1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * GICv3 ITS emulation
4 *
5 * Copyright (C) 2015,2016 ARM Ltd.
6 * Author: Andre Przywara <andre.przywara@arm.com>
7 */
8
9#include <linux/cpu.h>
10#include <linux/kvm.h>
11#include <linux/kvm_host.h>
12#include <linux/interrupt.h>
13#include <linux/list.h>
14#include <linux/uaccess.h>
15#include <linux/list_sort.h>
16
17#include <linux/irqchip/arm-gic-v3.h>
18
19#include <asm/kvm_emulate.h>
20#include <asm/kvm_arm.h>
21#include <asm/kvm_mmu.h>
22
23#include "vgic.h"
24#include "vgic-mmio.h"
25
26static int vgic_its_save_tables_v0(struct vgic_its *its);
27static int vgic_its_restore_tables_v0(struct vgic_its *its);
28static int vgic_its_commit_v0(struct vgic_its *its);
29static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
30			     struct kvm_vcpu *filter_vcpu, bool needs_inv);
31
32/*
33 * Creates a new (reference to a) struct vgic_irq for a given LPI.
34 * If this LPI is already mapped on another ITS, we increase its refcount
35 * and return a pointer to the existing structure.
36 * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
37 * This function returns a pointer to the _unlocked_ structure.
38 */
39static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid,
40				     struct kvm_vcpu *vcpu)
41{
42	struct vgic_dist *dist = &kvm->arch.vgic;
43	struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
44	unsigned long flags;
45	int ret;
46
47	/* In this case there is no put, since we keep the reference. */
48	if (irq)
49		return irq;
50
51	irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL_ACCOUNT);
52	if (!irq)
53		return ERR_PTR(-ENOMEM);
54
55	ret = xa_reserve_irq(&dist->lpi_xa, intid, GFP_KERNEL_ACCOUNT);
56	if (ret) {
57		kfree(irq);
58		return ERR_PTR(ret);
59	}
60
61	INIT_LIST_HEAD(&irq->ap_list);
62	raw_spin_lock_init(&irq->irq_lock);
63
64	irq->config = VGIC_CONFIG_EDGE;
65	kref_init(&irq->refcount);
66	irq->intid = intid;
67	irq->target_vcpu = vcpu;
68	irq->group = 1;
69
70	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
71
72	/*
73	 * There could be a race with another vgic_add_lpi(), so we need to
74	 * check that we don't add a second list entry with the same LPI.
75	 */
76	oldirq = xa_load(&dist->lpi_xa, intid);
77	if (vgic_try_get_irq_kref(oldirq)) {
78		/* Someone was faster with adding this LPI, lets use that. */
79		kfree(irq);
80		irq = oldirq;
81
82		goto out_unlock;
83	}
84
85	ret = xa_err(xa_store(&dist->lpi_xa, intid, irq, 0));
86	if (ret) {
87		xa_release(&dist->lpi_xa, intid);
88		kfree(irq);
89		goto out_unlock;
90	}
91
92	atomic_inc(&dist->lpi_count);
93
94out_unlock:
95	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
96
97	if (ret)
98		return ERR_PTR(ret);
99
100	/*
101	 * We "cache" the configuration table entries in our struct vgic_irq's.
102	 * However we only have those structs for mapped IRQs, so we read in
103	 * the respective config data from memory here upon mapping the LPI.
104	 *
105	 * Should any of these fail, behave as if we couldn't create the LPI
106	 * by dropping the refcount and returning the error.
107	 */
108	ret = update_lpi_config(kvm, irq, NULL, false);
109	if (ret) {
110		vgic_put_irq(kvm, irq);
111		return ERR_PTR(ret);
112	}
113
114	ret = vgic_v3_lpi_sync_pending_status(kvm, irq);
115	if (ret) {
116		vgic_put_irq(kvm, irq);
117		return ERR_PTR(ret);
118	}
119
120	return irq;
121}
122
123struct its_device {
124	struct list_head dev_list;
125
126	/* the head for the list of ITTEs */
127	struct list_head itt_head;
128	u32 num_eventid_bits;
129	gpa_t itt_addr;
130	u32 device_id;
131};
132
133#define COLLECTION_NOT_MAPPED ((u32)~0)
134
135struct its_collection {
136	struct list_head coll_list;
137
138	u32 collection_id;
139	u32 target_addr;
140};
141
142#define its_is_collection_mapped(coll) ((coll) && \
143				((coll)->target_addr != COLLECTION_NOT_MAPPED))
144
145struct its_ite {
146	struct list_head ite_list;
147
148	struct vgic_irq *irq;
149	struct its_collection *collection;
150	u32 event_id;
151};
152
153struct vgic_translation_cache_entry {
154	struct list_head	entry;
155	phys_addr_t		db;
156	u32			devid;
157	u32			eventid;
158	struct vgic_irq		*irq;
159};
160
161/**
162 * struct vgic_its_abi - ITS abi ops and settings
163 * @cte_esz: collection table entry size
164 * @dte_esz: device table entry size
165 * @ite_esz: interrupt translation table entry size
166 * @save_tables: save the ITS tables into guest RAM
167 * @restore_tables: restore the ITS internal structs from tables
168 *  stored in guest RAM
169 * @commit: initialize the registers which expose the ABI settings,
170 *  especially the entry sizes
171 */
172struct vgic_its_abi {
173	int cte_esz;
174	int dte_esz;
175	int ite_esz;
176	int (*save_tables)(struct vgic_its *its);
177	int (*restore_tables)(struct vgic_its *its);
178	int (*commit)(struct vgic_its *its);
179};
180
181#define ABI_0_ESZ	8
182#define ESZ_MAX		ABI_0_ESZ
183
184static const struct vgic_its_abi its_table_abi_versions[] = {
185	[0] = {
186	 .cte_esz = ABI_0_ESZ,
187	 .dte_esz = ABI_0_ESZ,
188	 .ite_esz = ABI_0_ESZ,
189	 .save_tables = vgic_its_save_tables_v0,
190	 .restore_tables = vgic_its_restore_tables_v0,
191	 .commit = vgic_its_commit_v0,
192	},
193};
194
195#define NR_ITS_ABIS	ARRAY_SIZE(its_table_abi_versions)
196
197inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its)
198{
199	return &its_table_abi_versions[its->abi_rev];
200}
201
202static int vgic_its_set_abi(struct vgic_its *its, u32 rev)
203{
204	const struct vgic_its_abi *abi;
205
206	its->abi_rev = rev;
207	abi = vgic_its_get_abi(its);
208	return abi->commit(its);
209}
210
211/*
212 * Find and returns a device in the device table for an ITS.
213 * Must be called with the its_lock mutex held.
214 */
215static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
216{
217	struct its_device *device;
218
219	list_for_each_entry(device, &its->device_list, dev_list)
220		if (device_id == device->device_id)
221			return device;
222
223	return NULL;
224}
225
226/*
227 * Find and returns an interrupt translation table entry (ITTE) for a given
228 * Device ID/Event ID pair on an ITS.
229 * Must be called with the its_lock mutex held.
230 */
231static struct its_ite *find_ite(struct vgic_its *its, u32 device_id,
232				  u32 event_id)
233{
234	struct its_device *device;
235	struct its_ite *ite;
236
237	device = find_its_device(its, device_id);
238	if (device == NULL)
239		return NULL;
240
241	list_for_each_entry(ite, &device->itt_head, ite_list)
242		if (ite->event_id == event_id)
243			return ite;
244
245	return NULL;
246}
247
248/* To be used as an iterator this macro misses the enclosing parentheses */
249#define for_each_lpi_its(dev, ite, its) \
250	list_for_each_entry(dev, &(its)->device_list, dev_list) \
251		list_for_each_entry(ite, &(dev)->itt_head, ite_list)
252
253#define GIC_LPI_OFFSET 8192
254
255#define VITS_TYPER_IDBITS 16
256#define VITS_TYPER_DEVBITS 16
257#define VITS_DTE_MAX_DEVID_OFFSET	(BIT(14) - 1)
258#define VITS_ITE_MAX_EVENTID_OFFSET	(BIT(16) - 1)
259
260/*
261 * Finds and returns a collection in the ITS collection table.
262 * Must be called with the its_lock mutex held.
263 */
264static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
265{
266	struct its_collection *collection;
267
268	list_for_each_entry(collection, &its->collection_list, coll_list) {
269		if (coll_id == collection->collection_id)
270			return collection;
271	}
272
273	return NULL;
274}
275
276#define LPI_PROP_ENABLE_BIT(p)	((p) & LPI_PROP_ENABLED)
277#define LPI_PROP_PRIORITY(p)	((p) & 0xfc)
278
279/*
280 * Reads the configuration data for a given LPI from guest memory and
281 * updates the fields in struct vgic_irq.
282 * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
283 * VCPU. Unconditionally applies if filter_vcpu is NULL.
284 */
285static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
286			     struct kvm_vcpu *filter_vcpu, bool needs_inv)
287{
288	u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
289	u8 prop;
290	int ret;
291	unsigned long flags;
292
293	ret = kvm_read_guest_lock(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
294				  &prop, 1);
295
296	if (ret)
297		return ret;
298
299	raw_spin_lock_irqsave(&irq->irq_lock, flags);
300
301	if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
302		irq->priority = LPI_PROP_PRIORITY(prop);
303		irq->enabled = LPI_PROP_ENABLE_BIT(prop);
304
305		if (!irq->hw) {
306			vgic_queue_irq_unlock(kvm, irq, flags);
307			return 0;
308		}
309	}
310
311	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
312
313	if (irq->hw)
314		return its_prop_update_vlpi(irq->host_irq, prop, needs_inv);
315
316	return 0;
317}
318
319#define GIC_LPI_MAX_INTID	((1 << INTERRUPT_ID_BITS_ITS) - 1)
320
321/*
322 * Create a snapshot of the current LPIs targeting @vcpu, so that we can
323 * enumerate those LPIs without holding any lock.
324 * Returns their number and puts the kmalloc'ed array into intid_ptr.
325 */
326int vgic_copy_lpi_list(struct kvm *kvm, struct kvm_vcpu *vcpu, u32 **intid_ptr)
327{
328	struct vgic_dist *dist = &kvm->arch.vgic;
329	XA_STATE(xas, &dist->lpi_xa, GIC_LPI_OFFSET);
330	struct vgic_irq *irq;
331	unsigned long flags;
332	u32 *intids;
333	int irq_count, i = 0;
334
335	/*
336	 * There is an obvious race between allocating the array and LPIs
337	 * being mapped/unmapped. If we ended up here as a result of a
338	 * command, we're safe (locks are held, preventing another
339	 * command). If coming from another path (such as enabling LPIs),
340	 * we must be careful not to overrun the array.
341	 */
342	irq_count = atomic_read(&dist->lpi_count);
343	intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL_ACCOUNT);
344	if (!intids)
345		return -ENOMEM;
346
347	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
348	rcu_read_lock();
349
350	xas_for_each(&xas, irq, GIC_LPI_MAX_INTID) {
351		if (i == irq_count)
352			break;
353		/* We don't need to "get" the IRQ, as we hold the list lock. */
354		if (vcpu && irq->target_vcpu != vcpu)
355			continue;
356		intids[i++] = irq->intid;
357	}
358
359	rcu_read_unlock();
360	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
361
362	*intid_ptr = intids;
363	return i;
364}
365
366static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu)
367{
368	int ret = 0;
369	unsigned long flags;
370
371	raw_spin_lock_irqsave(&irq->irq_lock, flags);
372	irq->target_vcpu = vcpu;
373	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
374
375	if (irq->hw) {
376		struct its_vlpi_map map;
377
378		ret = its_get_vlpi(irq->host_irq, &map);
379		if (ret)
380			return ret;
381
382		if (map.vpe)
383			atomic_dec(&map.vpe->vlpi_count);
384		map.vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
385		atomic_inc(&map.vpe->vlpi_count);
386
387		ret = its_map_vlpi(irq->host_irq, &map);
388	}
389
390	return ret;
391}
392
393static struct kvm_vcpu *collection_to_vcpu(struct kvm *kvm,
394					   struct its_collection *col)
395{
396	return kvm_get_vcpu_by_id(kvm, col->target_addr);
397}
398
399/*
400 * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
401 * is targeting) to the VGIC's view, which deals with target VCPUs.
