1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * VGICv3 MMIO handling functions
4 */
5
6#include <linux/bitfield.h>
7#include <linux/irqchip/arm-gic-v3.h>
8#include <linux/kvm.h>
9#include <linux/kvm_host.h>
10#include <linux/interrupt.h>
11#include <kvm/iodev.h>
12#include <kvm/arm_vgic.h>
13
14#include <asm/kvm_emulate.h>
15#include <asm/kvm_arm.h>
16#include <asm/kvm_mmu.h>
17
18#include "vgic.h"
19#include "vgic-mmio.h"
20
21/* extract @num bytes at @offset bytes offset in data */
22unsigned long extract_bytes(u64 data, unsigned int offset,
23			    unsigned int num)
24{
25	return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0);
26}
27
28/* allows updates of any half of a 64-bit register (or the whole thing) */
29u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len,
30		     unsigned long val)
31{
32	int lower = (offset & 4) * 8;
33	int upper = lower + 8 * len - 1;
34
35	reg &= ~GENMASK_ULL(upper, lower);
36	val &= GENMASK_ULL(len * 8 - 1, 0);
37
38	return reg | ((u64)val << lower);
39}
40
41bool vgic_has_its(struct kvm *kvm)
42{
43	struct vgic_dist *dist = &kvm->arch.vgic;
44
45	if (dist->vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
46		return false;
47
48	return dist->has_its;
49}
50
51bool vgic_supports_direct_msis(struct kvm *kvm)
52{
53	return (kvm_vgic_global_state.has_gicv4_1 ||
54		(kvm_vgic_global_state.has_gicv4 && vgic_has_its(kvm)));
55}
56
57/*
58 * The Revision field in the IIDR have the following meanings:
59 *
60 * Revision 2: Interrupt groups are guest-configurable and signaled using
61 * 	       their configured groups.
62 */
63
64static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
65					    gpa_t addr, unsigned int len)
66{
67	struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
68	u32 value = 0;
69
70	switch (addr & 0x0c) {
71	case GICD_CTLR:
72		if (vgic->enabled)
73			value |= GICD_CTLR_ENABLE_SS_G1;
74		value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
75		if (vgic->nassgireq)
76			value |= GICD_CTLR_nASSGIreq;
77		break;
78	case GICD_TYPER:
79		value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS;
80		value = (value >> 5) - 1;
81		if (vgic_has_its(vcpu->kvm)) {
82			value |= (INTERRUPT_ID_BITS_ITS - 1) << 19;
83			value |= GICD_TYPER_LPIS;
84		} else {
85			value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19;
86		}
87		break;
88	case GICD_TYPER2:
89		if (kvm_vgic_global_state.has_gicv4_1 && gic_cpuif_has_vsgi())
90			value = GICD_TYPER2_nASSGIcap;
91		break;
92	case GICD_IIDR:
93		value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) |
94			(vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) |
95			(IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT);
96		break;
97	default:
98		return 0;
99	}
100
101	return value;
102}
103
104static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu,
105				    gpa_t addr, unsigned int len,
106				    unsigned long val)
107{
108	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
109
110	switch (addr & 0x0c) {
111	case GICD_CTLR: {
112		bool was_enabled, is_hwsgi;
113
114		mutex_lock(&vcpu->kvm->arch.config_lock);
115
116		was_enabled = dist->enabled;
117		is_hwsgi = dist->nassgireq;
118
119		dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
120
121		/* Not a GICv4.1? No HW SGIs */
122		if (!kvm_vgic_global_state.has_gicv4_1 || !gic_cpuif_has_vsgi())
123			val &= ~GICD_CTLR_nASSGIreq;
124
125		/* Dist stays enabled? nASSGIreq is RO */
126		if (was_enabled && dist->enabled) {
127			val &= ~GICD_CTLR_nASSGIreq;
128			val |= FIELD_PREP(GICD_CTLR_nASSGIreq, is_hwsgi);
129		}
130
131		/* Switching HW SGIs? */
132		dist->nassgireq = val & GICD_CTLR_nASSGIreq;
133		if (is_hwsgi != dist->nassgireq)
134			vgic_v4_configure_vsgis(vcpu->kvm);
