1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2012,2013 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 *
6 * Derived from arch/arm/kvm/coproc.c:
7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8 * Authors: Rusty Russell <rusty@rustcorp.com.au>
9 *          Christoffer Dall <c.dall@virtualopensystems.com>
10 */
11
12#include <linux/bitfield.h>
13#include <linux/bsearch.h>
14#include <linux/cacheinfo.h>
15#include <linux/debugfs.h>
16#include <linux/kvm_host.h>
17#include <linux/mm.h>
18#include <linux/printk.h>
19#include <linux/uaccess.h>
20
21#include <asm/cacheflush.h>
22#include <asm/cputype.h>
23#include <asm/debug-monitors.h>
24#include <asm/esr.h>
25#include <asm/kvm_arm.h>
26#include <asm/kvm_emulate.h>
27#include <asm/kvm_hyp.h>
28#include <asm/kvm_mmu.h>
29#include <asm/kvm_nested.h>
30#include <asm/perf_event.h>
31#include <asm/sysreg.h>
32
33#include <trace/events/kvm.h>
34
35#include "sys_regs.h"
36
37#include "trace.h"
38
39/*
40 * For AArch32, we only take care of what is being trapped. Anything
41 * that has to do with init and userspace access has to go via the
42 * 64bit interface.
43 */
44
45static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
46static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
47		      u64 val);
48
49static bool bad_trap(struct kvm_vcpu *vcpu,
50		     struct sys_reg_params *params,
51		     const struct sys_reg_desc *r,
52		     const char *msg)
53{
54	WARN_ONCE(1, "Unexpected %s\n", msg);
55	print_sys_reg_instr(params);
56	kvm_inject_undefined(vcpu);
57	return false;
58}
59
60static bool read_from_write_only(struct kvm_vcpu *vcpu,
61				 struct sys_reg_params *params,
62				 const struct sys_reg_desc *r)
63{
64	return bad_trap(vcpu, params, r,
65			"sys_reg read to write-only register");
66}
67
68static bool write_to_read_only(struct kvm_vcpu *vcpu,
69			       struct sys_reg_params *params,
70			       const struct sys_reg_desc *r)
71{
72	return bad_trap(vcpu, params, r,
73			"sys_reg write to read-only register");
74}
75
76#define PURE_EL2_SYSREG(el2)						\
77	case el2: {							\
78		*el1r = el2;						\
79		return true;						\
80	}
81
82#define MAPPED_EL2_SYSREG(el2, el1, fn)					\
83	case el2: {							\
84		*xlate = fn;						\
85		*el1r = el1;						\
86		return true;						\
87	}
88
89static bool get_el2_to_el1_mapping(unsigned int reg,
90				   unsigned int *el1r, u64 (**xlate)(u64))
91{
92	switch (reg) {
93		PURE_EL2_SYSREG(  VPIDR_EL2	);
94		PURE_EL2_SYSREG(  VMPIDR_EL2	);
95		PURE_EL2_SYSREG(  ACTLR_EL2	);
96		PURE_EL2_SYSREG(  HCR_EL2	);
97		PURE_EL2_SYSREG(  MDCR_EL2	);
98		PURE_EL2_SYSREG(  HSTR_EL2	);
99		PURE_EL2_SYSREG(  HACR_EL2	);
100		PURE_EL2_SYSREG(  VTTBR_EL2	);
101		PURE_EL2_SYSREG(  VTCR_EL2	);
102		PURE_EL2_SYSREG(  RVBAR_EL2	);
103		PURE_EL2_SYSREG(  TPIDR_EL2	);
104		PURE_EL2_SYSREG(  HPFAR_EL2	);
105		PURE_EL2_SYSREG(  CNTHCTL_EL2	);
106		MAPPED_EL2_SYSREG(SCTLR_EL2,   SCTLR_EL1,
107				  translate_sctlr_el2_to_sctlr_el1	     );
108		MAPPED_EL2_SYSREG(CPTR_EL2,    CPACR_EL1,
109				  translate_cptr_el2_to_cpacr_el1	     );
110		MAPPED_EL2_SYSREG(TTBR0_EL2,   TTBR0_EL1,
111				  translate_ttbr0_el2_to_ttbr0_el1	     );
112		MAPPED_EL2_SYSREG(TTBR1_EL2,   TTBR1_EL1,   NULL	     );
113		MAPPED_EL2_SYSREG(TCR_EL2,     TCR_EL1,
114				  translate_tcr_el2_to_tcr_el1		     );
115		MAPPED_EL2_SYSREG(VBAR_EL2,    VBAR_EL1,    NULL	     );
116		MAPPED_EL2_SYSREG(AFSR0_EL2,   AFSR0_EL1,   NULL	     );
117		MAPPED_EL2_SYSREG(AFSR1_EL2,   AFSR1_EL1,   NULL	     );
118		MAPPED_EL2_SYSREG(ESR_EL2,     ESR_EL1,     NULL	     );
119		MAPPED_EL2_SYSREG(FAR_EL2,     FAR_EL1,     NULL	     );
120		MAPPED_EL2_SYSREG(MAIR_EL2,    MAIR_EL1,    NULL	     );
121		MAPPED_EL2_SYSREG(AMAIR_EL2,   AMAIR_EL1,   NULL	     );
122		MAPPED_EL2_SYSREG(ELR_EL2,     ELR_EL1,	    NULL	     );
123		MAPPED_EL2_SYSREG(SPSR_EL2,    SPSR_EL1,    NULL	     );
124	default:
125		return false;
126	}
127}
128
129u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
130{
131	u64 val = 0x8badf00d8badf00d;
132	u64 (*xlate)(u64) = NULL;
133	unsigned int el1r;
134
135	if (!vcpu_get_flag(vcpu, SYSREGS_ON_CPU))
136		goto memory_read;
137
138	if (unlikely(get_el2_to_el1_mapping(reg, &el1r, &xlate))) {
139		if (!is_hyp_ctxt(vcpu))
140			goto memory_read;
141
142		/*
143		 * If this register does not have an EL1 counterpart,
144		 * then read the stored EL2 version.
145		 */
146		if (reg == el1r)
147			goto memory_read;
148
149		/*
150		 * If we have a non-VHE guest and that the sysreg
151		 * requires translation to be used at EL1, use the
152		 * in-memory copy instead.
153		 */
154		if (!vcpu_el2_e2h_is_set(vcpu) && xlate)
155			goto memory_read;
156
157		/* Get the current version of the EL1 counterpart. */
158		WARN_ON(!__vcpu_read_sys_reg_from_cpu(el1r, &val));
159		return val;
160	}
161
162	/* EL1 register can't be on the CPU if the guest is in vEL2. */
163	if (unlikely(is_hyp_ctxt(vcpu)))
164		goto memory_read;
165
166	if (__vcpu_read_sys_reg_from_cpu(reg, &val))
167		return val;
168
169memory_read:
170	return __vcpu_sys_reg(vcpu, reg);
171}
172
173void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
174{
175	u64 (*xlate)(u64) = NULL;
176	unsigned int el1r;
177
178	if (!vcpu_get_flag(vcpu, SYSREGS_ON_CPU))
179		goto memory_write;
180
181	if (unlikely(get_el2_to_el1_mapping(reg, &el1r, &xlate))) {
182		if (!is_hyp_ctxt(vcpu))
183			goto memory_write;
184
185		/*
186		 * Always store a copy of the write to memory to avoid having
187		 * to reverse-translate virtual EL2 system registers for a
188		 * non-VHE guest hypervisor.
189		 */
190		__vcpu_sys_reg(vcpu, reg) = val;
191
192		/* No EL1 counterpart? We're done here.? */
193		if (reg == el1r)
194			return;
195
196		if (!vcpu_el2_e2h_is_set(vcpu) && xlate)
197			val = xlate(val);
198
199		/* Redirect this to the EL1 version of the register. */
200		WARN_ON(!__vcpu_write_sys_reg_to_cpu(val, el1r));
201		return;
202	}
203
204	/* EL1 register can't be on the CPU if the guest is in vEL2. */
205	if (unlikely(is_hyp_ctxt(vcpu)))
206		goto memory_write;
207
208	if (__vcpu_write_sys_reg_to_cpu(val, reg))
209		return;
210
211memory_write:
212	 __vcpu_sys_reg(vcpu, reg) = val;
213}
214
215/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
216#define CSSELR_MAX 14
217
218/*
219 * Returns the minimum line size for the selected cache, expressed as
220 * Log2(bytes).
221 */
222static u8 get_min_cache_line_size(bool icache)
223{
224	u64 ctr = read_sanitised_ftr_reg(SYS_CTR_EL0);
225	u8 field;
226
227	if (icache)
228		field = SYS_FIELD_GET(CTR_EL0, IminLine, ctr);
229	else
230		field = SYS_FIELD_GET(CTR_EL0, DminLine, ctr);
231
232	/*
233	 * Cache line size is represented as Log2(words) in CTR_EL0.
234	 * Log2(bytes) can be derived with the following:
235	 *
236	 * Log2(words) + 2 = Log2(bytes / 4) + 2
237	 * 		   = Log2(bytes) - 2 + 2
238	 * 		   = Log2(bytes)
239	 */
240	return field + 2;
241}
242
243/* Which cache CCSIDR represents depends on CSSELR value. */
244static u32 get_ccsidr(struct kvm_vcpu *vcpu, u32 csselr)
245{
246	u8 line_size;
247
248	if (vcpu->arch.ccsidr)
249		return vcpu->arch.ccsidr[csselr];
250
251	line_size = get_min_cache_line_size(csselr & CSSELR_EL1_InD);
252
253	/*
254	 * Fabricate a CCSIDR value as the overriding value does not exist.
255	 * The real CCSIDR value will not be used as it can vary by the
256	 * physical CPU which the vcpu currently resides in.
257	 *
258	 * The line size is determined with get_min_cache_line_size(), which
259	 * should be valid for all CPUs even if they have different cache
260	 * configuration.
261	 *
262	 * The associativity bits are cleared, meaning the geometry of all data
263	 * and unified caches (which are guaranteed to be PIPT and thus
264	 * non-aliasing) are 1 set and 1 way.
265	 * Guests should not be doing cache operations by set/way at all, and
266	 * for this reason, we trap them and attempt to infer the intent, so
267	 * that we can flush the entire guest's address space at the appropriate
268	 * time. The exposed geometry minimizes the number of the traps.
269	 * [If guests should attempt to infer aliasing properties from the
270	 * geometry (which is not permitted by the architecture), they would
271	 * only do so for virtually indexed caches.]
272	 *
273	 * We don't check if the cache level exists as it is allowed to return
274	 * an UNKNOWN value if not.
275	 */
276	return SYS_FIELD_PREP(CCSIDR_EL1, LineSize, line_size - 4);
277}
278
279static int set_ccsidr(struct kvm_vcpu *vcpu, u32 csselr, u32 val)
280{
281	u8 line_size = FIELD_GET(CCSIDR_EL1_LineSize, val) + 4;
282	u32 *ccsidr = vcpu->arch.ccsidr;
283	u32 i;
284
285	if ((val & CCSIDR_EL1_RES0) ||
286	    line_size < get_min_cache_line_size(csselr & CSSELR_EL1_InD))
287		return -EINVAL;
288
289	if (!ccsidr) {
290		if (val == get_ccsidr(vcpu, csselr))
291			return 0;
292
293		ccsidr = kmalloc_array(CSSELR_MAX, sizeof(u32), GFP_KERNEL_ACCOUNT);
294		if (!ccsidr)
295			return -ENOMEM;
296
297		for (i = 0; i < CSSELR_MAX; i++)
298			ccsidr[i] = get_ccsidr(vcpu, i);
299
300		vcpu->arch.ccsidr = ccsidr;
301	}
302
303	ccsidr[csselr] = val;
304
305	return 0;
306}
307
308static bool access_rw(struct kvm_vcpu *vcpu,
309		      struct sys_reg_params *p,
310		      const struct sys_reg_desc *r)
311{
312	if (p->is_write)
313		vcpu_write_sys_reg(vcpu, p->regval, r->reg);
314	else
315		p->regval = vcpu_read_sys_reg(vcpu, r->reg);
316
317	return true;
318}
319
320/*
321 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
322 */
323static bool access_dcsw(struct kvm_vcpu *vcpu,
324			struct sys_reg_params *p,
325			const struct sys_reg_desc *r)
326{
327	if (!p->is_write)
328		return read_from_write_only(vcpu, p, r);
329
330	/*
331	 * Only track S/W ops if we don't have FWB. It still indicates
332	 * that the guest is a bit broken (S/W operations should only
333	 * be done by firmware, knowing that there is only a single
334	 * CPU left in the system, and certainly not from non-secure
335	 * software).
336	 */
337	if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
338		kvm_set_way_flush(vcpu);
339
340	return true;
341}
342
343static bool access_dcgsw(struct kvm_vcpu *vcpu,
344			 struct sys_reg_params *p,
345			 const struct sys_reg_desc *r)
346{
347	if (!kvm_has_mte(vcpu->kvm)) {
348		kvm_inject_undefined(vcpu);
349		return false;
350	}
351
352	/* Treat MTE S/W ops as we treat the classic ones: with contempt */
353	return access_dcsw(vcpu, p, r);
354}
355
356static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
357{
358	switch (r->aarch32_map) {
359	case AA32_LO:
360		*mask = GENMASK_ULL(31, 0);
361		*shift = 0;
362		break;
363	case AA32_HI:
364		*mask = GENMASK_ULL(63, 32);
365		*shift = 32;
366		break;
367	default:
368		*mask = GENMASK_ULL(63, 0);
369		*shift = 0;
370		break;
371	}
372}
373
374/*
375 * Generic accessor for VM registers. Only called as long as HCR_TVM
376 * is set. If the guest enables the MMU, we stop trapping the VM
377 * sys_regs and leave it in complete control of the caches.
378 */
379static bool access_vm_reg(struct kvm_vcpu *vcpu,
380			  struct sys_reg_params *p,
381			  const struct sys_reg_desc *r)
382{
383	bool was_enabled = vcpu_has_cache_enabled(vcpu);
384	u64 val, mask, shift;
385
386	BUG_ON(!p->is_write);
387
388	get_access_mask(r, &mask, &shift);
389
390	if (~mask) {
391		val = vcpu_read_sys_reg(vcpu, r->reg);
392		val &= ~mask;
393	} else {
394		val = 0;
395	}
396
397	val |= (p->regval & (mask >> shift)) << shift;
398	vcpu_write_sys_reg(vcpu, val, r->reg);
399
400	kvm_toggle_cache(vcpu, was_enabled);
401	return true;
402}
403
404static bool access_actlr(struct kvm_vcpu *vcpu,
405			 struct sys_reg_params *p,
406			 const struct sys_reg_desc *r)
407{
408	u64 mask, shift;
409
410	if (p->is_write)
411		return ignore_write(vcpu, p);
412
413	get_access_mask(r, &mask, &shift);
414	p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
415
416	return true;
417}
418
419/*
420 * Trap handler for the GICv3 SGI generation system register.
421 * Forward the request to the VGIC emulation.
422 * The cp15_64 code makes sure this automatically works
423 * for both AArch64 and AArch32 accesses.
424 */
425static bool access_gic_sgi(struct kvm_vcpu *vcpu,
426			   struct sys_reg_params *p,
427			   const struct sys_reg_desc *r)
428{
429	bool g1;
430
431	if (!p->is_write)
432		return read_from_write_only(vcpu, p, r);
433
434	/*
435	 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
436	 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
437	 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
438	 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
439	 * group.
440	 */
441	if (p->Op0 == 0) {		/* AArch32 */
442		switch (p->Op1) {
443		default:		/* Keep GCC quiet */
444		case 0:			/* ICC_SGI1R */
445			g1 = true;
446			break;
447		case 1:			/* ICC_ASGI1R */
448		case 2:			/* ICC_SGI0R */
449			g1 = false;
450			break;
451		}
452	} else {			/* AArch64 */
453		switch (p->Op2) {
454		default:		/* Keep GCC quiet */
455		case 5:			/* ICC_SGI1R_EL1 */
456			g1 = true;
457			break;
458		case 6:			/* ICC_ASGI1R_EL1 */
459		case 7:			/* ICC_SGI0R_EL1 */
460			g1 = false;
461			break;
462		}
463	}
464
465	vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
466
467	return true;
468}
469
470static bool access_gic_sre(struct kvm_vcpu *vcpu,
471			   struct sys_reg_params *p,
472			   const struct sys_reg_desc *r)
473{
474	if (p->is_write)
475		return ignore_write(vcpu, p);
476
477	p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
478	return true;
479}
480
481static bool trap_raz_wi(struct kvm_vcpu *vcpu,
482			struct sys_reg_params *p,
483			const struct sys_reg_desc *r)
484{
485	if (p->is_write)
486		return ignore_write(vcpu, p);
487	else
488		return read_zero(vcpu, p);
489}
490
491static bool trap_undef(struct kvm_vcpu *vcpu,
492		       struct sys_reg_params *p,
493		       const struct sys_reg_desc *r)
494{
495	kvm_inject_undefined(vcpu);
496	return false;
497}
498
499/*
500 * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
501 * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
502 * system, these registers should UNDEF. LORID_EL1 being a RO register, we
503 * treat it separately.
504 */
505static bool trap_loregion(struct kvm_vcpu *vcpu,
506			  struct sys_reg_params *p,
507			  const struct sys_reg_desc *r)
508{
509	u32 sr = reg_to_encoding(r);
510
511	if (!kvm_has_feat(vcpu->kvm, ID_AA64MMFR1_EL1, LO, IMP)) {
512		kvm_inject_undefined(vcpu);
513		return false;
514	}
515
516	if (p->is_write && sr == SYS_LORID_EL1)
517		return write_to_read_only(vcpu, p, r);
518
519	return trap_raz_wi(vcpu, p, r);
520}
521
522static bool trap_oslar_el1(struct kvm_vcpu *vcpu,
523			   struct sys_reg_params *p,
524			   const struct sys_reg_desc *r)
525{
526	u64 oslsr;
527
528	if (!p->is_write)
529		return read_from_write_only(vcpu, p, r);
530
531	/* Forward the OSLK bit to OSLSR */
532	oslsr = __vcpu_sys_reg(vcpu, OSLSR_EL1) & ~OSLSR_EL1_OSLK;
533	if (p->regval & OSLAR_EL1_OSLK)
534		oslsr |= OSLSR_EL1_OSLK;
535
536	__vcpu_sys_reg(vcpu, OSLSR_EL1) = oslsr;
537	return true;
538}
539
540static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
541			   struct sys_reg_params *p,
542			   const struct sys_reg_desc *r)
543{
544	if (p->is_write)
545		return write_to_read_only(vcpu, p, r);
546
547	p->regval = __vcpu_sys_reg(vcpu, r->reg);
548	return true;
549}
550
551static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
552			 u64 val)
553{
554	/*
555	 * The only modifiable bit is the OSLK bit. Refuse the write if
556	 * userspace attempts to change any other bit in the register.
