1// SPDX-License-Identifier: GPL-2.0-only
2
3#include <linux/irqchip/arm-gic-v3.h>
4#include <linux/irq.h>
5#include <linux/irqdomain.h>
6#include <linux/kstrtox.h>
7#include <linux/kvm.h>
8#include <linux/kvm_host.h>
9#include <kvm/arm_vgic.h>
10#include <asm/kvm_hyp.h>
11#include <asm/kvm_mmu.h>
12#include <asm/kvm_asm.h>
13
14#include "vgic.h"
15
16static bool group0_trap;
17static bool group1_trap;
18static bool common_trap;
19static bool dir_trap;
20static bool gicv4_enable;
21
22void vgic_v3_set_underflow(struct kvm_vcpu *vcpu)
23{
24	struct vgic_v3_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v3;
25
26	cpuif->vgic_hcr |= ICH_HCR_UIE;
27}
28
29static bool lr_signals_eoi_mi(u64 lr_val)
30{
31	return !(lr_val & ICH_LR_STATE) && (lr_val & ICH_LR_EOI) &&
32	       !(lr_val & ICH_LR_HW);
33}
34
35void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu)
36{
37	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
38	struct vgic_v3_cpu_if *cpuif = &vgic_cpu->vgic_v3;
39	u32 model = vcpu->kvm->arch.vgic.vgic_model;
40	int lr;
41
42	DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
43
44	cpuif->vgic_hcr &= ~ICH_HCR_UIE;
45
46	for (lr = 0; lr < cpuif->used_lrs; lr++) {
47		u64 val = cpuif->vgic_lr[lr];
48		u32 intid, cpuid;
49		struct vgic_irq *irq;
50		bool is_v2_sgi = false;
51		bool deactivated;
52
53		cpuid = val & GICH_LR_PHYSID_CPUID;
54		cpuid >>= GICH_LR_PHYSID_CPUID_SHIFT;
55
56		if (model == KVM_DEV_TYPE_ARM_VGIC_V3) {
57			intid = val & ICH_LR_VIRTUAL_ID_MASK;
58		} else {
59			intid = val & GICH_LR_VIRTUALID;
60			is_v2_sgi = vgic_irq_is_sgi(intid);
61		}
62
63		/* Notify fds when the guest EOI'ed a level-triggered IRQ */
64		if (lr_signals_eoi_mi(val) && vgic_valid_spi(vcpu->kvm, intid))
65			kvm_notify_acked_irq(vcpu->kvm, 0,
66					     intid - VGIC_NR_PRIVATE_IRQS);
67
68		irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
69		if (!irq)	/* An LPI could have been unmapped. */
70			continue;
71
72		raw_spin_lock(&irq->irq_lock);
73
74		/* Always preserve the active bit, note deactivation */
75		deactivated = irq->active && !(val & ICH_LR_ACTIVE_BIT);
76		irq->active = !!(val & ICH_LR_ACTIVE_BIT);
77
78		if (irq->active && is_v2_sgi)
79			irq->active_source = cpuid;
80
81		/* Edge is the only case where we preserve the pending bit */
82		if (irq->config == VGIC_CONFIG_EDGE &&
83		    (val & ICH_LR_PENDING_BIT)) {
84			irq->pending_latch = true;
85
86			if (is_v2_sgi)
87				irq->source |= (1 << cpuid);
88		}
89
90		/*
91		 * Clear soft pending state when level irqs have been acked.