135
136		if (kvm_vgic_global_state.has_gicv4_1 &&
137		    was_enabled != dist->enabled)
138			kvm_make_all_cpus_request(vcpu->kvm, KVM_REQ_RELOAD_GICv4);
139		else if (!was_enabled && dist->enabled)
140			vgic_kick_vcpus(vcpu->kvm);
141
142		mutex_unlock(&vcpu->kvm->arch.config_lock);
143		break;
144	}
145	case GICD_TYPER:
146	case GICD_TYPER2:
147	case GICD_IIDR:
148		/* This is at best for documentation purposes... */
149		return;
150	}
151}
152
153static int vgic_mmio_uaccess_write_v3_misc(struct kvm_vcpu *vcpu,
154					   gpa_t addr, unsigned int len,
155					   unsigned long val)
156{
157	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
158	u32 reg;
159
160	switch (addr & 0x0c) {
161	case GICD_TYPER2:
162		if (val != vgic_mmio_read_v3_misc(vcpu, addr, len))
163			return -EINVAL;
164		return 0;
165	case GICD_IIDR:
166		reg = vgic_mmio_read_v3_misc(vcpu, addr, len);
167		if ((reg ^ val) & ~GICD_IIDR_REVISION_MASK)
168			return -EINVAL;
169
170		reg = FIELD_GET(GICD_IIDR_REVISION_MASK, reg);
171		switch (reg) {
172		case KVM_VGIC_IMP_REV_2:
173		case KVM_VGIC_IMP_REV_3:
174			dist->implementation_rev = reg;
175			return 0;
176		default:
177			return -EINVAL;
178		}
179	case GICD_CTLR:
180		/* Not a GICv4.1? No HW SGIs */
181		if (!kvm_vgic_global_state.has_gicv4_1)
182			val &= ~GICD_CTLR_nASSGIreq;
183
184		dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
185		dist->nassgireq = val & GICD_CTLR_nASSGIreq;
186		return 0;
187	}
188
189	vgic_mmio_write_v3_misc(vcpu, addr, len, val);
190	return 0;
191}
192
193static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu,
194					    gpa_t addr, unsigned int len)
195{
196	int intid = VGIC_ADDR_TO_INTID(addr, 64);
197	struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid);
198	unsigned long ret = 0;
199
200	if (!irq)
201		return 0;
202
203	/* The upper word is RAZ for us. */
204	if (!(addr & 4))
205		ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len);
206
207	vgic_put_irq(vcpu->kvm, irq);
208	return ret;
209}
210
211static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
212				    gpa_t addr, unsigned int len,
213				    unsigned long val)
214{
215	int intid = VGIC_ADDR_TO_INTID(addr, 64);
216	struct vgic_irq *irq;
217	unsigned long flags;
218
219	/* The upper word is WI for us since we don't implement Aff3. */
220	if (addr & 4)
221		return;
222
223	irq = vgic_get_irq(vcpu->kvm, NULL, intid);
224
225	if (!irq)
226		return;
227
228	raw_spin_lock_irqsave(&irq->irq_lock, flags);
229
230	/* We only care about and preserve Aff0, Aff1 and Aff2. */
231	irq->mpidr = val & GENMASK(23, 0);
232	irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr);
233
234	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
235	vgic_put_irq(vcpu->kvm, irq);
236}
237
238bool vgic_lpis_enabled(struct kvm_vcpu *vcpu)
239{
240	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
241
242	return atomic_read(&vgic_cpu->ctlr) == GICR_CTLR_ENABLE_LPIS;
243}
244
245static unsigned long vgic_mmio_read_v3r_ctlr(struct kvm_vcpu *vcpu,
246					     gpa_t addr, unsigned int len)
247{
248	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
249	unsigned long val;
250
251	val = atomic_read(&vgic_cpu->ctlr);
252	if (vgic_get_implementation_rev(vcpu) >= KVM_VGIC_IMP_REV_3)
253		val |= GICR_CTLR_IR | GICR_CTLR_CES;
254
255	return val;
256}
257
258static void vgic_mmio_write_v3r_ctlr(struct kvm_vcpu *vcpu,
259				     gpa_t addr, unsigned int len,
260				     unsigned long val)
261{
262	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
263	u32 ctlr;
264
265	if (!vgic_has_its(vcpu->kvm))
266		return;
267
268	if (!(val & GICR_CTLR_ENABLE_LPIS)) {
269		/*
270		 * Don't disable if RWP is set, as there already an
271		 * ongoing disable. Funky guest...
