped with a single block entry.
881			 */
882			flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
883			if (free_mapped)
884				free_hotplug_page_range(pmd_page(pmd),
885							PMD_SIZE, altmap);
886			continue;
887		}
888		WARN_ON(!pmd_table(pmd));
889		unmap_hotplug_pte_range(pmdp, addr, next, free_mapped, altmap);
890	} while (addr = next, addr < end);
891}
892
893static void unmap_hotplug_pud_range(p4d_t *p4dp, unsigned long addr,
894				    unsigned long end, bool free_mapped,
895				    struct vmem_altmap *altmap)
896{
897	unsigned long next;
898	pud_t *pudp, pud;
899
900	do {
901		next = pud_addr_end(addr, end);
902		pudp = pud_offset(p4dp, addr);
903		pud = READ_ONCE(*pudp);
904		if (pud_none(pud))
905			continue;
906
907		WARN_ON(!pud_present(pud));
908		if (pud_sect(pud)) {
909			pud_clear(pudp);
910
911			/*
912			 * One TLBI should be sufficient here as the PUD_SIZE
913			 * range is mapped with a single block entry.
914			 */
915			flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
916			if (free_mapped)
917				free_hotplug_page_range(pud_page(pud),
918							PUD_SIZE, altmap);
919			continue;
920		}
921		WARN_ON(!pud_table(pud));
922		unmap_hotplug_pmd_range(pudp, addr, next, free_mapped, altmap);
923	} while (addr = next, addr < end);
924}
925
926static void unmap_hotplug_p4d_range(pgd_t *pgdp, unsigned long addr,
927				    unsigned long end, bool free_mapped,
928				    struct vmem_altmap *altmap)
929{
930	unsigned long next;
931	p4d_t *p4dp, p4d;
932
933	do {
934		next = p4d_addr_end(addr, end);
935		p4dp = p4d_offset(pgdp, addr);
936		p4d = READ_ONCE(*p4dp);
937		if (p4d_none(p4d))
938			continue;
939
940		WARN_ON(!p4d_present(p4d));
941		unmap_hotplug_pud_range(p4dp, addr, next, free_mapped, altmap);
942	} while (addr = next, addr < end);
943}
944
945static void unmap_hotplug_range(unsigned long addr, unsigned long end,
946				bool free_mapped, struct vmem_altmap *altmap)
947{
948	unsigned long next;
949	pgd_t *pgdp, pgd;
950
951	/*
952	 * altmap can only be used as vmemmap mapping backing memory.
953	 * In case the backing memory itself is not being freed, then
954	 * altmap is irrelevant. Warn about this inconsistency when
955	 * encountered.
956	 */
957	WARN_ON(!free_mapped && altmap);
958
959	do {
960		next = pgd_addr_end(addr, end);
961		pgdp = pgd_offset_k(addr);
962		pgd = READ_ONCE(*pgdp);
963		if (pgd_none(pgd))
964			continue;
965
966		WARN_ON(!pgd_present(pgd));
967		unmap_hotplug_p4d_range(pgdp, addr, next, free_mapped, altmap);
968	} while (addr = next, addr < end);
969}
970
971static void free_empty_pte_table(pmd_t *pmdp, unsigned long addr,
972				 unsigned long end, unsigned long floor,
973				 unsigned long ceiling)
974{
975	pte_t *ptep, pte;
976	unsigned long i, start = addr;
977
978	do {
979		ptep = pte_offset_kernel(pmdp, addr);
980		pte = __ptep_get(ptep);
981
982		/*
983		 * This is just a sanity check here which verifies that
984		 * pte clearing has been done by earlier unmap loops.
985		 */
986		WARN_ON(!pte_none(pte));
987	} while (addr += PAGE_SIZE, addr < end);
988
989	if (!pgtable_range_aligned(start, end, floor, ceiling, PMD_MASK))
990		return;
991
992	/*
993	 * Check whether we can free the pte page if the rest of the
994	 * entries are empty. Overlap with other regions have been
995	 * handled by the floor/ceiling check.
