1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Based on arch/arm/kernel/traps.c
4 *
5 * Copyright (C) 1995-2009 Russell King
6 * Copyright (C) 2012 ARM Ltd.
7 */
8
9#include <linux/bug.h>
10#include <linux/context_tracking.h>
11#include <linux/signal.h>
12#include <linux/kallsyms.h>
13#include <linux/kprobes.h>
14#include <linux/spinlock.h>
15#include <linux/uaccess.h>
16#include <linux/hardirq.h>
17#include <linux/kdebug.h>
18#include <linux/module.h>
19#include <linux/kexec.h>
20#include <linux/delay.h>
21#include <linux/efi.h>
22#include <linux/init.h>
23#include <linux/sched/signal.h>
24#include <linux/sched/debug.h>
25#include <linux/sched/task_stack.h>
26#include <linux/sizes.h>
27#include <linux/syscalls.h>
28#include <linux/mm_types.h>
29#include <linux/kasan.h>
30#include <linux/ubsan.h>
31#include <linux/cfi.h>
32
33#include <asm/atomic.h>
34#include <asm/bug.h>
35#include <asm/cpufeature.h>
36#include <asm/daifflags.h>
37#include <asm/debug-monitors.h>
38#include <asm/efi.h>
39#include <asm/esr.h>
40#include <asm/exception.h>
41#include <asm/extable.h>
42#include <asm/insn.h>
43#include <asm/kprobes.h>
44#include <asm/patching.h>
45#include <asm/traps.h>
46#include <asm/smp.h>
47#include <asm/stack_pointer.h>
48#include <asm/stacktrace.h>
49#include <asm/system_misc.h>
50#include <asm/sysreg.h>
51
52static bool __kprobes __check_eq(unsigned long pstate)
53{
54	return (pstate & PSR_Z_BIT) != 0;
55}
56
57static bool __kprobes __check_ne(unsigned long pstate)
58{
59	return (pstate & PSR_Z_BIT) == 0;
60}
61
62static bool __kprobes __check_cs(unsigned long pstate)
63{
64	return (pstate & PSR_C_BIT) != 0;
65}
66
67static bool __kprobes __check_cc(unsigned long pstate)
68{
69	return (pstate & PSR_C_BIT) == 0;
70}
71
72static bool __kprobes __check_mi(unsigned long pstate)
73{
74	return (pstate & PSR_N_BIT) != 0;
75}
76
77static bool __kprobes __check_pl(unsigned long pstate)
78{
79	return (pstate & PSR_N_BIT) == 0;
80}
81
82static bool __kprobes __check_vs(unsigned long pstate)
83{
84	return (pstate & PSR_V_BIT) != 0;
85}
86
87static bool __kprobes __check_vc(unsigned long pstate)
88{
89	return (pstate & PSR_V_BIT) == 0;
90}
91
92static bool __kprobes __check_hi(unsigned long pstate)
93{
94	pstate &= ~(pstate >> 1);	/* PSR_C_BIT &= ~PSR_Z_BIT */
95	return (pstate & PSR_C_BIT) != 0;
96}
97
98static bool __kprobes __check_ls(unsigned long pstate)
99{
100	pstate &= ~(pstate >> 1);	/* PSR_C_BIT &= ~PSR_Z_BIT */
101	return (pstate & PSR_C_BIT) == 0;
102}
103
104static bool __kprobes __check_ge(unsigned long pstate)
105{
106	pstate ^= (pstate << 3);	/* PSR_N_BIT ^= PSR_V_BIT */
107	return (pstate & PSR_N_BIT) == 0;
108}
109
110static bool __kprobes __check_lt(unsigned long pstate)
111{
112	pstate ^= (pstate << 3);	/* PSR_N_BIT ^= PSR_V_BIT */
113	return (pstate & PSR_N_BIT) != 0;
114}
115
116static bool __kprobes __check_gt(unsigned long pstate)
117{
118	/*PSR_N_BIT ^= PSR_V_BIT */
119	unsigned long temp = pstate ^ (pstate << 3);
120
121	temp |= (pstate << 1);	/*PSR_N_BIT |= PSR_Z_BIT */
122	return (temp & PSR_N_BIT) == 0;
123}
124
125static bool __kprobes __check_le(unsigned long pstate)
126{
127	/*PSR_N_BIT ^= PSR_V_BIT */
128	unsigned long temp = pstate ^ (pstate << 3);
129
130	temp |= (pstate << 1);	/*PSR_N_BIT |= PSR_Z_BIT */
131	return (temp & PSR_N_BIT) != 0;
132}
133
134static bool __kprobes __check_al(unsigned long pstate)
135{
136	return true;
137}
138
139/*
140 * Note that the ARMv8 ARM calls condition code 0b1111 "nv", but states that
141 * it behaves identically to 0b1110 ("al").