272		 */
273		ctlr = atomic_cmpxchg_acquire(&vgic_cpu->ctlr,
274					      GICR_CTLR_ENABLE_LPIS,
275					      GICR_CTLR_RWP);
276		if (ctlr != GICR_CTLR_ENABLE_LPIS)
277			return;
278
279		vgic_flush_pending_lpis(vcpu);
280		vgic_its_invalidate_cache(vcpu->kvm);
281		atomic_set_release(&vgic_cpu->ctlr, 0);
282	} else {
283		ctlr = atomic_cmpxchg_acquire(&vgic_cpu->ctlr, 0,
284					      GICR_CTLR_ENABLE_LPIS);
285		if (ctlr != 0)
286			return;
287
288		vgic_enable_lpis(vcpu);
289	}
290}
291
292static bool vgic_mmio_vcpu_rdist_is_last(struct kvm_vcpu *vcpu)
293{
294	struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
295	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
296	struct vgic_redist_region *iter, *rdreg = vgic_cpu->rdreg;
297
298	if (!rdreg)
299		return false;
300
301	if (vgic_cpu->rdreg_index < rdreg->free_index - 1) {
302		return false;
303	} else if (rdreg->count && vgic_cpu->rdreg_index == (rdreg->count - 1)) {
304		struct list_head *rd_regions = &vgic->rd_regions;
305		gpa_t end = rdreg->base + rdreg->count * KVM_VGIC_V3_REDIST_SIZE;
306
307		/*
308		 * the rdist is the last one of the redist region,
309		 * check whether there is no other contiguous rdist region
310		 */
311		list_for_each_entry(iter, rd_regions, list) {
312			if (iter->base == end && iter->free_index > 0)
313				return false;
314		}
315	}
316	return true;
317}
318
319static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu,
320					      gpa_t addr, unsigned int len)
321{
322	unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
323	int target_vcpu_id = vcpu->vcpu_id;
324	u64 value;
325
326	value = (u64)(mpidr & GENMASK(23, 0)) << 32;
327	value |= ((target_vcpu_id & 0xffff) << 8);
328
329	if (vgic_has_its(vcpu->kvm))
330		value |= GICR_TYPER_PLPIS;
331
332	if (vgic_mmio_vcpu_rdist_is_last(vcpu))
333		value |= GICR_TYPER_LAST;
334
335	return extract_bytes(value, addr & 7, len);
336}
337
338static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu,
339					     gpa_t addr, unsigned int len)
340{
341	return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
342}
343
344static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu,
345					      gpa_t addr, unsigned int len)
346{
347	switch (addr & 0xffff) {
348	case GICD_PIDR2:
349		/* report a GICv3 compliant implementation */
350		return 0x3b;
351	}
352
353	return 0;
354}
355
356static int vgic_v3_uaccess_write_pending(struct kvm_vcpu *vcpu,
357					 gpa_t addr, unsigned int len,
358					 unsigned long val)
359{
360	int ret;
361
362	ret = vgic_uaccess_write_spending(vcpu, addr, len, val);
363	if (ret)
364		return ret;
365
366	return vgic_uaccess_write_cpending(vcpu, addr, len, ~val);
367}
368
369/* We want to avoid outer shareable. */
370u64 vgic_sanitise_shareability(u64 field)
371{
372	switch (field) {
373	case GIC_BASER_OuterShareable:
374		return GIC_BASER_InnerShareable;
375	default:
376		return field;
377	}
378}
379
380/* Avoid any inner non-cacheable mapping. */
381u64 vgic_sanitise_inner_cacheability(u64 field)
382{
383	switch (field) {
384	case GIC_BASER_CACHE_nCnB:
385	case GIC_BASER_CACHE_nC:
386		return GIC_BASER_CACHE_RaWb;
387	default:
388		return field;
389	}
390}
391
392/* Non-cacheable or same-as-inner are OK. */
393u64 vgic_sanitise_outer_cacheability(u64 field)
394{
395	switch (field) {
396	case GIC_BASER_CACHE_SameAsInner:
397	case GIC_BASER_CACHE_nC:
398		return field;
399	default:
400		return GIC_BASER_CACHE_SameAsInner;
401	}
402}
403
404u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
405			u64 (*sanitise_fn)(u64))
406{
407	u64 field = (reg & field_mask) >> field_shift;
408
409	field = sanitise_fn(field) << field_shift;
410	return (reg & ~field_mask) | field;
411}
412
413#define PROPBASER_RES0_MASK						\
414	(GENMASK_ULL(63, 59) | GENMASK_ULL(55, 52) | GENMASK_ULL(6, 5))
415#define PENDBASER_RES0_MASK						\
416	(BIT_ULL(63) | GENMASK_ULL(61, 59) | GENMASK_ULL(55, 52) |	\
417	 GENMASK_ULL(15, 12) | GENMASK_ULL(6, 0))
418
419static u64 vgic_sanitise_pendbaser(u64 reg)
420{
421	reg = vgic_sanitise_field(reg, GICR_PENDBASER_SHAREABILITY_MASK,
422				  GICR_PENDBASER_SHAREABILITY_SHIFT,
423				  vgic_sanitise_shareability);
424	reg = vgic_sanitise_field(reg, GICR_PENDBASER_INNER_CACHEABILITY_MASK,
425				  GICR_PENDBASER_INNER_CACHEABILITY_SHIFT,
426				  vgic_sanitise_inner_cacheability);
427	reg = vgic_sanitise_field(reg, GICR_PENDBASER_OUTER_CACHEABILITY_MASK,
428				  GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT,
