1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2017 ARM Ltd.
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 */
6
7#include <linux/interrupt.h>
8#include <linux/irq.h>
9#include <linux/irqdomain.h>
10#include <linux/kvm_host.h>
11#include <linux/irqchip/arm-gic-v3.h>
12
13#include "vgic.h"
14
15/*
16 * How KVM uses GICv4 (insert rude comments here):
17 *
18 * The vgic-v4 layer acts as a bridge between several entities:
19 * - The GICv4 ITS representation offered by the ITS driver
20 * - VFIO, which is in charge of the PCI endpoint
21 * - The virtual ITS, which is the only thing the guest sees
22 *
23 * The configuration of VLPIs is triggered by a callback from VFIO,
24 * instructing KVM that a PCI device has been configured to deliver
25 * MSIs to a vITS.
26 *
27 * kvm_vgic_v4_set_forwarding() is thus called with the routing entry,
28 * and this is used to find the corresponding vITS data structures
29 * (ITS instance, device, event and irq) using a process that is
30 * extremely similar to the injection of an MSI.
31 *
32 * At this stage, we can link the guest's view of an LPI (uniquely
33 * identified by the routing entry) and the host irq, using the GICv4
34 * driver mapping operation. Should the mapping succeed, we've then
35 * successfully upgraded the guest's LPI to a VLPI. We can then start
36 * with updating GICv4's view of the property table and generating an
37 * INValidation in order to kickstart the delivery of this VLPI to the
38 * guest directly, without software intervention. Well, almost.
39 *
40 * When the PCI endpoint is deconfigured, this operation is reversed
41 * with VFIO calling kvm_vgic_v4_unset_forwarding().
42 *
43 * Once the VLPI has been mapped, it needs to follow any change the
44 * guest performs on its LPI through the vITS. For that, a number of
45 * command handlers have hooks to communicate these changes to the HW:
46 * - Any invalidation triggers a call to its_prop_update_vlpi()
47 * - The INT command results in a irq_set_irqchip_state(), which
48 *   generates an INT on the corresponding VLPI.
49 * - The CLEAR command results in a irq_set_irqchip_state(), which
50 *   generates an CLEAR on the corresponding VLPI.
51 * - DISCARD translates into an unmap, similar to a call to
52 *   kvm_vgic_v4_unset_forwarding().
53 * - MOVI is translated by an update of the existing mapping, changing
54 *   the target vcpu, resulting in a VMOVI being generated.
55 * - MOVALL is translated by a string of mapping updates (similar to
56 *   the handling of MOVI). MOVALL is horrible.
57 *
58 * Note that a DISCARD/MAPTI sequence emitted from the guest without
59 * reprogramming the PCI endpoint after MAPTI does not result in a
60 * VLPI being mapped, as there is no callback from VFIO (the guest
61 * will get the interrupt via the normal SW injection). Fixing this is
62 * not trivial, and requires some horrible messing with the VFIO
63 * internals. Not fun. Don't do that.
64 *
65 * Then there is the scheduling. Each time a vcpu is about to run on a
66 * physical CPU, KVM must tell the corresponding redistributor about
67 * it. And if we've migrated our vcpu from one CPU to another, we must
68 * tell the ITS (so that the messages reach the right redistributor).
69 * This is done in two steps: first issue a irq_set_affinity() on the
70 * irq corresponding to the vcpu, then call its_make_vpe_resident().
71 * You must be in a non-preemptible context. On exit, a call to
72 * its_make_vpe_non_resident() tells the redistributor that we're done
73 * with the vcpu.
74 *
75 * Finally, the doorbell handling: Each vcpu is allocated an interrupt
76 * which will fire each time a VLPI is made pending whilst the vcpu is
77 * not running. Each time the vcpu gets blocked, the doorbell
78 * interrupt gets enabled. When the vcpu is unblocked (for whatever
79 * reason), the doorbell interrupt is disabled.