92		 */
93		if (irq->config == VGIC_CONFIG_LEVEL && !(val & ICH_LR_STATE))
94			irq->pending_latch = false;
95
96		/* Handle resampling for mapped interrupts if required */
97		vgic_irq_handle_resampling(irq, deactivated, val & ICH_LR_PENDING_BIT);
98
99		raw_spin_unlock(&irq->irq_lock);
100		vgic_put_irq(vcpu->kvm, irq);
101	}
102
103	cpuif->used_lrs = 0;
104}
105
106/* Requires the irq to be locked already */
107void vgic_v3_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr)
108{
109	u32 model = vcpu->kvm->arch.vgic.vgic_model;
110	u64 val = irq->intid;
111	bool allow_pending = true, is_v2_sgi;
112
113	is_v2_sgi = (vgic_irq_is_sgi(irq->intid) &&
114		     model == KVM_DEV_TYPE_ARM_VGIC_V2);
115
116	if (irq->active) {
117		val |= ICH_LR_ACTIVE_BIT;
118		if (is_v2_sgi)
119			val |= irq->active_source << GICH_LR_PHYSID_CPUID_SHIFT;
120		if (vgic_irq_is_multi_sgi(irq)) {
121			allow_pending = false;
122			val |= ICH_LR_EOI;
123		}
124	}
125
126	if (irq->hw && !vgic_irq_needs_resampling(irq)) {
127		val |= ICH_LR_HW;
128		val |= ((u64)irq->hwintid) << ICH_LR_PHYS_ID_SHIFT;
129		/*
130		 * Never set pending+active on a HW interrupt, as the
131		 * pending state is kept at the physical distributor
132		 * level.
133		 */
134		if (irq->active)
135			allow_pending = false;
136	} else {
137		if (irq->config == VGIC_CONFIG_LEVEL) {
138			val |= ICH_LR_EOI;
139
140			/*
141			 * Software resampling doesn't work very well
142			 * if we allow P+A, so let's not do that.
143			 */
144			if (irq->active)
145				allow_pending = false;
146		}
147	}
148
149	if (allow_pending && irq_is_pending(irq)) {
150		val |= ICH_LR_PENDING_BIT;
151
152		if (irq->config == VGIC_CONFIG_EDGE)
153			irq->pending_latch = false;
154
155		if (vgic_irq_is_sgi(irq->intid) &&
156		    model == KVM_DEV_TYPE_ARM_VGIC_V2) {
157			u32 src = ffs(irq->source);
158
159			if (WARN_RATELIMIT(!src, "No SGI source for INTID %d\n",
160					   irq->intid))
161				return;
162
163			val |= (src - 1) << GICH_LR_PHYSID_CPUID_SHIFT;
164			irq->source &= ~(1 << (src - 1));
165			if (irq->source) {
166				irq->pending_latch = true;
167				val |= ICH_LR_EOI;
168			}
169		}
170	}
171
172	/*
173	 * Level-triggered mapped IRQs are special because we only observe
174	 * rising edges as input to the VGIC.  We therefore lower the line
175	 * level here, so that we can take new virtual IRQs.  See
176	 * vgic_v3_fold_lr_state for more info.
177	 */
178	if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT))
179		irq->line_level = false;
180
181	if (irq->group)
182		val |= ICH_LR_GROUP;
183
184	val |= (u64)irq->priority << ICH_LR_PRIORITY_SHIFT;
185
186	vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = val;
187}
188
189void vgic_v3_clear_lr(struct kvm_vcpu *vcpu, int lr)
190{
191	vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = 0;
192}
193
194void vgic_v3_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
195{
196	struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
197	u32 model = vcpu->kvm->arch.vgic.vgic_model;
198	u32 vmcr;
199
200	if (model == KVM_DEV_TYPE_ARM_VGIC_V2) {
201		vmcr = (vmcrp->ackctl << ICH_VMCR_ACK_CTL_SHIFT) &
202			ICH_VMCR_ACK_CTL_MASK;
203		vmcr |= (vmcrp->fiqen << ICH_VMCR_FIQ_EN_SHIFT) &
204			ICH_VMCR_FIQ_EN_MASK;
205	} else {
206		/*
207		 * When emulating GICv3 on GICv3 with SRE=1 on the
208		 * VFIQEn bit is RES1 and the VAckCtl bit is RES0.