429				  vgic_sanitise_outer_cacheability);
430
431	reg &= ~PENDBASER_RES0_MASK;
432
433	return reg;
434}
435
436static u64 vgic_sanitise_propbaser(u64 reg)
437{
438	reg = vgic_sanitise_field(reg, GICR_PROPBASER_SHAREABILITY_MASK,
439				  GICR_PROPBASER_SHAREABILITY_SHIFT,
440				  vgic_sanitise_shareability);
441	reg = vgic_sanitise_field(reg, GICR_PROPBASER_INNER_CACHEABILITY_MASK,
442				  GICR_PROPBASER_INNER_CACHEABILITY_SHIFT,
443				  vgic_sanitise_inner_cacheability);
444	reg = vgic_sanitise_field(reg, GICR_PROPBASER_OUTER_CACHEABILITY_MASK,
445				  GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT,
446				  vgic_sanitise_outer_cacheability);
447
448	reg &= ~PROPBASER_RES0_MASK;
449	return reg;
450}
451
452static unsigned long vgic_mmio_read_propbase(struct kvm_vcpu *vcpu,
453					     gpa_t addr, unsigned int len)
454{
455	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
456
457	return extract_bytes(dist->propbaser, addr & 7, len);
458}
459
460static void vgic_mmio_write_propbase(struct kvm_vcpu *vcpu,
461				     gpa_t addr, unsigned int len,
462				     unsigned long val)
463{
464	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
465	u64 old_propbaser, propbaser;
466
467	/* Storing a value with LPIs already enabled is undefined */
468	if (vgic_lpis_enabled(vcpu))
469		return;
470
471	do {
472		old_propbaser = READ_ONCE(dist->propbaser);
473		propbaser = old_propbaser;
474		propbaser = update_64bit_reg(propbaser, addr & 4, len, val);
475		propbaser = vgic_sanitise_propbaser(propbaser);
476	} while (cmpxchg64(&dist->propbaser, old_propbaser,
477			   propbaser) != old_propbaser);
478}
479
480static unsigned long vgic_mmio_read_pendbase(struct kvm_vcpu *vcpu,
481					     gpa_t addr, unsigned int len)
482{
483	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
484	u64 value = vgic_cpu->pendbaser;
485
486	value &= ~GICR_PENDBASER_PTZ;
487
488	return extract_bytes(value, addr & 7, len);
489}
490
491static void vgic_mmio_write_pendbase(struct kvm_vcpu *vcpu,
492				     gpa_t addr, unsigned int len,
493				     unsigned long val)
494{
495	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
496	u64 old_pendbaser, pendbaser;
497
498	/* Storing a value with LPIs already enabled is undefined */
499	if (vgic_lpis_enabled(vcpu))
500		return;
501
502	do {
503		old_pendbaser = READ_ONCE(vgic_cpu->pendbaser);
504		pendbaser = old_pendbaser;
505		pendbaser = update_64bit_reg(pendbaser, addr & 4, len, val);
506		pendbaser = vgic_sanitise_pendbaser(pendbaser);
507	} while (cmpxchg64(&vgic_cpu->pendbaser, old_pendbaser,
508			   pendbaser) != old_pendbaser);
509}
510
511static unsigned long vgic_mmio_read_sync(struct kvm_vcpu *vcpu,
512					 gpa_t addr, unsigned int len)
513{
514	return !!atomic_read(&vcpu->arch.vgic_cpu.syncr_busy);
515}
516
517static void vgic_set_rdist_busy(struct kvm_vcpu *vcpu, bool busy)
518{
519	if (busy) {
520		atomic_inc(&vcpu->arch.vgic_cpu.syncr_busy);
521		smp_mb__after_atomic();
522	} else {
523		smp_mb__before_atomic();
524		atomic_dec(&vcpu->arch.vgic_cpu.syncr_busy);
525	}
526}
527
528static void vgic_mmio_write_invlpi(struct kvm_vcpu *vcpu,
529				   gpa_t addr, unsigned int len,
530				   unsigned long val)
531{
532	struct vgic_irq *irq;
533
534	/*
535	 * If the guest wrote only to the upper 32bit part of the
536	 * register, drop the write on the floor, as it is only for
537	 * vPEs (which we don't support for obvious reasons).
538	 *
539	 * Also discard the access if LPIs are not enabled.
540	 */
541	if ((addr & 4) || !vgic_lpis_enabled(vcpu))
542		return;
543
544	vgic_set_rdist_busy(vcpu, true);
545
546	irq = vgic_get_irq(vcpu->kvm, NULL, lower_32_bits(val));
547	if (irq) {
548		vgic_its_inv_lpi(vcpu->kvm, irq);
549		vgic_put_irq(vcpu->kvm, irq);
550	}
551
552	vgic_set_rdist_busy(vcpu, false);
553}
554
555static void vgic_mmio_write_invall(struct kvm_vcpu *vcpu,
556				   gpa_t addr, unsigned int len,
557				   unsigned long val)
558{
559	/* See vgic_mmio_write_invlpi() for the early return rationale */
560	if ((addr & 4) || !vgic_lpis_enabled(vcpu))
561		return;
562
563	vgic_set_rdist_busy(vcpu, true);
564	vgic_its_invall(vcpu);
565	vgic_set_rdist_busy(vcpu, false);
566}
567
568/*
569 * The GICv3 per-IRQ registers are split to control PPIs and SGIs in the
570 * redistributors, while SPIs are covered by registers in the distributor
571 * block. Trying to set private IRQs in this block gets ignored.