557	 */
558	if ((val ^ rd->val) & ~OSLSR_EL1_OSLK)
559		return -EINVAL;
560
561	__vcpu_sys_reg(vcpu, rd->reg) = val;
562	return 0;
563}
564
565static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
566				   struct sys_reg_params *p,
567				   const struct sys_reg_desc *r)
568{
569	if (p->is_write) {
570		return ignore_write(vcpu, p);
571	} else {
572		p->regval = read_sysreg(dbgauthstatus_el1);
573		return true;
574	}
575}
576
577/*
578 * We want to avoid world-switching all the DBG registers all the
579 * time:
580 *
581 * - If we've touched any debug register, it is likely that we're
582 *   going to touch more of them. It then makes sense to disable the
583 *   traps and start doing the save/restore dance
584 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
585 *   then mandatory to save/restore the registers, as the guest
586 *   depends on them.
587 *
588 * For this, we use a DIRTY bit, indicating the guest has modified the
589 * debug registers, used as follow:
590 *
591 * On guest entry:
592 * - If the dirty bit is set (because we're coming back from trapping),
593 *   disable the traps, save host registers, restore guest registers.
594 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
595 *   set the dirty bit, disable the traps, save host registers,
596 *   restore guest registers.
597 * - Otherwise, enable the traps
598 *
599 * On guest exit:
600 * - If the dirty bit is set, save guest registers, restore host
601 *   registers and clear the dirty bit. This ensure that the host can
602 *   now use the debug registers.
603 */
604static bool trap_debug_regs(struct kvm_vcpu *vcpu,
605			    struct sys_reg_params *p,
606			    const struct sys_reg_desc *r)
607{
608	access_rw(vcpu, p, r);
609	if (p->is_write)
610		vcpu_set_flag(vcpu, DEBUG_DIRTY);
611
612	trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
613
614	return true;
615}
616
617/*
618 * reg_to_dbg/dbg_to_reg
619 *
620 * A 32 bit write to a debug register leave top bits alone
621 * A 32 bit read from a debug register only returns the bottom bits
622 *
623 * All writes will set the DEBUG_DIRTY flag to ensure the hyp code
624 * switches between host and guest values in future.
625 */
626static void reg_to_dbg(struct kvm_vcpu *vcpu,
627		       struct sys_reg_params *p,
628		       const struct sys_reg_desc *rd,
629		       u64 *dbg_reg)
630{
631	u64 mask, shift, val;
632
633	get_access_mask(rd, &mask, &shift);
634
635	val = *dbg_reg;
636	val &= ~mask;
637	val |= (p->regval & (mask >> shift)) << shift;
638	*dbg_reg = val;
639
640	vcpu_set_flag(vcpu, DEBUG_DIRTY);
641}
642
643static void dbg_to_reg(struct kvm_vcpu *vcpu,
644		       struct sys_reg_params *p,
645		       const struct sys_reg_desc *rd,
646		       u64 *dbg_reg)
647{
648	u64 mask, shift;
649
650	get_access_mask(rd, &mask, &shift);
651	p->regval = (*dbg_reg & mask) >> shift;
652}
653
654static bool trap_bvr(struct kvm_vcpu *vcpu,
655		     struct sys_reg_params *p,
656		     const struct sys_reg_desc *rd)
657{
658	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
659
660	if (p->is_write)
661		reg_to_dbg(vcpu, p, rd, dbg_reg);
662	else
663		dbg_to_reg(vcpu, p, rd, dbg_reg);
664
665	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
666
667	return true;
668}
669
670static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
671		   u64 val)
672{
673	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = val;
674	return 0;
675}
676
677static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
678		   u64 *val)
679{
680	*val = vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
681	return 0;
682}
683
684static u64 reset_bvr(struct kvm_vcpu *vcpu,
685		      const struct sys_reg_desc *rd)
686{
687	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val;
688	return rd->val;
689}
690
691static bool trap_bcr(struct kvm_vcpu *vcpu,
692		     struct sys_reg_params *p,
693		     const struct sys_reg_desc *rd)
694{
695	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
696
697	if (p->is_write)
698		reg_to_dbg(vcpu, p, rd, dbg_reg);
699	else
700		dbg_to_reg(vcpu, p, rd, dbg_reg);
701
702	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
703
704	return true;
705}
706
707static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
708		   u64 val)
709{
710	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = val;
711	return 0;
712}
713
714static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
715		   u64 *val)
716{
717	*val = vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
718	return 0;
719}
720
721static u64 reset_bcr(struct kvm_vcpu *vcpu,
722		      const struct sys_reg_desc *rd)
723{
724	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val;
725	return rd->val;
726}
727
728static bool trap_wvr(struct kvm_vcpu *vcpu,
729		     struct sys_reg_params *p,
730		     const struct sys_reg_desc *rd)
731{
732	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
733
734	if (p->is_write)
735		reg_to_dbg(vcpu, p, rd, dbg_reg);
736	else
737		dbg_to_reg(vcpu, p, rd, dbg_reg);
738
739	trace_trap_reg(__func__, rd->CRm, p->is_write,
740		vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]);
741
742	return true;
743}
744
745static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
746		   u64 val)
747{
748	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = val;
749	return 0;
750}
751
752static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
753		   u64 *val)
754{
755	*val = vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
756	return 0;
757}
758
759static u64 reset_wvr(struct kvm_vcpu *vcpu,
760		      const struct sys_reg_desc *rd)
761{
762	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val;
763	return rd->val;
764}
765
766static bool trap_wcr(struct kvm_vcpu *vcpu,
767		     struct sys_reg_params *p,
768		     const struct sys_reg_desc *rd)
769{
770	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
771
772	if (p->is_write)
773		reg_to_dbg(vcpu, p, rd, dbg_reg);
774	else
775		dbg_to_reg(vcpu, p, rd, dbg_reg);
776
777	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
778
779	return true;
780}
781
782static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
783		   u64 val)
784{
785	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = val;
786	return 0;
787}
788
789static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
790		   u64 *val)
791{
792	*val = vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
793	return 0;
794}
795
796static u64 reset_wcr(struct kvm_vcpu *vcpu,
797		      const struct sys_reg_desc *rd)
798{
799	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val;
800	return rd->val;
801}
802
803static u64 reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
804{
805	u64 amair = read_sysreg(amair_el1);
806	vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
807	return amair;
808}
809
810static u64 reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
811{
812	u64 actlr = read_sysreg(actlr_el1);
813	vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
814	return actlr;
815}
816
817static u64 reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
818{
819	u64 mpidr;
820
821	/*
822	 * Map the vcpu_id into the first three affinity level fields of
823	 * the MPIDR. We limit the number of VCPUs in level 0 due to a
824	 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
825	 * of the GICv3 to be able to address each CPU directly when
826	 * sending IPIs.
827	 */
828	mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
829	mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
830	mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
831	mpidr |= (1ULL << 31);
832	vcpu_write_sys_reg(vcpu, mpidr, MPIDR_EL1);
833
834	return mpidr;
835}
836
837static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
838				   const struct sys_reg_desc *r)
839{
840	if (kvm_vcpu_has_pmu(vcpu))
841		return 0;
842
843	return REG_HIDDEN;
844}
845
846static u64 reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
847{
848	u64 mask = BIT(ARMV8_PMU_CYCLE_IDX);
849	u8 n = vcpu->kvm->arch.pmcr_n;
850
851	if (n)
852		mask |= GENMASK(n - 1, 0);
853
854	reset_unknown(vcpu, r);
855	__vcpu_sys_reg(vcpu, r->reg) &= mask;
856
857	return __vcpu_sys_reg(vcpu, r->reg);
858}
859
860static u64 reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
861{
862	reset_unknown(vcpu, r);
863	__vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0);
864
865	return __vcpu_sys_reg(vcpu, r->reg);
866}
867
868static u64 reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
869{
870	/* This thing will UNDEF, who cares about the reset value? */
871	if (!kvm_vcpu_has_pmu(vcpu))
872		return 0;
873
874	reset_unknown(vcpu, r);
875	__vcpu_sys_reg(vcpu, r->reg) &= kvm_pmu_evtyper_mask(vcpu->kvm);
876
877	return __vcpu_sys_reg(vcpu, r->reg);
878}
879
880static u64 reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
881{
882	reset_unknown(vcpu, r);
883	__vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_COUNTER_MASK;
884
885	return __vcpu_sys_reg(vcpu, r->reg);
886}
887
888static u64 reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
889{
890	u64 pmcr = 0;
891
892	if (!kvm_supports_32bit_el0())
893		pmcr |= ARMV8_PMU_PMCR_LC;
894
895	/*
896	 * The value of PMCR.N field is included when the
897	 * vCPU register is read via kvm_vcpu_read_pmcr().
898	 */
899	__vcpu_sys_reg(vcpu, r->reg) = pmcr;
900
901	return __vcpu_sys_reg(vcpu, r->reg);
902}
903
904static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
905{
906	u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
907	bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
908
909	if (!enabled)
910		kvm_inject_undefined(vcpu);
911
912	return !enabled;
913}
914
915static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
916{
917	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
918}
919
920static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
921{
922	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
923}
924
925static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
926{
927	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
928}
929
930static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
931{
932	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
933}
934
935static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
936			const struct sys_reg_desc *r)
937{
938	u64 val;
939
940	if (pmu_access_el0_disabled(vcpu))
941		return false;
942
943	if (p->is_write) {
944		/*
945		 * Only update writeable bits of PMCR (continuing into
946		 * kvm_pmu_handle_pmcr() as well)
947		 */
948		val = kvm_vcpu_read_pmcr(vcpu);
949		val &= ~ARMV8_PMU_PMCR_MASK;
950		val |= p->regval & ARMV8_PMU_PMCR_MASK;
951		if (!kvm_supports_32bit_el0())
952			val |= ARMV8_PMU_PMCR_LC;
953		kvm_pmu_handle_pmcr(vcpu, val);
954	} else {
955		/* PMCR.P & PMCR.C are RAZ */
956		val = kvm_vcpu_read_pmcr(vcpu)
957		      & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
958		p->regval = val;
959	}
960
961	return true;
962}
963
964static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
965			  const struct sys_reg_desc *r)
966{
967	if (pmu_access_event_counter_el0_disabled(vcpu))
968		return false;
969
970	if (p->is_write)
971		__vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
972	else
973		/* return PMSELR.SEL field */
974		p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
975			    & ARMV8_PMU_COUNTER_MASK;
976
977	return true;
978}
979
980static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
981			  const struct sys_reg_desc *r)
982{
983	u64 pmceid, mask, shift;
984
985	BUG_ON(p->is_write);
986
987	if (pmu_access_el0_disabled(vcpu))
988		return false;
989
990	get_access_mask(r, &mask, &shift);
991
992	pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
993	pmceid &= mask;
994	pmceid >>= shift;
995
996	p->regval = pmceid;
997
998	return true;
999}
1000
1001static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
1002{
1003	u64 pmcr, val;
1004
1005	pmcr = kvm_vcpu_read_pmcr(vcpu);
1006	val = FIELD_GET(ARMV8_PMU_PMCR_N, pmcr);
1007	if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
1008		kvm_inject_undefined(vcpu);
1009		return false;
1010	}
1011
1012	return true;
1013}
1014
1015static int get_pmu_evcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1016			  u64 *val)
1017{
1018	u64 idx;
1019
1020	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 0)
1021		/* PMCCNTR_EL0 */
1022		idx = ARMV8_PMU_CYCLE_IDX;
1023	else
1024		/* PMEVCNTRn_EL0 */
1025		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
1026
1027	*val = kvm_pmu_get_counter_value(vcpu, idx);
1028	return 0;
1029}
1030
1031static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
1032			      struct sys_reg_params *p,
1033			      const struct sys_reg_desc *r)
1034{
1035	u64 idx = ~0UL;
1036
1037	if (r->CRn == 9 && r->CRm == 13) {
1038		if (r->Op2 == 2) {
1039			/* PMXEVCNTR_EL0 */
1040			if (pmu_access_event_counter_el0_disabled(vcpu))
1041				return false;
1042
1043			idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
1044			      & ARMV8_PMU_COUNTER_MASK;
1045		} else if (r->Op2 == 0) {
1046			/* PMCCNTR_EL0 */
1047			if (pmu_access_cycle_counter_el0_disabled(vcpu))
1048				return false;
1049
1050			idx = ARMV8_PMU_CYCLE_IDX;
1051		}
1052	} else if (r->CRn == 0 && r->CRm == 9) {
1053		/* PMCCNTR */
1054		if (pmu_access_event_counter_el0_disabled(vcpu))
1055			return false;
1056
1057		idx = ARMV8_PMU_CYCLE_IDX;
1058	} else if (r->CRn == 14 && (r->CRm & 12) == 8) {
1059		/* PMEVCNTRn_EL0 */
1060		if (pmu_access_event_counter_el0_disabled(vcpu))
1061			return false;
1062
1063		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
1064	}
1065
1066	/* Catch any decoding mistake */
1067	WARN_ON(idx == ~0UL);
1068
1069	if (!pmu_counter_idx_valid(vcpu, idx))
1070		return false;
1071
1072	if (p->is_write) {
1073		if (pmu_access_el0_disabled(vcpu))
1074			return false;
1075
1076		kvm_pmu_set_counter_value(vcpu, idx, p->regval);
1077	} else {
1078		p->regval = kvm_pmu_get_counter_value(vcpu, idx);
1079	}
1080
1081	return true;
1082}
1083
1084static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1085			       const struct sys_reg_desc *r)
1086{
1087	u64 idx, reg;
1088
1089	if (pmu_access_el0_disabled(vcpu))
1090		return false;
1091
1092	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
1093		/* PMXEVTYPER_EL0 */
1094		idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
1095		reg = PMEVTYPER0_EL0 + idx;
1096	} else if (r->CRn == 14 && (r->CRm & 12) == 12) {
1097		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
1098		if (idx == ARMV8_PMU_CYCLE_IDX)
1099			reg = PMCCFILTR_EL0;
1100		else
1101			/* PMEVTYPERn_EL0 */
1102			reg = PMEVTYPER0_EL0 + idx;
1103	} else {
1104		BUG();
1105	}
1106
1107	if (!pmu_counter_idx_valid(vcpu, idx))
1108		return false;
1109
1110	if (p->is_write) {
1111		kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
1112		kvm_vcpu_pmu_restore_guest(vcpu);
1113	} else {
1114		p->regval = __vcpu_sys_reg(vcpu, reg);
1115	}
1116
1117	return true;
1118}
1119
1120static int set_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 val)
1121{
1122	bool set;
1123
1124	val &= kvm_pmu_valid_counter_mask(vcpu);
1125
1126	switch (r->reg) {
1127	case PMOVSSET_EL0:
1128		/* CRm[1] being set indicates a SET register, and CLR otherwise */
1129		set = r->CRm & 2;
1130		break;
1131	default:
1132		/* Op2[0] being set indicates a SET register, and CLR otherwise */
1133		set = r->Op2 & 1;
1134		break;
1135	}
1136
1137	if (set)
1138		__vcpu_sys_reg(vcpu, r->reg) |= val;
1139	else
1140		__vcpu_sys_reg(vcpu, r->reg) &= ~val;
1141
1142	return 0;
1143}
1144
1145static int get_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 *val)
1146{
1147	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
1148
1149	*val = __vcpu_sys_reg(vcpu, r->reg) & mask;
1150	return 0;
1151}
1152
1153static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1154			   const struct sys_reg_desc *r)
1155{
1156	u64 val, mask;
1157
1158	if (pmu_access_el0_disabled(vcpu))
1159		return false;
1160
1161	mask = kvm_pmu_valid_counter_mask(vcpu);
1162	if (p->is_write) {
1163		val = p->regval & mask;
1164		if (r->Op2 & 0x1) {
1165			/* accessing PMCNTENSET_EL0 */
1166			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
1167			kvm_pmu_enable_counter_mask(vcpu, val);
1168			kvm_vcpu_pmu_restore_guest(vcpu);
1169		} else {
1170			/* accessing PMCNTENCLR_EL0 */
1171			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
1172			kvm_pmu_disable_counter_mask(vcpu, val);
1173		}
1174	} else {
1175		p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
1176	}
1177
1178	return true;
1179}
1180
1181static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1182			   const struct sys_reg_desc *r)
1183{
1184	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
1185
1186	if (check_pmu_access_disabled(vcpu, 0))
1187		return false;
1188
1189	if (p->is_write) {
1190		u64 val = p->regval & mask;
1191
1192		if (r->Op2 & 0x1)
1193			/* accessing PMINTENSET_EL1 */
1194			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
1195		else
1196			/* accessing PMINTENCLR_EL1 */
1197			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
1198	} else {
1199		p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
1200	}
1201
1202	return true;
1203}
1204
1205static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1206			 const struct sys_reg_desc *r)
1207{
1208	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
1209
1210	if (pmu_access_el0_disabled(vcpu))
1211		return false;
1212
1213	if (p->is_write) {
1214		if (r->CRm & 0x2)
1215			/* accessing PMOVSSET_EL0 */
1216			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
1217		else
1218			/* accessing PMOVSCLR_EL0 */
1219			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
1220	} else {
1221		p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
1222	}
1223
1224	return true;
1225}
1226
1227static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1228			   const struct sys_reg_desc *r)
1229{
1230	u64 mask;
1231
1232	if (!p->is_write)
1233		return read_from_write_only(vcpu, p, r);
1234
1235	if (pmu_write_swinc_el0_disabled(vcpu))
1236		return false;
1237
1238	mask = kvm_pmu_valid_counter_mask(vcpu);
1239	kvm_pmu_software_increment(vcpu, p->regval & mask);
1240	return true;
1241}
1242
1243static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1244			     const struct sys_reg_desc *r)
1245{
1246	if (p->is_write) {
1247		if (!vcpu_mode_priv(vcpu)) {
1248			kvm_inject_undefined(vcpu);
1249			return false;
1250		}
1251
1252		__vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
1253			       p->regval & ARMV8_PMU_USERENR_MASK;
1254	} else {
1255		p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
1256			    & ARMV8_PMU_USERENR_MASK;
1257	}
1258
1259	return true;
1260}
1261
1262static int get_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1263		    u64 *val)
1264{
1265	*val = kvm_vcpu_read_pmcr(vcpu);
1266	return 0;
1267}
1268
1269static int set_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1270		    u64 val)
1271{
1272	u8 new_n = FIELD_GET(ARMV8_PMU_PMCR_N, val);
1273	struct kvm *kvm = vcpu->kvm;
1274
1275	mutex_lock(&kvm->arch.config_lock);
1276
1277	/*
1278	 * The vCPU can't have more counters than the PMU hardware
1279	 * implements. Ignore this error to maintain compatibility
1280	 * with the existing KVM behavior.