996	 */
997	ptep = pte_offset_kernel(pmdp, 0UL);
998	for (i = 0; i < PTRS_PER_PTE; i++) {
999		if (!pte_none(__ptep_get(&ptep[i])))
1000			return;
1001	}
1002
1003	pmd_clear(pmdp);
1004	__flush_tlb_kernel_pgtable(start);
1005	free_hotplug_pgtable_page(virt_to_page(ptep));
1006}
1007
1008static void free_empty_pmd_table(pud_t *pudp, unsigned long addr,
1009				 unsigned long end, unsigned long floor,
1010				 unsigned long ceiling)
1011{
1012	pmd_t *pmdp, pmd;
1013	unsigned long i, next, start = addr;
1014
1015	do {
1016		next = pmd_addr_end(addr, end);
1017		pmdp = pmd_offset(pudp, addr);
1018		pmd = READ_ONCE(*pmdp);
1019		if (pmd_none(pmd))
1020			continue;
1021
1022		WARN_ON(!pmd_present(pmd) || !pmd_table(pmd) || pmd_sect(pmd));
1023		free_empty_pte_table(pmdp, addr, next, floor, ceiling);
1024	} while (addr = next, addr < end);
1025
1026	if (CONFIG_PGTABLE_LEVELS <= 2)
1027		return;
1028
1029	if (!pgtable_range_aligned(start, end, floor, ceiling, PUD_MASK))
1030		return;
1031
1032	/*
1033	 * Check whether we can free the pmd page if the rest of the
1034	 * entries are empty. Overlap with other regions have been
1035	 * handled by the floor/ceiling check.
1036	 */
1037	pmdp = pmd_offset(pudp, 0UL);
1038	for (i = 0; i < PTRS_PER_PMD; i++) {
1039		if (!pmd_none(READ_ONCE(pmdp[i])))
1040			return;
1041	}
1042
1043	pud_clear(pudp);
1044	__flush_tlb_kernel_pgtable(start);
1045	free_hotplug_pgtable_page(virt_to_page(pmdp));
1046}
1047
1048static void free_empty_pud_table(p4d_t *p4dp, unsigned long addr,
1049				 unsigned long end, unsigned long floor,
1050				 unsigned long ceiling)
1051{
1052	pud_t *pudp, pud;
1053	unsigned long i, next, start = addr;
1054
1055	do {
1056		next = pud_addr_end(addr, end);
1057		pudp = pud_offset(p4dp, addr);
1058		pud = READ_ONCE(*pudp);
1059		if (pud_none(pud))
1060			continue;
1061
1062		WARN_ON(!pud_present(pud) || !pud_table(pud) || pud_sect(pud));
1063		free_empty_pmd_table(pudp, addr, next, floor, ceiling);
1064	} while (addr = next, addr < end);
1065
1066	if (!pgtable_l4_enabled())
1067		return;
1068
1069	if (!pgtable_range_aligned(start, end, floor, ceiling, P4D_MASK))
1070		return;
1071
1072	/*
1073	 * Check whether we can free the pud page if the rest of the
1074	 * entries are empty. Overlap with other regions have been
1075	 * handled by the floor/ceiling check.
1076	 */
1077	pudp = pud_offset(p4dp, 0UL);
1078	for (i = 0; i < PTRS_PER_PUD; i++) {
1079		if (!pud_none(READ_ONCE(pudp[i])))
1080			return;
1081	}
1082
1083	p4d_clear(p4dp);
1084	__flush_tlb_kernel_pgtable(start);
1085	free_hotplug_pgtable_page(virt_to_page(pudp));
1086}
1087
1088static void free_empty_p4d_table(pgd_t *pgdp, unsigned long addr,
1089				 unsigned long end, unsigned long floor,
1090				 unsigned long ceiling)
1091{
1092	p4d_t *p4dp, p4d;
1093	unsigned long i, next, start = addr;
1094
1095	do {
1096		next = p4d_addr_end(addr, end);
1097		p4dp = p4d_offset(pgdp, addr);
1098		p4d = READ_ONCE(*p4dp);
1099		if (p4d_none(p4d))
1100			continue;
1101
1102		WARN_ON(!p4d_present(p4d));
1103		free_empty_pud_table(p4dp, addr, next, floor, ceiling);
1104	} while (addr = next, addr < end);
1105
1106	if (!pgtable_l5_enabled())
1107		return;
1108
1109	if (!pgtable_range_aligned(start, end, floor, ceiling, PGDIR_MASK))
1110		return;
1111
1112	/*
1113	 * Check whether we can free the p4d page if the rest of the
1114	 * entries are empty. Overlap with other regions have been
1115	 * handled by the floor/ceiling check.