209		 */
210		vmcr = ICH_VMCR_FIQ_EN_MASK;
211	}
212
213	vmcr |= (vmcrp->cbpr << ICH_VMCR_CBPR_SHIFT) & ICH_VMCR_CBPR_MASK;
214	vmcr |= (vmcrp->eoim << ICH_VMCR_EOIM_SHIFT) & ICH_VMCR_EOIM_MASK;
215	vmcr |= (vmcrp->abpr << ICH_VMCR_BPR1_SHIFT) & ICH_VMCR_BPR1_MASK;
216	vmcr |= (vmcrp->bpr << ICH_VMCR_BPR0_SHIFT) & ICH_VMCR_BPR0_MASK;
217	vmcr |= (vmcrp->pmr << ICH_VMCR_PMR_SHIFT) & ICH_VMCR_PMR_MASK;
218	vmcr |= (vmcrp->grpen0 << ICH_VMCR_ENG0_SHIFT) & ICH_VMCR_ENG0_MASK;
219	vmcr |= (vmcrp->grpen1 << ICH_VMCR_ENG1_SHIFT) & ICH_VMCR_ENG1_MASK;
220
221	cpu_if->vgic_vmcr = vmcr;
222}
223
224void vgic_v3_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
225{
226	struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
227	u32 model = vcpu->kvm->arch.vgic.vgic_model;
228	u32 vmcr;
229
230	vmcr = cpu_if->vgic_vmcr;
231
232	if (model == KVM_DEV_TYPE_ARM_VGIC_V2) {
233		vmcrp->ackctl = (vmcr & ICH_VMCR_ACK_CTL_MASK) >>
234			ICH_VMCR_ACK_CTL_SHIFT;
235		vmcrp->fiqen = (vmcr & ICH_VMCR_FIQ_EN_MASK) >>
236			ICH_VMCR_FIQ_EN_SHIFT;
237	} else {
238		/*
239		 * When emulating GICv3 on GICv3 with SRE=1 on the
240		 * VFIQEn bit is RES1 and the VAckCtl bit is RES0.
241		 */
242		vmcrp->fiqen = 1;
243		vmcrp->ackctl = 0;
244	}
245
246	vmcrp->cbpr = (vmcr & ICH_VMCR_CBPR_MASK) >> ICH_VMCR_CBPR_SHIFT;
247	vmcrp->eoim = (vmcr & ICH_VMCR_EOIM_MASK) >> ICH_VMCR_EOIM_SHIFT;
248	vmcrp->abpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT;
249	vmcrp->bpr  = (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT;
250	vmcrp->pmr  = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT;
251	vmcrp->grpen0 = (vmcr & ICH_VMCR_ENG0_MASK) >> ICH_VMCR_ENG0_SHIFT;
252	vmcrp->grpen1 = (vmcr & ICH_VMCR_ENG1_MASK) >> ICH_VMCR_ENG1_SHIFT;
253}
254
255#define INITIAL_PENDBASER_VALUE						  \
256	(GIC_BASER_CACHEABILITY(GICR_PENDBASER, INNER, RaWb)		| \
257	GIC_BASER_CACHEABILITY(GICR_PENDBASER, OUTER, SameAsInner)	| \
258	GIC_BASER_SHAREABILITY(GICR_PENDBASER, InnerShareable))
259
260void vgic_v3_enable(struct kvm_vcpu *vcpu)
261{
262	struct vgic_v3_cpu_if *vgic_v3 = &vcpu->arch.vgic_cpu.vgic_v3;
263
264	/*
265	 * By forcing VMCR to zero, the GIC will restore the binary
266	 * points to their reset values. Anything else resets to zero
267	 * anyway.
268	 */
269	vgic_v3->vgic_vmcr = 0;
270
271	/*
272	 * If we are emulating a GICv3, we do it in an non-GICv2-compatible
273	 * way, so we force SRE to 1 to demonstrate this to the guest.
274	 * Also, we don't support any form of IRQ/FIQ bypass.
275	 * This goes with the spec allowing the value to be RAO/WI.
