1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2015 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 */
6
7#ifndef __ARM64_KVM_HYP_SWITCH_H__
8#define __ARM64_KVM_HYP_SWITCH_H__
9
10#include <hyp/adjust_pc.h>
11#include <hyp/fault.h>
12
13#include <linux/arm-smccc.h>
14#include <linux/kvm_host.h>
15#include <linux/types.h>
16#include <linux/jump_label.h>
17#include <uapi/linux/psci.h>
18
19#include <kvm/arm_psci.h>
20
21#include <asm/barrier.h>
22#include <asm/cpufeature.h>
23#include <asm/extable.h>
24#include <asm/kprobes.h>
25#include <asm/kvm_asm.h>
26#include <asm/kvm_emulate.h>
27#include <asm/kvm_hyp.h>
28#include <asm/kvm_mmu.h>
29#include <asm/kvm_nested.h>
30#include <asm/fpsimd.h>
31#include <asm/debug-monitors.h>
32#include <asm/processor.h>
33#include <asm/traps.h>
34
35struct kvm_exception_table_entry {
36	int insn, fixup;
37};
38
39extern struct kvm_exception_table_entry __start___kvm_ex_table;
40extern struct kvm_exception_table_entry __stop___kvm_ex_table;
41
42/* Check whether the FP regs are owned by the guest */
43static inline bool guest_owns_fp_regs(struct kvm_vcpu *vcpu)
44{
45	return vcpu->arch.fp_state == FP_STATE_GUEST_OWNED;
46}
47
48/* Save the 32-bit only FPSIMD system register state */
49static inline void __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu)
50{
51	if (!vcpu_el1_is_32bit(vcpu))
52		return;
53
54	__vcpu_sys_reg(vcpu, FPEXC32_EL2) = read_sysreg(fpexc32_el2);
55}
56
57static inline void __activate_traps_fpsimd32(struct kvm_vcpu *vcpu)
58{
59	/*
60	 * We are about to set CPTR_EL2.TFP to trap all floating point
61	 * register accesses to EL2, however, the ARM ARM clearly states that
62	 * traps are only taken to EL2 if the operation would not otherwise
63	 * trap to EL1.  Therefore, always make sure that for 32-bit guests,
64	 * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
65	 * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
66	 * it will cause an exception.
67	 */
68	if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) {
69		write_sysreg(1 << 30, fpexc32_el2);
70		isb();
71	}
72}
73
74#define compute_clr_set(vcpu, reg, clr, set)				\
75	do {								\
76		u64 hfg;						\
77		hfg = __vcpu_sys_reg(vcpu, reg) & ~__ ## reg ## _RES0;	\
78		set |= hfg & __ ## reg ## _MASK; 			\
79		clr |= ~hfg & __ ## reg ## _nMASK; 			\
80	} while(0)
81
82#define reg_to_fgt_group_id(reg)					\
83	({								\
84		enum fgt_group_id id;					\
85		switch(reg) {						\
86		case HFGRTR_EL2:					\
87		case HFGWTR_EL2:					\
88			id = HFGxTR_GROUP;				\
89			break;						\
90		case HFGITR_EL2:					\
91			id = HFGITR_GROUP;				\
92			break;						\
93		case HDFGRTR_EL2:					\
94		case HDFGWTR_EL2:					\
95			id = HDFGRTR_GROUP;				\
96			break;						\
97		case HAFGRTR_EL2:					\
98			id = HAFGRTR_GROUP;				\
99			break;						\
100		default:						\
101			BUILD_BUG_ON(1);				\
102		}							\
103									\
104		id;							\
105	})
106
107#define compute_undef_clr_set(vcpu, kvm, reg, clr, set)			\
108	do {								\
109		u64 hfg = kvm->arch.fgu[reg_to_fgt_group_id(reg)];	\
110		set |= hfg & __ ## reg ## _MASK;			\
111		clr |= hfg & __ ## reg ## _nMASK; 			\
112	} while(0)
113
114#define update_fgt_traps_cs(hctxt, vcpu, kvm, reg, clr, set)		\
115	do {								\
116		u64 c = 0, s = 0;					\
117									\
118		ctxt_sys_reg(hctxt, reg) = read_sysreg_s(SYS_ ## reg);	\
119		if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu))		\
120			compute_clr_set(vcpu, reg, c, s);		\
121									\
122		compute_undef_clr_set(vcpu, kvm, reg, c, s);		\
123									\
124		s |= set;						\
125		c |= clr;						\
126		if (c || s) {						\
127			u64 val = __ ## reg ## _nMASK;			\
128			val |= s;					\
129			val &= ~c;					\
130			write_sysreg_s(val, SYS_ ## reg);		\
131		}							\
132	} while(0)
133
134#define update_fgt_traps(hctxt, vcpu, kvm, reg)		\
135	update_fgt_traps_cs(hctxt, vcpu, kvm, reg, 0, 0)
136
137/*
138 * Validate the fine grain trap masks.