80 */
81
82#define DB_IRQ_FLAGS	(IRQ_NOAUTOEN | IRQ_DISABLE_UNLAZY | IRQ_NO_BALANCING)
83
84static irqreturn_t vgic_v4_doorbell_handler(int irq, void *info)
85{
86	struct kvm_vcpu *vcpu = info;
87
88	/* We got the message, no need to fire again */
89	if (!kvm_vgic_global_state.has_gicv4_1 &&
90	    !irqd_irq_disabled(&irq_to_desc(irq)->irq_data))
91		disable_irq_nosync(irq);
92
93	/*
94	 * The v4.1 doorbell can fire concurrently with the vPE being
95	 * made non-resident. Ensure we only update pending_last
96	 * *after* the non-residency sequence has completed.
97	 */
98	raw_spin_lock(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vpe_lock);
99	vcpu->arch.vgic_cpu.vgic_v3.its_vpe.pending_last = true;
100	raw_spin_unlock(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vpe_lock);
101
102	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
103	kvm_vcpu_kick(vcpu);
104
105	return IRQ_HANDLED;
106}
107
108static void vgic_v4_sync_sgi_config(struct its_vpe *vpe, struct vgic_irq *irq)
109{
110	vpe->sgi_config[irq->intid].enabled	= irq->enabled;
111	vpe->sgi_config[irq->intid].group 	= irq->group;
112	vpe->sgi_config[irq->intid].priority	= irq->priority;
113}
114
115static void vgic_v4_enable_vsgis(struct kvm_vcpu *vcpu)
116{
117	struct its_vpe *vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
118	int i;
119
120	/*
121	 * With GICv4.1, every virtual SGI can be directly injected. So
122	 * let's pretend that they are HW interrupts, tied to a host
123	 * IRQ. The SGI code will do its magic.
124	 */
125	for (i = 0; i < VGIC_NR_SGIS; i++) {
126		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, i);
127		struct irq_desc *desc;
128		unsigned long flags;
129		int ret;
130
131		raw_spin_lock_irqsave(&irq->irq_lock, flags);
132
133		if (irq->hw)
134			goto unlock;
135
136		irq->hw = true;
137		irq->host_irq = irq_find_mapping(vpe->sgi_domain, i);
138
139		/* Transfer the full irq state to the vPE */
140		vgic_v4_sync_sgi_config(vpe, irq);
141		desc = irq_to_desc(irq->host_irq);
142		ret = irq_domain_activate_irq(irq_desc_get_irq_data(desc),
143					      false);
144		if (!WARN_ON(ret)) {
145			/* Transfer pending state */
146			ret = irq_set_irqchip_state(irq->host_irq,
147						    IRQCHIP_STATE_PENDING,
148						    irq->pending_latch);
149			WARN_ON(ret);
150			irq->pending_latch = false;
151		}
152	unlock:
153		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
154		vgic_put_irq(vcpu->kvm, irq);
155	}
156}
157
158static void vgic_v4_disable_vsgis(struct kvm_vcpu *vcpu)
159{
160	int i;
161
162	for (i = 0; i < VGIC_NR_SGIS; i++) {
163		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, i);
164		struct irq_desc *desc;
165		unsigned long flags;
166		int ret;
167
168		raw_spin_lock_irqsave(&irq->irq_lock, flags);
169
170		if (!irq->hw)
171			goto unlock;
172
173		irq->hw = false;
174		ret = irq_get_irqchip_state(irq->host_irq,
175					    IRQCHIP_STATE_PENDING,
176					    &irq->pending_latch);
177		WARN_ON(ret);
178
179		desc = irq_to_desc(irq->host_irq);
180		irq_domain_deactivate_irq(irq_desc_get_irq_data(desc));
181	unlock:
182		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
183		vgic_put_irq(vcpu->kvm, irq);
184	}
185}
186
187void vgic_v4_configure_vsgis(struct kvm *kvm)
188{
189	struct vgic_dist *dist = &kvm->arch.vgic;
190	struct kvm_vcpu *vcpu;
191	unsigned long i;
192
193	lockdep_assert_held(&kvm->arch.config_lock);
194
195	kvm_arm_halt_guest(kvm);
196
197	kvm_for_each_vcpu(i, vcpu, kvm) {
198		if (dist->nassgireq)
199			vgic_v4_enable_vsgis(vcpu);
200		else
201			vgic_v4_disable_vsgis(vcpu);
202	}
203
204	kvm_arm_resume_guest(kvm);
205}
206
207/*
208 * Must be called with GICv4.1 and the vPE unmapped, which
209 * indicates the invalidation of any VPT caches associated
210 * with the vPE, thus we can get the VLPI state by peeking
211 * at the VPT.