402 * Needs to be called whenever either the collection for a LPIs has
403 * changed or the collection itself got retargeted.
404 */
405static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite)
406{
407	struct kvm_vcpu *vcpu;
408
409	if (!its_is_collection_mapped(ite->collection))
410		return;
411
412	vcpu = collection_to_vcpu(kvm, ite->collection);
413	update_affinity(ite->irq, vcpu);
414}
415
416/*
417 * Updates the target VCPU for every LPI targeting this collection.
418 * Must be called with the its_lock mutex held.
419 */
420static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
421				       struct its_collection *coll)
422{
423	struct its_device *device;
424	struct its_ite *ite;
425
426	for_each_lpi_its(device, ite, its) {
427		if (ite->collection != coll)
428			continue;
429
430		update_affinity_ite(kvm, ite);
431	}
432}
433
434static u32 max_lpis_propbaser(u64 propbaser)
435{
436	int nr_idbits = (propbaser & 0x1f) + 1;
437
438	return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
439}
440
441/*
442 * Sync the pending table pending bit of LPIs targeting @vcpu
443 * with our own data structures. This relies on the LPI being
444 * mapped before.
445 */
446static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
447{
448	gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
449	struct vgic_irq *irq;
450	int last_byte_offset = -1;
451	int ret = 0;
452	u32 *intids;
453	int nr_irqs, i;
454	unsigned long flags;
455	u8 pendmask;
456
457	nr_irqs = vgic_copy_lpi_list(vcpu->kvm, vcpu, &intids);
458	if (nr_irqs < 0)
459		return nr_irqs;
460
461	for (i = 0; i < nr_irqs; i++) {
462		int byte_offset, bit_nr;
463
464		byte_offset = intids[i] / BITS_PER_BYTE;
465		bit_nr = intids[i] % BITS_PER_BYTE;
466
467		/*
468		 * For contiguously allocated LPIs chances are we just read
469		 * this very same byte in the last iteration. Reuse that.
470		 */
471		if (byte_offset != last_byte_offset) {
472			ret = kvm_read_guest_lock(vcpu->kvm,
473						  pendbase + byte_offset,
474						  &pendmask, 1);
475			if (ret) {
476				kfree(intids);
477				return ret;
478			}
479			last_byte_offset = byte_offset;
480		}
481
482		irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]);
483		if (!irq)
484			continue;
485
486		raw_spin_lock_irqsave(&irq->irq_lock, flags);
487		irq->pending_latch = pendmask & (1U << bit_nr);
488		vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
489		vgic_put_irq(vcpu->kvm, irq);
490	}
491
492	kfree(intids);
493
494	return ret;
495}
496
497static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
498					      struct vgic_its *its,
499					      gpa_t addr, unsigned int len)
500{
501	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
502	u64 reg = GITS_TYPER_PLPIS;
503
504	/*
505	 * We use linear CPU numbers for redistributor addressing,
506	 * so GITS_TYPER.PTA is 0.
507	 * Also we force all PROPBASER registers to be the same, so
508	 * CommonLPIAff is 0 as well.
509	 * To avoid memory waste in the guest, we keep the number of IDBits and
510	 * DevBits low - as least for the time being.
511	 */
512	reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT;
513	reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT;
514	reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT;
515
516	return extract_bytes(reg, addr & 7, len);
517}
518
519static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
520					     struct vgic_its *its,
521					     gpa_t addr, unsigned int len)
522{
523	u32 val;
524
525	val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK;
526	val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM;
527	return val;
528}
529
530static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm,
531					    struct vgic_its *its,
532					    gpa_t addr, unsigned int len,
533					    unsigned long val)
534{
535	u32 rev = GITS_IIDR_REV(val);
536
537	if (rev >= NR_ITS_ABIS)
538		return -EINVAL;
539	return vgic_its_set_abi(its, rev);
540}
541
542static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
543					       struct vgic_its *its,
544					       gpa_t addr, unsigned int len)
545{
546	switch (addr & 0xffff) {
547	case GITS_PIDR0:
548		return 0x92;	/* part number, bits[7:0] */
549	case GITS_PIDR1:
550		return 0xb4;	/* part number, bits[11:8] */
551	case GITS_PIDR2:
552		return GIC_PIDR2_ARCH_GICv3 | 0x0b;
553	case GITS_PIDR4:
554		return 0x40;	/* This is a 64K software visible page */
555	/* The following are the ID registers for (any) GIC. */
556	case GITS_CIDR0:
557		return 0x0d;
558	case GITS_CIDR1:
559		return 0xf0;
560	case GITS_CIDR2:
561		return 0x05;
562	case GITS_CIDR3:
563		return 0xb1;
564	}
565
566	return 0;
567}
568
569static struct vgic_irq *__vgic_its_check_cache(struct vgic_dist *dist,
570					       phys_addr_t db,
571					       u32 devid, u32 eventid)
572{
573	struct vgic_translation_cache_entry *cte;
574
575	list_for_each_entry(cte, &dist->lpi_translation_cache, entry) {
576		/*
577		 * If we hit a NULL entry, there is nothing after this
578		 * point.
579		 */
580		if (!cte->irq)
581			break;
582
583		if (cte->db != db || cte->devid != devid ||
584		    cte->eventid != eventid)
585			continue;
586
587		/*
588		 * Move this entry to the head, as it is the most
589		 * recently used.
590		 */
591		if (!list_is_first(&cte->entry, &dist->lpi_translation_cache))
592			list_move(&cte->entry, &dist->lpi_translation_cache);
593
594		return cte->irq;
595	}
596
597	return NULL;
598}
599
600static struct vgic_irq *vgic_its_check_cache(struct kvm *kvm, phys_addr_t db,
601					     u32 devid, u32 eventid)
602{
603	struct vgic_dist *dist = &kvm->arch.vgic;
604	struct vgic_irq *irq;
605	unsigned long flags;
606
607	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
608
609	irq = __vgic_its_check_cache(dist, db, devid, eventid);
610	if (!vgic_try_get_irq_kref(irq))
611		irq = NULL;
612
613	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
614
615	return irq;
616}
617
618static void vgic_its_cache_translation(struct kvm *kvm, struct vgic_its *its,
619				       u32 devid, u32 eventid,
620				       struct vgic_irq *irq)
621{
622	struct vgic_dist *dist = &kvm->arch.vgic;
623	struct vgic_translation_cache_entry *cte;
624	unsigned long flags;
625	phys_addr_t db;
626
627	/* Do not cache a directly injected interrupt */
628	if (irq->hw)
629		return;
630
631	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
632
633	if (unlikely(list_empty(&dist->lpi_translation_cache)))
634		goto out;
635
636	/*
637	 * We could have raced with another CPU caching the same
638	 * translation behind our back, so let's check it is not in
639	 * already
640	 */
641	db = its->vgic_its_base + GITS_TRANSLATER;
642	if (__vgic_its_check_cache(dist, db, devid, eventid))
643		goto out;
644
645	/* Always reuse the last entry (LRU policy) */
646	cte = list_last_entry(&dist->lpi_translation_cache,
647			      typeof(*cte), entry);
648
649	/*
650	 * Caching the translation implies having an extra reference
651	 * to the interrupt, so drop the potential reference on what
652	 * was in the cache, and increment it on the new interrupt.
653	 */
654	if (cte->irq)
655		vgic_put_irq(kvm, cte->irq);
656
657	/*
658	 * The irq refcount is guaranteed to be nonzero while holding the
659	 * its_lock, as the ITE (and the reference it holds) cannot be freed.
660	 */
661	lockdep_assert_held(&its->its_lock);
662	vgic_get_irq_kref(irq);
663
664	cte->db		= db;
665	cte->devid	= devid;
666	cte->eventid	= eventid;
667	cte->irq	= irq;
668
669	/* Move the new translation to the head of the list */
670	list_move(&cte->entry, &dist->lpi_translation_cache);
671
672out:
673	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
674}
675
676void vgic_its_invalidate_cache(struct kvm *kvm)
677{
678	struct vgic_dist *dist = &kvm->arch.vgic;
679	struct vgic_translation_cache_entry *cte;
680	unsigned long flags;
681
682	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
683
684	list_for_each_entry(cte, &dist->lpi_translation_cache, entry) {
685		/*
686		 * If we hit a NULL entry, there is nothing after this
687		 * point.
688		 */
689		if (!cte->irq)
690			break;
691
692		vgic_put_irq(kvm, cte->irq);
693		cte->irq = NULL;
694	}
695
696	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
697}
698
699int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its,
700			 u32 devid, u32 eventid, struct vgic_irq **irq)
701{
702	struct kvm_vcpu *vcpu;
703	struct its_ite *ite;
704
705	if (!its->enabled)
706		return -EBUSY;
707
708	ite = find_ite(its, devid, eventid);
709	if (!ite || !its_is_collection_mapped(ite->collection))
710		return E_ITS_INT_UNMAPPED_INTERRUPT;
711
712	vcpu = collection_to_vcpu(kvm, ite->collection);
713	if (!vcpu)
714		return E_ITS_INT_UNMAPPED_INTERRUPT;
715
716	if (!vgic_lpis_enabled(vcpu))
717		return -EBUSY;
718
719	vgic_its_cache_translation(kvm, its, devid, eventid, ite->irq);
720
721	*irq = ite->irq;
722	return 0;
723}
724
725struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi)
726{
727	u64 address;
728	struct kvm_io_device *kvm_io_dev;
729	struct vgic_io_device *iodev;
730
731	if (!vgic_has_its(kvm))
732		return ERR_PTR(-ENODEV);
733
734	if (!(msi->flags & KVM_MSI_VALID_DEVID))
735		return ERR_PTR(-EINVAL);
736
737	address = (u64)msi->address_hi << 32 | msi->address_lo;
738
739	kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address);
740	if (!kvm_io_dev)
741		return ERR_PTR(-EINVAL);
742
743	if (kvm_io_dev->ops != &kvm_io_gic_ops)
744		return ERR_PTR(-EINVAL);
745
746	iodev = container_of(kvm_io_dev, struct vgic_io_device, dev);
747	if (iodev->iodev_type != IODEV_ITS)
748		return ERR_PTR(-EINVAL);
749
750	return iodev->its;
751}
752
753/*
754 * Find the target VCPU and the LPI number for a given devid/eventid pair
755 * and make this IRQ pending, possibly injecting it.
756 * Must be called with the its_lock mutex held.
757 * Returns 0 on success, a positive error value for any ITS mapping
758 * related errors and negative error values for generic errors.