139 * Check that the masks do not overlap and that all bits are accounted for.
140 */
141#define CHECK_FGT_MASKS(reg)							\
142	do {									\
143		BUILD_BUG_ON((__ ## reg ## _MASK) & (__ ## reg ## _nMASK));	\
144		BUILD_BUG_ON(~((__ ## reg ## _RES0) ^ (__ ## reg ## _MASK) ^	\
145			       (__ ## reg ## _nMASK)));				\
146	} while(0)
147
148static inline bool cpu_has_amu(void)
149{
150       u64 pfr0 = read_sysreg_s(SYS_ID_AA64PFR0_EL1);
151
152       return cpuid_feature_extract_unsigned_field(pfr0,
153               ID_AA64PFR0_EL1_AMU_SHIFT);
154}
155
156static inline void __activate_traps_hfgxtr(struct kvm_vcpu *vcpu)
157{
158	struct kvm_cpu_context *hctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
159	struct kvm *kvm = kern_hyp_va(vcpu->kvm);
160
161	CHECK_FGT_MASKS(HFGRTR_EL2);
162	CHECK_FGT_MASKS(HFGWTR_EL2);
163	CHECK_FGT_MASKS(HFGITR_EL2);
164	CHECK_FGT_MASKS(HDFGRTR_EL2);
165	CHECK_FGT_MASKS(HDFGWTR_EL2);
166	CHECK_FGT_MASKS(HAFGRTR_EL2);
167	CHECK_FGT_MASKS(HCRX_EL2);
168
169	if (!cpus_have_final_cap(ARM64_HAS_FGT))
170		return;
171
172	update_fgt_traps(hctxt, vcpu, kvm, HFGRTR_EL2);
173	update_fgt_traps_cs(hctxt, vcpu, kvm, HFGWTR_EL2, 0,
174			    cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38) ?
175			    HFGxTR_EL2_TCR_EL1_MASK : 0);
176	update_fgt_traps(hctxt, vcpu, kvm, HFGITR_EL2);
177	update_fgt_traps(hctxt, vcpu, kvm, HDFGRTR_EL2);
178	update_fgt_traps(hctxt, vcpu, kvm, HDFGWTR_EL2);
179
180	if (cpu_has_amu())
181		update_fgt_traps(hctxt, vcpu, kvm, HAFGRTR_EL2);
182}
183
184#define __deactivate_fgt(htcxt, vcpu, kvm, reg)				\
185	do {								\
186		if ((vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) ||	\
187		    kvm->arch.fgu[reg_to_fgt_group_id(reg)])		\
188			write_sysreg_s(ctxt_sys_reg(hctxt, reg),	\
189				       SYS_ ## reg);			\
190	} while(0)
191
192static inline void __deactivate_traps_hfgxtr(struct kvm_vcpu *vcpu)
193{
194	struct kvm_cpu_context *hctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
195	struct kvm *kvm = kern_hyp_va(vcpu->kvm);
196
197	if (!cpus_have_final_cap(ARM64_HAS_FGT))
198		return;
199
200	__deactivate_fgt(hctxt, vcpu, kvm, HFGRTR_EL2);
201	if (cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38))
202		write_sysreg_s(ctxt_sys_reg(hctxt, HFGWTR_EL2), SYS_HFGWTR_EL2);
203	else
204		__deactivate_fgt(hctxt, vcpu, kvm, HFGWTR_EL2);
205	__deactivate_fgt(hctxt, vcpu, kvm, HFGITR_EL2);
206	__deactivate_fgt(hctxt, vcpu, kvm, HDFGRTR_EL2);
207	__deactivate_fgt(hctxt, vcpu, kvm, HDFGWTR_EL2);
208
209	if (cpu_has_amu())
210		__deactivate_fgt(hctxt, vcpu, kvm, HAFGRTR_EL2);
211}
212
213static inline void __activate_traps_common(struct kvm_vcpu *vcpu)
214{
215	/* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */
216	write_sysreg(1 << 15, hstr_el2);
217
218	/*
219	 * Make sure we trap PMU access from EL0 to EL2. Also sanitize
220	 * PMSELR_EL0 to make sure it never contains the cycle
221	 * counter, which could make a PMXEVCNTR_EL0 access UNDEF at
222	 * EL1 instead of being trapped to EL2.