1116	 */
1117	p4dp = p4d_offset(pgdp, 0UL);
1118	for (i = 0; i < PTRS_PER_P4D; i++) {
1119		if (!p4d_none(READ_ONCE(p4dp[i])))
1120			return;
1121	}
1122
1123	pgd_clear(pgdp);
1124	__flush_tlb_kernel_pgtable(start);
1125	free_hotplug_pgtable_page(virt_to_page(p4dp));
1126}
1127
1128static void free_empty_tables(unsigned long addr, unsigned long end,
1129			      unsigned long floor, unsigned long ceiling)
1130{
1131	unsigned long next;
1132	pgd_t *pgdp, pgd;
1133
1134	do {
1135		next = pgd_addr_end(addr, end);
1136		pgdp = pgd_offset_k(addr);
1137		pgd = READ_ONCE(*pgdp);
1138		if (pgd_none(pgd))
1139			continue;
1140
1141		WARN_ON(!pgd_present(pgd));
1142		free_empty_p4d_table(pgdp, addr, next, floor, ceiling);
1143	} while (addr = next, addr < end);
1144}
1145#endif
1146
1147void __meminit vmemmap_set_pmd(pmd_t *pmdp, void *p, int node,
1148			       unsigned long addr, unsigned long next)
1149{
1150	pmd_set_huge(pmdp, __pa(p), __pgprot(PROT_SECT_NORMAL));
1151}
1152
1153int __meminit vmemmap_check_pmd(pmd_t *pmdp, int node,
1154				unsigned long addr, unsigned long next)
1155{
1156	vmemmap_verify((pte_t *)pmdp, node, addr, next);
1157	return 1;
1158}
1159
1160int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1161		struct vmem_altmap *altmap)
1162{
1163	WARN_ON((start < VMEMMAP_START) || (end > VMEMMAP_END));
1164
1165	if (!IS_ENABLED(CONFIG_ARM64_4K_PAGES))
1166		return vmemmap_populate_basepages(start, end, node, altmap);
1167	else
1168		return vmemmap_populate_hugepages(start, end, node, altmap);
1169}
1170
1171#ifdef CONFIG_MEMORY_HOTPLUG
1172void vmemmap_free(unsigned long start, unsigned long end,
1173		struct vmem_altmap *altmap)
1174{
1175	WARN_ON((start < VMEMMAP_START) || (end > VMEMMAP_END));
1176
1177	unmap_hotplug_range(start, end, true, altmap);
1178	free_empty_tables(start, end, VMEMMAP_START, VMEMMAP_END);
1179}
1180#endif /* CONFIG_MEMORY_HOTPLUG */
1181
1182int pud_set_huge(pud_t *pudp, phys_addr_t phys, pgprot_t prot)
1183{
1184	pud_t new_pud = pfn_pud(__phys_to_pfn(phys), mk_pud_sect_prot(prot));
1185
1186	/* Only allow permission changes for now */
1187	if (!pgattr_change_is_safe(READ_ONCE(pud_val(*pudp)),
1188				   pud_val(new_pud)))
1189		return 0;
1190
1191	VM_BUG_ON(phys & ~PUD_MASK);
1192	set_pud(pudp, new_pud);
1193	return 1;
1194}
1195
1196int pmd_set_huge(pmd_t *pmdp, phys_addr_t phys, pgprot_t prot)
1197{
1198	pmd_t new_pmd = pfn_pmd(__phys_to_pfn(phys), mk_pmd_sect_prot(prot));
1199
1200	/* Only allow permission changes for now */
1201	if (!pgattr_change_is_safe(READ_ONCE(pmd_val(*pmdp)),
1202				   pmd_val(new_pmd)))
1203		return 0;
1204
1205	VM_BUG_ON(phys & ~PMD_MASK);
1206	set_pmd(pmdp, new_pmd);
1207	return 1;
1208}
1209