1281	 */
1282	if (!kvm_vm_has_ran_once(kvm) &&
1283	    new_n <= kvm_arm_pmu_get_max_counters(kvm))
1284		kvm->arch.pmcr_n = new_n;
1285
1286	mutex_unlock(&kvm->arch.config_lock);
1287
1288	/*
1289	 * Ignore writes to RES0 bits, read only bits that are cleared on
1290	 * vCPU reset, and writable bits that KVM doesn't support yet.
1291	 * (i.e. only PMCR.N and bits [7:0] are mutable from userspace)
1292	 * The LP bit is RES0 when FEAT_PMUv3p5 is not supported on the vCPU.
1293	 * But, we leave the bit as it is here, as the vCPU's PMUver might
1294	 * be changed later (NOTE: the bit will be cleared on first vCPU run
1295	 * if necessary).
1296	 */
1297	val &= ARMV8_PMU_PMCR_MASK;
1298
1299	/* The LC bit is RES1 when AArch32 is not supported */
1300	if (!kvm_supports_32bit_el0())
1301		val |= ARMV8_PMU_PMCR_LC;
1302
1303	__vcpu_sys_reg(vcpu, r->reg) = val;
1304	return 0;
1305}
1306
1307/* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
1308#define DBG_BCR_BVR_WCR_WVR_EL1(n)					\
1309	{ SYS_DESC(SYS_DBGBVRn_EL1(n)),					\
1310	  trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },		\
1311	{ SYS_DESC(SYS_DBGBCRn_EL1(n)),					\
1312	  trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },		\
1313	{ SYS_DESC(SYS_DBGWVRn_EL1(n)),					\
1314	  trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },		\
1315	{ SYS_DESC(SYS_DBGWCRn_EL1(n)),					\
1316	  trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }
1317
1318#define PMU_SYS_REG(name)						\
1319	SYS_DESC(SYS_##name), .reset = reset_pmu_reg,			\
1320	.visibility = pmu_visibility
1321
1322/* Macro to expand the PMEVCNTRn_EL0 register */
1323#define PMU_PMEVCNTR_EL0(n)						\
1324	{ PMU_SYS_REG(PMEVCNTRn_EL0(n)),				\
1325	  .reset = reset_pmevcntr, .get_user = get_pmu_evcntr,		\
1326	  .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }
1327
1328/* Macro to expand the PMEVTYPERn_EL0 register */
1329#define PMU_PMEVTYPER_EL0(n)						\
1330	{ PMU_SYS_REG(PMEVTYPERn_EL0(n)),				\
1331	  .reset = reset_pmevtyper,					\
1332	  .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }
1333
1334static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1335			 const struct sys_reg_desc *r)
1336{
1337	kvm_inject_undefined(vcpu);
1338
1339	return false;
1340}
1341
1342/* Macro to expand the AMU counter and type registers*/
1343#define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
1344#define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
1345#define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
1346#define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
1347
1348static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1349			const struct sys_reg_desc *rd)
1350{
1351	return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
1352}
1353
1354/*
1355 * If we land here on a PtrAuth access, that is because we didn't
1356 * fixup the access on exit by allowing the PtrAuth sysregs. The only
1357 * way this happens is when the guest does not have PtrAuth support
1358 * enabled.
1359 */
1360#define __PTRAUTH_KEY(k)						\
1361	{ SYS_DESC(SYS_## k), undef_access, reset_unknown, k,		\
1362	.visibility = ptrauth_visibility}
1363
1364#define PTRAUTH_KEY(k)							\
1365	__PTRAUTH_KEY(k ## KEYLO_EL1),					\
1366	__PTRAUTH_KEY(k ## KEYHI_EL1)
1367
1368static bool access_arch_timer(struct kvm_vcpu *vcpu,
1369			      struct sys_reg_params *p,
1370			      const struct sys_reg_desc *r)
1371{
1372	enum kvm_arch_timers tmr;
1373	enum kvm_arch_timer_regs treg;
1374	u64 reg = reg_to_encoding(r);
1375
1376	switch (reg) {
1377	case SYS_CNTP_TVAL_EL0:
1378	case SYS_AARCH32_CNTP_TVAL:
1379		tmr = TIMER_PTIMER;
1380		treg = TIMER_REG_TVAL;
1381		break;
1382	case SYS_CNTP_CTL_EL0:
1383	case SYS_AARCH32_CNTP_CTL:
1384		tmr = TIMER_PTIMER;
1385		treg = TIMER_REG_CTL;
1386		break;
1387	case SYS_CNTP_CVAL_EL0:
1388	case SYS_AARCH32_CNTP_CVAL:
1389		tmr = TIMER_PTIMER;
1390		treg = TIMER_REG_CVAL;
1391		break;
1392	case SYS_CNTPCT_EL0:
1393	case SYS_CNTPCTSS_EL0:
1394	case SYS_AARCH32_CNTPCT:
1395		tmr = TIMER_PTIMER;
1396		treg = TIMER_REG_CNT;
1397		break;
1398	default:
1399		print_sys_reg_msg(p, "%s", "Unhandled trapped timer register");
1400		kvm_inject_undefined(vcpu);
1401		return false;
1402	}
1403
1404	if (p->is_write)
1405		kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1406	else
1407		p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1408
1409	return true;
1410}
1411
1412static s64 kvm_arm64_ftr_safe_value(u32 id, const struct arm64_ftr_bits *ftrp,
1413				    s64 new, s64 cur)
1414{
1415	struct arm64_ftr_bits kvm_ftr = *ftrp;
1416
1417	/* Some features have different safe value type in KVM than host features */
1418	switch (id) {
1419	case SYS_ID_AA64DFR0_EL1:
1420		switch (kvm_ftr.shift) {
1421		case ID_AA64DFR0_EL1_PMUVer_SHIFT:
1422			kvm_ftr.type = FTR_LOWER_SAFE;
1423			break;
1424		case ID_AA64DFR0_EL1_DebugVer_SHIFT:
1425			kvm_ftr.type = FTR_LOWER_SAFE;
1426			break;
1427		}
1428		break;
1429	case SYS_ID_DFR0_EL1:
1430		if (kvm_ftr.shift == ID_DFR0_EL1_PerfMon_SHIFT)
1431			kvm_ftr.type = FTR_LOWER_SAFE;
1432		break;
1433	}
1434
1435	return arm64_ftr_safe_value(&kvm_ftr, new, cur);
1436}
1437
1438/*
1439 * arm64_check_features() - Check if a feature register value constitutes
1440 * a subset of features indicated by the idreg's KVM sanitised limit.
1441 *
1442 * This function will check if each feature field of @val is the "safe" value
1443 * against idreg's KVM sanitised limit return from reset() callback.
1444 * If a field value in @val is the same as the one in limit, it is always
1445 * considered the safe value regardless For register fields that are not in
1446 * writable, only the value in limit is considered the safe value.
1447 *
1448 * Return: 0 if all the fields are safe. Otherwise, return negative errno.
1449 */
1450static int arm64_check_features(struct kvm_vcpu *vcpu,
1451				const struct sys_reg_desc *rd,
1452				u64 val)
1453{
1454	const struct arm64_ftr_reg *ftr_reg;
1455	const struct arm64_ftr_bits *ftrp = NULL;
1456	u32 id = reg_to_encoding(rd);
1457	u64 writable_mask = rd->val;
1458	u64 limit = rd->reset(vcpu, rd);
1459	u64 mask = 0;
1460
1461	/*
1462	 * Hidden and unallocated ID registers may not have a corresponding
1463	 * struct arm64_ftr_reg. Of course, if the register is RAZ we know the
1464	 * only safe value is 0.
1465	 */
1466	if (sysreg_visible_as_raz(vcpu, rd))
1467		return val ? -E2BIG : 0;
1468
1469	ftr_reg = get_arm64_ftr_reg(id);
1470	if (!ftr_reg)
1471		return -EINVAL;
1472
1473	ftrp = ftr_reg->ftr_bits;
1474
1475	for (; ftrp && ftrp->width; ftrp++) {
1476		s64 f_val, f_lim, safe_val;
1477		u64 ftr_mask;
1478
1479		ftr_mask = arm64_ftr_mask(ftrp);
1480		if ((ftr_mask & writable_mask) != ftr_mask)
1481			continue;
1482
1483		f_val = arm64_ftr_value(ftrp, val);
1484		f_lim = arm64_ftr_value(ftrp, limit);
1485		mask |= ftr_mask;
1486
1487		if (f_val == f_lim)
1488			safe_val = f_val;
1489		else
1490			safe_val = kvm_arm64_ftr_safe_value(id, ftrp, f_val, f_lim);
1491
1492		if (safe_val != f_val)
1493			return -E2BIG;
1494	}
1495
1496	/* For fields that are not writable, values in limit are the safe values. */
1497	if ((val & ~mask) != (limit & ~mask))
1498		return -E2BIG;
1499
1500	return 0;
1501}
1502
1503static u8 pmuver_to_perfmon(u8 pmuver)
1504{
1505	switch (pmuver) {
1506	case ID_AA64DFR0_EL1_PMUVer_IMP:
1507		return ID_DFR0_EL1_PerfMon_PMUv3;
1508	case ID_AA64DFR0_EL1_PMUVer_IMP_DEF:
1509		return ID_DFR0_EL1_PerfMon_IMPDEF;
1510	default:
1511		/* Anything ARMv8.1+ and NI have the same value. For now. */
1512		return pmuver;
1513	}
1514}
1515
1516/* Read a sanitised cpufeature ID register by sys_reg_desc */
1517static u64 __kvm_read_sanitised_id_reg(const struct kvm_vcpu *vcpu,
1518				       const struct sys_reg_desc *r)
1519{
1520	u32 id = reg_to_encoding(r);
1521	u64 val;
1522
1523	if (sysreg_visible_as_raz(vcpu, r))
1524		return 0;
1525
1526	val = read_sanitised_ftr_reg(id);
1527
1528	switch (id) {
1529	case SYS_ID_AA64PFR1_EL1:
1530		if (!kvm_has_mte(vcpu->kvm))
1531			val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE);
1532
1533		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_SME);
1534		break;
1535	case SYS_ID_AA64ISAR1_EL1:
1536		if (!vcpu_has_ptrauth(vcpu))
1537			val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA) |
1538				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API) |
1539				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA) |
1540				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI));
1541		break;
1542	case SYS_ID_AA64ISAR2_EL1:
1543		if (!vcpu_has_ptrauth(vcpu))
1544			val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_APA3) |
1545				 ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_GPA3));
1546		if (!cpus_have_final_cap(ARM64_HAS_WFXT))
1547			val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_WFxT);
1548		break;
1549	case SYS_ID_AA64MMFR2_EL1:
1550		val &= ~ID_AA64MMFR2_EL1_CCIDX_MASK;
1551		break;
1552	case SYS_ID_MMFR4_EL1:
1553		val &= ~ARM64_FEATURE_MASK(ID_MMFR4_EL1_CCIDX);
1554		break;
1555	}
1556
1557	return val;
1558}
1559
1560static u64 kvm_read_sanitised_id_reg(struct kvm_vcpu *vcpu,
1561				     const struct sys_reg_desc *r)
1562{
1563	return __kvm_read_sanitised_id_reg(vcpu, r);
1564}
1565
1566static u64 read_id_reg(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
1567{
1568	return IDREG(vcpu->kvm, reg_to_encoding(r));
1569}
1570
1571/*
1572 * Return true if the register's (Op0, Op1, CRn, CRm, Op2) is
1573 * (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8.
1574 */
1575static inline bool is_id_reg(u32 id)
1576{
1577	return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 &&
1578		sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 &&
1579		sys_reg_CRm(id) < 8);
1580}
1581
1582static inline bool is_aa32_id_reg(u32 id)
1583{
1584	return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 &&
1585		sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 &&
1586		sys_reg_CRm(id) <= 3);
1587}
1588
1589static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1590				  const struct sys_reg_desc *r)
1591{
1592	u32 id = reg_to_encoding(r);
1593
1594	switch (id) {
1595	case SYS_ID_AA64ZFR0_EL1:
1596		if (!vcpu_has_sve(vcpu))
1597			return REG_RAZ;
1598		break;
1599	}
1600
1601	return 0;
1602}
1603
1604static unsigned int aa32_id_visibility(const struct kvm_vcpu *vcpu,
1605				       const struct sys_reg_desc *r)
1606{
1607	/*
1608	 * AArch32 ID registers are UNKNOWN if AArch32 isn't implemented at any
1609	 * EL. Promote to RAZ/WI in order to guarantee consistency between
1610	 * systems.
1611	 */
1612	if (!kvm_supports_32bit_el0())
1613		return REG_RAZ | REG_USER_WI;
1614
1615	return id_visibility(vcpu, r);
1616}
1617
1618static unsigned int raz_visibility(const struct kvm_vcpu *vcpu,
1619				   const struct sys_reg_desc *r)
1620{
1621	return REG_RAZ;
1622}
1623
1624/* cpufeature ID register access trap handlers */
1625
1626static bool access_id_reg(struct kvm_vcpu *vcpu,
1627			  struct sys_reg_params *p,
1628			  const struct sys_reg_desc *r)
1629{
1630	if (p->is_write)
1631		return write_to_read_only(vcpu, p, r);
1632
1633	p->regval = read_id_reg(vcpu, r);
1634
1635	return true;
1636}
1637
1638/* Visibility overrides for SVE-specific control registers */
1639static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1640				   const struct sys_reg_desc *rd)
1641{
1642	if (vcpu_has_sve(vcpu))
1643		return 0;
1644
1645	return REG_HIDDEN;
1646}
1647
1648static u64 read_sanitised_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1649					  const struct sys_reg_desc *rd)
1650{
1651	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1652
1653	if (!vcpu_has_sve(vcpu))
1654		val &= ~ID_AA64PFR0_EL1_SVE_MASK;
1655
1656	/*
1657	 * The default is to expose CSV2 == 1 if the HW isn't affected.
1658	 * Although this is a per-CPU feature, we make it global because
1659	 * asymmetric systems are just a nuisance.
1660	 *
1661	 * Userspace can override this as long as it doesn't promise
1662	 * the impossible.
1663	 */
1664	if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED) {
1665		val &= ~ID_AA64PFR0_EL1_CSV2_MASK;
1666		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV2, IMP);
1667	}
1668	if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED) {
1669		val &= ~ID_AA64PFR0_EL1_CSV3_MASK;
1670		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV3, IMP);
1671	}
1672
1673	if (kvm_vgic_global_state.type == VGIC_V3) {
1674		val &= ~ID_AA64PFR0_EL1_GIC_MASK;
1675		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, GIC, IMP);
1676	}
1677
1678	val &= ~ID_AA64PFR0_EL1_AMU_MASK;
1679
1680	return val;
1681}
1682
1683#define ID_REG_LIMIT_FIELD_ENUM(val, reg, field, limit)			       \
1684({									       \
1685	u64 __f_val = FIELD_GET(reg##_##field##_MASK, val);		       \
1686	(val) &= ~reg##_##field##_MASK;					       \
1687	(val) |= FIELD_PREP(reg##_##field##_MASK,			       \
1688			    min(__f_val,				       \
1689				(u64)SYS_FIELD_VALUE(reg, field, limit)));     \
1690	(val);								       \
1691})
1692
1693static u64 read_sanitised_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
1694					  const struct sys_reg_desc *rd)
1695{
1696	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1697
1698	val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64DFR0_EL1, DebugVer, V8P8);
1699
1700	/*
1701	 * Only initialize the PMU version if the vCPU was configured with one.
1702	 */
1703	val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
1704	if (kvm_vcpu_has_pmu(vcpu))
1705		val |= SYS_FIELD_PREP(ID_AA64DFR0_EL1, PMUVer,
1706				      kvm_arm_pmu_get_pmuver_limit());
1707
1708	/* Hide SPE from guests */
1709	val &= ~ID_AA64DFR0_EL1_PMSVer_MASK;
1710
1711	return val;
1712}
1713
1714static int set_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
1715			       const struct sys_reg_desc *rd,
1716			       u64 val)
1717{
1718	u8 debugver = SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, val);
1719	u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, val);
1720
1721	/*
1722	 * Prior to commit 3d0dba5764b9 ("KVM: arm64: PMU: Move the
1723	 * ID_AA64DFR0_EL1.PMUver limit to VM creation"), KVM erroneously
1724	 * exposed an IMP_DEF PMU to userspace and the guest on systems w/
1725	 * non-architectural PMUs. Of course, PMUv3 is the only game in town for
1726	 * PMU virtualization, so the IMP_DEF value was rather user-hostile.
1727	 *
1728	 * At minimum, we're on the hook to allow values that were given to
1729	 * userspace by KVM. Cover our tracks here and replace the IMP_DEF value
1730	 * with a more sensible NI. The value of an ID register changing under
1731	 * the nose of the guest is unfortunate, but is certainly no more
1732	 * surprising than an ill-guided PMU driver poking at impdef system
1733	 * registers that end in an UNDEF...
1734	 */
1735	if (pmuver == ID_AA64DFR0_EL1_PMUVer_IMP_DEF)
1736		val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
1737
1738	/*
1739	 * ID_AA64DFR0_EL1.DebugVer is one of those awkward fields with a
1740	 * nonzero minimum safe value.