759 */
760static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
761				u32 devid, u32 eventid)
762{
763	struct vgic_irq *irq = NULL;
764	unsigned long flags;
765	int err;
766
767	err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq);
768	if (err)
769		return err;
770
771	if (irq->hw)
772		return irq_set_irqchip_state(irq->host_irq,
773					     IRQCHIP_STATE_PENDING, true);
774
775	raw_spin_lock_irqsave(&irq->irq_lock, flags);
776	irq->pending_latch = true;
777	vgic_queue_irq_unlock(kvm, irq, flags);
778
779	return 0;
780}
781
782int vgic_its_inject_cached_translation(struct kvm *kvm, struct kvm_msi *msi)
783{
784	struct vgic_irq *irq;
785	unsigned long flags;
786	phys_addr_t db;
787
788	db = (u64)msi->address_hi << 32 | msi->address_lo;
789	irq = vgic_its_check_cache(kvm, db, msi->devid, msi->data);
790	if (!irq)
791		return -EWOULDBLOCK;
792
793	raw_spin_lock_irqsave(&irq->irq_lock, flags);
794	irq->pending_latch = true;
795	vgic_queue_irq_unlock(kvm, irq, flags);
796	vgic_put_irq(kvm, irq);
797
798	return 0;
799}
800
801/*
802 * Queries the KVM IO bus framework to get the ITS pointer from the given
803 * doorbell address.
804 * We then call vgic_its_trigger_msi() with the decoded data.
805 * According to the KVM_SIGNAL_MSI API description returns 1 on success.
806 */
807int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
808{
809	struct vgic_its *its;
810	int ret;
811
812	if (!vgic_its_inject_cached_translation(kvm, msi))
813		return 1;
814
815	its = vgic_msi_to_its(kvm, msi);
816	if (IS_ERR(its))
817		return PTR_ERR(its);
818
819	mutex_lock(&its->its_lock);
820	ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data);
821	mutex_unlock(&its->its_lock);
822
823	if (ret < 0)
824		return ret;
825
826	/*
827	 * KVM_SIGNAL_MSI demands a return value > 0 for success and 0
828	 * if the guest has blocked the MSI. So we map any LPI mapping
829	 * related error to that.
830	 */
831	if (ret)
832		return 0;
833	else
834		return 1;
835}
836
837/* Requires the its_lock to be held. */
838static void its_free_ite(struct kvm *kvm, struct its_ite *ite)
839{
840	list_del(&ite->ite_list);
841
842	/* This put matches the get in vgic_add_lpi. */
843	if (ite->irq) {
844		if (ite->irq->hw)
845			WARN_ON(its_unmap_vlpi(ite->irq->host_irq));
846
847		vgic_put_irq(kvm, ite->irq);
848	}
849
850	kfree(ite);
851}
852
853static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
854{
855	return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
856}
857
858#define its_cmd_get_command(cmd)	its_cmd_mask_field(cmd, 0,  0,  8)
859#define its_cmd_get_deviceid(cmd)	its_cmd_mask_field(cmd, 0, 32, 32)
860#define its_cmd_get_size(cmd)		(its_cmd_mask_field(cmd, 1,  0,  5) + 1)
861#define its_cmd_get_id(cmd)		its_cmd_mask_field(cmd, 1,  0, 32)
862#define its_cmd_get_physical_id(cmd)	its_cmd_mask_field(cmd, 1, 32, 32)
863#define its_cmd_get_collection(cmd)	its_cmd_mask_field(cmd, 2,  0, 16)
864#define its_cmd_get_ittaddr(cmd)	(its_cmd_mask_field(cmd, 2,  8, 44) << 8)
865#define its_cmd_get_target_addr(cmd)	its_cmd_mask_field(cmd, 2, 16, 32)
866#define its_cmd_get_validbit(cmd)	its_cmd_mask_field(cmd, 2, 63,  1)
867
868/*
869 * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
870 * Must be called with the its_lock mutex held.
871 */
872static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
873				       u64 *its_cmd)
874{
875	u32 device_id = its_cmd_get_deviceid(its_cmd);
876	u32 event_id = its_cmd_get_id(its_cmd);
877	struct its_ite *ite;
878
879	ite = find_ite(its, device_id, event_id);
880	if (ite && its_is_collection_mapped(ite->collection)) {
881		/*
882		 * Though the spec talks about removing the pending state, we
883		 * don't bother here since we clear the ITTE anyway and the
884		 * pending state is a property of the ITTE struct.
885		 */
886		vgic_its_invalidate_cache(kvm);
887
888		its_free_ite(kvm, ite);
889		return 0;
890	}
891
892	return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
893}
894
895/*
896 * The MOVI command moves an ITTE to a different collection.
897 * Must be called with the its_lock mutex held.
898 */
899static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
900				    u64 *its_cmd)
901{
902	u32 device_id = its_cmd_get_deviceid(its_cmd);
903	u32 event_id = its_cmd_get_id(its_cmd);
904	u32 coll_id = its_cmd_get_collection(its_cmd);
905	struct kvm_vcpu *vcpu;
906	struct its_ite *ite;
907	struct its_collection *collection;
908
909	ite = find_ite(its, device_id, event_id);
910	if (!ite)
911		return E_ITS_MOVI_UNMAPPED_INTERRUPT;
912
913	if (!its_is_collection_mapped(ite->collection))
914		return E_ITS_MOVI_UNMAPPED_COLLECTION;
915
916	collection = find_collection(its, coll_id);
917	if (!its_is_collection_mapped(collection))
918		return E_ITS_MOVI_UNMAPPED_COLLECTION;
919
920	ite->collection = collection;
921	vcpu = collection_to_vcpu(kvm, collection);
922
923	vgic_its_invalidate_cache(kvm);
924
925	return update_affinity(ite->irq, vcpu);
926}
927
928static bool __is_visible_gfn_locked(struct vgic_its *its, gpa_t gpa)
929{
930	gfn_t gfn = gpa >> PAGE_SHIFT;
931	int idx;
932	bool ret;
933
934	idx = srcu_read_lock(&its->dev->kvm->srcu);
935	ret = kvm_is_visible_gfn(its->dev->kvm, gfn);
936	srcu_read_unlock(&its->dev->kvm->srcu, idx);
937	return ret;
938}
939
940/*
941 * Check whether an ID can be stored into the corresponding guest table.
942 * For a direct table this is pretty easy, but gets a bit nasty for
943 * indirect tables. We check whether the resulting guest physical address
944 * is actually valid (covered by a memslot and guest accessible).
945 * For this we have to read the respective first level entry.
946 */
947static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id,
948			      gpa_t *eaddr)
949{
950	int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
951	u64 indirect_ptr, type = GITS_BASER_TYPE(baser);
952	phys_addr_t base = GITS_BASER_ADDR_48_to_52(baser);
953	int esz = GITS_BASER_ENTRY_SIZE(baser);
954	int index;
955
956	switch (type) {
957	case GITS_BASER_TYPE_DEVICE:
958		if (id >= BIT_ULL(VITS_TYPER_DEVBITS))
959			return false;
960		break;
961	case GITS_BASER_TYPE_COLLECTION:
962		/* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */
963		if (id >= BIT_ULL(16))
964			return false;
965		break;
966	default:
967		return false;
968	}
969
970	if (!(baser & GITS_BASER_INDIRECT)) {
971		phys_addr_t addr;
972
973		if (id >= (l1_tbl_size / esz))
974			return false;
975
976		addr = base + id * esz;
977
978		if (eaddr)
979			*eaddr = addr;
980
981		return __is_visible_gfn_locked(its, addr);
982	}
983
984	/* calculate and check the index into the 1st level */
985	index = id / (SZ_64K / esz);
986	if (index >= (l1_tbl_size / sizeof(u64)))
987		return false;
988
989	/* Each 1st level entry is represented by a 64-bit value. */
990	if (kvm_read_guest_lock(its->dev->kvm,
991			   base + index * sizeof(indirect_ptr),
992			   &indirect_ptr, sizeof(indirect_ptr)))
993		return false;
994
995	indirect_ptr = le64_to_cpu(indirect_ptr);
996
997	/* check the valid bit of the first level entry */
998	if (!(indirect_ptr & BIT_ULL(63)))
999		return false;
1000
1001	/* Mask the guest physical address and calculate the frame number. */
1002	indirect_ptr &= GENMASK_ULL(51, 16);
1003
1004	/* Find the address of the actual entry */
1005	index = id % (SZ_64K / esz);
1006	indirect_ptr += index * esz;
1007
1008	if (eaddr)
1009		*eaddr = indirect_ptr;
1010
1011	return __is_visible_gfn_locked(its, indirect_ptr);
1012}
1013
1014/*
1015 * Check whether an event ID can be stored in the corresponding Interrupt
1016 * Translation Table, which starts at device->itt_addr.
1017 */
1018static bool vgic_its_check_event_id(struct vgic_its *its, struct its_device *device,
1019		u32 event_id)
1020{
1021	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1022	int ite_esz = abi->ite_esz;
1023	gpa_t gpa;
1024
1025	/* max table size is: BIT_ULL(device->num_eventid_bits) * ite_esz */
1026	if (event_id >= BIT_ULL(device->num_eventid_bits))
1027		return false;
1028
1029	gpa = device->itt_addr + event_id * ite_esz;
1030	return __is_visible_gfn_locked(its, gpa);
1031}
1032
1033/*
1034 * Add a new collection into the ITS collection table.
1035 * Returns 0 on success, and a negative error value for generic errors.
1036 */
1037static int vgic_its_alloc_collection(struct vgic_its *its,
1038				     struct its_collection **colp,
1039				     u32 coll_id)
1040{
1041	struct its_collection *collection;
1042
1043	collection = kzalloc(sizeof(*collection), GFP_KERNEL_ACCOUNT);
1044	if (!collection)
1045		return -ENOMEM;
1046
1047	collection->collection_id = coll_id;
1048	collection->target_addr = COLLECTION_NOT_MAPPED;
1049
1050	list_add_tail(&collection->coll_list, &its->collection_list);
1051	*colp = collection;
1052
1053	return 0;
1054}
1055
1056static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
1057{
1058	struct its_collection *collection;
1059	struct its_device *device;
1060	struct its_ite *ite;
1061
1062	/*
1063	 * Clearing the mapping for that collection ID removes the
1064	 * entry from the list. If there wasn't any before, we can
1065	 * go home early.
1066	 */
1067	collection = find_collection(its, coll_id);
1068	if (!collection)
1069		return;
1070
1071	for_each_lpi_its(device, ite, its)
1072		if (ite->collection &&
1073		    ite->collection->collection_id == coll_id)
1074			ite->collection = NULL;
1075
1076	list_del(&collection->coll_list);
1077	kfree(collection);
1078}
1079
1080/* Must be called with its_lock mutex held */
1081static struct its_ite *vgic_its_alloc_ite(struct its_device *device,
1082					  struct its_collection *collection,
1083					  u32 event_id)
1084{
1085	struct its_ite *ite;
1086
1087	ite = kzalloc(sizeof(*ite), GFP_KERNEL_ACCOUNT);
1088	if (!ite)
1089		return ERR_PTR(-ENOMEM);
1090
1091	ite->event_id	= event_id;
1092	ite->collection = collection;
1093
1094	list_add_tail(&ite->ite_list, &device->itt_head);
1095	return ite;
1096}
1097
1098/*
1099 * The MAPTI and MAPI commands map LPIs to ITTEs.
1100 * Must be called with its_lock mutex held.