276	 */
277	if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) {
278		vgic_v3->vgic_sre = (ICC_SRE_EL1_DIB |
279				     ICC_SRE_EL1_DFB |
280				     ICC_SRE_EL1_SRE);
281		vcpu->arch.vgic_cpu.pendbaser = INITIAL_PENDBASER_VALUE;
282	} else {
283		vgic_v3->vgic_sre = 0;
284	}
285
286	vcpu->arch.vgic_cpu.num_id_bits = (kvm_vgic_global_state.ich_vtr_el2 &
287					   ICH_VTR_ID_BITS_MASK) >>
288					   ICH_VTR_ID_BITS_SHIFT;
289	vcpu->arch.vgic_cpu.num_pri_bits = ((kvm_vgic_global_state.ich_vtr_el2 &
290					    ICH_VTR_PRI_BITS_MASK) >>
291					    ICH_VTR_PRI_BITS_SHIFT) + 1;
292
293	/* Get the show on the road... */
294	vgic_v3->vgic_hcr = ICH_HCR_EN;
295	if (group0_trap)
296		vgic_v3->vgic_hcr |= ICH_HCR_TALL0;
297	if (group1_trap)
298		vgic_v3->vgic_hcr |= ICH_HCR_TALL1;
299	if (common_trap)
300		vgic_v3->vgic_hcr |= ICH_HCR_TC;
301	if (dir_trap)
302		vgic_v3->vgic_hcr |= ICH_HCR_TDIR;
303}
304
305int vgic_v3_lpi_sync_pending_status(struct kvm *kvm, struct vgic_irq *irq)
306{
307	struct kvm_vcpu *vcpu;
308	int byte_offset, bit_nr;
309	gpa_t pendbase, ptr;
310	bool status;
311	u8 val;
312	int ret;
313	unsigned long flags;
314
315retry:
316	vcpu = irq->target_vcpu;
317	if (!vcpu)
318		return 0;
319
320	pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
321
322	byte_offset = irq->intid / BITS_PER_BYTE;
323	bit_nr = irq->intid % BITS_PER_BYTE;
324	ptr = pendbase + byte_offset;
325
326	ret = kvm_read_guest_lock(kvm, ptr, &val, 1);
327	if (ret)
328		return ret;
329
330	status = val & (1 << bit_nr);
331
332	raw_spin_lock_irqsave(&irq->irq_lock, flags);
333	if (irq->target_vcpu != vcpu) {
334		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
335		goto retry;
336	}
337	irq->pending_latch = status;
338	vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
339
340	if (status) {
341		/* clear consumed data */
342		val &= ~(1 << bit_nr);
343		ret = vgic_write_guest_lock(kvm, ptr, &val, 1);
344		if (ret)
345			return ret;
346	}
347	return 0;
348}
349
350/*
351 * The deactivation of the doorbell interrupt will trigger the
352 * unmapping of the associated vPE.
353 */
354static void unmap_all_vpes(struct kvm *kvm)
355{
356	struct vgic_dist *dist = &kvm->arch.vgic;
357	int i;
358
359	for (i = 0; i < dist->its_vm.nr_vpes; i++)
360		free_irq(dist->its_vm.vpes[i]->irq, kvm_get_vcpu(kvm, i));
361}
362
363static void map_all_vpes(struct kvm *kvm)
364{
365	struct vgic_dist *dist = &kvm->arch.vgic;
366	int i;
367
368	for (i = 0; i < dist->its_vm.nr_vpes; i++)
369		WARN_ON(vgic_v4_request_vpe_irq(kvm_get_vcpu(kvm, i),
370						dist->its_vm.vpes[i]->irq));
371}
372
373/**
374 * vgic_v3_save_pending_tables - Save the pending tables into guest RAM
375 * kvm lock and all vcpu lock must be held
376 */
377int vgic_v3_save_pending_tables(struct kvm *kvm)
378{
379	struct vgic_dist *dist = &kvm->arch.vgic;
380	struct vgic_irq *irq;
381	gpa_t last_ptr = ~(gpa_t)0;
382	bool vlpi_avail = false;
383	unsigned long index;
384	int ret = 0;
385	u8 val;
386
387	if (unlikely(!vgic_initialized(kvm)))
388		return -ENXIO;
389
390	/*
391	 * A preparation for getting any VLPI states.
392	 * The above vgic initialized check also ensures that the allocation
393	 * and enabling of the doorbells have already been done.