212 */
213void vgic_v4_get_vlpi_state(struct vgic_irq *irq, bool *val)
214{
215	struct its_vpe *vpe = &irq->target_vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
216	int mask = BIT(irq->intid % BITS_PER_BYTE);
217	void *va;
218	u8 *ptr;
219
220	va = page_address(vpe->vpt_page);
221	ptr = va + irq->intid / BITS_PER_BYTE;
222
223	*val = !!(*ptr & mask);
224}
225
226int vgic_v4_request_vpe_irq(struct kvm_vcpu *vcpu, int irq)
227{
228	return request_irq(irq, vgic_v4_doorbell_handler, 0, "vcpu", vcpu);
229}
230
231/**
232 * vgic_v4_init - Initialize the GICv4 data structures
233 * @kvm:	Pointer to the VM being initialized
234 *
235 * We may be called each time a vITS is created, or when the
236 * vgic is initialized. In both cases, the number of vcpus
237 * should now be fixed.
238 */
239int vgic_v4_init(struct kvm *kvm)
240{
241	struct vgic_dist *dist = &kvm->arch.vgic;
242	struct kvm_vcpu *vcpu;
243	int nr_vcpus, ret;
244	unsigned long i;
245
246	lockdep_assert_held(&kvm->arch.config_lock);
247
248	if (!kvm_vgic_global_state.has_gicv4)
249		return 0; /* Nothing to see here... move along. */
250
251	if (dist->its_vm.vpes)
252		return 0;
253
254	nr_vcpus = atomic_read(&kvm->online_vcpus);
255
256	dist->its_vm.vpes = kcalloc(nr_vcpus, sizeof(*dist->its_vm.vpes),
257				    GFP_KERNEL_ACCOUNT);
258	if (!dist->its_vm.vpes)
259		return -ENOMEM;
260
261	dist->its_vm.nr_vpes = nr_vcpus;
262
263	kvm_for_each_vcpu(i, vcpu, kvm)
264		dist->its_vm.vpes[i] = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
265
266	ret = its_alloc_vcpu_irqs(&dist->its_vm);
267	if (ret < 0) {
268		kvm_err("VPE IRQ allocation failure\n");
269		kfree(dist->its_vm.vpes);
270		dist->its_vm.nr_vpes = 0;
271		dist->its_vm.vpes = NULL;
272		return ret;
273	}
274
275	kvm_for_each_vcpu(i, vcpu, kvm) {
276		int irq = dist->its_vm.vpes[i]->irq;
277		unsigned long irq_flags = DB_IRQ_FLAGS;
278
279		/*
280		 * Don't automatically enable the doorbell, as we're
281		 * flipping it back and forth when the vcpu gets
282		 * blocked. Also disable the lazy disabling, as the
283		 * doorbell could kick us out of the guest too
284		 * early...
285		 *
286		 * On GICv4.1, the doorbell is managed in HW and must
287		 * be left enabled.
288		 */
289		if (kvm_vgic_global_state.has_gicv4_1)
290			irq_flags &= ~IRQ_NOAUTOEN;
291		irq_set_status_flags(irq, irq_flags);
292
293		ret = vgic_v4_request_vpe_irq(vcpu, irq);
294		if (ret) {
295			kvm_err("failed to allocate vcpu IRQ%d\n", irq);
296			/*
297			 * Trick: adjust the number of vpes so we know
298			 * how many to nuke on teardown...