1101 */
1102static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
1103				    u64 *its_cmd)
1104{
1105	u32 device_id = its_cmd_get_deviceid(its_cmd);
1106	u32 event_id = its_cmd_get_id(its_cmd);
1107	u32 coll_id = its_cmd_get_collection(its_cmd);
1108	struct its_ite *ite;
1109	struct kvm_vcpu *vcpu = NULL;
1110	struct its_device *device;
1111	struct its_collection *collection, *new_coll = NULL;
1112	struct vgic_irq *irq;
1113	int lpi_nr;
1114
1115	device = find_its_device(its, device_id);
1116	if (!device)
1117		return E_ITS_MAPTI_UNMAPPED_DEVICE;
1118
1119	if (!vgic_its_check_event_id(its, device, event_id))
1120		return E_ITS_MAPTI_ID_OOR;
1121
1122	if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
1123		lpi_nr = its_cmd_get_physical_id(its_cmd);
1124	else
1125		lpi_nr = event_id;
1126	if (lpi_nr < GIC_LPI_OFFSET ||
1127	    lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser))
1128		return E_ITS_MAPTI_PHYSICALID_OOR;
1129
1130	/* If there is an existing mapping, behavior is UNPREDICTABLE. */
1131	if (find_ite(its, device_id, event_id))
1132		return 0;
1133
1134	collection = find_collection(its, coll_id);
1135	if (!collection) {
1136		int ret;
1137
1138		if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
1139			return E_ITS_MAPC_COLLECTION_OOR;
1140
1141		ret = vgic_its_alloc_collection(its, &collection, coll_id);
1142		if (ret)
1143			return ret;
1144		new_coll = collection;
1145	}
1146
1147	ite = vgic_its_alloc_ite(device, collection, event_id);
1148	if (IS_ERR(ite)) {
1149		if (new_coll)
1150			vgic_its_free_collection(its, coll_id);
1151		return PTR_ERR(ite);
1152	}
1153
1154	if (its_is_collection_mapped(collection))
1155		vcpu = collection_to_vcpu(kvm, collection);
1156
1157	irq = vgic_add_lpi(kvm, lpi_nr, vcpu);
1158	if (IS_ERR(irq)) {
1159		if (new_coll)
1160			vgic_its_free_collection(its, coll_id);
1161		its_free_ite(kvm, ite);
1162		return PTR_ERR(irq);
1163	}
1164	ite->irq = irq;
1165
1166	return 0;
1167}
1168
1169/* Requires the its_lock to be held. */
1170static void vgic_its_free_device(struct kvm *kvm, struct its_device *device)
1171{
1172	struct its_ite *ite, *temp;
1173
1174	/*
1175	 * The spec says that unmapping a device with still valid
1176	 * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
1177	 * since we cannot leave the memory unreferenced.
1178	 */
1179	list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list)
1180		its_free_ite(kvm, ite);
1181
1182	vgic_its_invalidate_cache(kvm);
1183
1184	list_del(&device->dev_list);
1185	kfree(device);
1186}
1187
1188/* its lock must be held */
1189static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its)
1190{
1191	struct its_device *cur, *temp;
1192
1193	list_for_each_entry_safe(cur, temp, &its->device_list, dev_list)
1194		vgic_its_free_device(kvm, cur);
1195}
1196
1197/* its lock must be held */
1198static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its)
1199{
1200	struct its_collection *cur, *temp;
1201
1202	list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list)
1203		vgic_its_free_collection(its, cur->collection_id);
1204}
1205
1206/* Must be called with its_lock mutex held */
1207static struct its_device *vgic_its_alloc_device(struct vgic_its *its,
1208						u32 device_id, gpa_t itt_addr,
1209						u8 num_eventid_bits)
1210{
1211	struct its_device *device;
1212
1213	device = kzalloc(sizeof(*device), GFP_KERNEL_ACCOUNT);
1214	if (!device)
1215		return ERR_PTR(-ENOMEM);
1216
1217	device->device_id = device_id;
1218	device->itt_addr = itt_addr;
1219	device->num_eventid_bits = num_eventid_bits;
1220	INIT_LIST_HEAD(&device->itt_head);
1221
1222	list_add_tail(&device->dev_list, &its->device_list);
1223	return device;
1224}
1225
1226/*
1227 * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
1228 * Must be called with the its_lock mutex held.
1229 */
1230static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
1231				    u64 *its_cmd)
1232{
1233	u32 device_id = its_cmd_get_deviceid(its_cmd);
1234	bool valid = its_cmd_get_validbit(its_cmd);
1235	u8 num_eventid_bits = its_cmd_get_size(its_cmd);
1236	gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd);
1237	struct its_device *device;
1238
1239	if (!vgic_its_check_id(its, its->baser_device_table, device_id, NULL))
1240		return E_ITS_MAPD_DEVICE_OOR;
1241
1242	if (valid && num_eventid_bits > VITS_TYPER_IDBITS)
1243		return E_ITS_MAPD_ITTSIZE_OOR;
1244
1245	device = find_its_device(its, device_id);
1246
1247	/*
1248	 * The spec says that calling MAPD on an already mapped device
1249	 * invalidates all cached data for this device. We implement this
1250	 * by removing the mapping and re-establishing it.
1251	 */
1252	if (device)
1253		vgic_its_free_device(kvm, device);
1254
1255	/*
1256	 * The spec does not say whether unmapping a not-mapped device
1257	 * is an error, so we are done in any case.
1258	 */
1259	if (!valid)
1260		return 0;
1261
1262	device = vgic_its_alloc_device(its, device_id, itt_addr,
1263				       num_eventid_bits);
1264
1265	return PTR_ERR_OR_ZERO(device);
1266}
1267
1268/*
1269 * The MAPC command maps collection IDs to redistributors.
1270 * Must be called with the its_lock mutex held.
1271 */
1272static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
1273				    u64 *its_cmd)
1274{
1275	u16 coll_id;
1276	struct its_collection *collection;
1277	bool valid;
1278
1279	valid = its_cmd_get_validbit(its_cmd);
1280	coll_id = its_cmd_get_collection(its_cmd);
1281
1282	if (!valid) {
1283		vgic_its_free_collection(its, coll_id);
1284		vgic_its_invalidate_cache(kvm);
1285	} else {
1286		struct kvm_vcpu *vcpu;
1287
1288		vcpu = kvm_get_vcpu_by_id(kvm, its_cmd_get_target_addr(its_cmd));
1289		if (!vcpu)
1290			return E_ITS_MAPC_PROCNUM_OOR;
1291
1292		collection = find_collection(its, coll_id);
1293
1294		if (!collection) {
1295			int ret;
1296
1297			if (!vgic_its_check_id(its, its->baser_coll_table,
1298						coll_id, NULL))
1299				return E_ITS_MAPC_COLLECTION_OOR;
1300
1301			ret = vgic_its_alloc_collection(its, &collection,
1302							coll_id);
1303			if (ret)
1304				return ret;
1305			collection->target_addr = vcpu->vcpu_id;
1306		} else {
1307			collection->target_addr = vcpu->vcpu_id;
1308			update_affinity_collection(kvm, its, collection);
1309		}
1310	}
1311
1312	return 0;
1313}
1314
1315/*
1316 * The CLEAR command removes the pending state for a particular LPI.
1317 * Must be called with the its_lock mutex held.
1318 */
1319static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
1320				     u64 *its_cmd)
1321{
1322	u32 device_id = its_cmd_get_deviceid(its_cmd);
1323	u32 event_id = its_cmd_get_id(its_cmd);
1324	struct its_ite *ite;
1325
1326
1327	ite = find_ite(its, device_id, event_id);
1328	if (!ite)
1329		return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
1330
1331	ite->irq->pending_latch = false;
1332
1333	if (ite->irq->hw)
1334		return irq_set_irqchip_state(ite->irq->host_irq,
1335					     IRQCHIP_STATE_PENDING, false);
1336
1337	return 0;
1338}
1339
1340int vgic_its_inv_lpi(struct kvm *kvm, struct vgic_irq *irq)
1341{
1342	return update_lpi_config(kvm, irq, NULL, true);
1343}
1344
1345/*
1346 * The INV command syncs the configuration bits from the memory table.
1347 * Must be called with the its_lock mutex held.
1348 */
1349static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
1350				   u64 *its_cmd)
1351{
1352	u32 device_id = its_cmd_get_deviceid(its_cmd);
1353	u32 event_id = its_cmd_get_id(its_cmd);
1354	struct its_ite *ite;
1355
1356
1357	ite = find_ite(its, device_id, event_id);
1358	if (!ite)
1359		return E_ITS_INV_UNMAPPED_INTERRUPT;
1360
1361	return vgic_its_inv_lpi(kvm, ite->irq);
1362}
1363
1364/**
1365 * vgic_its_invall - invalidate all LPIs targeting a given vcpu
1366 * @vcpu: the vcpu for which the RD is targeted by an invalidation
1367 *
1368 * Contrary to the INVALL command, this targets a RD instead of a
1369 * collection, and we don't need to hold the its_lock, since no ITS is
1370 * involved here.
1371 */
1372int vgic_its_invall(struct kvm_vcpu *vcpu)
1373{
1374	struct kvm *kvm = vcpu->kvm;
1375	int irq_count, i = 0;
1376	u32 *intids;
1377
1378	irq_count = vgic_copy_lpi_list(kvm, vcpu, &intids);
1379	if (irq_count < 0)
1380		return irq_count;
1381
1382	for (i = 0; i < irq_count; i++) {
1383		struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intids[i]);
1384		if (!irq)
1385			continue;
1386		update_lpi_config(kvm, irq, vcpu, false);
1387		vgic_put_irq(kvm, irq);
1388	}
1389
1390	kfree(intids);
1391
1392	if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.its_vm)
1393		its_invall_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe);
1394
1395	return 0;
1396}
1397
1398/*
1399 * The INVALL command requests flushing of all IRQ data in this collection.
1400 * Find the VCPU mapped to that collection, then iterate over the VM's list
1401 * of mapped LPIs and update the configuration for each IRQ which targets
1402 * the specified vcpu. The configuration will be read from the in-memory
1403 * configuration table.
1404 * Must be called with the its_lock mutex held.
1405 */
1406static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
1407				      u64 *its_cmd)
1408{
1409	u32 coll_id = its_cmd_get_collection(its_cmd);
1410	struct its_collection *collection;
1411	struct kvm_vcpu *vcpu;
1412
1413	collection = find_collection(its, coll_id);
1414	if (!its_is_collection_mapped(collection))
1415		return E_ITS_INVALL_UNMAPPED_COLLECTION;
1416
1417	vcpu = collection_to_vcpu(kvm, collection);
1418	vgic_its_invall(vcpu);
1419
1420	return 0;
1421}
1422
1423/*
1424 * The MOVALL command moves the pending state of all IRQs targeting one
1425 * redistributor to another. We don't hold the pending state in the VCPUs,
1426 * but in the IRQs instead, so there is really not much to do for us here.
1427 * However the spec says that no IRQ must target the old redistributor
1428 * afterwards, so we make sure that no LPI is using the associated target_vcpu.
1429 * This command affects all LPIs in the system that target that redistributor.
1430 */
1431static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
1432				      u64 *its_cmd)
1433{
1434	struct kvm_vcpu *vcpu1, *vcpu2;
1435	struct vgic_irq *irq;
1436	u32 *intids;
1437	int irq_count, i;
1438
1439	/* We advertise GITS_TYPER.PTA==0, making the address the vcpu ID */
1440	vcpu1 = kvm_get_vcpu_by_id(kvm, its_cmd_get_target_addr(its_cmd));
1441	vcpu2 = kvm_get_vcpu_by_id(kvm, its_cmd_mask_field(its_cmd, 3, 16, 32));
1442
1443	if (!vcpu1 || !vcpu2)
1444		return E_ITS_MOVALL_PROCNUM_OOR;
1445
1446	if (vcpu1 == vcpu2)
1447		return 0;
1448
1449	irq_count = vgic_copy_lpi_list(kvm, vcpu1, &intids);
1450	if (irq_count < 0)
1451		return irq_count;
1452
1453	for (i = 0; i < irq_count; i++) {
1454		irq = vgic_get_irq(kvm, NULL, intids[i]);
1455		if (!irq)
1456			continue;
1457
1458		update_affinity(irq, vcpu2);
1459
1460		vgic_put_irq(kvm, irq);
1461	}
1462
1463	vgic_its_invalidate_cache(kvm);
1464
1465	kfree(intids);
1466	return 0;
1467}
1468
1469/*
1470 * The INT command injects the LPI associated with that DevID/EvID pair.