1210#ifndef __PAGETABLE_P4D_FOLDED
1211void p4d_clear_huge(p4d_t *p4dp)
1212{
1213}
1214#endif
1215
1216int pud_clear_huge(pud_t *pudp)
1217{
1218	if (!pud_sect(READ_ONCE(*pudp)))
1219		return 0;
1220	pud_clear(pudp);
1221	return 1;
1222}
1223
1224int pmd_clear_huge(pmd_t *pmdp)
1225{
1226	if (!pmd_sect(READ_ONCE(*pmdp)))
1227		return 0;
1228	pmd_clear(pmdp);
1229	return 1;
1230}
1231
1232int pmd_free_pte_page(pmd_t *pmdp, unsigned long addr)
1233{
1234	pte_t *table;
1235	pmd_t pmd;
1236
1237	pmd = READ_ONCE(*pmdp);
1238
1239	if (!pmd_table(pmd)) {
1240		VM_WARN_ON(1);
1241		return 1;
1242	}
1243
1244	table = pte_offset_kernel(pmdp, addr);
1245	pmd_clear(pmdp);
1246	__flush_tlb_kernel_pgtable(addr);
1247	pte_free_kernel(NULL, table);
1248	return 1;
1249}
1250
1251int pud_free_pmd_page(pud_t *pudp, unsigned long addr)
1252{
1253	pmd_t *table;
1254	pmd_t *pmdp;
1255	pud_t pud;
1256	unsigned long next, end;
1257
1258	pud = READ_ONCE(*pudp);
1259
1260	if (!pud_table(pud)) {
1261		VM_WARN_ON(1);
1262		return 1;
1263	}
1264
1265	table = pmd_offset(pudp, addr);
1266	pmdp = table;
1267	next = addr;
1268	end = addr + PUD_SIZE;
1269	do {
1270		pmd_free_pte_page(pmdp, next);
1271	} while (pmdp++, next += PMD_SIZE, next != end);
1272
1273	pud_clear(pudp);
1274	__flush_tlb_kernel_pgtable(addr);
1275	pmd_free(NULL, table);
1276	return 1;
1277}
1278
1279#ifdef CONFIG_MEMORY_HOTPLUG
1280static void __remove_pgd_mapping(pgd_t *pgdir, unsigned long start, u64 size)
1281{
1282	unsigned long end = start + size;
1283
1284	WARN_ON(pgdir != init_mm.pgd);
1285	WARN_ON((start < PAGE_OFFSET) || (end > PAGE_END));
1286
1287	unmap_hotplug_range(start, end, false, NULL);
1288	free_empty_tables(start, end, PAGE_OFFSET, PAGE_END);
1289}
1290
1291struct range arch_get_mappable_range(void)
1292{
1293	struct range mhp_range;
1294	u64 start_linear_pa = __pa(_PAGE_OFFSET(vabits_actual));
1295	u64 end_linear_pa = __pa(PAGE_END - 1);
1296
1297	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
1298		/*
1299		 * Check for a wrap, it is possible because of randomized linear
1300		 * mapping the start physical address is actually bigger than
1301		 * the end physical address. In this case set start to zero
1302		 * because [0, end_linear_pa] range must still be able to cover
1303		 * all addressable physical addresses.
1304		 */
1305		if (start_linear_pa > end_linear_pa)
1306			start_linear_pa = 0;
1307	}
1308
1309	WARN_ON(start_linear_pa > end_linear_pa);
1310
1311	/*
1312	 * Linear mapping region is the range [PAGE_OFFSET..(PAGE_END - 1)]
1313	 * accommodating both its ends but excluding PAGE_END. Max physical
1314	 * range which can be mapped inside this linear mapping range, must
1315	 * also be derived from its end points.