1741	 */
1742	if (debugver < ID_AA64DFR0_EL1_DebugVer_IMP)
1743		return -EINVAL;
1744
1745	return set_id_reg(vcpu, rd, val);
1746}
1747
1748static u64 read_sanitised_id_dfr0_el1(struct kvm_vcpu *vcpu,
1749				      const struct sys_reg_desc *rd)
1750{
1751	u8 perfmon = pmuver_to_perfmon(kvm_arm_pmu_get_pmuver_limit());
1752	u64 val = read_sanitised_ftr_reg(SYS_ID_DFR0_EL1);
1753
1754	val &= ~ID_DFR0_EL1_PerfMon_MASK;
1755	if (kvm_vcpu_has_pmu(vcpu))
1756		val |= SYS_FIELD_PREP(ID_DFR0_EL1, PerfMon, perfmon);
1757
1758	val = ID_REG_LIMIT_FIELD_ENUM(val, ID_DFR0_EL1, CopDbg, Debugv8p8);
1759
1760	return val;
1761}
1762
1763static int set_id_dfr0_el1(struct kvm_vcpu *vcpu,
1764			   const struct sys_reg_desc *rd,
1765			   u64 val)
1766{
1767	u8 perfmon = SYS_FIELD_GET(ID_DFR0_EL1, PerfMon, val);
1768	u8 copdbg = SYS_FIELD_GET(ID_DFR0_EL1, CopDbg, val);
1769
1770	if (perfmon == ID_DFR0_EL1_PerfMon_IMPDEF) {
1771		val &= ~ID_DFR0_EL1_PerfMon_MASK;
1772		perfmon = 0;
1773	}
1774
1775	/*
1776	 * Allow DFR0_EL1.PerfMon to be set from userspace as long as
1777	 * it doesn't promise more than what the HW gives us on the
1778	 * AArch64 side (as everything is emulated with that), and
1779	 * that this is a PMUv3.
1780	 */
1781	if (perfmon != 0 && perfmon < ID_DFR0_EL1_PerfMon_PMUv3)
1782		return -EINVAL;
1783
1784	if (copdbg < ID_DFR0_EL1_CopDbg_Armv8)
1785		return -EINVAL;
1786
1787	return set_id_reg(vcpu, rd, val);
1788}
1789
1790/*
1791 * cpufeature ID register user accessors
1792 *
1793 * For now, these registers are immutable for userspace, so no values
1794 * are stored, and for set_id_reg() we don't allow the effective value
1795 * to be changed.
1796 */
1797static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1798		      u64 *val)
1799{
1800	/*
1801	 * Avoid locking if the VM has already started, as the ID registers are
1802	 * guaranteed to be invariant at that point.
1803	 */
1804	if (kvm_vm_has_ran_once(vcpu->kvm)) {
1805		*val = read_id_reg(vcpu, rd);
1806		return 0;
1807	}
1808
1809	mutex_lock(&vcpu->kvm->arch.config_lock);
1810	*val = read_id_reg(vcpu, rd);
1811	mutex_unlock(&vcpu->kvm->arch.config_lock);
1812
1813	return 0;
1814}
1815
1816static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1817		      u64 val)
1818{
1819	u32 id = reg_to_encoding(rd);
1820	int ret;
1821
1822	mutex_lock(&vcpu->kvm->arch.config_lock);
1823
1824	/*
1825	 * Once the VM has started the ID registers are immutable. Reject any
1826	 * write that does not match the final register value.
1827	 */
1828	if (kvm_vm_has_ran_once(vcpu->kvm)) {
1829		if (val != read_id_reg(vcpu, rd))
1830			ret = -EBUSY;
1831		else
1832			ret = 0;
1833
1834		mutex_unlock(&vcpu->kvm->arch.config_lock);
1835		return ret;
1836	}
1837
1838	ret = arm64_check_features(vcpu, rd, val);
1839	if (!ret)
1840		IDREG(vcpu->kvm, id) = val;
1841
1842	mutex_unlock(&vcpu->kvm->arch.config_lock);
1843
1844	/*
1845	 * arm64_check_features() returns -E2BIG to indicate the register's
1846	 * feature set is a superset of the maximally-allowed register value.
1847	 * While it would be nice to precisely describe this to userspace, the
1848	 * existing UAPI for KVM_SET_ONE_REG has it that invalid register
1849	 * writes return -EINVAL.
1850	 */
1851	if (ret == -E2BIG)
1852		ret = -EINVAL;
1853	return ret;
1854}
1855
1856static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1857		       u64 *val)
1858{
1859	*val = 0;
1860	return 0;
1861}
1862
1863static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1864		      u64 val)
1865{
1866	return 0;
1867}
1868
1869static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1870		       const struct sys_reg_desc *r)
1871{
1872	if (p->is_write)
1873		return write_to_read_only(vcpu, p, r);
1874
1875	p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1876	return true;
1877}
1878
1879static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1880			 const struct sys_reg_desc *r)
1881{
1882	if (p->is_write)
1883		return write_to_read_only(vcpu, p, r);
1884
1885	p->regval = __vcpu_sys_reg(vcpu, r->reg);
1886	return true;
1887}
1888
1889/*
1890 * Fabricate a CLIDR_EL1 value instead of using the real value, which can vary
1891 * by the physical CPU which the vcpu currently resides in.
1892 */
1893static u64 reset_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
1894{
1895	u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
1896	u64 clidr;
1897	u8 loc;
1898
1899	if ((ctr_el0 & CTR_EL0_IDC)) {
1900		/*
1901		 * Data cache clean to the PoU is not required so LoUU and LoUIS
1902		 * will not be set and a unified cache, which will be marked as
1903		 * LoC, will be added.
1904		 *
1905		 * If not DIC, let the unified cache L2 so that an instruction
1906		 * cache can be added as L1 later.
1907		 */
1908		loc = (ctr_el0 & CTR_EL0_DIC) ? 1 : 2;
1909		clidr = CACHE_TYPE_UNIFIED << CLIDR_CTYPE_SHIFT(loc);
1910	} else {
1911		/*
1912		 * Data cache clean to the PoU is required so let L1 have a data
1913		 * cache and mark it as LoUU and LoUIS. As L1 has a data cache,
1914		 * it can be marked as LoC too.
1915		 */
1916		loc = 1;
1917		clidr = 1 << CLIDR_LOUU_SHIFT;
1918		clidr |= 1 << CLIDR_LOUIS_SHIFT;
1919		clidr |= CACHE_TYPE_DATA << CLIDR_CTYPE_SHIFT(1);
1920	}
1921
1922	/*
1923	 * Instruction cache invalidation to the PoU is required so let L1 have
1924	 * an instruction cache. If L1 already has a data cache, it will be
1925	 * CACHE_TYPE_SEPARATE.
1926	 */
1927	if (!(ctr_el0 & CTR_EL0_DIC))
1928		clidr |= CACHE_TYPE_INST << CLIDR_CTYPE_SHIFT(1);
1929
1930	clidr |= loc << CLIDR_LOC_SHIFT;
1931
1932	/*
1933	 * Add tag cache unified to data cache. Allocation tags and data are
1934	 * unified in a cache line so that it looks valid even if there is only
1935	 * one cache line.
1936	 */
1937	if (kvm_has_mte(vcpu->kvm))
1938		clidr |= 2 << CLIDR_TTYPE_SHIFT(loc);
1939
1940	__vcpu_sys_reg(vcpu, r->reg) = clidr;
1941
1942	return __vcpu_sys_reg(vcpu, r->reg);
1943}
1944
1945static int set_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1946		      u64 val)
1947{
1948	u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
1949	u64 idc = !CLIDR_LOC(val) || (!CLIDR_LOUIS(val) && !CLIDR_LOUU(val));
1950
1951	if ((val & CLIDR_EL1_RES0) || (!(ctr_el0 & CTR_EL0_IDC) && idc))
1952		return -EINVAL;
1953
1954	__vcpu_sys_reg(vcpu, rd->reg) = val;
1955
1956	return 0;
1957}
1958
1959static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1960			  const struct sys_reg_desc *r)
1961{
1962	int reg = r->reg;
1963
1964	if (p->is_write)
1965		vcpu_write_sys_reg(vcpu, p->regval, reg);
1966	else
1967		p->regval = vcpu_read_sys_reg(vcpu, reg);
1968	return true;
1969}
1970
1971static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1972			  const struct sys_reg_desc *r)
1973{
1974	u32 csselr;
1975
1976	if (p->is_write)
1977		return write_to_read_only(vcpu, p, r);
1978
1979	csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1980	csselr &= CSSELR_EL1_Level | CSSELR_EL1_InD;
1981	if (csselr < CSSELR_MAX)
1982		p->regval = get_ccsidr(vcpu, csselr);
1983
1984	return true;
1985}
1986
1987static unsigned int mte_visibility(const struct kvm_vcpu *vcpu,
1988				   const struct sys_reg_desc *rd)
1989{
1990	if (kvm_has_mte(vcpu->kvm))
1991		return 0;
1992
1993	return REG_HIDDEN;
1994}
1995
1996#define MTE_REG(name) {				\
1997	SYS_DESC(SYS_##name),			\
1998	.access = undef_access,			\
1999	.reset = reset_unknown,			\
2000	.reg = name,				\
2001	.visibility = mte_visibility,		\
2002}
2003
2004static unsigned int el2_visibility(const struct kvm_vcpu *vcpu,
2005				   const struct sys_reg_desc *rd)
2006{
2007	if (vcpu_has_nv(vcpu))
2008		return 0;
2009
2010	return REG_HIDDEN;
2011}
2012
2013static bool bad_vncr_trap(struct kvm_vcpu *vcpu,
2014			  struct sys_reg_params *p,
2015			  const struct sys_reg_desc *r)
2016{
2017	/*
2018	 * We really shouldn't be here, and this is likely the result
2019	 * of a misconfigured trap, as this register should target the
2020	 * VNCR page, and nothing else.
2021	 */
2022	return bad_trap(vcpu, p, r,
2023			"trap of VNCR-backed register");
2024}
2025
2026static bool bad_redir_trap(struct kvm_vcpu *vcpu,
2027			   struct sys_reg_params *p,
2028			   const struct sys_reg_desc *r)
2029{
2030	/*
2031	 * We really shouldn't be here, and this is likely the result
2032	 * of a misconfigured trap, as this register should target the
2033	 * corresponding EL1, and nothing else.
2034	 */
2035	return bad_trap(vcpu, p, r,
2036			"trap of EL2 register redirected to EL1");
2037}
2038
2039#define EL2_REG(name, acc, rst, v) {		\
2040	SYS_DESC(SYS_##name),			\
2041	.access = acc,				\
2042	.reset = rst,				\
2043	.reg = name,				\
2044	.visibility = el2_visibility,		\
2045	.val = v,				\
2046}
2047
2048#define EL2_REG_VNCR(name, rst, v)	EL2_REG(name, bad_vncr_trap, rst, v)
2049#define EL2_REG_REDIR(name, rst, v)	EL2_REG(name, bad_redir_trap, rst, v)
2050
2051/*
2052 * EL{0,1}2 registers are the EL2 view on an EL0 or EL1 register when
2053 * HCR_EL2.E2H==1, and only in the sysreg table for convenience of
2054 * handling traps. Given that, they are always hidden from userspace.
2055 */
2056static unsigned int hidden_user_visibility(const struct kvm_vcpu *vcpu,
2057					   const struct sys_reg_desc *rd)
2058{
2059	return REG_HIDDEN_USER;
2060}
2061
2062#define EL12_REG(name, acc, rst, v) {		\
2063	SYS_DESC(SYS_##name##_EL12),		\
2064	.access = acc,				\
2065	.reset = rst,				\
2066	.reg = name##_EL1,			\
2067	.val = v,				\
2068	.visibility = hidden_user_visibility,	\
2069}
2070
2071/*
2072 * Since reset() callback and field val are not used for idregs, they will be
2073 * used for specific purposes for idregs.
2074 * The reset() would return KVM sanitised register value. The value would be the
2075 * same as the host kernel sanitised value if there is no KVM sanitisation.
2076 * The val would be used as a mask indicating writable fields for the idreg.
2077 * Only bits with 1 are writable from userspace. This mask might not be
2078 * necessary in the future whenever all ID registers are enabled as writable
2079 * from userspace.
2080 */
2081
2082#define ID_DESC(name)				\
2083	SYS_DESC(SYS_##name),			\
2084	.access	= access_id_reg,		\
2085	.get_user = get_id_reg			\
2086
2087/* sys_reg_desc initialiser for known cpufeature ID registers */
2088#define ID_SANITISED(name) {			\
2089	ID_DESC(name),				\
2090	.set_user = set_id_reg,			\
2091	.visibility = id_visibility,		\
2092	.reset = kvm_read_sanitised_id_reg,	\
2093	.val = 0,				\
2094}
2095
2096/* sys_reg_desc initialiser for known cpufeature ID registers */
2097#define AA32_ID_SANITISED(name) {		\
2098	ID_DESC(name),				\
2099	.set_user = set_id_reg,			\
2100	.visibility = aa32_id_visibility,	\
2101	.reset = kvm_read_sanitised_id_reg,	\
2102	.val = 0,				\
2103}
2104
2105/* sys_reg_desc initialiser for writable ID registers */
2106#define ID_WRITABLE(name, mask) {		\
2107	ID_DESC(name),				\
2108	.set_user = set_id_reg,			\
2109	.visibility = id_visibility,		\
2110	.reset = kvm_read_sanitised_id_reg,	\
2111	.val = mask,				\
2112}
2113
2114/*
2115 * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
2116 * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
2117 * (1 <= crm < 8, 0 <= Op2 < 8).
2118 */
2119#define ID_UNALLOCATED(crm, op2) {			\
2120	Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),	\
2121	.access = access_id_reg,			\
2122	.get_user = get_id_reg,				\
2123	.set_user = set_id_reg,				\
2124	.visibility = raz_visibility,			\
2125	.reset = kvm_read_sanitised_id_reg,		\
2126	.val = 0,					\
2127}
2128
2129/*
2130 * sys_reg_desc initialiser for known ID registers that we hide from guests.
2131 * For now, these are exposed just like unallocated ID regs: they appear
2132 * RAZ for the guest.
2133 */
2134#define ID_HIDDEN(name) {			\
2135	ID_DESC(name),				\
2136	.set_user = set_id_reg,			\
2137	.visibility = raz_visibility,		\
2138	.reset = kvm_read_sanitised_id_reg,	\
2139	.val = 0,				\
2140}
2141
2142static bool access_sp_el1(struct kvm_vcpu *vcpu,
2143			  struct sys_reg_params *p,
2144			  const struct sys_reg_desc *r)
2145{
2146	if (p->is_write)
2147		__vcpu_sys_reg(vcpu, SP_EL1) = p->regval;
2148	else
2149		p->regval = __vcpu_sys_reg(vcpu, SP_EL1);
2150
2151	return true;
2152}
2153
2154static bool access_elr(struct kvm_vcpu *vcpu,
2155		       struct sys_reg_params *p,
2156		       const struct sys_reg_desc *r)
2157{
2158	if (p->is_write)
2159		vcpu_write_sys_reg(vcpu, p->regval, ELR_EL1);
2160	else
2161		p->regval = vcpu_read_sys_reg(vcpu, ELR_EL1);
2162
2163	return true;
2164}
2165
2166static bool access_spsr(struct kvm_vcpu *vcpu,
2167			struct sys_reg_params *p,
2168			const struct sys_reg_desc *r)
2169{
2170	if (p->is_write)
2171		__vcpu_sys_reg(vcpu, SPSR_EL1) = p->regval;
2172	else
2173		p->regval = __vcpu_sys_reg(vcpu, SPSR_EL1);
2174
2175	return true;
2176}
2177
2178static u64 reset_hcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
2179{
2180	u64 val = r->val;
2181
2182	if (!cpus_have_final_cap(ARM64_HAS_HCR_NV1))
2183		val |= HCR_E2H;
2184
2185	return __vcpu_sys_reg(vcpu, r->reg) = val;
2186}
2187
2188/*
2189 * Architected system registers.
2190 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
2191 *
2192 * Debug handling: We do trap most, if not all debug related system
2193 * registers. The implementation is good enough to ensure that a guest
2194 * can use these with minimal performance degradation. The drawback is
2195 * that we don't implement any of the external debug architecture.
2196 * This should be revisited if we ever encounter a more demanding
2197 * guest...
2198 */
2199static const struct sys_reg_desc sys_reg_descs[] = {
2200	DBG_BCR_BVR_WCR_WVR_EL1(0),
2201	DBG_BCR_BVR_WCR_WVR_EL1(1),
2202	{ SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
2203	{ SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
2204	DBG_BCR_BVR_WCR_WVR_EL1(2),
2205	DBG_BCR_BVR_WCR_WVR_EL1(3),
2206	DBG_BCR_BVR_WCR_WVR_EL1(4),
2207	DBG_BCR_BVR_WCR_WVR_EL1(5),
2208	DBG_BCR_BVR_WCR_WVR_EL1(6),
2209	DBG_BCR_BVR_WCR_WVR_EL1(7),
2210	DBG_BCR_BVR_WCR_WVR_EL1(8),
2211	DBG_BCR_BVR_WCR_WVR_EL1(9),
2212	DBG_BCR_BVR_WCR_WVR_EL1(10),
2213	DBG_BCR_BVR_WCR_WVR_EL1(11),
2214	DBG_BCR_BVR_WCR_WVR_EL1(12),
2215	DBG_BCR_BVR_WCR_WVR_EL1(13),
2216	DBG_BCR_BVR_WCR_WVR_EL1(14),
2217	DBG_BCR_BVR_WCR_WVR_EL1(15),
2218
2219	{ SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
2220	{ SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 },
2221	{ SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1,
2222		OSLSR_EL1_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, },
2223	{ SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
2224	{ SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
2225	{ SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
2226	{ SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
2227	{ SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
2228
2229	{ SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
2230	{ SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
2231	// DBGDTR[TR]X_EL0 share the same encoding
2232	{ SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
2233
2234	{ SYS_DESC(SYS_DBGVCR32_EL2), trap_undef, reset_val, DBGVCR32_EL2, 0 },
2235
2236	{ SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
2237
2238	/*
2239	 * ID regs: all ID_SANITISED() entries here must have corresponding
2240	 * entries in arm64_ftr_regs[].