1471 * Must be called with the its_lock mutex held.
1472 */
1473static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
1474				   u64 *its_cmd)
1475{
1476	u32 msi_data = its_cmd_get_id(its_cmd);
1477	u64 msi_devid = its_cmd_get_deviceid(its_cmd);
1478
1479	return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
1480}
1481
1482/*
1483 * This function is called with the its_cmd lock held, but the ITS data
1484 * structure lock dropped.
1485 */
1486static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
1487				   u64 *its_cmd)
1488{
1489	int ret = -ENODEV;
1490
1491	mutex_lock(&its->its_lock);
1492	switch (its_cmd_get_command(its_cmd)) {
1493	case GITS_CMD_MAPD:
1494		ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
1495		break;
1496	case GITS_CMD_MAPC:
1497		ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
1498		break;
1499	case GITS_CMD_MAPI:
1500		ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1501		break;
1502	case GITS_CMD_MAPTI:
1503		ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1504		break;
1505	case GITS_CMD_MOVI:
1506		ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
1507		break;
1508	case GITS_CMD_DISCARD:
1509		ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
1510		break;
1511	case GITS_CMD_CLEAR:
1512		ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
1513		break;
1514	case GITS_CMD_MOVALL:
1515		ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
1516		break;
1517	case GITS_CMD_INT:
1518		ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
1519		break;
1520	case GITS_CMD_INV:
1521		ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
1522		break;
1523	case GITS_CMD_INVALL:
1524		ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
1525		break;
1526	case GITS_CMD_SYNC:
1527		/* we ignore this command: we are in sync all of the time */
1528		ret = 0;
1529		break;
1530	}
1531	mutex_unlock(&its->its_lock);
1532
1533	return ret;
1534}
1535
1536static u64 vgic_sanitise_its_baser(u64 reg)
1537{
1538	reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
1539				  GITS_BASER_SHAREABILITY_SHIFT,
1540				  vgic_sanitise_shareability);
1541	reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
1542				  GITS_BASER_INNER_CACHEABILITY_SHIFT,
1543				  vgic_sanitise_inner_cacheability);
1544	reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
1545				  GITS_BASER_OUTER_CACHEABILITY_SHIFT,
1546				  vgic_sanitise_outer_cacheability);
1547
1548	/* We support only one (ITS) page size: 64K */
1549	reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
1550
1551	return reg;
1552}
1553
1554static u64 vgic_sanitise_its_cbaser(u64 reg)
1555{
1556	reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
1557				  GITS_CBASER_SHAREABILITY_SHIFT,
1558				  vgic_sanitise_shareability);
1559	reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
1560				  GITS_CBASER_INNER_CACHEABILITY_SHIFT,
1561				  vgic_sanitise_inner_cacheability);
1562	reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
1563				  GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
1564				  vgic_sanitise_outer_cacheability);
1565
1566	/* Sanitise the physical address to be 64k aligned. */
1567	reg &= ~GENMASK_ULL(15, 12);
1568
1569	return reg;
1570}
1571
1572static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
1573					       struct vgic_its *its,
1574					       gpa_t addr, unsigned int len)
1575{
1576	return extract_bytes(its->cbaser, addr & 7, len);
1577}
1578
1579static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
1580				       gpa_t addr, unsigned int len,
1581				       unsigned long val)
1582{
1583	/* When GITS_CTLR.Enable is 1, this register is RO. */
1584	if (its->enabled)
1585		return;
1586
1587	mutex_lock(&its->cmd_lock);
1588	its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
1589	its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
1590	its->creadr = 0;
1591	/*
1592	 * CWRITER is architecturally UNKNOWN on reset, but we need to reset
1593	 * it to CREADR to make sure we start with an empty command buffer.
1594	 */
1595	its->cwriter = its->creadr;
1596	mutex_unlock(&its->cmd_lock);
1597}
1598
1599#define ITS_CMD_BUFFER_SIZE(baser)	((((baser) & 0xff) + 1) << 12)
1600#define ITS_CMD_SIZE			32
1601#define ITS_CMD_OFFSET(reg)		((reg) & GENMASK(19, 5))
1602
1603/* Must be called with the cmd_lock held. */
1604static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its)
1605{
1606	gpa_t cbaser;
1607	u64 cmd_buf[4];
1608
1609	/* Commands are only processed when the ITS is enabled. */
1610	if (!its->enabled)
1611		return;
1612
1613	cbaser = GITS_CBASER_ADDRESS(its->cbaser);
1614
1615	while (its->cwriter != its->creadr) {
1616		int ret = kvm_read_guest_lock(kvm, cbaser + its->creadr,
1617					      cmd_buf, ITS_CMD_SIZE);
1618		/*
1619		 * If kvm_read_guest() fails, this could be due to the guest
1620		 * programming a bogus value in CBASER or something else going
1621		 * wrong from which we cannot easily recover.
1622		 * According to section 6.3.2 in the GICv3 spec we can just
1623		 * ignore that command then.
1624		 */
1625		if (!ret)
1626			vgic_its_handle_command(kvm, its, cmd_buf);
1627
1628		its->creadr += ITS_CMD_SIZE;
1629		if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
1630			its->creadr = 0;
1631	}
1632}
1633
1634/*
1635 * By writing to CWRITER the guest announces new commands to be processed.
1636 * To avoid any races in the first place, we take the its_cmd lock, which
1637 * protects our ring buffer variables, so that there is only one user
1638 * per ITS handling commands at a given time.
1639 */
1640static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
1641					gpa_t addr, unsigned int len,
1642					unsigned long val)
1643{
1644	u64 reg;
1645
1646	if (!its)
1647		return;
1648
1649	mutex_lock(&its->cmd_lock);
1650
1651	reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
1652	reg = ITS_CMD_OFFSET(reg);
1653	if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1654		mutex_unlock(&its->cmd_lock);
1655		return;
1656	}
1657	its->cwriter = reg;
1658
1659	vgic_its_process_commands(kvm, its);
1660
1661	mutex_unlock(&its->cmd_lock);
1662}
1663
1664static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
1665						struct vgic_its *its,
1666						gpa_t addr, unsigned int len)
1667{
1668	return extract_bytes(its->cwriter, addr & 0x7, len);
1669}
1670
1671static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
1672					       struct vgic_its *its,
1673					       gpa_t addr, unsigned int len)
1674{
1675	return extract_bytes(its->creadr, addr & 0x7, len);
1676}
1677
1678static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm,
1679					      struct vgic_its *its,
1680					      gpa_t addr, unsigned int len,
1681					      unsigned long val)
1682{
1683	u32 cmd_offset;
1684	int ret = 0;
1685
1686	mutex_lock(&its->cmd_lock);
1687
1688	if (its->enabled) {
1689		ret = -EBUSY;
1690		goto out;
1691	}
1692
1693	cmd_offset = ITS_CMD_OFFSET(val);
1694	if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1695		ret = -EINVAL;
1696		goto out;
1697	}
1698
1699	its->creadr = cmd_offset;
1700out:
1701	mutex_unlock(&its->cmd_lock);
1702	return ret;
1703}
1704
1705#define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
1706static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
1707					      struct vgic_its *its,
1708					      gpa_t addr, unsigned int len)
1709{
1710	u64 reg;
1711
1712	switch (BASER_INDEX(addr)) {
1713	case 0:
1714		reg = its->baser_device_table;
1715		break;
1716	case 1:
1717		reg = its->baser_coll_table;
1718		break;
1719	default:
1720		reg = 0;
1721		break;
1722	}
1723
1724	return extract_bytes(reg, addr & 7, len);
1725}
1726
1727#define GITS_BASER_RO_MASK	(GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
1728static void vgic_mmio_write_its_baser(struct kvm *kvm,
1729				      struct vgic_its *its,
1730				      gpa_t addr, unsigned int len,
1731				      unsigned long val)
1732{
1733	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1734	u64 entry_size, table_type;
1735	u64 reg, *regptr, clearbits = 0;
1736
1737	/* When GITS_CTLR.Enable is 1, we ignore write accesses. */
1738	if (its->enabled)
1739		return;
1740
1741	switch (BASER_INDEX(addr)) {
1742	case 0:
1743		regptr = &its->baser_device_table;
1744		entry_size = abi->dte_esz;
1745		table_type = GITS_BASER_TYPE_DEVICE;
1746		break;
1747	case 1:
1748		regptr = &its->baser_coll_table;
1749		entry_size = abi->cte_esz;
1750		table_type = GITS_BASER_TYPE_COLLECTION;
1751		clearbits = GITS_BASER_INDIRECT;
1752		break;
1753	default:
1754		return;
1755	}
1756
1757	reg = update_64bit_reg(*regptr, addr & 7, len, val);
1758	reg &= ~GITS_BASER_RO_MASK;
1759	reg &= ~clearbits;
1760
1761	reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
1762	reg |= table_type << GITS_BASER_TYPE_SHIFT;
1763	reg = vgic_sanitise_its_baser(reg);
1764
1765	*regptr = reg;
1766
1767	if (!(reg & GITS_BASER_VALID)) {
1768		/* Take the its_lock to prevent a race with a save/restore */
1769		mutex_lock(&its->its_lock);
1770		switch (table_type) {
1771		case GITS_BASER_TYPE_DEVICE:
1772			vgic_its_free_device_list(kvm, its);
1773			break;
1774		case GITS_BASER_TYPE_COLLECTION:
1775			vgic_its_free_collection_list(kvm, its);
1776			break;
1777		}
1778		mutex_unlock(&its->its_lock);
1779	}
1780}
1781
1782static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
1783					     struct vgic_its *its,
1784					     gpa_t addr, unsigned int len)
1785{
1786	u32 reg = 0;
1787
1788	mutex_lock(&its->cmd_lock);
1789	if (its->creadr == its->cwriter)
1790		reg |= GITS_CTLR_QUIESCENT;
1791	if (its->enabled)
1792		reg |= GITS_CTLR_ENABLE;
1793	mutex_unlock(&its->cmd_lock);
1794
1795	return reg;
1796}
1797
1798static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
1799				     gpa_t addr, unsigned int len,
1800				     unsigned long val)
1801{
1802	mutex_lock(&its->cmd_lock);
1803
1804	/*
1805	 * It is UNPREDICTABLE to enable the ITS if any of the CBASER or
1806	 * device/collection BASER are invalid
1807	 */
1808	if (!its->enabled && (val & GITS_CTLR_ENABLE) &&
1809		(!(its->baser_device_table & GITS_BASER_VALID) ||
1810		 !(its->baser_coll_table & GITS_BASER_VALID) ||
1811		 !(its->cbaser & GITS_CBASER_VALID)))
1812		goto out;
1813
1814	its->enabled = !!(val & GITS_CTLR_ENABLE);
1815	if (!its->enabled)
1816		vgic_its_invalidate_cache(kvm);
1817
1818	/*
1819	 * Try to process any pending commands. This function bails out early
1820	 * if the ITS is disabled or no commands have been queued.