1316	 */
1317	mhp_range.start = start_linear_pa;
1318	mhp_range.end =  end_linear_pa;
1319
1320	return mhp_range;
1321}
1322
1323int arch_add_memory(int nid, u64 start, u64 size,
1324		    struct mhp_params *params)
1325{
1326	int ret, flags = NO_EXEC_MAPPINGS;
1327
1328	VM_BUG_ON(!mhp_range_allowed(start, size, true));
1329
1330	if (can_set_direct_map())
1331		flags |= NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
1332
1333	__create_pgd_mapping(swapper_pg_dir, start, __phys_to_virt(start),
1334			     size, params->pgprot, __pgd_pgtable_alloc,
1335			     flags);
1336
1337	memblock_clear_nomap(start, size);
1338
1339	ret = __add_pages(nid, start >> PAGE_SHIFT, size >> PAGE_SHIFT,
1340			   params);
1341	if (ret)
1342		__remove_pgd_mapping(swapper_pg_dir,
1343				     __phys_to_virt(start), size);
1344	else {
1345		max_pfn = PFN_UP(start + size);
1346		max_low_pfn = max_pfn;
1347	}
1348
1349	return ret;
1350}
1351
1352void arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap)
1353{
1354	unsigned long start_pfn = start >> PAGE_SHIFT;
1355	unsigned long nr_pages = size >> PAGE_SHIFT;
1356
1357	__remove_pages(start_pfn, nr_pages, altmap);
1358	__remove_pgd_mapping(swapper_pg_dir, __phys_to_virt(start), size);
1359}
1360
1361/*
1362 * This memory hotplug notifier helps prevent boot memory from being
1363 * inadvertently removed as it blocks pfn range offlining process in
1364 * __offline_pages(). Hence this prevents both offlining as well as
1365 * removal process for boot memory which is initially always online.
1366 * In future if and when boot memory could be removed, this notifier
1367 * should be dropped and free_hotplug_page_range() should handle any
1368 * reserved pages allocated during boot.
1369 */
1370static int prevent_bootmem_remove_notifier(struct notifier_block *nb,
1371					   unsigned long action, void *data)
1372{
1373	struct mem_section *ms;
1374	struct memory_notify *arg = data;
1375	unsigned long end_pfn = arg->start_pfn + arg->nr_pages;
1376	unsigned long pfn = arg->start_pfn;
1377
1378	if ((action != MEM_GOING_OFFLINE) && (action != MEM_OFFLINE))
1379		return NOTIFY_OK;
1380
1381	for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1382		unsigned long start = PFN_PHYS(pfn);
1383		unsigned long end = start + (1UL << PA_SECTION_SHIFT);
1384
1385		ms = __pfn_to_section(pfn);
1386		if (!early_section(ms))
1387			continue;
1388
1389		if (action == MEM_GOING_OFFLINE) {
1390			/*
1391			 * Boot memory removal is not supported. Prevent
1392			 * it via blocking any attempted offline request
1393			 * for the boot memory and just report it.
1394			 */
1395			pr_warn("Boot memory [%lx %lx] offlining attempted\n", start, end);
1396			return NOTIFY_BAD;
1397		} else if (action == MEM_OFFLINE) {
1398			/*
1399			 * This should have never happened. Boot memory
1400			 * offlining should have been prevented by this
1401			 * very notifier. Probably some memory removal
1402			 * procedure might have changed which would then
1403			 * require further debug.
1404			 */
1405			pr_err("Boot memory [%lx %lx] offlined\n", start, end);
1406
1407			/*
1408			 * Core memory hotplug does not process a return
1409			 * code from the notifier for MEM_OFFLINE events.
1410			 * The error condition has been reported. Return
1411			 * from here as if ignored.
1412			 */
1413			return NOTIFY_DONE;
1414		}
1415	}
1416	return NOTIFY_OK;
1417}
1418
1419static struct notifier_block prevent_bootmem_remove_nb = {
1420	.notifier_call = prevent_bootmem_remove_notifier,
1421};
1422
1423/*
1424 * This ensures that boot memory sections on the platform are online
1425 * from early boot. Memory sections could not be prevented from being
1426 * offlined, unless for some reason they are not online to begin with.