223	 */
224	if (kvm_arm_support_pmu_v3()) {
225		struct kvm_cpu_context *hctxt;
226
227		write_sysreg(0, pmselr_el0);
228
229		hctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
230		ctxt_sys_reg(hctxt, PMUSERENR_EL0) = read_sysreg(pmuserenr_el0);
231		write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
232		vcpu_set_flag(vcpu, PMUSERENR_ON_CPU);
233	}
234
235	vcpu->arch.mdcr_el2_host = read_sysreg(mdcr_el2);
236	write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
237
238	if (cpus_have_final_cap(ARM64_HAS_HCX)) {
239		u64 hcrx = vcpu->arch.hcrx_el2;
240		if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) {
241			u64 clr = 0, set = 0;
242
243			compute_clr_set(vcpu, HCRX_EL2, clr, set);
244
245			hcrx |= set;
246			hcrx &= ~clr;
247		}
248
249		write_sysreg_s(hcrx, SYS_HCRX_EL2);
250	}
251
252	__activate_traps_hfgxtr(vcpu);
253}
254
255static inline void __deactivate_traps_common(struct kvm_vcpu *vcpu)
256{
257	write_sysreg(vcpu->arch.mdcr_el2_host, mdcr_el2);
258
259	write_sysreg(0, hstr_el2);
260	if (kvm_arm_support_pmu_v3()) {
261		struct kvm_cpu_context *hctxt;
262
263		hctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
264		write_sysreg(ctxt_sys_reg(hctxt, PMUSERENR_EL0), pmuserenr_el0);
265		vcpu_clear_flag(vcpu, PMUSERENR_ON_CPU);
266	}
267
268	if (cpus_have_final_cap(ARM64_HAS_HCX))
269		write_sysreg_s(HCRX_HOST_FLAGS, SYS_HCRX_EL2);
270
271	__deactivate_traps_hfgxtr(vcpu);
272}
273
274static inline void ___activate_traps(struct kvm_vcpu *vcpu)
275{
276	u64 hcr = vcpu->arch.hcr_el2;
277
278	if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM))
279		hcr |= HCR_TVM;
280
281	write_sysreg(hcr, hcr_el2);
282
283	if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE))
284		write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2);
285}
286
287static inline void ___deactivate_traps(struct kvm_vcpu *vcpu)
288{
289	/*
290	 * If we pended a virtual abort, preserve it until it gets
291	 * cleared. See D1.14.3 (Virtual Interrupts) for details, but
292	 * the crucial bit is "On taking a vSError interrupt,
293	 * HCR_EL2.VSE is cleared to 0."
294	 */
295	if (vcpu->arch.hcr_el2 & HCR_VSE) {
296		vcpu->arch.hcr_el2 &= ~HCR_VSE;
297		vcpu->arch.hcr_el2 |= read_sysreg(hcr_el2) & HCR_VSE;
298	}
299}
300
301static inline bool __populate_fault_info(struct kvm_vcpu *vcpu)
302{
303	return __get_fault_info(vcpu->arch.fault.esr_el2, &vcpu->arch.fault);
304}
305
306static bool kvm_hyp_handle_mops(struct kvm_vcpu *vcpu, u64 *exit_code)
307{
308	*vcpu_pc(vcpu) = read_sysreg_el2(SYS_ELR);
309	arm64_mops_reset_regs(vcpu_gp_regs(vcpu), vcpu->arch.fault.esr_el2);
310	write_sysreg_el2(*vcpu_pc(vcpu), SYS_ELR);
311
312	/*
313	 * Finish potential single step before executing the prologue
314	 * instruction.