572 * We take some special care here to fix the calculation of the register
573 * offset.
574 */
575#define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, ur, uw, bpi, acc) \
576	{								\
577		.reg_offset = off,					\
578		.bits_per_irq = bpi,					\
579		.len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8,		\
580		.access_flags = acc,					\
581		.read = vgic_mmio_read_raz,				\
582		.write = vgic_mmio_write_wi,				\
583	}, {								\
584		.reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8,	\
585		.bits_per_irq = bpi,					\
586		.len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8,	\
587		.access_flags = acc,					\
588		.read = rd,						\
589		.write = wr,						\
590		.uaccess_read = ur,					\
591		.uaccess_write = uw,					\
592	}
593
594static const struct vgic_register_region vgic_v3_dist_registers[] = {
595	REGISTER_DESC_WITH_LENGTH_UACCESS(GICD_CTLR,
596		vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc,
597		NULL, vgic_mmio_uaccess_write_v3_misc,
598		16, VGIC_ACCESS_32bit),
599	REGISTER_DESC_WITH_LENGTH(GICD_STATUSR,
600		vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
601		VGIC_ACCESS_32bit),
602	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR,
603		vgic_mmio_read_group, vgic_mmio_write_group, NULL, NULL, 1,
604		VGIC_ACCESS_32bit),
605	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER,
606		vgic_mmio_read_enable, vgic_mmio_write_senable,
607		NULL, vgic_uaccess_write_senable, 1,
608		VGIC_ACCESS_32bit),
609	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER,
610		vgic_mmio_read_enable, vgic_mmio_write_cenable,
611	       NULL, vgic_uaccess_write_cenable, 1,
612		VGIC_ACCESS_32bit),
613	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR,
614		vgic_mmio_read_pending, vgic_mmio_write_spending,
615		vgic_uaccess_read_pending, vgic_v3_uaccess_write_pending, 1,
616		VGIC_ACCESS_32bit),
617	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR,
618		vgic_mmio_read_pending, vgic_mmio_write_cpending,
619		vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 1,
620		VGIC_ACCESS_32bit),
621	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER,
622		vgic_mmio_read_active, vgic_mmio_write_sactive,
623		vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 1,
624		VGIC_ACCESS_32bit),
625	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER,
626		vgic_mmio_read_active, vgic_mmio_write_cactive,
627		vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive,
628		1, VGIC_ACCESS_32bit),
629	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR,
630		vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
631		8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
632	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR,
633		vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 8,
634		VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
635	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR,
636		vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
637		VGIC_ACCESS_32bit),
638	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR,
639		vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 1,
640		VGIC_ACCESS_32bit),
641	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER,
642		vgic_mmio_read_irouter, vgic_mmio_write_irouter, NULL, NULL, 64,
643		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
644	REGISTER_DESC_WITH_LENGTH(GICD_IDREGS,
645		vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
646		VGIC_ACCESS_32bit),
647};
648
649static const struct vgic_register_region vgic_v3_rd_registers[] = {
650	/* RD_base registers */
651	REGISTER_DESC_WITH_LENGTH(GICR_CTLR,
652		vgic_mmio_read_v3r_ctlr, vgic_mmio_write_v3r_ctlr, 4,
653		VGIC_ACCESS_32bit),
654	REGISTER_DESC_WITH_LENGTH(GICR_STATUSR,
655		vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
656		VGIC_ACCESS_32bit),
657	REGISTER_DESC_WITH_LENGTH(GICR_IIDR,
658		vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4,
659		VGIC_ACCESS_32bit),
660	REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_TYPER,
661		vgic_mmio_read_v3r_typer, vgic_mmio_write_wi,
662		NULL, vgic_mmio_uaccess_write_wi, 8,
663		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
664	REGISTER_DESC_WITH_LENGTH(GICR_WAKER,
665		vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
666		VGIC_ACCESS_32bit),
667	REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER,
668		vgic_mmio_read_propbase, vgic_mmio_write_propbase, 8,
669		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
670	REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER,
671		vgic_mmio_read_pendbase, vgic_mmio_write_pendbase, 8,
672		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
673	REGISTER_DESC_WITH_LENGTH(GICR_INVLPIR,
674		vgic_mmio_read_raz, vgic_mmio_write_invlpi, 8,
675		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
676	REGISTER_DESC_WITH_LENGTH(GICR_INVALLR,
677		vgic_mmio_read_raz, vgic_mmio_write_invall, 8,
678		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
679	REGISTER_DESC_WITH_LENGTH(GICR_SYNCR,
680		vgic_mmio_read_sync, vgic_mmio_write_wi, 4,
681		VGIC_ACCESS_32bit),
682	REGISTER_DESC_WITH_LENGTH(GICR_IDREGS,
683		vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
684		VGIC_ACCESS_32bit),
685	/* SGI_base registers */