299			 */
300			dist->its_vm.nr_vpes = i;
301			break;
302		}
303	}
304
305	if (ret)
306		vgic_v4_teardown(kvm);
307
308	return ret;
309}
310
311/**
312 * vgic_v4_teardown - Free the GICv4 data structures
313 * @kvm:	Pointer to the VM being destroyed
314 */
315void vgic_v4_teardown(struct kvm *kvm)
316{
317	struct its_vm *its_vm = &kvm->arch.vgic.its_vm;
318	int i;
319
320	lockdep_assert_held(&kvm->arch.config_lock);
321
322	if (!its_vm->vpes)
323		return;
324
325	for (i = 0; i < its_vm->nr_vpes; i++) {
326		struct kvm_vcpu *vcpu = kvm_get_vcpu(kvm, i);
327		int irq = its_vm->vpes[i]->irq;
328
329		irq_clear_status_flags(irq, DB_IRQ_FLAGS);
330		free_irq(irq, vcpu);
331	}
332
333	its_free_vcpu_irqs(its_vm);
334	kfree(its_vm->vpes);
335	its_vm->nr_vpes = 0;
336	its_vm->vpes = NULL;
337}
338
339int vgic_v4_put(struct kvm_vcpu *vcpu)
340{
341	struct its_vpe *vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
342
343	if (!vgic_supports_direct_msis(vcpu->kvm) || !vpe->resident)
344		return 0;
345
346	return its_make_vpe_non_resident(vpe, !!vcpu_get_flag(vcpu, IN_WFI));
347}
348
349int vgic_v4_load(struct kvm_vcpu *vcpu)
350{
351	struct its_vpe *vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
352	int err;
353
354	if (!vgic_supports_direct_msis(vcpu->kvm) || vpe->resident)
355		return 0;
356
357	if (vcpu_get_flag(vcpu, IN_WFI))
358		return 0;
359
360	/*
361	 * Before making the VPE resident, make sure the redistributor
362	 * corresponding to our current CPU expects us here. See the
363	 * doc in drivers/irqchip/irq-gic-v4.c to understand how this
364	 * turns into a VMOVP command at the ITS level.
365	 */
366	err = irq_set_affinity(vpe->irq, cpumask_of(smp_processor_id()));
367	if (err)
368		return err;
369
370	err = its_make_vpe_resident(vpe, false, vcpu->kvm->arch.vgic.enabled);
371	if (err)
372		return err;
373
374	/*
375	 * Now that the VPE is resident, let's get rid of a potential
376	 * doorbell interrupt that would still be pending. This is a
377	 * GICv4.0 only "feature"...
378	 */
379	if (!kvm_vgic_global_state.has_gicv4_1)
380		err = irq_set_irqchip_state(vpe->irq, IRQCHIP_STATE_PENDING, false);
381
382	return err;
383}
384
385void vgic_v4_commit(struct kvm_vcpu *vcpu)
386{
387	struct its_vpe *vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
388
389	/*
390	 * No need to wait for the vPE to be ready across a shallow guest
391	 * exit, as only a vcpu_put will invalidate it.
392	 */
393	if (!vpe->ready)
394		its_commit_vpe(vpe);
395}
396
397static struct vgic_its *vgic_get_its(struct kvm *kvm,
398				     struct kvm_kernel_irq_routing_entry *irq_entry)
399{
400	struct kvm_msi msi  = (struct kvm_msi) {
401		.address_lo	= irq_entry->msi.address_lo,
402		.address_hi	= irq_entry->msi.address_hi,
403		.data		= irq_entry->msi.data,
404		.flags		= irq_entry->msi.flags,
405		.devid		= irq_entry->msi.devid,
406	};
407
408	return vgic_msi_to_its(kvm, &msi);
409}
410
411int kvm_vgic_v4_set_forwarding(struct kvm *kvm, int virq,
412			       struct kvm_kernel_irq_routing_entry *irq_entry)
413{
414	struct vgic_its *its;
415	struct vgic_irq *irq;
416	struct its_vlpi_map map;
417	unsigned long flags;
418	int ret;
419
420	if (!vgic_supports_direct_msis(kvm))
421		return 0;
422
423	/*
424	 * Get the ITS, and escape early on error (not a valid
425	 * doorbell for any of our vITSs).