315	 */
316	*vcpu_cpsr(vcpu) &= ~DBG_SPSR_SS;
317	write_sysreg_el2(*vcpu_cpsr(vcpu), SYS_SPSR);
318
319	return true;
320}
321
322static inline void __hyp_sve_restore_guest(struct kvm_vcpu *vcpu)
323{
324	sve_cond_update_zcr_vq(vcpu_sve_max_vq(vcpu) - 1, SYS_ZCR_EL2);
325	__sve_restore_state(vcpu_sve_pffr(vcpu),
326			    &vcpu->arch.ctxt.fp_regs.fpsr);
327	write_sysreg_el1(__vcpu_sys_reg(vcpu, ZCR_EL1), SYS_ZCR);
328}
329
330/*
331 * We trap the first access to the FP/SIMD to save the host context and
332 * restore the guest context lazily.
333 * If FP/SIMD is not implemented, handle the trap and inject an undefined
334 * instruction exception to the guest. Similarly for trapped SVE accesses.
335 */
336static bool kvm_hyp_handle_fpsimd(struct kvm_vcpu *vcpu, u64 *exit_code)
337{
338	bool sve_guest;
339	u8 esr_ec;
340	u64 reg;
341
342	if (!system_supports_fpsimd())
343		return false;
344
345	sve_guest = vcpu_has_sve(vcpu);
346	esr_ec = kvm_vcpu_trap_get_class(vcpu);
347
348	/* Only handle traps the vCPU can support here: */
349	switch (esr_ec) {
350	case ESR_ELx_EC_FP_ASIMD:
351		break;
352	case ESR_ELx_EC_SVE:
353		if (!sve_guest)
354			return false;
355		break;
356	default:
357		return false;
358	}
359
360	/* Valid trap.  Switch the context: */
361
362	/* First disable enough traps to allow us to update the registers */
363	if (has_vhe() || has_hvhe()) {
364		reg = CPACR_EL1_FPEN_EL0EN | CPACR_EL1_FPEN_EL1EN;
365		if (sve_guest)
366			reg |= CPACR_EL1_ZEN_EL0EN | CPACR_EL1_ZEN_EL1EN;
367
368		sysreg_clear_set(cpacr_el1, 0, reg);
369	} else {
370		reg = CPTR_EL2_TFP;
371		if (sve_guest)
372			reg |= CPTR_EL2_TZ;
373
374		sysreg_clear_set(cptr_el2, reg, 0);
375	}
376	isb();
377
378	/* Write out the host state if it's in the registers */
379	if (vcpu->arch.fp_state == FP_STATE_HOST_OWNED)
380		__fpsimd_save_state(vcpu->arch.host_fpsimd_state);
381
382	/* Restore the guest state */
383	if (sve_guest)
384		__hyp_sve_restore_guest(vcpu);
385	else
386		__fpsimd_restore_state(&vcpu->arch.ctxt.fp_regs);
387
388	/* Skip restoring fpexc32 for AArch64 guests */
389	if (!(read_sysreg(hcr_el2) & HCR_RW))
390		write_sysreg(__vcpu_sys_reg(vcpu, FPEXC32_EL2), fpexc32_el2);
391
392	vcpu->arch.fp_state = FP_STATE_GUEST_OWNED;
393
394	return true;
395}
396
397static inline bool handle_tx2_tvm(struct kvm_vcpu *vcpu)
398{
399	u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
400	int rt = kvm_vcpu_sys_get_rt(vcpu);
401	u64 val = vcpu_get_reg(vcpu, rt);
402
403	/*
404	 * The normal sysreg handling code expects to see the traps,
405	 * let's not do anything here.