2241	 */
2242
2243	/* AArch64 mappings of the AArch32 ID registers */
2244	/* CRm=1 */
2245	AA32_ID_SANITISED(ID_PFR0_EL1),
2246	AA32_ID_SANITISED(ID_PFR1_EL1),
2247	{ SYS_DESC(SYS_ID_DFR0_EL1),
2248	  .access = access_id_reg,
2249	  .get_user = get_id_reg,
2250	  .set_user = set_id_dfr0_el1,
2251	  .visibility = aa32_id_visibility,
2252	  .reset = read_sanitised_id_dfr0_el1,
2253	  .val = ID_DFR0_EL1_PerfMon_MASK |
2254		 ID_DFR0_EL1_CopDbg_MASK, },
2255	ID_HIDDEN(ID_AFR0_EL1),
2256	AA32_ID_SANITISED(ID_MMFR0_EL1),
2257	AA32_ID_SANITISED(ID_MMFR1_EL1),
2258	AA32_ID_SANITISED(ID_MMFR2_EL1),
2259	AA32_ID_SANITISED(ID_MMFR3_EL1),
2260
2261	/* CRm=2 */
2262	AA32_ID_SANITISED(ID_ISAR0_EL1),
2263	AA32_ID_SANITISED(ID_ISAR1_EL1),
2264	AA32_ID_SANITISED(ID_ISAR2_EL1),
2265	AA32_ID_SANITISED(ID_ISAR3_EL1),
2266	AA32_ID_SANITISED(ID_ISAR4_EL1),
2267	AA32_ID_SANITISED(ID_ISAR5_EL1),
2268	AA32_ID_SANITISED(ID_MMFR4_EL1),
2269	AA32_ID_SANITISED(ID_ISAR6_EL1),
2270
2271	/* CRm=3 */
2272	AA32_ID_SANITISED(MVFR0_EL1),
2273	AA32_ID_SANITISED(MVFR1_EL1),
2274	AA32_ID_SANITISED(MVFR2_EL1),
2275	ID_UNALLOCATED(3,3),
2276	AA32_ID_SANITISED(ID_PFR2_EL1),
2277	ID_HIDDEN(ID_DFR1_EL1),
2278	AA32_ID_SANITISED(ID_MMFR5_EL1),
2279	ID_UNALLOCATED(3,7),
2280
2281	/* AArch64 ID registers */
2282	/* CRm=4 */
2283	{ SYS_DESC(SYS_ID_AA64PFR0_EL1),
2284	  .access = access_id_reg,
2285	  .get_user = get_id_reg,
2286	  .set_user = set_id_reg,
2287	  .reset = read_sanitised_id_aa64pfr0_el1,
2288	  .val = ~(ID_AA64PFR0_EL1_AMU |
2289		   ID_AA64PFR0_EL1_MPAM |
2290		   ID_AA64PFR0_EL1_SVE |
2291		   ID_AA64PFR0_EL1_RAS |
2292		   ID_AA64PFR0_EL1_GIC |
2293		   ID_AA64PFR0_EL1_AdvSIMD |
2294		   ID_AA64PFR0_EL1_FP), },
2295	ID_SANITISED(ID_AA64PFR1_EL1),
2296	ID_UNALLOCATED(4,2),
2297	ID_UNALLOCATED(4,3),
2298	ID_WRITABLE(ID_AA64ZFR0_EL1, ~ID_AA64ZFR0_EL1_RES0),
2299	ID_HIDDEN(ID_AA64SMFR0_EL1),
2300	ID_UNALLOCATED(4,6),
2301	ID_UNALLOCATED(4,7),
2302
2303	/* CRm=5 */
2304	{ SYS_DESC(SYS_ID_AA64DFR0_EL1),
2305	  .access = access_id_reg,
2306	  .get_user = get_id_reg,
2307	  .set_user = set_id_aa64dfr0_el1,
2308	  .reset = read_sanitised_id_aa64dfr0_el1,
2309	  .val = ID_AA64DFR0_EL1_PMUVer_MASK |
2310		 ID_AA64DFR0_EL1_DebugVer_MASK, },
2311	ID_SANITISED(ID_AA64DFR1_EL1),
2312	ID_UNALLOCATED(5,2),
2313	ID_UNALLOCATED(5,3),
2314	ID_HIDDEN(ID_AA64AFR0_EL1),
2315	ID_HIDDEN(ID_AA64AFR1_EL1),
2316	ID_UNALLOCATED(5,6),
2317	ID_UNALLOCATED(5,7),
2318
2319	/* CRm=6 */
2320	ID_WRITABLE(ID_AA64ISAR0_EL1, ~ID_AA64ISAR0_EL1_RES0),
2321	ID_WRITABLE(ID_AA64ISAR1_EL1, ~(ID_AA64ISAR1_EL1_GPI |
2322					ID_AA64ISAR1_EL1_GPA |
2323					ID_AA64ISAR1_EL1_API |
2324					ID_AA64ISAR1_EL1_APA)),
2325	ID_WRITABLE(ID_AA64ISAR2_EL1, ~(ID_AA64ISAR2_EL1_RES0 |
2326					ID_AA64ISAR2_EL1_APA3 |
2327					ID_AA64ISAR2_EL1_GPA3)),
2328	ID_UNALLOCATED(6,3),
2329	ID_UNALLOCATED(6,4),
2330	ID_UNALLOCATED(6,5),
2331	ID_UNALLOCATED(6,6),
2332	ID_UNALLOCATED(6,7),
2333
2334	/* CRm=7 */
2335	ID_WRITABLE(ID_AA64MMFR0_EL1, ~(ID_AA64MMFR0_EL1_RES0 |
2336					ID_AA64MMFR0_EL1_TGRAN4_2 |
2337					ID_AA64MMFR0_EL1_TGRAN64_2 |
2338					ID_AA64MMFR0_EL1_TGRAN16_2)),
2339	ID_WRITABLE(ID_AA64MMFR1_EL1, ~(ID_AA64MMFR1_EL1_RES0 |
2340					ID_AA64MMFR1_EL1_HCX |
2341					ID_AA64MMFR1_EL1_XNX |
2342					ID_AA64MMFR1_EL1_TWED |
2343					ID_AA64MMFR1_EL1_XNX |
2344					ID_AA64MMFR1_EL1_VH |
2345					ID_AA64MMFR1_EL1_VMIDBits)),
2346	ID_WRITABLE(ID_AA64MMFR2_EL1, ~(ID_AA64MMFR2_EL1_RES0 |
2347					ID_AA64MMFR2_EL1_EVT |
2348					ID_AA64MMFR2_EL1_FWB |
2349					ID_AA64MMFR2_EL1_IDS |
2350					ID_AA64MMFR2_EL1_NV |
2351					ID_AA64MMFR2_EL1_CCIDX)),
2352	ID_SANITISED(ID_AA64MMFR3_EL1),
2353	ID_SANITISED(ID_AA64MMFR4_EL1),
2354	ID_UNALLOCATED(7,5),
2355	ID_UNALLOCATED(7,6),
2356	ID_UNALLOCATED(7,7),
2357
2358	{ SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
2359	{ SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
2360	{ SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
2361
2362	MTE_REG(RGSR_EL1),
2363	MTE_REG(GCR_EL1),
2364
2365	{ SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
2366	{ SYS_DESC(SYS_TRFCR_EL1), undef_access },
2367	{ SYS_DESC(SYS_SMPRI_EL1), undef_access },
2368	{ SYS_DESC(SYS_SMCR_EL1), undef_access },
2369	{ SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
2370	{ SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
2371	{ SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
2372	{ SYS_DESC(SYS_TCR2_EL1), access_vm_reg, reset_val, TCR2_EL1, 0 },
2373
2374	PTRAUTH_KEY(APIA),
2375	PTRAUTH_KEY(APIB),
2376	PTRAUTH_KEY(APDA),
2377	PTRAUTH_KEY(APDB),
2378	PTRAUTH_KEY(APGA),
2379
2380	{ SYS_DESC(SYS_SPSR_EL1), access_spsr},
2381	{ SYS_DESC(SYS_ELR_EL1), access_elr},
2382
2383	{ SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
2384	{ SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
2385	{ SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
2386
2387	{ SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
2388	{ SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
2389	{ SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
2390	{ SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
2391	{ SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
2392	{ SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
2393	{ SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
2394	{ SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
2395
2396	MTE_REG(TFSR_EL1),
2397	MTE_REG(TFSRE0_EL1),
2398
2399	{ SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
2400	{ SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
2401
2402	{ SYS_DESC(SYS_PMSCR_EL1), undef_access },
2403	{ SYS_DESC(SYS_PMSNEVFR_EL1), undef_access },
2404	{ SYS_DESC(SYS_PMSICR_EL1), undef_access },
2405	{ SYS_DESC(SYS_PMSIRR_EL1), undef_access },
2406	{ SYS_DESC(SYS_PMSFCR_EL1), undef_access },
2407	{ SYS_DESC(SYS_PMSEVFR_EL1), undef_access },
2408	{ SYS_DESC(SYS_PMSLATFR_EL1), undef_access },
2409	{ SYS_DESC(SYS_PMSIDR_EL1), undef_access },
2410	{ SYS_DESC(SYS_PMBLIMITR_EL1), undef_access },
2411	{ SYS_DESC(SYS_PMBPTR_EL1), undef_access },
2412	{ SYS_DESC(SYS_PMBSR_EL1), undef_access },
2413	/* PMBIDR_EL1 is not trapped */
2414
2415	{ PMU_SYS_REG(PMINTENSET_EL1),
2416	  .access = access_pminten, .reg = PMINTENSET_EL1,
2417	  .get_user = get_pmreg, .set_user = set_pmreg },
2418	{ PMU_SYS_REG(PMINTENCLR_EL1),
2419	  .access = access_pminten, .reg = PMINTENSET_EL1,
2420	  .get_user = get_pmreg, .set_user = set_pmreg },
2421	{ SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi },
2422
2423	{ SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
2424	{ SYS_DESC(SYS_PIRE0_EL1), NULL, reset_unknown, PIRE0_EL1 },
2425	{ SYS_DESC(SYS_PIR_EL1), NULL, reset_unknown, PIR_EL1 },
2426	{ SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
2427
2428	{ SYS_DESC(SYS_LORSA_EL1), trap_loregion },
2429	{ SYS_DESC(SYS_LOREA_EL1), trap_loregion },
2430	{ SYS_DESC(SYS_LORN_EL1), trap_loregion },
2431	{ SYS_DESC(SYS_LORC_EL1), trap_loregion },
2432	{ SYS_DESC(SYS_LORID_EL1), trap_loregion },
2433
2434	{ SYS_DESC(SYS_VBAR_EL1), access_rw, reset_val, VBAR_EL1, 0 },
2435	{ SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
2436
2437	{ SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
2438	{ SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
2439	{ SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
2440	{ SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
2441	{ SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
2442	{ SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
2443	{ SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
2444	{ SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
2445	{ SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
2446	{ SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
2447	{ SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
2448	{ SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
2449
2450	{ SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
2451	{ SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
2452
2453	{ SYS_DESC(SYS_ACCDATA_EL1), undef_access },
2454
2455	{ SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
2456
2457	{ SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
2458
2459	{ SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
2460	{ SYS_DESC(SYS_CLIDR_EL1), access_clidr, reset_clidr, CLIDR_EL1,
2461	  .set_user = set_clidr },
2462	{ SYS_DESC(SYS_CCSIDR2_EL1), undef_access },
2463	{ SYS_DESC(SYS_SMIDR_EL1), undef_access },
2464	{ SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
2465	{ SYS_DESC(SYS_CTR_EL0), access_ctr },
2466	{ SYS_DESC(SYS_SVCR), undef_access },
2467
2468	{ PMU_SYS_REG(PMCR_EL0), .access = access_pmcr, .reset = reset_pmcr,
2469	  .reg = PMCR_EL0, .get_user = get_pmcr, .set_user = set_pmcr },
2470	{ PMU_SYS_REG(PMCNTENSET_EL0),
2471	  .access = access_pmcnten, .reg = PMCNTENSET_EL0,
2472	  .get_user = get_pmreg, .set_user = set_pmreg },
2473	{ PMU_SYS_REG(PMCNTENCLR_EL0),
2474	  .access = access_pmcnten, .reg = PMCNTENSET_EL0,
2475	  .get_user = get_pmreg, .set_user = set_pmreg },
2476	{ PMU_SYS_REG(PMOVSCLR_EL0),
2477	  .access = access_pmovs, .reg = PMOVSSET_EL0,
2478	  .get_user = get_pmreg, .set_user = set_pmreg },
2479	/*
2480	 * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was
2481	 * previously (and pointlessly) advertised in the past...
2482	 */
2483	{ PMU_SYS_REG(PMSWINC_EL0),
2484	  .get_user = get_raz_reg, .set_user = set_wi_reg,
2485	  .access = access_pmswinc, .reset = NULL },
2486	{ PMU_SYS_REG(PMSELR_EL0),
2487	  .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 },
2488	{ PMU_SYS_REG(PMCEID0_EL0),
2489	  .access = access_pmceid, .reset = NULL },
2490	{ PMU_SYS_REG(PMCEID1_EL0),
2491	  .access = access_pmceid, .reset = NULL },
2492	{ PMU_SYS_REG(PMCCNTR_EL0),
2493	  .access = access_pmu_evcntr, .reset = reset_unknown,
2494	  .reg = PMCCNTR_EL0, .get_user = get_pmu_evcntr},
2495	{ PMU_SYS_REG(PMXEVTYPER_EL0),
2496	  .access = access_pmu_evtyper, .reset = NULL },
2497	{ PMU_SYS_REG(PMXEVCNTR_EL0),
2498	  .access = access_pmu_evcntr, .reset = NULL },
2499	/*
2500	 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
2501	 * in 32bit mode. Here we choose to reset it as zero for consistency.
2502	 */
2503	{ PMU_SYS_REG(PMUSERENR_EL0), .access = access_pmuserenr,
2504	  .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
2505	{ PMU_SYS_REG(PMOVSSET_EL0),
2506	  .access = access_pmovs, .reg = PMOVSSET_EL0,
2507	  .get_user = get_pmreg, .set_user = set_pmreg },
2508
2509	{ SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
2510	{ SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
2511	{ SYS_DESC(SYS_TPIDR2_EL0), undef_access },
2512
2513	{ SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
2514
2515	{ SYS_DESC(SYS_AMCR_EL0), undef_access },
2516	{ SYS_DESC(SYS_AMCFGR_EL0), undef_access },
2517	{ SYS_DESC(SYS_AMCGCR_EL0), undef_access },
2518	{ SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
2519	{ SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
2520	{ SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
2521	{ SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
2522	{ SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
2523	AMU_AMEVCNTR0_EL0(0),
2524	AMU_AMEVCNTR0_EL0(1),
2525	AMU_AMEVCNTR0_EL0(2),
2526	AMU_AMEVCNTR0_EL0(3),
2527	AMU_AMEVCNTR0_EL0(4),
2528	AMU_AMEVCNTR0_EL0(5),
2529	AMU_AMEVCNTR0_EL0(6),
2530	AMU_AMEVCNTR0_EL0(7),
2531	AMU_AMEVCNTR0_EL0(8),
2532	AMU_AMEVCNTR0_EL0(9),
2533	AMU_AMEVCNTR0_EL0(10),
2534	AMU_AMEVCNTR0_EL0(11),
2535	AMU_AMEVCNTR0_EL0(12),
2536	AMU_AMEVCNTR0_EL0(13),
2537	AMU_AMEVCNTR0_EL0(14),
2538	AMU_AMEVCNTR0_EL0(15),
2539	AMU_AMEVTYPER0_EL0(0),
2540	AMU_AMEVTYPER0_EL0(1),
2541	AMU_AMEVTYPER0_EL0(2),
2542	AMU_AMEVTYPER0_EL0(3),
2543	AMU_AMEVTYPER0_EL0(4),
2544	AMU_AMEVTYPER0_EL0(5),
2545	AMU_AMEVTYPER0_EL0(6),
2546	AMU_AMEVTYPER0_EL0(7),
2547	AMU_AMEVTYPER0_EL0(8),
2548	AMU_AMEVTYPER0_EL0(9),
2549	AMU_AMEVTYPER0_EL0(10),
2550	AMU_AMEVTYPER0_EL0(11),
2551	AMU_AMEVTYPER0_EL0(12),
2552	AMU_AMEVTYPER0_EL0(13),
2553	AMU_AMEVTYPER0_EL0(14),
2554	AMU_AMEVTYPER0_EL0(15),
2555	AMU_AMEVCNTR1_EL0(0),
2556	AMU_AMEVCNTR1_EL0(1),
2557	AMU_AMEVCNTR1_EL0(2),
2558	AMU_AMEVCNTR1_EL0(3),
2559	AMU_AMEVCNTR1_EL0(4),
2560	AMU_AMEVCNTR1_EL0(5),
2561	AMU_AMEVCNTR1_EL0(6),
2562	AMU_AMEVCNTR1_EL0(7),
2563	AMU_AMEVCNTR1_EL0(8),
2564	AMU_AMEVCNTR1_EL0(9),
2565	AMU_AMEVCNTR1_EL0(10),
2566	AMU_AMEVCNTR1_EL0(11),
2567	AMU_AMEVCNTR1_EL0(12),
2568	AMU_AMEVCNTR1_EL0(13),
2569	AMU_AMEVCNTR1_EL0(14),
2570	AMU_AMEVCNTR1_EL0(15),
2571	AMU_AMEVTYPER1_EL0(0),
2572	AMU_AMEVTYPER1_EL0(1),
2573	AMU_AMEVTYPER1_EL0(2),
2574	AMU_AMEVTYPER1_EL0(3),
2575	AMU_AMEVTYPER1_EL0(4),
2576	AMU_AMEVTYPER1_EL0(5),
2577	AMU_AMEVTYPER1_EL0(6),
2578	AMU_AMEVTYPER1_EL0(7),
2579	AMU_AMEVTYPER1_EL0(8),
2580	AMU_AMEVTYPER1_EL0(9),
2581	AMU_AMEVTYPER1_EL0(10),
2582	AMU_AMEVTYPER1_EL0(11),
2583	AMU_AMEVTYPER1_EL0(12),
2584	AMU_AMEVTYPER1_EL0(13),
2585	AMU_AMEVTYPER1_EL0(14),
2586	AMU_AMEVTYPER1_EL0(15),
2587
2588	{ SYS_DESC(SYS_CNTPCT_EL0), access_arch_timer },
2589	{ SYS_DESC(SYS_CNTPCTSS_EL0), access_arch_timer },
2590	{ SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
2591	{ SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
2592	{ SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
2593
2594	/* PMEVCNTRn_EL0 */
2595	PMU_PMEVCNTR_EL0(0),
2596	PMU_PMEVCNTR_EL0(1),
2597	PMU_PMEVCNTR_EL0(2),
2598	PMU_PMEVCNTR_EL0(3),
2599	PMU_PMEVCNTR_EL0(4),
2600	PMU_PMEVCNTR_EL0(5),
2601	PMU_PMEVCNTR_EL0(6),
2602	PMU_PMEVCNTR_EL0(7),
2603	PMU_PMEVCNTR_EL0(8),
2604	PMU_PMEVCNTR_EL0(9),
2605	PMU_PMEVCNTR_EL0(10),
2606	PMU_PMEVCNTR_EL0(11),
2607	PMU_PMEVCNTR_EL0(12),
2608	PMU_PMEVCNTR_EL0(13),
2609	PMU_PMEVCNTR_EL0(14),
2610	PMU_PMEVCNTR_EL0(15),
2611	PMU_PMEVCNTR_EL0(16),
2612	PMU_PMEVCNTR_EL0(17),
2613	PMU_PMEVCNTR_EL0(18),
2614	PMU_PMEVCNTR_EL0(19),
2615	PMU_PMEVCNTR_EL0(20),
2616	PMU_PMEVCNTR_EL0(21),
2617	PMU_PMEVCNTR_EL0(22),
2618	PMU_PMEVCNTR_EL0(23),
2619	PMU_PMEVCNTR_EL0(24),
2620	PMU_PMEVCNTR_EL0(25),
2621	PMU_PMEVCNTR_EL0(26),
2622	PMU_PMEVCNTR_EL0(27),
2623	PMU_PMEVCNTR_EL0(28),
2624	PMU_PMEVCNTR_EL0(29),
2625	PMU_PMEVCNTR_EL0(30),
2626	/* PMEVTYPERn_EL0 */
2627	PMU_PMEVTYPER_EL0(0),
2628	PMU_PMEVTYPER_EL0(1),
2629	PMU_PMEVTYPER_EL0(2),
2630	PMU_PMEVTYPER_EL0(3),
2631	PMU_PMEVTYPER_EL0(4),
2632	PMU_PMEVTYPER_EL0(5),
2633	PMU_PMEVTYPER_EL0(6),
2634	PMU_PMEVTYPER_EL0(7),
2635	PMU_PMEVTYPER_EL0(8),
2636	PMU_PMEVTYPER_EL0(9),
2637	PMU_PMEVTYPER_EL0(10),
2638	PMU_PMEVTYPER_EL0(11),
2639	PMU_PMEVTYPER_EL0(12),
2640	PMU_PMEVTYPER_EL0(13),
2641	PMU_PMEVTYPER_EL0(14),
2642	PMU_PMEVTYPER_EL0(15),
2643	PMU_PMEVTYPER_EL0(16),
2644	PMU_PMEVTYPER_EL0(17),
2645	PMU_PMEVTYPER_EL0(18),
2646	PMU_PMEVTYPER_EL0(19),
2647	PMU_PMEVTYPER_EL0(20),
2648	PMU_PMEVTYPER_EL0(21),
2649	PMU_PMEVTYPER_EL0(22),
2650	PMU_PMEVTYPER_EL0(23),
2651	PMU_PMEVTYPER_EL0(24),
2652	PMU_PMEVTYPER_EL0(25),
2653	PMU_PMEVTYPER_EL0(26),
2654	PMU_PMEVTYPER_EL0(27),
2655	PMU_PMEVTYPER_EL0(28),
2656	PMU_PMEVTYPER_EL0(29),
2657	PMU_PMEVTYPER_EL0(30),
2658	/*
2659	 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
2660	 * in 32bit mode. Here we choose to reset it as zero for consistency.