686	REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGROUPR0,
687		vgic_mmio_read_group, vgic_mmio_write_group, 4,
688		VGIC_ACCESS_32bit),
689	REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISENABLER0,
690		vgic_mmio_read_enable, vgic_mmio_write_senable,
691		NULL, vgic_uaccess_write_senable, 4,
692		VGIC_ACCESS_32bit),
693	REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICENABLER0,
694		vgic_mmio_read_enable, vgic_mmio_write_cenable,
695		NULL, vgic_uaccess_write_cenable, 4,
696		VGIC_ACCESS_32bit),
697	REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISPENDR0,
698		vgic_mmio_read_pending, vgic_mmio_write_spending,
699		vgic_uaccess_read_pending, vgic_v3_uaccess_write_pending, 4,
700		VGIC_ACCESS_32bit),
701	REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICPENDR0,
702		vgic_mmio_read_pending, vgic_mmio_write_cpending,
703		vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 4,
704		VGIC_ACCESS_32bit),
705	REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISACTIVER0,
706		vgic_mmio_read_active, vgic_mmio_write_sactive,
707		vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 4,
708		VGIC_ACCESS_32bit),
709	REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICACTIVER0,
710		vgic_mmio_read_active, vgic_mmio_write_cactive,
711		vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive, 4,
712		VGIC_ACCESS_32bit),
713	REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IPRIORITYR0,
714		vgic_mmio_read_priority, vgic_mmio_write_priority, 32,
715		VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
716	REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_ICFGR0,
717		vgic_mmio_read_config, vgic_mmio_write_config, 8,
718		VGIC_ACCESS_32bit),
719	REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGRPMODR0,
720		vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
721		VGIC_ACCESS_32bit),
722	REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_NSACR,
723		vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
724		VGIC_ACCESS_32bit),
725};
726
727unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
728{
729	dev->regions = vgic_v3_dist_registers;
730	dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
731
732	kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
733
734	return SZ_64K;
735}
736
737/**
738 * vgic_register_redist_iodev - register a single redist iodev
739 * @vcpu:    The VCPU to which the redistributor belongs
740 *
741 * Register a KVM iodev for this VCPU's redistributor using the address
742 * provided.
743 *
744 * Return 0 on success, -ERRNO otherwise.
745 */
746int vgic_register_redist_iodev(struct kvm_vcpu *vcpu)
747{
748	struct kvm *kvm = vcpu->kvm;
749	struct vgic_dist *vgic = &kvm->arch.vgic;
750	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
751	struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
752	struct vgic_redist_region *rdreg;
753	gpa_t rd_base;
754	int ret = 0;
755
756	lockdep_assert_held(&kvm->slots_lock);
757	mutex_lock(&kvm->arch.config_lock);
758
759	if (!IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr))
760		goto out_unlock;
761
762	/*
763	 * We may be creating VCPUs before having set the base address for the
764	 * redistributor region, in which case we will come back to this
765	 * function for all VCPUs when the base address is set.  Just return
766	 * without doing any work for now.
767	 */
768	rdreg = vgic_v3_rdist_free_slot(&vgic->rd_regions);
769	if (!rdreg)
770		goto out_unlock;
771
772	if (!vgic_v3_check_base(kvm)) {
773		ret = -EINVAL;
774		goto out_unlock;
775	}
776
777	vgic_cpu->rdreg = rdreg;
778	vgic_cpu->rdreg_index = rdreg->free_index;
779
780	rd_base = rdreg->base + rdreg->free_index * KVM_VGIC_V3_REDIST_SIZE;
781
782	kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
783	rd_dev->base_addr = rd_base;
784	rd_dev->iodev_type = IODEV_REDIST;
785	rd_dev->regions = vgic_v3_rd_registers;
786	rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
787	rd_dev->redist_vcpu = vcpu;
788
789	mutex_unlock(&kvm->arch.config_lock);
790
791	ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base,
792				      2 * SZ_64K, &rd_dev->dev);
793	if (ret)
794		return ret;
795
796	/* Protected by slots_lock */
797	rdreg->free_index++;
798	return 0;
799
800out_unlock:
801	mutex_unlock(&kvm->arch.config_lock);
802	return ret;
803}
804
805void vgic_unregister_redist_iodev(struct kvm_vcpu *vcpu)
806{
807	struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
808
809	kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &rd_dev->dev);
810}
811
812static int vgic_register_all_redist_iodevs(struct kvm *kvm)
813{
814	struct kvm_vcpu *vcpu;
815	unsigned long c;
816	int ret = 0;
817
818	lockdep_assert_held(&kvm->slots_lock);
819
820	kvm_for_each_vcpu(c, vcpu, kvm) {
821		ret = vgic_register_redist_iodev(vcpu);
822		if (ret)
823			break;
824	}
825
826	if (ret) {
827		/* The current c failed, so iterate over the previous ones. */
828		int i;
829
830		for (i = 0; i < c; i++) {
831			vcpu = kvm_get_vcpu(kvm, i);
832			vgic_unregister_redist_iodev(vcpu);
833		}
834	}
835
836	return ret;
837}
838
839/**
840 * vgic_v3_alloc_redist_region - Allocate a new redistributor region
841 *
842 * Performs various checks before inserting the rdist region in the list.