406	 */
407	if (vcpu->arch.hcr_el2 & HCR_TVM)
408		return false;
409
410	switch (sysreg) {
411	case SYS_SCTLR_EL1:
412		write_sysreg_el1(val, SYS_SCTLR);
413		break;
414	case SYS_TTBR0_EL1:
415		write_sysreg_el1(val, SYS_TTBR0);
416		break;
417	case SYS_TTBR1_EL1:
418		write_sysreg_el1(val, SYS_TTBR1);
419		break;
420	case SYS_TCR_EL1:
421		write_sysreg_el1(val, SYS_TCR);
422		break;
423	case SYS_ESR_EL1:
424		write_sysreg_el1(val, SYS_ESR);
425		break;
426	case SYS_FAR_EL1:
427		write_sysreg_el1(val, SYS_FAR);
428		break;
429	case SYS_AFSR0_EL1:
430		write_sysreg_el1(val, SYS_AFSR0);
431		break;
432	case SYS_AFSR1_EL1:
433		write_sysreg_el1(val, SYS_AFSR1);
434		break;
435	case SYS_MAIR_EL1:
436		write_sysreg_el1(val, SYS_MAIR);
437		break;
438	case SYS_AMAIR_EL1:
439		write_sysreg_el1(val, SYS_AMAIR);
440		break;
441	case SYS_CONTEXTIDR_EL1:
442		write_sysreg_el1(val, SYS_CONTEXTIDR);
443		break;
444	default:
445		return false;
446	}
447
448	__kvm_skip_instr(vcpu);
449	return true;
450}
451
452static inline bool esr_is_ptrauth_trap(u64 esr)
453{
454	switch (esr_sys64_to_sysreg(esr)) {
455	case SYS_APIAKEYLO_EL1:
456	case SYS_APIAKEYHI_EL1:
457	case SYS_APIBKEYLO_EL1:
458	case SYS_APIBKEYHI_EL1:
459	case SYS_APDAKEYLO_EL1:
460	case SYS_APDAKEYHI_EL1:
461	case SYS_APDBKEYLO_EL1:
462	case SYS_APDBKEYHI_EL1:
463	case SYS_APGAKEYLO_EL1:
464	case SYS_APGAKEYHI_EL1:
465		return true;
466	}
467
468	return false;
469}
470
471#define __ptrauth_save_key(ctxt, key)					\
472	do {								\
473	u64 __val;                                                      \
474	__val = read_sysreg_s(SYS_ ## key ## KEYLO_EL1);                \
475	ctxt_sys_reg(ctxt, key ## KEYLO_EL1) = __val;                   \
476	__val = read_sysreg_s(SYS_ ## key ## KEYHI_EL1);                \
477	ctxt_sys_reg(ctxt, key ## KEYHI_EL1) = __val;                   \
478} while(0)
479
480DECLARE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
481
482static bool kvm_hyp_handle_ptrauth(struct kvm_vcpu *vcpu, u64 *exit_code)
483{
484	struct kvm_cpu_context *ctxt;
485	u64 val;
486
487	if (!vcpu_has_ptrauth(vcpu))
488		return false;
489
490	ctxt = this_cpu_ptr(&kvm_hyp_ctxt);
491	__ptrauth_save_key(ctxt, APIA);
492	__ptrauth_save_key(ctxt, APIB);
493	__ptrauth_save_key(ctxt, APDA);
494	__ptrauth_save_key(ctxt, APDB);
495	__ptrauth_save_key(ctxt, APGA);
496
497	vcpu_ptrauth_enable(vcpu);
498
499	val = read_sysreg(hcr_el2);
500	val |= (HCR_API | HCR_APK);
501	write_sysreg(val, hcr_el2);
502
503	return true;
504}
505
506static bool kvm_hyp_handle_cntpct(struct kvm_vcpu *vcpu)
507{
508	struct arch_timer_context *ctxt;
509	u32 sysreg;
510	u64 val;
511
512	/*
513	 * We only get here for 64bit guests, 32bit guests will hit
514	 * the long and winding road all the way to the standard
515	 * handling. Yes, it sucks to be irrelevant.