2661	 */
2662	{ PMU_SYS_REG(PMCCFILTR_EL0), .access = access_pmu_evtyper,
2663	  .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },
2664
2665	EL2_REG_VNCR(VPIDR_EL2, reset_unknown, 0),
2666	EL2_REG_VNCR(VMPIDR_EL2, reset_unknown, 0),
2667	EL2_REG(SCTLR_EL2, access_rw, reset_val, SCTLR_EL2_RES1),
2668	EL2_REG(ACTLR_EL2, access_rw, reset_val, 0),
2669	EL2_REG_VNCR(HCR_EL2, reset_hcr, 0),
2670	EL2_REG(MDCR_EL2, access_rw, reset_val, 0),
2671	EL2_REG(CPTR_EL2, access_rw, reset_val, CPTR_NVHE_EL2_RES1),
2672	EL2_REG_VNCR(HSTR_EL2, reset_val, 0),
2673	EL2_REG_VNCR(HFGRTR_EL2, reset_val, 0),
2674	EL2_REG_VNCR(HFGWTR_EL2, reset_val, 0),
2675	EL2_REG_VNCR(HFGITR_EL2, reset_val, 0),
2676	EL2_REG_VNCR(HACR_EL2, reset_val, 0),
2677
2678	EL2_REG_VNCR(HCRX_EL2, reset_val, 0),
2679
2680	EL2_REG(TTBR0_EL2, access_rw, reset_val, 0),
2681	EL2_REG(TTBR1_EL2, access_rw, reset_val, 0),
2682	EL2_REG(TCR_EL2, access_rw, reset_val, TCR_EL2_RES1),
2683	EL2_REG_VNCR(VTTBR_EL2, reset_val, 0),
2684	EL2_REG_VNCR(VTCR_EL2, reset_val, 0),
2685
2686	{ SYS_DESC(SYS_DACR32_EL2), trap_undef, reset_unknown, DACR32_EL2 },
2687	EL2_REG_VNCR(HDFGRTR_EL2, reset_val, 0),
2688	EL2_REG_VNCR(HDFGWTR_EL2, reset_val, 0),
2689	EL2_REG_VNCR(HAFGRTR_EL2, reset_val, 0),
2690	EL2_REG_REDIR(SPSR_EL2, reset_val, 0),
2691	EL2_REG_REDIR(ELR_EL2, reset_val, 0),
2692	{ SYS_DESC(SYS_SP_EL1), access_sp_el1},
2693
2694	/* AArch32 SPSR_* are RES0 if trapped from a NV guest */
2695	{ SYS_DESC(SYS_SPSR_irq), .access = trap_raz_wi,
2696	  .visibility = hidden_user_visibility },
2697	{ SYS_DESC(SYS_SPSR_abt), .access = trap_raz_wi,
2698	  .visibility = hidden_user_visibility },
2699	{ SYS_DESC(SYS_SPSR_und), .access = trap_raz_wi,
2700	  .visibility = hidden_user_visibility },
2701	{ SYS_DESC(SYS_SPSR_fiq), .access = trap_raz_wi,
2702	  .visibility = hidden_user_visibility },
2703
2704	{ SYS_DESC(SYS_IFSR32_EL2), trap_undef, reset_unknown, IFSR32_EL2 },
2705	EL2_REG(AFSR0_EL2, access_rw, reset_val, 0),
2706	EL2_REG(AFSR1_EL2, access_rw, reset_val, 0),
2707	EL2_REG_REDIR(ESR_EL2, reset_val, 0),
2708	{ SYS_DESC(SYS_FPEXC32_EL2), trap_undef, reset_val, FPEXC32_EL2, 0x700 },
2709
2710	EL2_REG_REDIR(FAR_EL2, reset_val, 0),
2711	EL2_REG(HPFAR_EL2, access_rw, reset_val, 0),
2712
2713	EL2_REG(MAIR_EL2, access_rw, reset_val, 0),
2714	EL2_REG(AMAIR_EL2, access_rw, reset_val, 0),
2715
2716	EL2_REG(VBAR_EL2, access_rw, reset_val, 0),
2717	EL2_REG(RVBAR_EL2, access_rw, reset_val, 0),
2718	{ SYS_DESC(SYS_RMR_EL2), trap_undef },
2719
2720	EL2_REG(CONTEXTIDR_EL2, access_rw, reset_val, 0),
2721	EL2_REG(TPIDR_EL2, access_rw, reset_val, 0),
2722
2723	EL2_REG_VNCR(CNTVOFF_EL2, reset_val, 0),
2724	EL2_REG(CNTHCTL_EL2, access_rw, reset_val, 0),
2725
2726	EL12_REG(CNTKCTL, access_rw, reset_val, 0),
2727
2728	EL2_REG(SP_EL2, NULL, reset_unknown, 0),
2729};
2730
2731static struct sys_reg_desc sys_insn_descs[] = {
2732	{ SYS_DESC(SYS_DC_ISW), access_dcsw },
2733	{ SYS_DESC(SYS_DC_IGSW), access_dcgsw },
2734	{ SYS_DESC(SYS_DC_IGDSW), access_dcgsw },
2735	{ SYS_DESC(SYS_DC_CSW), access_dcsw },
2736	{ SYS_DESC(SYS_DC_CGSW), access_dcgsw },
2737	{ SYS_DESC(SYS_DC_CGDSW), access_dcgsw },
2738	{ SYS_DESC(SYS_DC_CISW), access_dcsw },
2739	{ SYS_DESC(SYS_DC_CIGSW), access_dcgsw },
2740	{ SYS_DESC(SYS_DC_CIGDSW), access_dcgsw },
2741};
2742
2743static const struct sys_reg_desc *first_idreg;
2744
2745static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
2746			struct sys_reg_params *p,
2747			const struct sys_reg_desc *r)
2748{
2749	if (p->is_write) {
2750		return ignore_write(vcpu, p);
2751	} else {
2752		u64 dfr = IDREG(vcpu->kvm, SYS_ID_AA64DFR0_EL1);
2753		u32 el3 = kvm_has_feat(vcpu->kvm, ID_AA64PFR0_EL1, EL3, IMP);
2754
2755		p->regval = ((SYS_FIELD_GET(ID_AA64DFR0_EL1, WRPs, dfr) << 28) |
2756			     (SYS_FIELD_GET(ID_AA64DFR0_EL1, BRPs, dfr) << 24) |
2757			     (SYS_FIELD_GET(ID_AA64DFR0_EL1, CTX_CMPs, dfr) << 20) |
2758			     (SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, dfr) << 16) |
2759			     (1 << 15) | (el3 << 14) | (el3 << 12));
2760		return true;
2761	}
2762}
2763
2764/*
2765 * AArch32 debug register mappings
2766 *
2767 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
2768 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
2769 *
2770 * None of the other registers share their location, so treat them as
2771 * if they were 64bit.
2772 */
2773#define DBG_BCR_BVR_WCR_WVR(n)						      \
2774	/* DBGBVRn */							      \
2775	{ AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
2776	/* DBGBCRn */							      \
2777	{ Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },	      \
2778	/* DBGWVRn */							      \
2779	{ Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },	      \
2780	/* DBGWCRn */							      \
2781	{ Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
2782
2783#define DBGBXVR(n)							      \
2784	{ AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n }
2785
2786/*
2787 * Trapped cp14 registers. We generally ignore most of the external
2788 * debug, on the principle that they don't really make sense to a
2789 * guest. Revisit this one day, would this principle change.
2790 */
2791static const struct sys_reg_desc cp14_regs[] = {
2792	/* DBGDIDR */
2793	{ Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr },
2794	/* DBGDTRRXext */
2795	{ Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
2796
2797	DBG_BCR_BVR_WCR_WVR(0),
2798	/* DBGDSCRint */
2799	{ Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
2800	DBG_BCR_BVR_WCR_WVR(1),
2801	/* DBGDCCINT */
2802	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
2803	/* DBGDSCRext */
2804	{ Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
2805	DBG_BCR_BVR_WCR_WVR(2),
2806	/* DBGDTR[RT]Xint */
2807	{ Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
2808	/* DBGDTR[RT]Xext */
2809	{ Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
2810	DBG_BCR_BVR_WCR_WVR(3),
2811	DBG_BCR_BVR_WCR_WVR(4),
2812	DBG_BCR_BVR_WCR_WVR(5),
2813	/* DBGWFAR */
2814	{ Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
2815	/* DBGOSECCR */
2816	{ Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
2817	DBG_BCR_BVR_WCR_WVR(6),
2818	/* DBGVCR */
2819	{ Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
2820	DBG_BCR_BVR_WCR_WVR(7),
2821	DBG_BCR_BVR_WCR_WVR(8),
2822	DBG_BCR_BVR_WCR_WVR(9),
2823	DBG_BCR_BVR_WCR_WVR(10),
2824	DBG_BCR_BVR_WCR_WVR(11),
2825	DBG_BCR_BVR_WCR_WVR(12),
2826	DBG_BCR_BVR_WCR_WVR(13),
2827	DBG_BCR_BVR_WCR_WVR(14),
2828	DBG_BCR_BVR_WCR_WVR(15),
2829
2830	/* DBGDRAR (32bit) */
2831	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
2832
2833	DBGBXVR(0),
2834	/* DBGOSLAR */
2835	{ Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 },
2836	DBGBXVR(1),
2837	/* DBGOSLSR */
2838	{ Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 },
2839	DBGBXVR(2),
2840	DBGBXVR(3),
2841	/* DBGOSDLR */
2842	{ Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
2843	DBGBXVR(4),
2844	/* DBGPRCR */
2845	{ Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
2846	DBGBXVR(5),
2847	DBGBXVR(6),
2848	DBGBXVR(7),
2849	DBGBXVR(8),
2850	DBGBXVR(9),
2851	DBGBXVR(10),
2852	DBGBXVR(11),
2853	DBGBXVR(12),
2854	DBGBXVR(13),
2855	DBGBXVR(14),
2856	DBGBXVR(15),
2857
2858	/* DBGDSAR (32bit) */
2859	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
2860
2861	/* DBGDEVID2 */
2862	{ Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
2863	/* DBGDEVID1 */
2864	{ Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
2865	/* DBGDEVID */
2866	{ Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
2867	/* DBGCLAIMSET */
2868	{ Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
2869	/* DBGCLAIMCLR */
2870	{ Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
2871	/* DBGAUTHSTATUS */
2872	{ Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
2873};
2874
2875/* Trapped cp14 64bit registers */
2876static const struct sys_reg_desc cp14_64_regs[] = {
2877	/* DBGDRAR (64bit) */
2878	{ Op1( 0), CRm( 1), .access = trap_raz_wi },
2879
2880	/* DBGDSAR (64bit) */
2881	{ Op1( 0), CRm( 2), .access = trap_raz_wi },
2882};
2883
2884#define CP15_PMU_SYS_REG(_map, _Op1, _CRn, _CRm, _Op2)			\
2885	AA32(_map),							\
2886	Op1(_Op1), CRn(_CRn), CRm(_CRm), Op2(_Op2),			\
2887	.visibility = pmu_visibility
2888
2889/* Macro to expand the PMEVCNTRn register */
2890#define PMU_PMEVCNTR(n)							\
2891	{ CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,				\
2892	  (0b1000 | (((n) >> 3) & 0x3)), ((n) & 0x7)),			\
2893	  .access = access_pmu_evcntr }
2894
2895/* Macro to expand the PMEVTYPERn register */
2896#define PMU_PMEVTYPER(n)						\
2897	{ CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,				\
2898	  (0b1100 | (((n) >> 3) & 0x3)), ((n) & 0x7)),			\
2899	  .access = access_pmu_evtyper }
2900/*
2901 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
2902 * depending on the way they are accessed (as a 32bit or a 64bit
2903 * register).
2904 */
2905static const struct sys_reg_desc cp15_regs[] = {
2906	{ Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
2907	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
2908	/* ACTLR */
2909	{ AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
2910	/* ACTLR2 */
2911	{ AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
2912	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2913	{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
2914	/* TTBCR */
2915	{ AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
2916	/* TTBCR2 */
2917	{ AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
2918	{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
2919	/* DFSR */
2920	{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
2921	{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
2922	/* ADFSR */
2923	{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
2924	/* AIFSR */
2925	{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
2926	/* DFAR */
2927	{ AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
2928	/* IFAR */
2929	{ AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
2930
2931	/*
2932	 * DC{C,I,CI}SW operations:
2933	 */
2934	{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
2935	{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
2936	{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
2937
2938	/* PMU */
2939	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 0), .access = access_pmcr },
2940	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 1), .access = access_pmcnten },
2941	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 2), .access = access_pmcnten },
2942	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 3), .access = access_pmovs },
2943	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 4), .access = access_pmswinc },
2944	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 5), .access = access_pmselr },
2945	{ CP15_PMU_SYS_REG(LO,     0, 9, 12, 6), .access = access_pmceid },
2946	{ CP15_PMU_SYS_REG(LO,     0, 9, 12, 7), .access = access_pmceid },
2947	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 0), .access = access_pmu_evcntr },
2948	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 1), .access = access_pmu_evtyper },
2949	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 2), .access = access_pmu_evcntr },
2950	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 0), .access = access_pmuserenr },
2951	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 1), .access = access_pminten },
2952	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 2), .access = access_pminten },
2953	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 3), .access = access_pmovs },
2954	{ CP15_PMU_SYS_REG(HI,     0, 9, 14, 4), .access = access_pmceid },
2955	{ CP15_PMU_SYS_REG(HI,     0, 9, 14, 5), .access = access_pmceid },
2956	/* PMMIR */
2957	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 6), .access = trap_raz_wi },
2958
2959	/* PRRR/MAIR0 */
2960	{ AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
2961	/* NMRR/MAIR1 */
2962	{ AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
2963	/* AMAIR0 */
2964	{ AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
2965	/* AMAIR1 */
2966	{ AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
2967
2968	/* ICC_SRE */
2969	{ Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
2970
2971	{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
2972
2973	/* Arch Tmers */
2974	{ SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
2975	{ SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
2976
2977	/* PMEVCNTRn */
2978	PMU_PMEVCNTR(0),
2979	PMU_PMEVCNTR(1),
2980	PMU_PMEVCNTR(2),
2981	PMU_PMEVCNTR(3),
2982	PMU_PMEVCNTR(4),
2983	PMU_PMEVCNTR(5),
2984	PMU_PMEVCNTR(6),
2985	PMU_PMEVCNTR(7),
2986	PMU_PMEVCNTR(8),
2987	PMU_PMEVCNTR(9),
2988	PMU_PMEVCNTR(10),
2989	PMU_PMEVCNTR(11),
2990	PMU_PMEVCNTR(12),
2991	PMU_PMEVCNTR(13),
2992	PMU_PMEVCNTR(14),
2993	PMU_PMEVCNTR(15),
2994	PMU_PMEVCNTR(16),
2995	PMU_PMEVCNTR(17),
2996	PMU_PMEVCNTR(18),
2997	PMU_PMEVCNTR(19),
2998	PMU_PMEVCNTR(20),
2999	PMU_PMEVCNTR(21),
3000	PMU_PMEVCNTR(22),
3001	PMU_PMEVCNTR(23),
3002	PMU_PMEVCNTR(24),
3003	PMU_PMEVCNTR(25),
3004	PMU_PMEVCNTR(26),
3005	PMU_PMEVCNTR(27),
3006	PMU_PMEVCNTR(28),
3007	PMU_PMEVCNTR(29),
3008	PMU_PMEVCNTR(30),
3009	/* PMEVTYPERn */
3010	PMU_PMEVTYPER(0),
3011	PMU_PMEVTYPER(1),
3012	PMU_PMEVTYPER(2),
3013	PMU_PMEVTYPER(3),
3014	PMU_PMEVTYPER(4),
3015	PMU_PMEVTYPER(5),
3016	PMU_PMEVTYPER(6),
3017	PMU_PMEVTYPER(7),
3018	PMU_PMEVTYPER(8),
3019	PMU_PMEVTYPER(9),
3020	PMU_PMEVTYPER(10),
3021	PMU_PMEVTYPER(11),
3022	PMU_PMEVTYPER(12),
3023	PMU_PMEVTYPER(13),
3024	PMU_PMEVTYPER(14),
3025	PMU_PMEVTYPER(15),
3026	PMU_PMEVTYPER(16),
3027	PMU_PMEVTYPER(17),
3028	PMU_PMEVTYPER(18),
3029	PMU_PMEVTYPER(19),
3030	PMU_PMEVTYPER(20),
3031	PMU_PMEVTYPER(21),
3032	PMU_PMEVTYPER(22),
3033	PMU_PMEVTYPER(23),
3034	PMU_PMEVTYPER(24),
3035	PMU_PMEVTYPER(25),
3036	PMU_PMEVTYPER(26),
3037	PMU_PMEVTYPER(27),
3038	PMU_PMEVTYPER(28),
3039	PMU_PMEVTYPER(29),
3040	PMU_PMEVTYPER(30),
3041	/* PMCCFILTR */
3042	{ CP15_PMU_SYS_REG(DIRECT, 0, 14, 15, 7), .access = access_pmu_evtyper },
3043
3044	{ Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
3045	{ Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
3046
3047	/* CCSIDR2 */
3048	{ Op1(1), CRn( 0), CRm( 0),  Op2(2), undef_access },
3049
3050	{ Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
3051};
3052
3053static const struct sys_reg_desc cp15_64_regs[] = {
3054	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
3055	{ CP15_PMU_SYS_REG(DIRECT, 0, 0, 9, 0), .access = access_pmu_evcntr },
3056	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
3057	{ SYS_DESC(SYS_AARCH32_CNTPCT),	      access_arch_timer },
3058	{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
3059	{ Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
3060	{ Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
3061	{ SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
3062	{ SYS_DESC(SYS_AARCH32_CNTPCTSS),     access_arch_timer },
3063};
3064
3065static bool check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
3066			       bool is_32)
3067{
3068	unsigned int i;
3069
3070	for (i = 0; i < n; i++) {
3071		if (!is_32 && table[i].reg && !table[i].reset) {
3072			kvm_err("sys_reg table %pS entry %d lacks reset\n", &table[i], i);
3073			return false;
3074		}
3075
3076		if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
3077			kvm_err("sys_reg table %pS entry %d out of order\n", &table[i - 1], i - 1);
3078			return false;
3079		}
3080	}
3081
3082	return true;
3083}
3084
3085int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
3086{
3087	kvm_inject_undefined(vcpu);
3088	return 1;
3089}
3090
3091static void perform_access(struct kvm_vcpu *vcpu,
3092			   struct sys_reg_params *params,
3093			   const struct sys_reg_desc *r)
3094{
3095	trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
3096
3097	/* Check for regs disabled by runtime config */
3098	if (sysreg_hidden(vcpu, r)) {
3099		kvm_inject_undefined(vcpu);
3100		return;
3101	}
3102
3103	/*
3104	 * Not having an accessor means that we have configured a trap
3105	 * that we don't know how to handle. This certainly qualifies
3106	 * as a gross bug that should be fixed right away.