1821	 */
1822	vgic_its_process_commands(kvm, its);
1823
1824out:
1825	mutex_unlock(&its->cmd_lock);
1826}
1827
1828#define REGISTER_ITS_DESC(off, rd, wr, length, acc)		\
1829{								\
1830	.reg_offset = off,					\
1831	.len = length,						\
1832	.access_flags = acc,					\
1833	.its_read = rd,						\
1834	.its_write = wr,					\
1835}
1836
1837#define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\
1838{								\
1839	.reg_offset = off,					\
1840	.len = length,						\
1841	.access_flags = acc,					\
1842	.its_read = rd,						\
1843	.its_write = wr,					\
1844	.uaccess_its_write = uwr,				\
1845}
1846
1847static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
1848			      gpa_t addr, unsigned int len, unsigned long val)
1849{
1850	/* Ignore */
1851}
1852
1853static struct vgic_register_region its_registers[] = {
1854	REGISTER_ITS_DESC(GITS_CTLR,
1855		vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
1856		VGIC_ACCESS_32bit),
1857	REGISTER_ITS_DESC_UACCESS(GITS_IIDR,
1858		vgic_mmio_read_its_iidr, its_mmio_write_wi,
1859		vgic_mmio_uaccess_write_its_iidr, 4,
1860		VGIC_ACCESS_32bit),
1861	REGISTER_ITS_DESC(GITS_TYPER,
1862		vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
1863		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1864	REGISTER_ITS_DESC(GITS_CBASER,
1865		vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
1866		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1867	REGISTER_ITS_DESC(GITS_CWRITER,
1868		vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
1869		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1870	REGISTER_ITS_DESC_UACCESS(GITS_CREADR,
1871		vgic_mmio_read_its_creadr, its_mmio_write_wi,
1872		vgic_mmio_uaccess_write_its_creadr, 8,
1873		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1874	REGISTER_ITS_DESC(GITS_BASER,
1875		vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
1876		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1877	REGISTER_ITS_DESC(GITS_IDREGS_BASE,
1878		vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
1879		VGIC_ACCESS_32bit),
1880};
1881
1882/* This is called on setting the LPI enable bit in the redistributor. */
1883void vgic_enable_lpis(struct kvm_vcpu *vcpu)
1884{
1885	if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
1886		its_sync_lpi_pending_table(vcpu);
1887}
1888
1889static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its,
1890				   u64 addr)
1891{
1892	struct vgic_io_device *iodev = &its->iodev;
1893	int ret;
1894
1895	mutex_lock(&kvm->slots_lock);
1896	if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1897		ret = -EBUSY;
1898		goto out;
1899	}
1900
1901	its->vgic_its_base = addr;
1902	iodev->regions = its_registers;
1903	iodev->nr_regions = ARRAY_SIZE(its_registers);
1904	kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
1905
1906	iodev->base_addr = its->vgic_its_base;
1907	iodev->iodev_type = IODEV_ITS;
1908	iodev->its = its;
1909	ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
1910				      KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
1911out:
1912	mutex_unlock(&kvm->slots_lock);
1913
1914	return ret;
1915}
1916
1917/* Default is 16 cached LPIs per vcpu */
1918#define LPI_DEFAULT_PCPU_CACHE_SIZE	16
1919
1920void vgic_lpi_translation_cache_init(struct kvm *kvm)
1921{
1922	struct vgic_dist *dist = &kvm->arch.vgic;
1923	unsigned int sz;
1924	int i;
1925
1926	if (!list_empty(&dist->lpi_translation_cache))
1927		return;
1928
1929	sz = atomic_read(&kvm->online_vcpus) * LPI_DEFAULT_PCPU_CACHE_SIZE;
1930
1931	for (i = 0; i < sz; i++) {
1932		struct vgic_translation_cache_entry *cte;
1933
1934		/* An allocation failure is not fatal */
1935		cte = kzalloc(sizeof(*cte), GFP_KERNEL_ACCOUNT);
1936		if (WARN_ON(!cte))
1937			break;
1938
1939		INIT_LIST_HEAD(&cte->entry);
1940		list_add(&cte->entry, &dist->lpi_translation_cache);
1941	}
1942}
1943
1944void vgic_lpi_translation_cache_destroy(struct kvm *kvm)
1945{
1946	struct vgic_dist *dist = &kvm->arch.vgic;
1947	struct vgic_translation_cache_entry *cte, *tmp;
1948
1949	vgic_its_invalidate_cache(kvm);
1950
1951	list_for_each_entry_safe(cte, tmp,
1952				 &dist->lpi_translation_cache, entry) {
1953		list_del(&cte->entry);
1954		kfree(cte);
1955	}
1956}
1957
1958#define INITIAL_BASER_VALUE						  \
1959	(GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb)		| \
1960	 GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner)		| \
1961	 GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable)		| \
1962	 GITS_BASER_PAGE_SIZE_64K)
1963
1964#define INITIAL_PROPBASER_VALUE						  \
1965	(GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb)		| \
1966	 GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner)	| \
1967	 GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
1968
1969static int vgic_its_create(struct kvm_device *dev, u32 type)
1970{
1971	int ret;
1972	struct vgic_its *its;
1973
1974	if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
1975		return -ENODEV;
1976
1977	its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL_ACCOUNT);
1978	if (!its)
1979		return -ENOMEM;
1980
1981	mutex_lock(&dev->kvm->arch.config_lock);
1982
1983	if (vgic_initialized(dev->kvm)) {
1984		ret = vgic_v4_init(dev->kvm);
1985		if (ret < 0) {
1986			mutex_unlock(&dev->kvm->arch.config_lock);
1987			kfree(its);
1988			return ret;
1989		}
1990
1991		vgic_lpi_translation_cache_init(dev->kvm);
1992	}
1993
1994	mutex_init(&its->its_lock);
1995	mutex_init(&its->cmd_lock);
1996
1997	/* Yep, even more trickery for lock ordering... */
1998#ifdef CONFIG_LOCKDEP
1999	mutex_lock(&its->cmd_lock);
2000	mutex_lock(&its->its_lock);
2001	mutex_unlock(&its->its_lock);
2002	mutex_unlock(&its->cmd_lock);
2003#endif
2004
2005	its->vgic_its_base = VGIC_ADDR_UNDEF;
2006
2007	INIT_LIST_HEAD(&its->device_list);
2008	INIT_LIST_HEAD(&its->collection_list);
2009
2010	dev->kvm->arch.vgic.msis_require_devid = true;
2011	dev->kvm->arch.vgic.has_its = true;
2012	its->enabled = false;
2013	its->dev = dev;
2014
2015	its->baser_device_table = INITIAL_BASER_VALUE			|
2016		((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
2017	its->baser_coll_table = INITIAL_BASER_VALUE |
2018		((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
2019	dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
2020
2021	dev->private = its;
2022
2023	ret = vgic_its_set_abi(its, NR_ITS_ABIS - 1);
2024
2025	mutex_unlock(&dev->kvm->arch.config_lock);
2026
2027	return ret;
2028}
2029
2030static void vgic_its_destroy(struct kvm_device *kvm_dev)
2031{
2032	struct kvm *kvm = kvm_dev->kvm;
2033	struct vgic_its *its = kvm_dev->private;
2034
2035	mutex_lock(&its->its_lock);
2036
2037	vgic_its_free_device_list(kvm, its);
2038	vgic_its_free_collection_list(kvm, its);
2039
2040	mutex_unlock(&its->its_lock);
2041	kfree(its);
2042	kfree(kvm_dev);/* alloc by kvm_ioctl_create_device, free by .destroy */
2043}
2044
2045static int vgic_its_has_attr_regs(struct kvm_device *dev,
2046				  struct kvm_device_attr *attr)
2047{
2048	const struct vgic_register_region *region;
2049	gpa_t offset = attr->attr;
2050	int align;
2051
2052	align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7;
2053
2054	if (offset & align)
2055		return -EINVAL;
2056
2057	region = vgic_find_mmio_region(its_registers,
2058				       ARRAY_SIZE(its_registers),
2059				       offset);
2060	if (!region)
2061		return -ENXIO;
2062
2063	return 0;
2064}
2065
2066static int vgic_its_attr_regs_access(struct kvm_device *dev,
2067				     struct kvm_device_attr *attr,
2068				     u64 *reg, bool is_write)
2069{
2070	const struct vgic_register_region *region;
2071	struct vgic_its *its;
2072	gpa_t addr, offset;
2073	unsigned int len;
2074	int align, ret = 0;
2075
2076	its = dev->private;
2077	offset = attr->attr;
2078
2079	/*
2080	 * Although the spec supports upper/lower 32-bit accesses to
2081	 * 64-bit ITS registers, the userspace ABI requires 64-bit
2082	 * accesses to all 64-bit wide registers. We therefore only
2083	 * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID
2084	 * registers
2085	 */
2086	if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4))
2087		align = 0x3;
2088	else
2089		align = 0x7;
2090
2091	if (offset & align)
2092		return -EINVAL;
2093
2094	mutex_lock(&dev->kvm->lock);
2095
2096	if (!lock_all_vcpus(dev->kvm)) {
2097		mutex_unlock(&dev->kvm->lock);
2098		return -EBUSY;
2099	}
2100
2101	mutex_lock(&dev->kvm->arch.config_lock);
2102
2103	if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
2104		ret = -ENXIO;
2105		goto out;
2106	}
2107
2108	region = vgic_find_mmio_region(its_registers,
2109				       ARRAY_SIZE(its_registers),
2110				       offset);
2111	if (!region) {
2112		ret = -ENXIO;
2113		goto out;
2114	}
2115
2116	addr = its->vgic_its_base + offset;
2117
2118	len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4;
2119
2120	if (is_write) {
2121		if (region->uaccess_its_write)
2122			ret = region->uaccess_its_write(dev->kvm, its, addr,
2123							len, *reg);
2124		else
2125			region->its_write(dev->kvm, its, addr, len, *reg);
2126	} else {
2127		*reg = region->its_read(dev->kvm, its, addr, len);
2128	}
2129out:
2130	mutex_unlock(&dev->kvm->arch.config_lock);
2131	unlock_all_vcpus(dev->kvm);
2132	mutex_unlock(&dev->kvm->lock);
2133	return ret;
2134}
2135
2136static u32 compute_next_devid_offset(struct list_head *h,
2137				     struct its_device *dev)
2138{
2139	struct its_device *next;
2140	u32 next_offset;
2141
2142	if (list_is_last(&dev->dev_list, h))
2143		return 0;
2144	next = list_next_entry(dev, dev_list);
2145	next_offset = next->device_id - dev->device_id;
2146
2147	return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET);
2148}
2149
2150static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite)
2151{
2152	struct its_ite *next;
2153	u32 next_offset;
2154
2155	if (list_is_last(&ite->ite_list, h))
2156		return 0;
2157	next = list_next_entry(ite, ite_list);
2158	next_offset = next->event_id - ite->event_id;
2159
2160	return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET);
2161}
2162
2163/**
2164 * typedef entry_fn_t - Callback called on a table entry restore path
2165 * @its: its handle
2166 * @id: id of the entry
2167 * @entry: pointer to the entry
2168 * @opaque: pointer to an opaque data
2169 *
2170 * Return: < 0 on error, 0 if last element was identified, id offset to next
2171 * element otherwise
2172 */
2173typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry,
2174			  void *opaque);
2175
2176/**
2177 * scan_its_table - Scan a contiguous table in guest RAM and applies a function
2178 * to each entry
2179 *
2180 * @its: its handle
2181 * @base: base gpa of the table
2182 * @size: size of the table in bytes
2183 * @esz: entry size in bytes
2184 * @start_id: the ID of the first entry in the table
2185 * (non zero for 2d level tables)
2186 * @fn: function to apply on each entry
2187 *
2188 * Return: < 0 on error, 0 if last element was identified, 1 otherwise
2189 * (the last element may not be found on second level tables)
2190 */
2191static int scan_its_table(struct vgic_its *its, gpa_t base, int size, u32 esz,