516	 */
517	sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
518
519	switch (sysreg) {
520	case SYS_CNTPCT_EL0:
521	case SYS_CNTPCTSS_EL0:
522		if (vcpu_has_nv(vcpu)) {
523			if (is_hyp_ctxt(vcpu)) {
524				ctxt = vcpu_hptimer(vcpu);
525				break;
526			}
527
528			/* Check for guest hypervisor trapping */
529			val = __vcpu_sys_reg(vcpu, CNTHCTL_EL2);
530			if (!vcpu_el2_e2h_is_set(vcpu))
531				val = (val & CNTHCTL_EL1PCTEN) << 10;
532
533			if (!(val & (CNTHCTL_EL1PCTEN << 10)))
534				return false;
535		}
536
537		ctxt = vcpu_ptimer(vcpu);
538		break;
539	default:
540		return false;
541	}
542
543	val = arch_timer_read_cntpct_el0();
544
545	if (ctxt->offset.vm_offset)
546		val -= *kern_hyp_va(ctxt->offset.vm_offset);
547	if (ctxt->offset.vcpu_offset)
548		val -= *kern_hyp_va(ctxt->offset.vcpu_offset);
549
550	vcpu_set_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu), val);
551	__kvm_skip_instr(vcpu);
552	return true;
553}
554
555static bool handle_ampere1_tcr(struct kvm_vcpu *vcpu)
556{
557	u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
558	int rt = kvm_vcpu_sys_get_rt(vcpu);
559	u64 val = vcpu_get_reg(vcpu, rt);
560
561	if (sysreg != SYS_TCR_EL1)
562		return false;
563
564	/*
565	 * Affected parts do not advertise support for hardware Access Flag /
566	 * Dirty state management in ID_AA64MMFR1_EL1.HAFDBS, but the underlying
567	 * control bits are still functional. The architecture requires these be
568	 * RES0 on systems that do not implement FEAT_HAFDBS.
569	 *
570	 * Uphold the requirements of the architecture by masking guest writes
571	 * to TCR_EL1.{HA,HD} here.
572	 */
573	val &= ~(TCR_HD | TCR_HA);
574	write_sysreg_el1(val, SYS_TCR);
575	__kvm_skip_instr(vcpu);
576	return true;
577}
578
579static bool kvm_hyp_handle_sysreg(struct kvm_vcpu *vcpu, u64 *exit_code)
580{
581	if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM) &&
582	    handle_tx2_tvm(vcpu))
583		return true;
584
585	if (cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38) &&
586	    handle_ampere1_tcr(vcpu))
587		return true;
588
589	if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
590	    __vgic_v3_perform_cpuif_access(vcpu) == 1)
591		return true;
592
593	if (esr_is_ptrauth_trap(kvm_vcpu_get_esr(vcpu)))
594		return kvm_hyp_handle_ptrauth(vcpu, exit_code);
595
596	if (kvm_hyp_handle_cntpct(vcpu))
597		return true;
598
599	return false;
600}
601
602static bool kvm_hyp_handle_cp15_32(struct kvm_vcpu *vcpu, u64 *exit_code)
603{
604	if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
605	    __vgic_v3_perform_cpuif_access(vcpu) == 1)
606		return true;
607
608	return false;
609}
610
611static bool kvm_hyp_handle_memory_fault(struct kvm_vcpu *vcpu, u64 *exit_code)
612{
613	if (!__populate_fault_info(vcpu))
614		return true;
615
616	return false;
617}
618static bool kvm_hyp_handle_iabt_low(struct kvm_vcpu *vcpu, u64 *exit_code)
619	__alias(kvm_hyp_handle_memory_fault);
620static bool kvm_hyp_handle_watchpt_low(struct kvm_vcpu *vcpu, u64 *exit_code)
621	__alias(kvm_hyp_handle_memory_fault);
622
623static bool kvm_hyp_handle_dabt_low(struct kvm_vcpu *vcpu, u64 *exit_code)
624{
625	if (kvm_hyp_handle_memory_fault(vcpu, exit_code))
626		return true;
627
628	if (static_branch_unlikely(&vgic_v2_cpuif_trap)) {
629		bool valid;
630
631		valid = kvm_vcpu_trap_is_translation_fault(vcpu) &&
632			kvm_vcpu_dabt_isvalid(vcpu) &&
633			!kvm_vcpu_abt_issea(vcpu) &&
634			!kvm_vcpu_abt_iss1tw(vcpu);
635
636		if (valid) {
637			int ret = __vgic_v2_perform_cpuif_access(vcpu);
638
639			if (ret == 1)
640				return true;
641
642			/* Promote an illegal access to an SError.*/
643			if (ret == -1)
644				*exit_code = ARM_EXCEPTION_EL1_SERROR;
645		}
646	}
647
648	return false;
649}
650
651typedef bool (*exit_handler_fn)(struct kvm_vcpu *, u64 *);
652
653static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu);
654
655static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code);
656
657/*
658 * Allow the hypervisor to handle the exit with an exit handler if it has one.
659 *
660 * Returns true if the hypervisor handled the exit, and control should go back
661 * to the guest, or false if it hasn't.