3107	 */
3108	BUG_ON(!r->access);
3109
3110	/* Skip instruction if instructed so */
3111	if (likely(r->access(vcpu, params, r)))
3112		kvm_incr_pc(vcpu);
3113}
3114
3115/*
3116 * emulate_cp --  tries to match a sys_reg access in a handling table, and
3117 *                call the corresponding trap handler.
3118 *
3119 * @params: pointer to the descriptor of the access
3120 * @table: array of trap descriptors
3121 * @num: size of the trap descriptor array
3122 *
3123 * Return true if the access has been handled, false if not.
3124 */
3125static bool emulate_cp(struct kvm_vcpu *vcpu,
3126		       struct sys_reg_params *params,
3127		       const struct sys_reg_desc *table,
3128		       size_t num)
3129{
3130	const struct sys_reg_desc *r;
3131
3132	if (!table)
3133		return false;	/* Not handled */
3134
3135	r = find_reg(params, table, num);
3136
3137	if (r) {
3138		perform_access(vcpu, params, r);
3139		return true;
3140	}
3141
3142	/* Not handled */
3143	return false;
3144}
3145
3146static void unhandled_cp_access(struct kvm_vcpu *vcpu,
3147				struct sys_reg_params *params)
3148{
3149	u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
3150	int cp = -1;
3151
3152	switch (esr_ec) {
3153	case ESR_ELx_EC_CP15_32:
3154	case ESR_ELx_EC_CP15_64:
3155		cp = 15;
3156		break;
3157	case ESR_ELx_EC_CP14_MR:
3158	case ESR_ELx_EC_CP14_64:
3159		cp = 14;
3160		break;
3161	default:
3162		WARN_ON(1);
3163	}
3164
3165	print_sys_reg_msg(params,
3166			  "Unsupported guest CP%d access at: %08lx [%08lx]\n",
3167			  cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
3168	kvm_inject_undefined(vcpu);
3169}
3170
3171/**
3172 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
3173 * @vcpu: The VCPU pointer
3174 * @global: &struct sys_reg_desc
3175 * @nr_global: size of the @global array
3176 */
3177static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
3178			    const struct sys_reg_desc *global,
3179			    size_t nr_global)
3180{
3181	struct sys_reg_params params;
3182	u64 esr = kvm_vcpu_get_esr(vcpu);
3183	int Rt = kvm_vcpu_sys_get_rt(vcpu);
3184	int Rt2 = (esr >> 10) & 0x1f;
3185
3186	params.CRm = (esr >> 1) & 0xf;
3187	params.is_write = ((esr & 1) == 0);
3188
3189	params.Op0 = 0;
3190	params.Op1 = (esr >> 16) & 0xf;
3191	params.Op2 = 0;
3192	params.CRn = 0;
3193
3194	/*
3195	 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
3196	 * backends between AArch32 and AArch64, we get away with it.
3197	 */
3198	if (params.is_write) {
3199		params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
3200		params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
3201	}
3202
3203	/*
3204	 * If the table contains a handler, handle the
3205	 * potential register operation in the case of a read and return
3206	 * with success.
3207	 */
3208	if (emulate_cp(vcpu, &params, global, nr_global)) {
3209		/* Split up the value between registers for the read side */
3210		if (!params.is_write) {
3211			vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
3212			vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
3213		}
3214
3215		return 1;
3216	}
3217
3218	unhandled_cp_access(vcpu, &params);
3219	return 1;
3220}
3221
3222static bool emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params);
3223
3224/*
3225 * The CP10 ID registers are architecturally mapped to AArch64 feature
3226 * registers. Abuse that fact so we can rely on the AArch64 handler for accesses
3227 * from AArch32.
3228 */
3229static bool kvm_esr_cp10_id_to_sys64(u64 esr, struct sys_reg_params *params)
3230{
3231	u8 reg_id = (esr >> 10) & 0xf;
3232	bool valid;
3233
3234	params->is_write = ((esr & 1) == 0);
3235	params->Op0 = 3;
3236	params->Op1 = 0;
3237	params->CRn = 0;
3238	params->CRm = 3;
3239
3240	/* CP10 ID registers are read-only */
3241	valid = !params->is_write;
3242
3243	switch (reg_id) {
3244	/* MVFR0 */
3245	case 0b0111:
3246		params->Op2 = 0;
3247		break;
3248	/* MVFR1 */
3249	case 0b0110:
3250		params->Op2 = 1;
3251		break;
3252	/* MVFR2 */
3253	case 0b0101:
3254		params->Op2 = 2;
3255		break;
3256	default:
3257		valid = false;
3258	}
3259
3260	if (valid)
3261		return true;
3262
3263	kvm_pr_unimpl("Unhandled cp10 register %s: %u\n",
3264		      params->is_write ? "write" : "read", reg_id);
3265	return false;
3266}
3267
3268/**
3269 * kvm_handle_cp10_id() - Handles a VMRS trap on guest access to a 'Media and
3270 *			  VFP Register' from AArch32.
3271 * @vcpu: The vCPU pointer
3272 *
3273 * MVFR{0-2} are architecturally mapped to the AArch64 MVFR{0-2}_EL1 registers.
3274 * Work out the correct AArch64 system register encoding and reroute to the
3275 * AArch64 system register emulation.
3276 */
3277int kvm_handle_cp10_id(struct kvm_vcpu *vcpu)
3278{
3279	int Rt = kvm_vcpu_sys_get_rt(vcpu);
3280	u64 esr = kvm_vcpu_get_esr(vcpu);
3281	struct sys_reg_params params;
3282
3283	/* UNDEF on any unhandled register access */
3284	if (!kvm_esr_cp10_id_to_sys64(esr, &params)) {
3285		kvm_inject_undefined(vcpu);
3286		return 1;
3287	}
3288
3289	if (emulate_sys_reg(vcpu, &params))
3290		vcpu_set_reg(vcpu, Rt, params.regval);
3291
3292	return 1;
3293}
3294
3295/**
3296 * kvm_emulate_cp15_id_reg() - Handles an MRC trap on a guest CP15 access where
3297 *			       CRn=0, which corresponds to the AArch32 feature
3298 *			       registers.
3299 * @vcpu: the vCPU pointer
3300 * @params: the system register access parameters.
3301 *
3302 * Our cp15 system register tables do not enumerate the AArch32 feature
3303 * registers. Conveniently, our AArch64 table does, and the AArch32 system
3304 * register encoding can be trivially remapped into the AArch64 for the feature
3305 * registers: Append op0=3, leaving op1, CRn, CRm, and op2 the same.
3306 *
3307 * According to DDI0487G.b G7.3.1, paragraph "Behavior of VMSAv8-32 32-bit
3308 * System registers with (coproc=0b1111, CRn==c0)", read accesses from this
3309 * range are either UNKNOWN or RES0. Rerouting remains architectural as we
3310 * treat undefined registers in this range as RAZ.
3311 */
3312static int kvm_emulate_cp15_id_reg(struct kvm_vcpu *vcpu,
3313				   struct sys_reg_params *params)
3314{
3315	int Rt = kvm_vcpu_sys_get_rt(vcpu);
3316
3317	/* Treat impossible writes to RO registers as UNDEFINED */
3318	if (params->is_write) {
3319		unhandled_cp_access(vcpu, params);
3320		return 1;
3321	}
3322
3323	params->Op0 = 3;
3324
3325	/*
3326	 * All registers where CRm > 3 are known to be UNKNOWN/RAZ from AArch32.
3327	 * Avoid conflicting with future expansion of AArch64 feature registers
3328	 * and simply treat them as RAZ here.
3329	 */
3330	if (params->CRm > 3)
3331		params->regval = 0;
3332	else if (!emulate_sys_reg(vcpu, params))
3333		return 1;
3334
3335	vcpu_set_reg(vcpu, Rt, params->regval);
3336	return 1;
3337}
3338
3339/**
3340 * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
3341 * @vcpu: The VCPU pointer
3342 * @params: &struct sys_reg_params
3343 * @global: &struct sys_reg_desc
3344 * @nr_global: size of the @global array
3345 */
3346static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
3347			    struct sys_reg_params *params,
3348			    const struct sys_reg_desc *global,
3349			    size_t nr_global)
3350{
3351	int Rt  = kvm_vcpu_sys_get_rt(vcpu);
3352
3353	params->regval = vcpu_get_reg(vcpu, Rt);
3354
3355	if (emulate_cp(vcpu, params, global, nr_global)) {
3356		if (!params->is_write)
3357			vcpu_set_reg(vcpu, Rt, params->regval);
3358		return 1;
3359	}
3360
3361	unhandled_cp_access(vcpu, params);
3362	return 1;
3363}
3364
3365int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
3366{
3367	return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
3368}
3369
3370int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
3371{
3372	struct sys_reg_params params;
3373
3374	params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
3375
3376	/*
3377	 * Certain AArch32 ID registers are handled by rerouting to the AArch64
3378	 * system register table. Registers in the ID range where CRm=0 are
3379	 * excluded from this scheme as they do not trivially map into AArch64
3380	 * system register encodings.
3381	 */
3382	if (params.Op1 == 0 && params.CRn == 0 && params.CRm)
3383		return kvm_emulate_cp15_id_reg(vcpu, &params);
3384
3385	return kvm_handle_cp_32(vcpu, &params, cp15_regs, ARRAY_SIZE(cp15_regs));
3386}
3387
3388int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
3389{
3390	return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
3391}
3392
3393int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
3394{
3395	struct sys_reg_params params;
3396
3397	params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
3398
3399	return kvm_handle_cp_32(vcpu, &params, cp14_regs, ARRAY_SIZE(cp14_regs));
3400}
3401
3402/**
3403 * emulate_sys_reg - Emulate a guest access to an AArch64 system register
3404 * @vcpu: The VCPU pointer
3405 * @params: Decoded system register parameters
3406 *
3407 * Return: true if the system register access was successful, false otherwise.
3408 */
3409static bool emulate_sys_reg(struct kvm_vcpu *vcpu,
3410			    struct sys_reg_params *params)
3411{
3412	const struct sys_reg_desc *r;
3413
3414	r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3415	if (likely(r)) {
3416		perform_access(vcpu, params, r);
3417		return true;
3418	}
3419
3420	print_sys_reg_msg(params,
3421			  "Unsupported guest sys_reg access at: %lx [%08lx]\n",
3422			  *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
3423	kvm_inject_undefined(vcpu);
3424
3425	return false;
3426}
3427
3428static void *idregs_debug_start(struct seq_file *s, loff_t *pos)
3429{
3430	struct kvm *kvm = s->private;
3431	u8 *iter;
3432
3433	mutex_lock(&kvm->arch.config_lock);
3434
3435	iter = &kvm->arch.idreg_debugfs_iter;
3436	if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags) &&
3437	    *iter == (u8)~0) {
3438		*iter = *pos;
3439		if (*iter >= KVM_ARM_ID_REG_NUM)
3440			iter = NULL;
3441	} else {
3442		iter = ERR_PTR(-EBUSY);
3443	}
3444
3445	mutex_unlock(&kvm->arch.config_lock);
3446
3447	return iter;
3448}
3449
3450static void *idregs_debug_next(struct seq_file *s, void *v, loff_t *pos)
3451{
3452	struct kvm *kvm = s->private;
3453
3454	(*pos)++;
3455
3456	if ((kvm->arch.idreg_debugfs_iter + 1) < KVM_ARM_ID_REG_NUM) {
3457		kvm->arch.idreg_debugfs_iter++;
3458
3459		return &kvm->arch.idreg_debugfs_iter;
3460	}
3461
3462	return NULL;
3463}
3464
3465static void idregs_debug_stop(struct seq_file *s, void *v)
3466{
3467	struct kvm *kvm = s->private;
3468
3469	if (IS_ERR(v))
3470		return;
3471
3472	mutex_lock(&kvm->arch.config_lock);
3473
3474	kvm->arch.idreg_debugfs_iter = ~0;
3475
3476	mutex_unlock(&kvm->arch.config_lock);
3477}
3478
3479static int idregs_debug_show(struct seq_file *s, void *v)
3480{
3481	struct kvm *kvm = s->private;
3482	const struct sys_reg_desc *desc;
3483
3484	desc = first_idreg + kvm->arch.idreg_debugfs_iter;
3485
3486	if (!desc->name)
3487		return 0;
3488
3489	seq_printf(s, "%20s:\t%016llx\n",
3490		   desc->name, IDREG(kvm, IDX_IDREG(kvm->arch.idreg_debugfs_iter)));
3491
3492	return 0;
3493}
3494
3495static const struct seq_operations idregs_debug_sops = {
3496	.start	= idregs_debug_start,
3497	.next	= idregs_debug_next,
3498	.stop	= idregs_debug_stop,
3499	.show	= idregs_debug_show,
3500};
3501
3502DEFINE_SEQ_ATTRIBUTE(idregs_debug);
3503
3504void kvm_sys_regs_create_debugfs(struct kvm *kvm)
3505{
3506	kvm->arch.idreg_debugfs_iter = ~0;
3507
3508	debugfs_create_file("idregs", 0444, kvm->debugfs_dentry, kvm,
3509			    &idregs_debug_fops);
3510}
3511
3512static void kvm_reset_id_regs(struct kvm_vcpu *vcpu)
3513{
3514	const struct sys_reg_desc *idreg = first_idreg;
3515	u32 id = reg_to_encoding(idreg);
3516	struct kvm *kvm = vcpu->kvm;
3517
3518	if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags))
3519		return;
3520
3521	lockdep_assert_held(&kvm->arch.config_lock);
3522
3523	/* Initialize all idregs */
3524	while (is_id_reg(id)) {
3525		IDREG(kvm, id) = idreg->reset(vcpu, idreg);
3526
3527		idreg++;
3528		id = reg_to_encoding(idreg);
3529	}
3530
3531	set_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags);
3532}
3533
3534/**
3535 * kvm_reset_sys_regs - sets system registers to reset value
3536 * @vcpu: The VCPU pointer
3537 *
3538 * This function finds the right table above and sets the registers on the
3539 * virtual CPU struct to their architecturally defined reset values.