2192			  int start_id, entry_fn_t fn, void *opaque)
2193{
2194	struct kvm *kvm = its->dev->kvm;
2195	unsigned long len = size;
2196	int id = start_id;
2197	gpa_t gpa = base;
2198	char entry[ESZ_MAX];
2199	int ret;
2200
2201	memset(entry, 0, esz);
2202
2203	while (true) {
2204		int next_offset;
2205		size_t byte_offset;
2206
2207		ret = kvm_read_guest_lock(kvm, gpa, entry, esz);
2208		if (ret)
2209			return ret;
2210
2211		next_offset = fn(its, id, entry, opaque);
2212		if (next_offset <= 0)
2213			return next_offset;
2214
2215		byte_offset = next_offset * esz;
2216		if (byte_offset >= len)
2217			break;
2218
2219		id += next_offset;
2220		gpa += byte_offset;
2221		len -= byte_offset;
2222	}
2223	return 1;
2224}
2225
2226/**
2227 * vgic_its_save_ite - Save an interrupt translation entry at @gpa
2228 */
2229static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev,
2230			      struct its_ite *ite, gpa_t gpa, int ite_esz)
2231{
2232	struct kvm *kvm = its->dev->kvm;
2233	u32 next_offset;
2234	u64 val;
2235
2236	next_offset = compute_next_eventid_offset(&dev->itt_head, ite);
2237	val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) |
2238	       ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) |
2239		ite->collection->collection_id;
2240	val = cpu_to_le64(val);
2241	return vgic_write_guest_lock(kvm, gpa, &val, ite_esz);
2242}
2243
2244/**
2245 * vgic_its_restore_ite - restore an interrupt translation entry
2246 * @event_id: id used for indexing
2247 * @ptr: pointer to the ITE entry
2248 * @opaque: pointer to the its_device
2249 */
2250static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id,
2251				void *ptr, void *opaque)
2252{
2253	struct its_device *dev = opaque;
2254	struct its_collection *collection;
2255	struct kvm *kvm = its->dev->kvm;
2256	struct kvm_vcpu *vcpu = NULL;
2257	u64 val;
2258	u64 *p = (u64 *)ptr;
2259	struct vgic_irq *irq;
2260	u32 coll_id, lpi_id;
2261	struct its_ite *ite;
2262	u32 offset;
2263
2264	val = *p;
2265
2266	val = le64_to_cpu(val);
2267
2268	coll_id = val & KVM_ITS_ITE_ICID_MASK;
2269	lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT;
2270
2271	if (!lpi_id)
2272		return 1; /* invalid entry, no choice but to scan next entry */
2273
2274	if (lpi_id < VGIC_MIN_LPI)
2275		return -EINVAL;
2276
2277	offset = val >> KVM_ITS_ITE_NEXT_SHIFT;
2278	if (event_id + offset >= BIT_ULL(dev->num_eventid_bits))
2279		return -EINVAL;
2280
2281	collection = find_collection(its, coll_id);
2282	if (!collection)
2283		return -EINVAL;
2284
2285	if (!vgic_its_check_event_id(its, dev, event_id))
2286		return -EINVAL;
2287
2288	ite = vgic_its_alloc_ite(dev, collection, event_id);
2289	if (IS_ERR(ite))
2290		return PTR_ERR(ite);
2291
2292	if (its_is_collection_mapped(collection))
2293		vcpu = kvm_get_vcpu_by_id(kvm, collection->target_addr);
2294
2295	irq = vgic_add_lpi(kvm, lpi_id, vcpu);
2296	if (IS_ERR(irq)) {
2297		its_free_ite(kvm, ite);
2298		return PTR_ERR(irq);
2299	}
2300	ite->irq = irq;
2301
2302	return offset;
2303}
2304
2305static int vgic_its_ite_cmp(void *priv, const struct list_head *a,
2306			    const struct list_head *b)
2307{
2308	struct its_ite *itea = container_of(a, struct its_ite, ite_list);
2309	struct its_ite *iteb = container_of(b, struct its_ite, ite_list);
2310
2311	if (itea->event_id < iteb->event_id)
2312		return -1;
2313	else
2314		return 1;
2315}
2316
2317static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device)
2318{
2319	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2320	gpa_t base = device->itt_addr;
2321	struct its_ite *ite;
2322	int ret;
2323	int ite_esz = abi->ite_esz;
2324
2325	list_sort(NULL, &device->itt_head, vgic_its_ite_cmp);
2326
2327	list_for_each_entry(ite, &device->itt_head, ite_list) {
2328		gpa_t gpa = base + ite->event_id * ite_esz;
2329
2330		/*
2331		 * If an LPI carries the HW bit, this means that this
2332		 * interrupt is controlled by GICv4, and we do not
2333		 * have direct access to that state without GICv4.1.
2334		 * Let's simply fail the save operation...
2335		 */
2336		if (ite->irq->hw && !kvm_vgic_global_state.has_gicv4_1)
2337			return -EACCES;
2338
2339		ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz);
2340		if (ret)
2341			return ret;
2342	}
2343	return 0;
2344}
2345
2346/**
2347 * vgic_its_restore_itt - restore the ITT of a device
2348 *
2349 * @its: its handle
2350 * @dev: device handle
2351 *
2352 * Return 0 on success, < 0 on error
2353 */
2354static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev)
2355{
2356	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2357	gpa_t base = dev->itt_addr;
2358	int ret;
2359	int ite_esz = abi->ite_esz;
2360	size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz;
2361
2362	ret = scan_its_table(its, base, max_size, ite_esz, 0,
2363			     vgic_its_restore_ite, dev);
2364
2365	/* scan_its_table returns +1 if all ITEs are invalid */
2366	if (ret > 0)
2367		ret = 0;
2368
2369	return ret;
2370}
2371
2372/**
2373 * vgic_its_save_dte - Save a device table entry at a given GPA
2374 *
2375 * @its: ITS handle
2376 * @dev: ITS device
2377 * @ptr: GPA
2378 */
2379static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev,
2380			     gpa_t ptr, int dte_esz)
2381{
2382	struct kvm *kvm = its->dev->kvm;
2383	u64 val, itt_addr_field;
2384	u32 next_offset;
2385
2386	itt_addr_field = dev->itt_addr >> 8;
2387	next_offset = compute_next_devid_offset(&its->device_list, dev);
2388	val = (1ULL << KVM_ITS_DTE_VALID_SHIFT |
2389	       ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) |
2390	       (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) |
2391		(dev->num_eventid_bits - 1));
2392	val = cpu_to_le64(val);
2393	return vgic_write_guest_lock(kvm, ptr, &val, dte_esz);
2394}
2395
2396/**
2397 * vgic_its_restore_dte - restore a device table entry
2398 *
2399 * @its: its handle
2400 * @id: device id the DTE corresponds to
2401 * @ptr: kernel VA where the 8 byte DTE is located
2402 * @opaque: unused
2403 *
2404 * Return: < 0 on error, 0 if the dte is the last one, id offset to the
2405 * next dte otherwise
2406 */
2407static int vgic_its_restore_dte(struct vgic_its *its, u32 id,
2408				void *ptr, void *opaque)
2409{
2410	struct its_device *dev;
2411	u64 baser = its->baser_device_table;
2412	gpa_t itt_addr;
2413	u8 num_eventid_bits;
2414	u64 entry = *(u64 *)ptr;
2415	bool valid;
2416	u32 offset;
2417	int ret;
2418
2419	entry = le64_to_cpu(entry);
2420
2421	valid = entry >> KVM_ITS_DTE_VALID_SHIFT;
2422	num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1;
2423	itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK)
2424			>> KVM_ITS_DTE_ITTADDR_SHIFT) << 8;
2425
2426	if (!valid)
2427		return 1;
2428
2429	/* dte entry is valid */
2430	offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT;
2431
2432	if (!vgic_its_check_id(its, baser, id, NULL))
2433		return -EINVAL;
2434
2435	dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits);
2436	if (IS_ERR(dev))
2437		return PTR_ERR(dev);
2438
2439	ret = vgic_its_restore_itt(its, dev);
2440	if (ret) {
2441		vgic_its_free_device(its->dev->kvm, dev);
2442		return ret;
2443	}
2444
2445	return offset;
2446}
2447
2448static int vgic_its_device_cmp(void *priv, const struct list_head *a,
2449			       const struct list_head *b)
2450{
2451	struct its_device *deva = container_of(a, struct its_device, dev_list);
2452	struct its_device *devb = container_of(b, struct its_device, dev_list);
2453
2454	if (deva->device_id < devb->device_id)
2455		return -1;
2456	else
2457		return 1;
2458}
2459
2460/**
2461 * vgic_its_save_device_tables - Save the device table and all ITT
2462 * into guest RAM
2463 *
2464 * L1/L2 handling is hidden by vgic_its_check_id() helper which directly
2465 * returns the GPA of the device entry
2466 */
2467static int vgic_its_save_device_tables(struct vgic_its *its)
2468{
2469	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2470	u64 baser = its->baser_device_table;
2471	struct its_device *dev;
2472	int dte_esz = abi->dte_esz;
2473
2474	if (!(baser & GITS_BASER_VALID))
2475		return 0;
2476
2477	list_sort(NULL, &its->device_list, vgic_its_device_cmp);
2478
2479	list_for_each_entry(dev, &its->device_list, dev_list) {
2480		int ret;
2481		gpa_t eaddr;
2482
2483		if (!vgic_its_check_id(its, baser,
2484				       dev->device_id, &eaddr))
2485			return -EINVAL;
2486
2487		ret = vgic_its_save_itt(its, dev);
2488		if (ret)
2489			return ret;
2490
2491		ret = vgic_its_save_dte(its, dev, eaddr, dte_esz);
2492		if (ret)
2493			return ret;
2494	}
2495	return 0;
2496}
2497
2498/**
2499 * handle_l1_dte - callback used for L1 device table entries (2 stage case)
2500 *
2501 * @its: its handle
2502 * @id: index of the entry in the L1 table
2503 * @addr: kernel VA
2504 * @opaque: unused
2505 *
2506 * L1 table entries are scanned by steps of 1 entry
2507 * Return < 0 if error, 0 if last dte was found when scanning the L2
2508 * table, +1 otherwise (meaning next L1 entry must be scanned)
2509 */
2510static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr,
2511			 void *opaque)
2512{
2513	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2514	int l2_start_id = id * (SZ_64K / abi->dte_esz);
2515	u64 entry = *(u64 *)addr;
2516	int dte_esz = abi->dte_esz;
2517	gpa_t gpa;
2518	int ret;
2519
2520	entry = le64_to_cpu(entry);
2521
2522	if (!(entry & KVM_ITS_L1E_VALID_MASK))
2523		return 1;
2524
2525	gpa = entry & KVM_ITS_L1E_ADDR_MASK;
2526
2527	ret = scan_its_table(its, gpa, SZ_64K, dte_esz,
2528			     l2_start_id, vgic_its_restore_dte, NULL);
2529
2530	return ret;
2531}
2532
2533/**
2534 * vgic_its_restore_device_tables - Restore the device table and all ITT
2535 * from guest RAM to internal data structs
2536 */
2537static int vgic_its_restore_device_tables(struct vgic_its *its)
2538{
2539	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2540	u64 baser = its->baser_device_table;
2541	int l1_esz, ret;
2542	int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2543	gpa_t l1_gpa;
2544
2545	if (!(baser & GITS_BASER_VALID))
2546		return 0;
2547
2548	l1_gpa = GITS_BASER_ADDR_48_to_52(baser);
2549
2550	if (baser & GITS_BASER_INDIRECT) {
2551		l1_esz = GITS_LVL1_ENTRY_SIZE;
2552		ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2553				     handle_l1_dte, NULL);
2554	} else {
2555		l1_esz = abi->dte_esz;
2556		ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2557				     vgic_its_restore_dte, NULL);
2558	}
2559
2560	/* scan_its_table returns +1 if all entries are invalid */
2561	if (ret > 0)
2562		ret = 0;
2563
2564	if (ret < 0)
2565		vgic_its_free_device_list(its->dev->kvm, its);
2566
2567	return ret;
2568}
2569
2570static int vgic_its_save_cte(struct vgic_its *its,
2571			     struct its_collection *collection,
2572			     gpa_t gpa, int esz)
2573{
2574	u64 val;
2575
2576	val = (1ULL << KVM_ITS_CTE_VALID_SHIFT |
2577	       ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) |
2578	       collection->collection_id);
2579	val = cpu_to_le64(val);
2580	return vgic_write_guest_lock(its->dev->kvm, gpa, &val, esz);
2581}
2582
2583/*
2584 * Restore a collection entry into the ITS collection table.