843 * Those tests depend on whether the size of the rdist region is known
844 * (ie. count != 0). The list is sorted by rdist region index.
845 *
846 * @kvm: kvm handle
847 * @index: redist region index
848 * @base: base of the new rdist region
849 * @count: number of redistributors the region is made of (0 in the old style
850 * single region, whose size is induced from the number of vcpus)
851 *
852 * Return 0 on success, < 0 otherwise
853 */
854static int vgic_v3_alloc_redist_region(struct kvm *kvm, uint32_t index,
855				       gpa_t base, uint32_t count)
856{
857	struct vgic_dist *d = &kvm->arch.vgic;
858	struct vgic_redist_region *rdreg;
859	struct list_head *rd_regions = &d->rd_regions;
860	int nr_vcpus = atomic_read(&kvm->online_vcpus);
861	size_t size = count ? count * KVM_VGIC_V3_REDIST_SIZE
862			    : nr_vcpus * KVM_VGIC_V3_REDIST_SIZE;
863	int ret;
864
865	/* cross the end of memory ? */
866	if (base + size < base)
867		return -EINVAL;
868
869	if (list_empty(rd_regions)) {
870		if (index != 0)
871			return -EINVAL;
872	} else {
873		rdreg = list_last_entry(rd_regions,
874					struct vgic_redist_region, list);
875
876		/* Don't mix single region and discrete redist regions */
877		if (!count && rdreg->count)
878			return -EINVAL;
879
880		if (!count)
881			return -EEXIST;
882
883		if (index != rdreg->index + 1)
884			return -EINVAL;
885	}
886
887	/*
888	 * For legacy single-region redistributor regions (!count),
889	 * check that the redistributor region does not overlap with the
890	 * distributor's address space.
891	 */
892	if (!count && !IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
893		vgic_dist_overlap(kvm, base, size))
894		return -EINVAL;
895
896	/* collision with any other rdist region? */
897	if (vgic_v3_rdist_overlap(kvm, base, size))
898		return -EINVAL;
899
900	rdreg = kzalloc(sizeof(*rdreg), GFP_KERNEL_ACCOUNT);
901	if (!rdreg)
902		return -ENOMEM;
903
904	rdreg->base = VGIC_ADDR_UNDEF;
905
906	ret = vgic_check_iorange(kvm, rdreg->base, base, SZ_64K, size);
907	if (ret)
908		goto free;
909
910	rdreg->base = base;
911	rdreg->count = count;
912	rdreg->free_index = 0;
913	rdreg->index = index;
914
915	list_add_tail(&rdreg->list, rd_regions);
916	return 0;
917free:
918	kfree(rdreg);
919	return ret;
920}
921
922void vgic_v3_free_redist_region(struct vgic_redist_region *rdreg)
923{
924	list_del(&rdreg->list);
925	kfree(rdreg);
926}
927
928int vgic_v3_set_redist_base(struct kvm *kvm, u32 index, u64 addr, u32 count)
929{
930	int ret;
931
932	mutex_lock(&kvm->arch.config_lock);
933	ret = vgic_v3_alloc_redist_region(kvm, index, addr, count);
934	mutex_unlock(&kvm->arch.config_lock);
935	if (ret)
936		return ret;
937
938	/*
939	 * Register iodevs for each existing VCPU.  Adding more VCPUs
940	 * afterwards will register the iodevs when needed.
941	 */
942	ret = vgic_register_all_redist_iodevs(kvm);
943	if (ret) {
944		struct vgic_redist_region *rdreg;
945
946		mutex_lock(&kvm->arch.config_lock);
947		rdreg = vgic_v3_rdist_region_from_index(kvm, index);
948		vgic_v3_free_redist_region(rdreg);
949		mutex_unlock(&kvm->arch.config_lock);
950		return ret;
951	}
952
953	return 0;
954}
955
956int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
957{
958	const struct vgic_register_region *region;
959	struct vgic_io_device iodev;
960	struct vgic_reg_attr reg_attr;
961	struct kvm_vcpu *vcpu;
962	gpa_t addr;
963	int ret;
964
965	ret = vgic_v3_parse_attr(dev, attr, &reg_attr);
966	if (ret)
967		return ret;
968
969	vcpu = reg_attr.vcpu;
970	addr = reg_attr.addr;
971
972	switch (attr->group) {
973	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
974		iodev.regions = vgic_v3_dist_registers;
975		iodev.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
976		iodev.base_addr = 0;
977		break;
978	case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:{
979		iodev.regions = vgic_v3_rd_registers;
980		iodev.nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
981		iodev.base_addr = 0;
982		break;
983	}
984	case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS:
985		return vgic_v3_has_cpu_sysregs_attr(vcpu, attr);
986	default:
987		return -ENXIO;
988	}
989
990	/* We only support aligned 32-bit accesses. */
991	if (addr & 3)
992		return -ENXIO;
993
994	region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
995	if (!region)
996		return -ENXIO;
997
998	return 0;
999}
1000
1001/*
1002 * The ICC_SGI* registers encode the affinity differently from the MPIDR,
1003 * so provide a wrapper to use the existing defines to isolate a certain
1004 * affinity level.