3540 */
3541void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
3542{
3543	unsigned long i;
3544
3545	kvm_reset_id_regs(vcpu);
3546
3547	for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
3548		const struct sys_reg_desc *r = &sys_reg_descs[i];
3549
3550		if (is_id_reg(reg_to_encoding(r)))
3551			continue;
3552
3553		if (r->reset)
3554			r->reset(vcpu, r);
3555	}
3556}
3557
3558/**
3559 * kvm_handle_sys_reg -- handles a system instruction or mrs/msr instruction
3560 *			 trap on a guest execution
3561 * @vcpu: The VCPU pointer
3562 */
3563int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
3564{
3565	const struct sys_reg_desc *desc = NULL;
3566	struct sys_reg_params params;
3567	unsigned long esr = kvm_vcpu_get_esr(vcpu);
3568	int Rt = kvm_vcpu_sys_get_rt(vcpu);
3569	int sr_idx;
3570
3571	trace_kvm_handle_sys_reg(esr);
3572
3573	if (triage_sysreg_trap(vcpu, &sr_idx))
3574		return 1;
3575
3576	params = esr_sys64_to_params(esr);
3577	params.regval = vcpu_get_reg(vcpu, Rt);
3578
3579	/* System registers have Op0=={2,3}, as per DDI487 J.a C5.1.2 */
3580	if (params.Op0 == 2 || params.Op0 == 3)
3581		desc = &sys_reg_descs[sr_idx];
3582	else
3583		desc = &sys_insn_descs[sr_idx];
3584
3585	perform_access(vcpu, &params, desc);
3586
3587	/* Read from system register? */
3588	if (!params.is_write &&
3589	    (params.Op0 == 2 || params.Op0 == 3))
3590		vcpu_set_reg(vcpu, Rt, params.regval);
3591
3592	return 1;
3593}
3594
3595/******************************************************************************
3596 * Userspace API
3597 *****************************************************************************/
3598
3599static bool index_to_params(u64 id, struct sys_reg_params *params)
3600{
3601	switch (id & KVM_REG_SIZE_MASK) {
3602	case KVM_REG_SIZE_U64:
3603		/* Any unused index bits means it's not valid. */
3604		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
3605			      | KVM_REG_ARM_COPROC_MASK
3606			      | KVM_REG_ARM64_SYSREG_OP0_MASK
3607			      | KVM_REG_ARM64_SYSREG_OP1_MASK
3608			      | KVM_REG_ARM64_SYSREG_CRN_MASK
3609			      | KVM_REG_ARM64_SYSREG_CRM_MASK
3610			      | KVM_REG_ARM64_SYSREG_OP2_MASK))
3611			return false;
3612		params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
3613			       >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
3614		params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
3615			       >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
3616		params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
3617			       >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
3618		params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
3619			       >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
3620		params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
3621			       >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
3622		return true;
3623	default:
3624		return false;
3625	}
3626}
3627
3628const struct sys_reg_desc *get_reg_by_id(u64 id,
3629					 const struct sys_reg_desc table[],
3630					 unsigned int num)
3631{
3632	struct sys_reg_params params;
3633
3634	if (!index_to_params(id, &params))
3635		return NULL;
3636
3637	return find_reg(&params, table, num);
3638}
3639
3640/* Decode an index value, and find the sys_reg_desc entry. */
3641static const struct sys_reg_desc *
3642id_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id,
3643		   const struct sys_reg_desc table[], unsigned int num)
3644
3645{
3646	const struct sys_reg_desc *r;
3647
3648	/* We only do sys_reg for now. */
3649	if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
3650		return NULL;
3651
3652	r = get_reg_by_id(id, table, num);
3653
3654	/* Not saved in the sys_reg array and not otherwise accessible? */
3655	if (r && (!(r->reg || r->get_user) || sysreg_hidden(vcpu, r)))
3656		r = NULL;
3657
3658	return r;
3659}
3660
3661/*
3662 * These are the invariant sys_reg registers: we let the guest see the
3663 * host versions of these, so they're part of the guest state.
3664 *
3665 * A future CPU may provide a mechanism to present different values to
3666 * the guest, or a future kvm may trap them.
3667 */
3668
3669#define FUNCTION_INVARIANT(reg)						\
3670	static u64 get_##reg(struct kvm_vcpu *v,			\
3671			      const struct sys_reg_desc *r)		\
3672	{								\
3673		((struct sys_reg_desc *)r)->val = read_sysreg(reg);	\
3674		return ((struct sys_reg_desc *)r)->val;			\
3675	}
3676
3677FUNCTION_INVARIANT(midr_el1)
3678FUNCTION_INVARIANT(revidr_el1)
3679FUNCTION_INVARIANT(aidr_el1)
3680
3681static u64 get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
3682{
3683	((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
3684	return ((struct sys_reg_desc *)r)->val;
3685}
3686
3687/* ->val is filled in by kvm_sys_reg_table_init() */
3688static struct sys_reg_desc invariant_sys_regs[] __ro_after_init = {
3689	{ SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
3690	{ SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
3691	{ SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
3692	{ SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
3693};
3694
3695static int get_invariant_sys_reg(u64 id, u64 __user *uaddr)
3696{
3697	const struct sys_reg_desc *r;
3698
3699	r = get_reg_by_id(id, invariant_sys_regs,
3700			  ARRAY_SIZE(invariant_sys_regs));
3701	if (!r)
3702		return -ENOENT;
3703
3704	return put_user(r->val, uaddr);
3705}
3706
3707static int set_invariant_sys_reg(u64 id, u64 __user *uaddr)
3708{
3709	const struct sys_reg_desc *r;
3710	u64 val;
3711
3712	r = get_reg_by_id(id, invariant_sys_regs,
3713			  ARRAY_SIZE(invariant_sys_regs));
3714	if (!r)
3715		return -ENOENT;
3716
3717	if (get_user(val, uaddr))
3718		return -EFAULT;
3719
3720	/* This is what we mean by invariant: you can't change it. */
3721	if (r->val != val)
3722		return -EINVAL;
3723
3724	return 0;
3725}
3726
3727static int demux_c15_get(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
3728{
3729	u32 val;
3730	u32 __user *uval = uaddr;
3731
3732	/* Fail if we have unknown bits set. */
3733	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
3734		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
3735		return -ENOENT;
3736
3737	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
3738	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
3739		if (KVM_REG_SIZE(id) != 4)
3740			return -ENOENT;
3741		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
3742			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
3743		if (val >= CSSELR_MAX)
3744			return -ENOENT;
3745
3746		return put_user(get_ccsidr(vcpu, val), uval);
3747	default:
3748		return -ENOENT;
3749	}
3750}
3751
3752static int demux_c15_set(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
3753{
3754	u32 val, newval;
3755	u32 __user *uval = uaddr;
3756
3757	/* Fail if we have unknown bits set. */
3758	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
3759		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
3760		return -ENOENT;
3761
3762	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
3763	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
3764		if (KVM_REG_SIZE(id) != 4)
3765			return -ENOENT;
3766		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
3767			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
3768		if (val >= CSSELR_MAX)
3769			return -ENOENT;
3770
3771		if (get_user(newval, uval))
3772			return -EFAULT;
3773
3774		return set_ccsidr(vcpu, val, newval);
3775	default:
3776		return -ENOENT;
3777	}
3778}
3779
3780int kvm_sys_reg_get_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
3781			 const struct sys_reg_desc table[], unsigned int num)
3782{
3783	u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
3784	const struct sys_reg_desc *r;
3785	u64 val;
3786	int ret;
3787
3788	r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
3789	if (!r || sysreg_hidden_user(vcpu, r))
3790		return -ENOENT;
3791
3792	if (r->get_user) {
3793		ret = (r->get_user)(vcpu, r, &val);
3794	} else {
3795		val = __vcpu_sys_reg(vcpu, r->reg);
3796		ret = 0;
3797	}
3798
3799	if (!ret)
3800		ret = put_user(val, uaddr);
3801
3802	return ret;
3803}
3804
3805int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
3806{
3807	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
3808	int err;
3809
3810	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
3811		return demux_c15_get(vcpu, reg->id, uaddr);
3812
3813	err = get_invariant_sys_reg(reg->id, uaddr);
3814	if (err != -ENOENT)
3815		return err;
3816
3817	return kvm_sys_reg_get_user(vcpu, reg,
3818				    sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3819}
3820
3821int kvm_sys_reg_set_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
3822			 const struct sys_reg_desc table[], unsigned int num)
3823{
3824	u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
3825	const struct sys_reg_desc *r;
3826	u64 val;
3827	int ret;
3828
3829	if (get_user(val, uaddr))
3830		return -EFAULT;
3831
3832	r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
3833	if (!r || sysreg_hidden_user(vcpu, r))
3834		return -ENOENT;
3835
3836	if (sysreg_user_write_ignore(vcpu, r))
3837		return 0;
3838
3839	if (r->set_user) {
3840		ret = (r->set_user)(vcpu, r, val);
3841	} else {
3842		__vcpu_sys_reg(vcpu, r->reg) = val;
3843		ret = 0;
3844	}
3845
3846	return ret;
3847}
3848
3849int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
3850{
3851	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
3852	int err;
3853
3854	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
3855		return demux_c15_set(vcpu, reg->id, uaddr);
3856
3857	err = set_invariant_sys_reg(reg->id, uaddr);
3858	if (err != -ENOENT)
3859		return err;
3860
3861	return kvm_sys_reg_set_user(vcpu, reg,
3862				    sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3863}
3864
3865static unsigned int num_demux_regs(void)
3866{
3867	return CSSELR_MAX;
3868}
3869
3870static int write_demux_regids(u64 __user *uindices)
3871{
3872	u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
3873	unsigned int i;
3874
3875	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
3876	for (i = 0; i < CSSELR_MAX; i++) {
3877		if (put_user(val | i, uindices))
3878			return -EFAULT;
3879		uindices++;
3880	}
3881	return 0;
3882}
3883
3884static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
3885{
3886	return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
3887		KVM_REG_ARM64_SYSREG |
3888		(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
3889		(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
3890		(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
3891		(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
3892		(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
3893}
3894
3895static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
3896{
3897	if (!*uind)
3898		return true;
3899
3900	if (put_user(sys_reg_to_index(reg), *uind))
3901		return false;
3902
3903	(*uind)++;
3904	return true;
3905}
3906
3907static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
3908			    const struct sys_reg_desc *rd,
3909			    u64 __user **uind,
3910			    unsigned int *total)
3911{
3912	/*
3913	 * Ignore registers we trap but don't save,
3914	 * and for which no custom user accessor is provided.
3915	 */
3916	if (!(rd->reg || rd->get_user))
3917		return 0;
3918
3919	if (sysreg_hidden_user(vcpu, rd))
3920		return 0;
3921
3922	if (!copy_reg_to_user(rd, uind))
3923		return -EFAULT;
3924
3925	(*total)++;
3926	return 0;
3927}
3928
3929/* Assumed ordered tables, see kvm_sys_reg_table_init. */
3930static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
3931{
3932	const struct sys_reg_desc *i2, *end2;
3933	unsigned int total = 0;
3934	int err;
3935
3936	i2 = sys_reg_descs;
3937	end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
3938
3939	while (i2 != end2) {
3940		err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
3941		if (err)
3942			return err;
3943	}
3944	return total;
3945}
3946
3947unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
3948{
3949	return ARRAY_SIZE(invariant_sys_regs)
3950		+ num_demux_regs()
3951		+ walk_sys_regs(vcpu, (u64 __user *)NULL);
3952}
3953
3954int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
3955{
3956	unsigned int i;
3957	int err;
3958
3959	/* Then give them all the invariant registers' indices. */
3960	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
3961		if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
3962			return -EFAULT;
3963		uindices++;
3964	}
3965
3966	err = walk_sys_regs(vcpu, uindices);
3967	if (err < 0)
3968		return err;
3969	uindices += err;
3970
3971	return write_demux_regids(uindices);
3972}
3973
3974#define KVM_ARM_FEATURE_ID_RANGE_INDEX(r)			\
3975	KVM_ARM_FEATURE_ID_RANGE_IDX(sys_reg_Op0(r),		\
3976		sys_reg_Op1(r),					\
3977		sys_reg_CRn(r),					\
3978		sys_reg_CRm(r),					\
3979		sys_reg_Op2(r))
3980
3981static bool is_feature_id_reg(u32 encoding)
3982{
3983	return (sys_reg_Op0(encoding) == 3 &&
3984		(sys_reg_Op1(encoding) < 2 || sys_reg_Op1(encoding) == 3) &&
3985		sys_reg_CRn(encoding) == 0 &&
3986		sys_reg_CRm(encoding) <= 7);
3987}
3988
3989int kvm_vm_ioctl_get_reg_writable_masks(struct kvm *kvm, struct reg_mask_range *range)
3990{
3991	const void *zero_page = page_to_virt(ZERO_PAGE(0));
3992	u64 __user *masks = (u64 __user *)range->addr;
3993
3994	/* Only feature id range is supported, reserved[13] must be zero. */
3995	if (range->range ||
3996	    memcmp(range->reserved, zero_page, sizeof(range->reserved)))
3997		return -EINVAL;
3998
3999	/* Wipe the whole thing first */
4000	if (clear_user(masks, KVM_ARM_FEATURE_ID_RANGE_SIZE * sizeof(__u64)))
4001		return -EFAULT;
4002
4003	for (int i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
4004		const struct sys_reg_desc *reg = &sys_reg_descs[i];
4005		u32 encoding = reg_to_encoding(reg);
4006		u64 val;
4007
4008		if (!is_feature_id_reg(encoding) || !reg->set_user)
4009			continue;
4010
4011		/*
4012		 * For ID registers, we return the writable mask. Other feature
4013		 * registers return a full 64bit mask. That's not necessary
4014		 * compliant with a given revision of the architecture, but the
4015		 * RES0/RES1 definitions allow us to do that.
4016		 */
4017		if (is_id_reg(encoding)) {
4018			if (!reg->val ||
4019			    (is_aa32_id_reg(encoding) && !kvm_supports_32bit_el0()))
4020				continue;
4021			val = reg->val;
4022		} else {
4023			val = ~0UL;
4024		}
4025
4026		if (put_user(val, (masks + KVM_ARM_FEATURE_ID_RANGE_INDEX(encoding))))
4027			return -EFAULT;
4028	}
4029
4030	return 0;
4031}
4032
4033void kvm_init_sysreg(struct kvm_vcpu *vcpu)
4034{
4035	struct kvm *kvm = vcpu->kvm;
4036
4037	mutex_lock(&kvm->arch.config_lock);
4038
4039	/*
4040	 * In the absence of FGT, we cannot independently trap TLBI
4041	 * Range instructions. This isn't great, but trapping all
4042	 * TLBIs would be far worse. Live with it...
4043	 */
4044	if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
4045		vcpu->arch.hcr_el2 |= HCR_TTLBOS;
4046
4047	if (cpus_have_final_cap(ARM64_HAS_HCX)) {
4048		vcpu->arch.hcrx_el2 = HCRX_GUEST_FLAGS;
4049
4050		if (kvm_has_feat(kvm, ID_AA64ISAR2_EL1, MOPS, IMP))
4051			vcpu->arch.hcrx_el2 |= (HCRX_EL2_MSCEn | HCRX_EL2_MCE2);
4052	}
4053
4054	if (test_bit(KVM_ARCH_FLAG_FGU_INITIALIZED, &kvm->arch.flags))
4055		goto out;
4056
4057	kvm->arch.fgu[HFGxTR_GROUP] = (HFGxTR_EL2_nAMAIR2_EL1		|
4058				       HFGxTR_EL2_nMAIR2_EL1		|
4059				       HFGxTR_EL2_nS2POR_EL1		|
4060				       HFGxTR_EL2_nPOR_EL1		|
4061				       HFGxTR_EL2_nPOR_EL0		|
4062				       HFGxTR_EL2_nACCDATA_EL1		|
4063				       HFGxTR_EL2_nSMPRI_EL1_MASK	|
4064				       HFGxTR_EL2_nTPIDR2_EL0_MASK);
4065
4066	if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
4067		kvm->arch.fgu[HFGITR_GROUP] |= (HFGITR_EL2_TLBIRVAALE1OS|
4068						HFGITR_EL2_TLBIRVALE1OS	|
4069						HFGITR_EL2_TLBIRVAAE1OS	|
4070						HFGITR_EL2_TLBIRVAE1OS	|
4071						HFGITR_EL2_TLBIVAALE1OS	|
4072						HFGITR_EL2_TLBIVALE1OS	|
4073						HFGITR_EL2_TLBIVAAE1OS	|
4074						HFGITR_EL2_TLBIASIDE1OS	|
4075						HFGITR_EL2_TLBIVAE1OS	|
4076						HFGITR_EL2_TLBIVMALLE1OS);
4077
4078	if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE))
4079		kvm->arch.fgu[HFGITR_GROUP] |= (HFGITR_EL2_TLBIRVAALE1	|
4080						HFGITR_EL2_TLBIRVALE1	|
4081						HFGITR_EL2_TLBIRVAAE1	|
4082						HFGITR_EL2_TLBIRVAE1	|
4083						HFGITR_EL2_TLBIRVAALE1IS|
4084						HFGITR_EL2_TLBIRVALE1IS	|
4085						HFGITR_EL2_TLBIRVAAE1IS	|
4086						HFGITR_EL2_TLBIRVAE1IS	|
4087						HFGITR_EL2_TLBIRVAALE1OS|
4088						HFGITR_EL2_TLBIRVALE1OS	|
4089						HFGITR_EL2_TLBIRVAAE1OS	|
4090						HFGITR_EL2_TLBIRVAE1OS);
4091
4092	if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, S1PIE, IMP))
4093		kvm->arch.fgu[HFGxTR_GROUP] |= (HFGxTR_EL2_nPIRE0_EL1 |
4094						HFGxTR_EL2_nPIR_EL1);
4095
4096	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, AMU, IMP))
4097		kvm->arch.fgu[HAFGRTR_GROUP] |= ~(HAFGRTR_EL2_RES0 |
4098						  HAFGRTR_EL2_RES1);
4099
4100	set_bit(KVM_ARCH_FLAG_FGU_INITIALIZED, &kvm->arch.flags);
4101out:
4102	mutex_unlock(&kvm->arch.config_lock);
4103}
4104
4105int __init kvm_sys_reg_table_init(void)
4106{
4107	struct sys_reg_params params;
4108	bool valid = true;
4109	unsigned int i;
4110	int ret = 0;
4111
4112	/* Make sure tables are unique and in order. */
4113	valid &= check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false);
4114	valid &= check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true);
4115	valid &= check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true);
4116	valid &= check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true);
4117	valid &= check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true);
4118	valid &= check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false);
4119	valid &= check_sysreg_table(sys_insn_descs, ARRAY_SIZE(sys_insn_descs), false);
4120
4121	if (!valid)
4122		return -EINVAL;
4123
4124	/* We abuse the reset function to overwrite the table itself. */
4125	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
4126		invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
4127
4128	/* Find the first idreg (SYS_ID_PFR0_EL1) in sys_reg_descs. */
4129	params = encoding_to_params(SYS_ID_PFR0_EL1);
4130	first_idreg = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
4131	if (!first_idreg)
4132		return -EINVAL;
4133
4134	ret = populate_nv_trap_config();
4135
4136	for (i = 0; !ret && i < ARRAY_SIZE(sys_reg_descs); i++)
4137		ret = populate_sysreg_config(sys_reg_descs + i, i);
4138
4139	for (i = 0; !ret && i < ARRAY_SIZE(sys_insn_descs); i++)
4140		ret = populate_sysreg_config(sys_insn_descs + i, i);
4141
4142	return ret;
4143}
4144