2585 * Return +1 on success, 0 if the entry was invalid (which should be
2586 * interpreted as end-of-table), and a negative error value for generic errors.
2587 */
2588static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz)
2589{
2590	struct its_collection *collection;
2591	struct kvm *kvm = its->dev->kvm;
2592	u32 target_addr, coll_id;
2593	u64 val;
2594	int ret;
2595
2596	BUG_ON(esz > sizeof(val));
2597	ret = kvm_read_guest_lock(kvm, gpa, &val, esz);
2598	if (ret)
2599		return ret;
2600	val = le64_to_cpu(val);
2601	if (!(val & KVM_ITS_CTE_VALID_MASK))
2602		return 0;
2603
2604	target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT);
2605	coll_id = val & KVM_ITS_CTE_ICID_MASK;
2606
2607	if (target_addr != COLLECTION_NOT_MAPPED &&
2608	    !kvm_get_vcpu_by_id(kvm, target_addr))
2609		return -EINVAL;
2610
2611	collection = find_collection(its, coll_id);
2612	if (collection)
2613		return -EEXIST;
2614
2615	if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
2616		return -EINVAL;
2617
2618	ret = vgic_its_alloc_collection(its, &collection, coll_id);
2619	if (ret)
2620		return ret;
2621	collection->target_addr = target_addr;
2622	return 1;
2623}
2624
2625/**
2626 * vgic_its_save_collection_table - Save the collection table into
2627 * guest RAM
2628 */
2629static int vgic_its_save_collection_table(struct vgic_its *its)
2630{
2631	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2632	u64 baser = its->baser_coll_table;
2633	gpa_t gpa = GITS_BASER_ADDR_48_to_52(baser);
2634	struct its_collection *collection;
2635	u64 val;
2636	size_t max_size, filled = 0;
2637	int ret, cte_esz = abi->cte_esz;
2638
2639	if (!(baser & GITS_BASER_VALID))
2640		return 0;
2641
2642	max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2643
2644	list_for_each_entry(collection, &its->collection_list, coll_list) {
2645		ret = vgic_its_save_cte(its, collection, gpa, cte_esz);
2646		if (ret)
2647			return ret;
2648		gpa += cte_esz;
2649		filled += cte_esz;
2650	}
2651
2652	if (filled == max_size)
2653		return 0;
2654
2655	/*
2656	 * table is not fully filled, add a last dummy element
2657	 * with valid bit unset
2658	 */
2659	val = 0;
2660	BUG_ON(cte_esz > sizeof(val));
2661	ret = vgic_write_guest_lock(its->dev->kvm, gpa, &val, cte_esz);
2662	return ret;
2663}
2664
2665/**
2666 * vgic_its_restore_collection_table - reads the collection table
2667 * in guest memory and restores the ITS internal state. Requires the
2668 * BASER registers to be restored before.
2669 */
2670static int vgic_its_restore_collection_table(struct vgic_its *its)
2671{
2672	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2673	u64 baser = its->baser_coll_table;
2674	int cte_esz = abi->cte_esz;
2675	size_t max_size, read = 0;
2676	gpa_t gpa;
2677	int ret;
2678
2679	if (!(baser & GITS_BASER_VALID))
2680		return 0;
2681
2682	gpa = GITS_BASER_ADDR_48_to_52(baser);
2683
2684	max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2685
2686	while (read < max_size) {
2687		ret = vgic_its_restore_cte(its, gpa, cte_esz);
2688		if (ret <= 0)
2689			break;
2690		gpa += cte_esz;
2691		read += cte_esz;
2692	}
2693
2694	if (ret > 0)
2695		return 0;
2696
2697	if (ret < 0)
2698		vgic_its_free_collection_list(its->dev->kvm, its);
2699
2700	return ret;
2701}
2702
2703/**
2704 * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM
2705 * according to v0 ABI
2706 */
2707static int vgic_its_save_tables_v0(struct vgic_its *its)
2708{
2709	int ret;
2710
2711	ret = vgic_its_save_device_tables(its);
2712	if (ret)
2713		return ret;
2714
2715	return vgic_its_save_collection_table(its);
2716}
2717
2718/**
2719 * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM
2720 * to internal data structs according to V0 ABI
2721 *
2722 */
2723static int vgic_its_restore_tables_v0(struct vgic_its *its)
2724{
2725	int ret;
2726
2727	ret = vgic_its_restore_collection_table(its);
2728	if (ret)
2729		return ret;
2730
2731	ret = vgic_its_restore_device_tables(its);
2732	if (ret)
2733		vgic_its_free_collection_list(its->dev->kvm, its);
2734	return ret;
2735}
2736
2737static int vgic_its_commit_v0(struct vgic_its *its)
2738{
2739	const struct vgic_its_abi *abi;
2740
2741	abi = vgic_its_get_abi(its);
2742	its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2743	its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2744
2745	its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5)
2746					<< GITS_BASER_ENTRY_SIZE_SHIFT);
2747
2748	its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5)
2749					<< GITS_BASER_ENTRY_SIZE_SHIFT);
2750	return 0;
2751}
2752
2753static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its)
2754{
2755	/* We need to keep the ABI specific field values */
2756	its->baser_coll_table &= ~GITS_BASER_VALID;
2757	its->baser_device_table &= ~GITS_BASER_VALID;
2758	its->cbaser = 0;
2759	its->creadr = 0;
2760	its->cwriter = 0;
2761	its->enabled = 0;
2762	vgic_its_free_device_list(kvm, its);
2763	vgic_its_free_collection_list(kvm, its);
2764}
2765
2766static int vgic_its_has_attr(struct kvm_device *dev,
2767			     struct kvm_device_attr *attr)
2768{
2769	switch (attr->group) {
2770	case KVM_DEV_ARM_VGIC_GRP_ADDR:
2771		switch (attr->attr) {
2772		case KVM_VGIC_ITS_ADDR_TYPE:
2773			return 0;
2774		}
2775		break;
2776	case KVM_DEV_ARM_VGIC_GRP_CTRL:
2777		switch (attr->attr) {
2778		case KVM_DEV_ARM_VGIC_CTRL_INIT:
2779			return 0;
2780		case KVM_DEV_ARM_ITS_CTRL_RESET:
2781			return 0;
2782		case KVM_DEV_ARM_ITS_SAVE_TABLES:
2783			return 0;
2784		case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2785			return 0;
2786		}
2787		break;
2788	case KVM_DEV_ARM_VGIC_GRP_ITS_REGS:
2789		return vgic_its_has_attr_regs(dev, attr);
2790	}
2791	return -ENXIO;
2792}
2793
2794static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr)
2795{
2796	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2797	int ret = 0;
2798
2799	if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */
2800		return 0;
2801
2802	mutex_lock(&kvm->lock);
2803
2804	if (!lock_all_vcpus(kvm)) {
2805		mutex_unlock(&kvm->lock);
2806		return -EBUSY;
2807	}
2808
2809	mutex_lock(&kvm->arch.config_lock);
2810	mutex_lock(&its->its_lock);
2811
2812	switch (attr) {
2813	case KVM_DEV_ARM_ITS_CTRL_RESET:
2814		vgic_its_reset(kvm, its);
2815		break;
2816	case KVM_DEV_ARM_ITS_SAVE_TABLES:
2817		ret = abi->save_tables(its);
2818		break;
2819	case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2820		ret = abi->restore_tables(its);
2821		break;
2822	}
2823
2824	mutex_unlock(&its->its_lock);
2825	mutex_unlock(&kvm->arch.config_lock);
2826	unlock_all_vcpus(kvm);
2827	mutex_unlock(&kvm->lock);
2828	return ret;
2829}
2830
2831/*
2832 * kvm_arch_allow_write_without_running_vcpu - allow writing guest memory
2833 * without the running VCPU when dirty ring is enabled.
2834 *
2835 * The running VCPU is required to track dirty guest pages when dirty ring
2836 * is enabled. Otherwise, the backup bitmap should be used to track the
2837 * dirty guest pages. When vgic/its tables are being saved, the backup
2838 * bitmap is used to track the dirty guest pages due to the missed running
2839 * VCPU in the period.
2840 */
2841bool kvm_arch_allow_write_without_running_vcpu(struct kvm *kvm)
2842{
2843	struct vgic_dist *dist = &kvm->arch.vgic;
2844
2845	return dist->table_write_in_progress;
2846}
2847
2848static int vgic_its_set_attr(struct kvm_device *dev,
2849			     struct kvm_device_attr *attr)
2850{
2851	struct vgic_its *its = dev->private;
2852	int ret;
2853
2854	switch (attr->group) {
2855	case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2856		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2857		unsigned long type = (unsigned long)attr->attr;
2858		u64 addr;
2859
2860		if (type != KVM_VGIC_ITS_ADDR_TYPE)
2861			return -ENODEV;
2862
2863		if (copy_from_user(&addr, uaddr, sizeof(addr)))
2864			return -EFAULT;
2865
2866		ret = vgic_check_iorange(dev->kvm, its->vgic_its_base,
2867					 addr, SZ_64K, KVM_VGIC_V3_ITS_SIZE);
2868		if (ret)
2869			return ret;
2870
2871		return vgic_register_its_iodev(dev->kvm, its, addr);
2872	}
2873	case KVM_DEV_ARM_VGIC_GRP_CTRL:
2874		return vgic_its_ctrl(dev->kvm, its, attr->attr);
2875	case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2876		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2877		u64 reg;
2878
2879		if (get_user(reg, uaddr))
2880			return -EFAULT;
2881
2882		return vgic_its_attr_regs_access(dev, attr, &reg, true);
2883	}
2884	}
2885	return -ENXIO;
2886}
2887
2888static int vgic_its_get_attr(struct kvm_device *dev,
2889			     struct kvm_device_attr *attr)
2890{
2891	switch (attr->group) {
2892	case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2893		struct vgic_its *its = dev->private;
2894		u64 addr = its->vgic_its_base;
2895		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2896		unsigned long type = (unsigned long)attr->attr;
2897
2898		if (type != KVM_VGIC_ITS_ADDR_TYPE)
2899			return -ENODEV;
2900
2901		if (copy_to_user(uaddr, &addr, sizeof(addr)))
2902			return -EFAULT;
2903		break;
2904	}
2905	case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2906		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2907		u64 reg;
2908		int ret;
2909
2910		ret = vgic_its_attr_regs_access(dev, attr, &reg, false);
2911		if (ret)
2912			return ret;
2913		return put_user(reg, uaddr);
2914	}
2915	default:
2916		return -ENXIO;
2917	}
2918
2919	return 0;
2920}
2921
2922static struct kvm_device_ops kvm_arm_vgic_its_ops = {
2923	.name = "kvm-arm-vgic-its",
2924	.create = vgic_its_create,
2925	.destroy = vgic_its_destroy,
2926	.set_attr = vgic_its_set_attr,
2927	.get_attr = vgic_its_get_attr,
2928	.has_attr = vgic_its_has_attr,
2929};
2930
2931int kvm_vgic_register_its_device(void)
2932{
2933	return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
2934				       KVM_DEV_TYPE_ARM_VGIC_ITS);
2935}
2936