1427 * This helps validate the basic assumption on which the above memory
1428 * event notifier works to prevent boot memory section offlining and
1429 * its possible removal.
1430 */
1431static void validate_bootmem_online(void)
1432{
1433	phys_addr_t start, end, addr;
1434	struct mem_section *ms;
1435	u64 i;
1436
1437	/*
1438	 * Scanning across all memblock might be expensive
1439	 * on some big memory systems. Hence enable this
1440	 * validation only with DEBUG_VM.
1441	 */
1442	if (!IS_ENABLED(CONFIG_DEBUG_VM))
1443		return;
1444
1445	for_each_mem_range(i, &start, &end) {
1446		for (addr = start; addr < end; addr += (1UL << PA_SECTION_SHIFT)) {
1447			ms = __pfn_to_section(PHYS_PFN(addr));
1448
1449			/*
1450			 * All memory ranges in the system at this point
1451			 * should have been marked as early sections.
1452			 */
1453			WARN_ON(!early_section(ms));
1454
1455			/*
1456			 * Memory notifier mechanism here to prevent boot
1457			 * memory offlining depends on the fact that each
1458			 * early section memory on the system is initially
1459			 * online. Otherwise a given memory section which
1460			 * is already offline will be overlooked and can
1461			 * be removed completely. Call out such sections.
1462			 */
1463			if (!online_section(ms))
1464				pr_err("Boot memory [%llx %llx] is offline, can be removed\n",
1465					addr, addr + (1UL << PA_SECTION_SHIFT));
1466		}
1467	}
1468}
1469
1470static int __init prevent_bootmem_remove_init(void)
1471{
1472	int ret = 0;
1473
1474	if (!IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
1475		return ret;
1476
1477	validate_bootmem_online();
1478	ret = register_memory_notifier(&prevent_bootmem_remove_nb);
1479	if (ret)
1480		pr_err("%s: Notifier registration failed %d\n", __func__, ret);
1481
1482	return ret;
1483}
1484early_initcall(prevent_bootmem_remove_init);
1485#endif
1486
1487pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
1488{
1489	if (alternative_has_cap_unlikely(ARM64_WORKAROUND_2645198)) {
1490		/*
1491		 * Break-before-make (BBM) is required for all user space mappings
1492		 * when the permission changes from executable to non-executable
1493		 * in cases where cpu is affected with errata #2645198.
1494		 */
1495		if (pte_user_exec(ptep_get(ptep)))
1496			return ptep_clear_flush(vma, addr, ptep);
1497	}
1498	return ptep_get_and_clear(vma->vm_mm, addr, ptep);
1499}
1500
1501void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep,
1502			     pte_t old_pte, pte_t pte)
1503{
1504	set_pte_at(vma->vm_mm, addr, ptep, pte);
1505}
1506
1507/*
1508 * Atomically replaces the active TTBR1_EL1 PGD with a new VA-compatible PGD,
1509 * avoiding the possibility of conflicting TLB entries being allocated.
1510 */
1511void __cpu_replace_ttbr1(pgd_t *pgdp, bool cnp)
1512{
1513	typedef void (ttbr_replace_func)(phys_addr_t);
1514	extern ttbr_replace_func idmap_cpu_replace_ttbr1;
1515	ttbr_replace_func *replace_phys;
1516	unsigned long daif;
1517
1518	/* phys_to_ttbr() zeros lower 2 bits of ttbr with 52-bit PA */
1519	phys_addr_t ttbr1 = phys_to_ttbr(virt_to_phys(pgdp));
1520
1521	if (cnp)
1522		ttbr1 |= TTBR_CNP_BIT;
1523
1524	replace_phys = (void *)__pa_symbol(idmap_cpu_replace_ttbr1);
1525
1526	cpu_install_idmap();
1527
1528	/*
1529	 * We really don't want to take *any* exceptions while TTBR1 is
1530	 * in the process of being replaced so mask everything.
1531	 */
1532	daif = local_daif_save();
1533	replace_phys(ttbr1);
1534	local_daif_restore(daif);
1535
1536	cpu_uninstall_idmap();
1537}
1538