394	 */
395	if (kvm_vgic_global_state.has_gicv4_1) {
396		unmap_all_vpes(kvm);
397		vlpi_avail = true;
398	}
399
400	xa_for_each(&dist->lpi_xa, index, irq) {
401		int byte_offset, bit_nr;
402		struct kvm_vcpu *vcpu;
403		gpa_t pendbase, ptr;
404		bool is_pending;
405		bool stored;
406
407		vcpu = irq->target_vcpu;
408		if (!vcpu)
409			continue;
410
411		pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
412
413		byte_offset = irq->intid / BITS_PER_BYTE;
414		bit_nr = irq->intid % BITS_PER_BYTE;
415		ptr = pendbase + byte_offset;
416
417		if (ptr != last_ptr) {
418			ret = kvm_read_guest_lock(kvm, ptr, &val, 1);
419			if (ret)
420				goto out;
421			last_ptr = ptr;
422		}
423
424		stored = val & (1U << bit_nr);
425
426		is_pending = irq->pending_latch;
427
428		if (irq->hw && vlpi_avail)
429			vgic_v4_get_vlpi_state(irq, &is_pending);
430
431		if (stored == is_pending)
432			continue;
433
434		if (is_pending)
435			val |= 1 << bit_nr;
436		else
437			val &= ~(1 << bit_nr);
438
439		ret = vgic_write_guest_lock(kvm, ptr, &val, 1);
440		if (ret)
441			goto out;
442	}
443
444out:
445	if (vlpi_avail)
446		map_all_vpes(kvm);
447
448	return ret;
449}
450
451/**
452 * vgic_v3_rdist_overlap - check if a region overlaps with any
453 * existing redistributor region
454 *
455 * @kvm: kvm handle
456 * @base: base of the region
457 * @size: size of region
458 *
459 * Return: true if there is an overlap
460 */
461bool vgic_v3_rdist_overlap(struct kvm *kvm, gpa_t base, size_t size)
462{
463	struct vgic_dist *d = &kvm->arch.vgic;
464	struct vgic_redist_region *rdreg;
465
466	list_for_each_entry(rdreg, &d->rd_regions, list) {
467		if ((base + size > rdreg->base) &&
468			(base < rdreg->base + vgic_v3_rd_region_size(kvm, rdreg)))
469			return true;
470	}
471	return false;
472}
473
474/*
475 * Check for overlapping regions and for regions crossing the end of memory
476 * for base addresses which have already been set.
477 */
478bool vgic_v3_check_base(struct kvm *kvm)
479{
480	struct vgic_dist *d = &kvm->arch.vgic;
481	struct vgic_redist_region *rdreg;
482
483	if (!IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
484	    d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE < d->vgic_dist_base)
485		return false;
486
487	list_for_each_entry(rdreg, &d->rd_regions, list) {
488		size_t sz = vgic_v3_rd_region_size(kvm, rdreg);
489
490		if (vgic_check_iorange(kvm, VGIC_ADDR_UNDEF,
491				       rdreg->base, SZ_64K, sz))
492			return false;
493	}
494
495	if (IS_VGIC_ADDR_UNDEF(d->vgic_dist_base))
496		return true;
497
498	return !vgic_v3_rdist_overlap(kvm, d->vgic_dist_base,
499				      KVM_VGIC_V3_DIST_SIZE);
500}
501
502/**
503 * vgic_v3_rdist_free_slot - Look up registered rdist regions and identify one
504 * which has free space to put a new rdist region.
505 *
506 * @rd_regions: redistributor region list head
507 *
508 * A redistributor regions maps n redistributors, n = region size / (2 x 64kB).
509 * Stride between redistributors is 0 and regions are filled in the index order.
510 *
511 * Return: the redist region handle, if any, that has space to map a new rdist
512 * region.
513 */
514struct vgic_redist_region *vgic_v3_rdist_free_slot(struct list_head *rd_regions)
515{
516	struct vgic_redist_region *rdreg;
517
518	list_for_each_entry(rdreg, rd_regions, list) {
519		if (!vgic_v3_redist_region_full(rdreg))
520			return rdreg;
521	}
522	return NULL;
523}
524
525struct vgic_redist_region *vgic_v3_rdist_region_from_index(struct kvm *kvm,
526							   u32 index)
527{
528	struct list_head *rd_regions = &kvm->arch.vgic.rd_regions;
529	struct vgic_redist_region *rdreg;
530
531	list_for_each_entry(rdreg, rd_regions, list) {
532		if (rdreg->index == index)
533			return rdreg;
534	}
535	return NULL;
536}
537
538
539int vgic_v3_map_resources(struct kvm *kvm)
540{
541	struct vgic_dist *dist = &kvm->arch.vgic;
542	struct kvm_vcpu *vcpu;
543	unsigned long c;
544
545	kvm_for_each_vcpu(c, vcpu, kvm) {
546		struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
547
548		if (IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr)) {
549			kvm_debug("vcpu %ld redistributor base not set\n", c);
550			return -ENXIO;
551		}
552	}
553
554	if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base)) {
555		kvm_debug("Need to set vgic distributor addresses first\n");
556		return -ENXIO;
557	}
558
559	if (!vgic_v3_check_base(kvm)) {
560		kvm_debug("VGIC redist and dist frames overlap\n");
561		return -EINVAL;
562	}
563
564	/*
565	 * For a VGICv3 we require the userland to explicitly initialize
566	 * the VGIC before we need to use it.