426	 */
427	its = vgic_get_its(kvm, irq_entry);
428	if (IS_ERR(its))
429		return 0;
430
431	mutex_lock(&its->its_lock);
432
433	/* Perform the actual DevID/EventID -> LPI translation. */
434	ret = vgic_its_resolve_lpi(kvm, its, irq_entry->msi.devid,
435				   irq_entry->msi.data, &irq);
436	if (ret)
437		goto out;
438
439	/* Silently exit if the vLPI is already mapped */
440	if (irq->hw)
441		goto out;
442
443	/*
444	 * Emit the mapping request. If it fails, the ITS probably
445	 * isn't v4 compatible, so let's silently bail out. Holding
446	 * the ITS lock should ensure that nothing can modify the
447	 * target vcpu.
448	 */
449	map = (struct its_vlpi_map) {
450		.vm		= &kvm->arch.vgic.its_vm,
451		.vpe		= &irq->target_vcpu->arch.vgic_cpu.vgic_v3.its_vpe,
452		.vintid		= irq->intid,
453		.properties	= ((irq->priority & 0xfc) |
454				   (irq->enabled ? LPI_PROP_ENABLED : 0) |
455				   LPI_PROP_GROUP1),
456		.db_enabled	= true,
457	};
458
459	ret = its_map_vlpi(virq, &map);
460	if (ret)
461		goto out;
462
463	irq->hw		= true;
464	irq->host_irq	= virq;
465	atomic_inc(&map.vpe->vlpi_count);
466
467	/* Transfer pending state */
468	raw_spin_lock_irqsave(&irq->irq_lock, flags);
469	if (irq->pending_latch) {
470		ret = irq_set_irqchip_state(irq->host_irq,
471					    IRQCHIP_STATE_PENDING,
472					    irq->pending_latch);
473		WARN_RATELIMIT(ret, "IRQ %d", irq->host_irq);
474
475		/*
476		 * Clear pending_latch and communicate this state
477		 * change via vgic_queue_irq_unlock.
478		 */
479		irq->pending_latch = false;
480		vgic_queue_irq_unlock(kvm, irq, flags);
481	} else {
482		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
483	}
484
485out:
486	mutex_unlock(&its->its_lock);
487	return ret;
488}
489
490int kvm_vgic_v4_unset_forwarding(struct kvm *kvm, int virq,
491				 struct kvm_kernel_irq_routing_entry *irq_entry)
492{
493	struct vgic_its *its;
494	struct vgic_irq *irq;
495	int ret;
496
497	if (!vgic_supports_direct_msis(kvm))
498		return 0;
499
500	/*
501	 * Get the ITS, and escape early on error (not a valid
502	 * doorbell for any of our vITSs).
503	 */
504	its = vgic_get_its(kvm, irq_entry);
505	if (IS_ERR(its))
506		return 0;
507
508	mutex_lock(&its->its_lock);
509
510	ret = vgic_its_resolve_lpi(kvm, its, irq_entry->msi.devid,
511				   irq_entry->msi.data, &irq);
512	if (ret)
513		goto out;
514
515	WARN_ON(!(irq->hw && irq->host_irq == virq));
516	if (irq->hw) {
517		atomic_dec(&irq->target_vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vlpi_count);
518		irq->hw = false;
519		ret = its_unmap_vlpi(virq);
520	}
521
522out:
523	mutex_unlock(&its->its_lock);
524	return ret;
525}
526