662 */
663static inline bool kvm_hyp_handle_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
664{
665	const exit_handler_fn *handlers = kvm_get_exit_handler_array(vcpu);
666	exit_handler_fn fn;
667
668	fn = handlers[kvm_vcpu_trap_get_class(vcpu)];
669
670	if (fn)
671		return fn(vcpu, exit_code);
672
673	return false;
674}
675
676static inline void synchronize_vcpu_pstate(struct kvm_vcpu *vcpu, u64 *exit_code)
677{
678	/*
679	 * Check for the conditions of Cortex-A510's #2077057. When these occur
680	 * SPSR_EL2 can't be trusted, but isn't needed either as it is
681	 * unchanged from the value in vcpu_gp_regs(vcpu)->pstate.
682	 * Are we single-stepping the guest, and took a PAC exception from the
683	 * active-not-pending state?
684	 */
685	if (cpus_have_final_cap(ARM64_WORKAROUND_2077057)		&&
686	    vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP			&&
687	    *vcpu_cpsr(vcpu) & DBG_SPSR_SS				&&
688	    ESR_ELx_EC(read_sysreg_el2(SYS_ESR)) == ESR_ELx_EC_PAC)
689		write_sysreg_el2(*vcpu_cpsr(vcpu), SYS_SPSR);
690
691	vcpu->arch.ctxt.regs.pstate = read_sysreg_el2(SYS_SPSR);
692}
693
694/*
695 * Return true when we were able to fixup the guest exit and should return to
696 * the guest, false when we should restore the host state and return to the
697 * main run loop.
698 */
699static inline bool fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
700{
701	/*
702	 * Save PSTATE early so that we can evaluate the vcpu mode
703	 * early on.
704	 */
705	synchronize_vcpu_pstate(vcpu, exit_code);
706
707	/*
708	 * Check whether we want to repaint the state one way or
709	 * another.
710	 */
711	early_exit_filter(vcpu, exit_code);
712
713	if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ)
714		vcpu->arch.fault.esr_el2 = read_sysreg_el2(SYS_ESR);
715
716	if (ARM_SERROR_PENDING(*exit_code) &&
717	    ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ) {
718		u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
719
720		/*
721		 * HVC already have an adjusted PC, which we need to
722		 * correct in order to return to after having injected
723		 * the SError.
724		 *
725		 * SMC, on the other hand, is *trapped*, meaning its
726		 * preferred return address is the SMC itself.
727		 */
728		if (esr_ec == ESR_ELx_EC_HVC32 || esr_ec == ESR_ELx_EC_HVC64)
729			write_sysreg_el2(read_sysreg_el2(SYS_ELR) - 4, SYS_ELR);
730	}
731
732	/*
733	 * We're using the raw exception code in order to only process
734	 * the trap if no SError is pending. We will come back to the
735	 * same PC once the SError has been injected, and replay the
736	 * trapping instruction.
737	 */
738	if (*exit_code != ARM_EXCEPTION_TRAP)
739		goto exit;
740
741	/* Check if there's an exit handler and allow it to handle the exit. */
742	if (kvm_hyp_handle_exit(vcpu, exit_code))
743		goto guest;
744exit:
745	/* Return to the host kernel and handle the exit */
746	return false;
747
748guest:
749	/* Re-enter the guest */
750	asm(ALTERNATIVE("nop", "dmb sy", ARM64_WORKAROUND_1508412));
751	return true;
752}
753
754static inline void __kvm_unexpected_el2_exception(void)
755{
756	extern char __guest_exit_panic[];
757	unsigned long addr, fixup;
758	struct kvm_exception_table_entry *entry, *end;
759	unsigned long elr_el2 = read_sysreg(elr_el2);
760
761	entry = &__start___kvm_ex_table;
762	end = &__stop___kvm_ex_table;
763
764	while (entry < end) {
765		addr = (unsigned long)&entry->insn + entry->insn;
766		fixup = (unsigned long)&entry->fixup + entry->fixup;
767
768		if (addr != elr_el2) {
769			entry++;
770			continue;
771		}
772
773		write_sysreg(fixup, elr_el2);
774		return;
775	}
776
777	/* Trigger a panic after restoring the hyp context. */
778	write_sysreg(__guest_exit_panic, elr_el2);
779}
780
781#endif /* __ARM64_KVM_HYP_SWITCH_H__ */
782