567	 */
568	if (!vgic_initialized(kvm)) {
569		return -EBUSY;
570	}
571
572	if (kvm_vgic_global_state.has_gicv4_1)
573		vgic_v4_configure_vsgis(kvm);
574
575	return 0;
576}
577
578DEFINE_STATIC_KEY_FALSE(vgic_v3_cpuif_trap);
579
580static int __init early_group0_trap_cfg(char *buf)
581{
582	return kstrtobool(buf, &group0_trap);
583}
584early_param("kvm-arm.vgic_v3_group0_trap", early_group0_trap_cfg);
585
586static int __init early_group1_trap_cfg(char *buf)
587{
588	return kstrtobool(buf, &group1_trap);
589}
590early_param("kvm-arm.vgic_v3_group1_trap", early_group1_trap_cfg);
591
592static int __init early_common_trap_cfg(char *buf)
593{
594	return kstrtobool(buf, &common_trap);
595}
596early_param("kvm-arm.vgic_v3_common_trap", early_common_trap_cfg);
597
598static int __init early_gicv4_enable(char *buf)
599{
600	return kstrtobool(buf, &gicv4_enable);
601}
602early_param("kvm-arm.vgic_v4_enable", early_gicv4_enable);
603
604static const struct midr_range broken_seis[] = {
605	MIDR_ALL_VERSIONS(MIDR_APPLE_M1_ICESTORM),
606	MIDR_ALL_VERSIONS(MIDR_APPLE_M1_FIRESTORM),
607	MIDR_ALL_VERSIONS(MIDR_APPLE_M1_ICESTORM_PRO),
608	MIDR_ALL_VERSIONS(MIDR_APPLE_M1_FIRESTORM_PRO),
609	MIDR_ALL_VERSIONS(MIDR_APPLE_M1_ICESTORM_MAX),
610	MIDR_ALL_VERSIONS(MIDR_APPLE_M1_FIRESTORM_MAX),
611	MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD),
612	MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE),
613	MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_PRO),
614	MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_PRO),
615	MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_MAX),
616	MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_MAX),
617	{},
618};
619
620static bool vgic_v3_broken_seis(void)
621{
622	return ((kvm_vgic_global_state.ich_vtr_el2 & ICH_VTR_SEIS_MASK) &&
623		is_midr_in_range_list(read_cpuid_id(), broken_seis));
624}
625
626/**
627 * vgic_v3_probe - probe for a VGICv3 compatible interrupt controller
628 * @info:	pointer to the GIC description
629 *
630 * Returns 0 if the VGICv3 has been probed successfully, returns an error code
631 * otherwise
632 */
633int vgic_v3_probe(const struct gic_kvm_info *info)
634{
635	u64 ich_vtr_el2 = kvm_call_hyp_ret(__vgic_v3_get_gic_config);
636	bool has_v2;
637	int ret;
638
639	has_v2 = ich_vtr_el2 >> 63;
640	ich_vtr_el2 = (u32)ich_vtr_el2;
641
642	/*
643	 * The ListRegs field is 5 bits, but there is an architectural
644	 * maximum of 16 list registers. Just ignore bit 4...