1005 */
1006#define SGI_AFFINITY_LEVEL(reg, level) \
1007	((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
1008	>> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
1009
1010static void vgic_v3_queue_sgi(struct kvm_vcpu *vcpu, u32 sgi, bool allow_group1)
1011{
1012	struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, sgi);
1013	unsigned long flags;
1014
1015	raw_spin_lock_irqsave(&irq->irq_lock, flags);
1016
1017	/*
1018	 * An access targeting Group0 SGIs can only generate
1019	 * those, while an access targeting Group1 SGIs can
1020	 * generate interrupts of either group.
1021	 */
1022	if (!irq->group || allow_group1) {
1023		if (!irq->hw) {
1024			irq->pending_latch = true;
1025			vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
1026		} else {
1027			/* HW SGI? Ask the GIC to inject it */
1028			int err;
1029			err = irq_set_irqchip_state(irq->host_irq,
1030						    IRQCHIP_STATE_PENDING,
1031						    true);
1032			WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
1033			raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1034		}
1035	} else {
1036		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1037	}
1038
1039	vgic_put_irq(vcpu->kvm, irq);
1040}
1041
1042/**
1043 * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
1044 * @vcpu: The VCPU requesting a SGI
1045 * @reg: The value written into ICC_{ASGI1,SGI0,SGI1}R by that VCPU
1046 * @allow_group1: Does the sysreg access allow generation of G1 SGIs
1047 *
1048 * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
1049 * This will trap in sys_regs.c and call this function.
1050 * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
1051 * target processors as well as a bitmask of 16 Aff0 CPUs.
1052 *
1053 * If the interrupt routing mode bit is not set, we iterate over the Aff0
1054 * bits and signal the VCPUs matching the provided Aff{3,2,1}.
1055 *
1056 * If this bit is set, we signal all, but not the calling VCPU.
1057 */
1058void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg, bool allow_group1)
1059{
1060	struct kvm *kvm = vcpu->kvm;
1061	struct kvm_vcpu *c_vcpu;
1062	unsigned long target_cpus;
1063	u64 mpidr;
1064	u32 sgi, aff0;
1065	unsigned long c;
1066
1067	sgi = FIELD_GET(ICC_SGI1R_SGI_ID_MASK, reg);
1068
1069	/* Broadcast */
1070	if (unlikely(reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT))) {
1071		kvm_for_each_vcpu(c, c_vcpu, kvm) {
1072			/* Don't signal the calling VCPU */
1073			if (c_vcpu == vcpu)
1074				continue;
1075
1076			vgic_v3_queue_sgi(c_vcpu, sgi, allow_group1);
1077		}
1078
1079		return;
1080	}
1081
1082	/* We iterate over affinities to find the corresponding vcpus */
1083	mpidr = SGI_AFFINITY_LEVEL(reg, 3);
1084	mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
1085	mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
1086	target_cpus = FIELD_GET(ICC_SGI1R_TARGET_LIST_MASK, reg);
1087
1088	for_each_set_bit(aff0, &target_cpus, hweight_long(ICC_SGI1R_TARGET_LIST_MASK)) {
1089		c_vcpu = kvm_mpidr_to_vcpu(kvm, mpidr | aff0);
1090		if (c_vcpu)
1091			vgic_v3_queue_sgi(c_vcpu, sgi, allow_group1);
1092	}
1093}
1094
1095int vgic_v3_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1096			 int offset, u32 *val)
1097{
1098	struct vgic_io_device dev = {
1099		.regions = vgic_v3_dist_registers,
1100		.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers),
1101	};
1102
1103	return vgic_uaccess(vcpu, &dev, is_write, offset, val);
1104}
1105
1106int vgic_v3_redist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1107			   int offset, u32 *val)
1108{
1109	struct vgic_io_device rd_dev = {
1110		.regions = vgic_v3_rd_registers,
1111		.nr_regions = ARRAY_SIZE(vgic_v3_rd_registers),
1112	};
1113
1114	return vgic_uaccess(vcpu, &rd_dev, is_write, offset, val);
1115}
1116
1117int vgic_v3_line_level_info_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1118				    u32 intid, u32 *val)
1119{
1120	if (intid % 32)
1121		return -EINVAL;
1122
1123	if (is_write)
1124		vgic_write_irq_line_level_info(vcpu, intid, *val);
1125	else
1126		*val = vgic_read_irq_line_level_info(vcpu, intid);
1127
1128	return 0;
1129}
1130