645	 */
646	kvm_vgic_global_state.nr_lr = (ich_vtr_el2 & 0xf) + 1;
647	kvm_vgic_global_state.can_emulate_gicv2 = false;
648	kvm_vgic_global_state.ich_vtr_el2 = ich_vtr_el2;
649
650	/* GICv4 support? */
651	if (info->has_v4) {
652		kvm_vgic_global_state.has_gicv4 = gicv4_enable;
653		kvm_vgic_global_state.has_gicv4_1 = info->has_v4_1 && gicv4_enable;
654		kvm_info("GICv4%s support %sabled\n",
655			 kvm_vgic_global_state.has_gicv4_1 ? ".1" : "",
656			 gicv4_enable ? "en" : "dis");
657	}
658
659	kvm_vgic_global_state.vcpu_base = 0;
660
661	if (!info->vcpu.start) {
662		kvm_info("GICv3: no GICV resource entry\n");
663	} else if (!has_v2) {
664		pr_warn(FW_BUG "CPU interface incapable of MMIO access\n");
665	} else if (!PAGE_ALIGNED(info->vcpu.start)) {
666		pr_warn("GICV physical address 0x%llx not page aligned\n",
667			(unsigned long long)info->vcpu.start);
668	} else if (kvm_get_mode() != KVM_MODE_PROTECTED) {
669		kvm_vgic_global_state.vcpu_base = info->vcpu.start;
670		kvm_vgic_global_state.can_emulate_gicv2 = true;
671		ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2);
672		if (ret) {
673			kvm_err("Cannot register GICv2 KVM device.\n");
674			return ret;
675		}
676		kvm_info("vgic-v2@%llx\n", info->vcpu.start);
677	}
678	ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V3);
679	if (ret) {
680		kvm_err("Cannot register GICv3 KVM device.\n");
681		kvm_unregister_device_ops(KVM_DEV_TYPE_ARM_VGIC_V2);
682		return ret;
683	}
684
685	if (kvm_vgic_global_state.vcpu_base == 0)
686		kvm_info("disabling GICv2 emulation\n");
687
688	if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_30115)) {
689		group0_trap = true;
690		group1_trap = true;
691	}
692
693	if (vgic_v3_broken_seis()) {
694		kvm_info("GICv3 with broken locally generated SEI\n");
695
696		kvm_vgic_global_state.ich_vtr_el2 &= ~ICH_VTR_SEIS_MASK;
697		group0_trap = true;
698		group1_trap = true;
699		if (ich_vtr_el2 & ICH_VTR_TDS_MASK)
700			dir_trap = true;
701		else
702			common_trap = true;
703	}
704
705	if (group0_trap || group1_trap || common_trap | dir_trap) {
706		kvm_info("GICv3 sysreg trapping enabled ([%s%s%s%s], reduced performance)\n",
707			 group0_trap ? "G0" : "",
708			 group1_trap ? "G1" : "",
709			 common_trap ? "C"  : "",
710			 dir_trap    ? "D"  : "");
711		static_branch_enable(&vgic_v3_cpuif_trap);
712	}
713
714	kvm_vgic_global_state.vctrl_base = NULL;
715	kvm_vgic_global_state.type = VGIC_V3;
716	kvm_vgic_global_state.max_gic_vcpus = VGIC_V3_MAX_CPUS;
717
718	return 0;
719}
720
721void vgic_v3_load(struct kvm_vcpu *vcpu)
722{
723	struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
724
725	/*
726	 * If dealing with a GICv2 emulation on GICv3, VMCR_EL2.VFIQen
727	 * is dependent on ICC_SRE_EL1.SRE, and we have to perform the
728	 * VMCR_EL2 save/restore in the world switch.
729	 */
730	if (likely(cpu_if->vgic_sre))
731		kvm_call_hyp(__vgic_v3_write_vmcr, cpu_if->vgic_vmcr);
732
733	kvm_call_hyp(__vgic_v3_restore_aprs, cpu_if);
734
735	if (has_vhe())
736		__vgic_v3_activate_traps(cpu_if);
737
738	WARN_ON(vgic_v4_load(vcpu));
739}
740
741void vgic_v3_vmcr_sync(struct kvm_vcpu *vcpu)
742{
743	struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
744
745	if (likely(cpu_if->vgic_sre))
746		cpu_if->vgic_vmcr = kvm_call_hyp_ret(__vgic_v3_read_vmcr);
747}
748
749void vgic_v3_put(struct kvm_vcpu *vcpu)
750{
751	struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
752
753	WARN_ON(vgic_v4_put(vcpu));
754
755	vgic_v3_vmcr_sync(vcpu);
756
757	kvm_call_hyp(__vgic_v3_save_aprs, cpu_if);
758
759	if (has_vhe())
760		__vgic_v3_deactivate_traps(cpu_if);
761}
762