142 */
143pstate_check_t * const aarch32_opcode_cond_checks[16] = {
144	__check_eq, __check_ne, __check_cs, __check_cc,
145	__check_mi, __check_pl, __check_vs, __check_vc,
146	__check_hi, __check_ls, __check_ge, __check_lt,
147	__check_gt, __check_le, __check_al, __check_al
148};
149
150int show_unhandled_signals = 0;
151
152static void dump_kernel_instr(const char *lvl, struct pt_regs *regs)
153{
154	unsigned long addr = instruction_pointer(regs);
155	char str[sizeof("00000000 ") * 5 + 2 + 1], *p = str;
156	int i;
157
158	if (user_mode(regs))
159		return;
160
161	for (i = -4; i < 1; i++) {
162		unsigned int val, bad;
163
164		bad = aarch64_insn_read(&((u32 *)addr)[i], &val);
165
166		if (!bad)
167			p += sprintf(p, i == 0 ? "(%08x) " : "%08x ", val);
168		else
169			p += sprintf(p, i == 0 ? "(????????) " : "???????? ");
170	}
171
172	printk("%sCode: %s\n", lvl, str);
173}
174
175#ifdef CONFIG_PREEMPT
176#define S_PREEMPT " PREEMPT"
177#elif defined(CONFIG_PREEMPT_RT)
178#define S_PREEMPT " PREEMPT_RT"
179#else
180#define S_PREEMPT ""
181#endif
182
183#define S_SMP " SMP"
184
185static int __die(const char *str, long err, struct pt_regs *regs)
186{
187	static int die_counter;
188	int ret;
189
190	pr_emerg("Internal error: %s: %016lx [#%d]" S_PREEMPT S_SMP "\n",
191		 str, err, ++die_counter);
192
193	/* trap and error numbers are mostly meaningless on ARM */
194	ret = notify_die(DIE_OOPS, str, regs, err, 0, SIGSEGV);
195	if (ret == NOTIFY_STOP)
196		return ret;
197
198	print_modules();
199	show_regs(regs);
200
201	dump_kernel_instr(KERN_EMERG, regs);
202
203	return ret;
204}
205
206static DEFINE_RAW_SPINLOCK(die_lock);
207
208/*
209 * This function is protected against re-entrancy.
210 */
211void die(const char *str, struct pt_regs *regs, long err)
212{
213	int ret;
214	unsigned long flags;
215
216	raw_spin_lock_irqsave(&die_lock, flags);
217
218	oops_enter();
219
220	console_verbose();
221	bust_spinlocks(1);
222	ret = __die(str, err, regs);
223
224	if (regs && kexec_should_crash(current))
225		crash_kexec(regs);
226
227	bust_spinlocks(0);
228	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
229	oops_exit();
230
231	if (in_interrupt())
232		panic("%s: Fatal exception in interrupt", str);
233	if (panic_on_oops)
234		panic("%s: Fatal exception", str);
235
236	raw_spin_unlock_irqrestore(&die_lock, flags);
237
238	if (ret != NOTIFY_STOP)
239		make_task_dead(SIGSEGV);
240}
241
242static void arm64_show_signal(int signo, const char *str)
243{
244	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
245				      DEFAULT_RATELIMIT_BURST);
246	struct task_struct *tsk = current;
247	unsigned long esr = tsk->thread.fault_code;
248	struct pt_regs *regs = task_pt_regs(tsk);
249
250	/* Leave if the signal won't be shown */
251	if (!show_unhandled_signals ||
252	    !unhandled_signal(tsk, signo) ||
253	    !__ratelimit(&rs))
254		return;
255
256	pr_info("%s[%d]: unhandled exception: ", tsk->comm, task_pid_nr(tsk));
257	if (esr)
258		pr_cont("%s, ESR 0x%016lx, ", esr_get_class_string(esr), esr);
259
260	pr_cont("%s", str);
261	print_vma_addr(KERN_CONT " in ", regs->pc);
262	pr_cont("\n");
263	__show_regs(regs);
264}
265
266void arm64_force_sig_fault(int signo, int code, unsigned long far,
267			   const char *str)
268{
269	arm64_show_signal(signo, str);
270	if (signo == SIGKILL)
271		force_sig(SIGKILL);
272	else
273		force_sig_fault(signo, code, (void __user *)far);
274}
275
276void arm64_force_sig_mceerr(int code, unsigned long far, short lsb,
277			    const char *str)
278{
279	arm64_show_signal(SIGBUS, str);
280	force_sig_mceerr(code, (void __user *)far, lsb);
281}
282
283void arm64_force_sig_ptrace_errno_trap(int errno, unsigned long far,
284				       const char *str)
285{
286	arm64_show_signal(SIGTRAP, str);
287	force_sig_ptrace_errno_trap(errno, (void __user *)far);
288}
289
290void arm64_notify_die(const char *str, struct pt_regs *regs,
291		      int signo, int sicode, unsigned long far,
292		      unsigned long err)
293{
294	if (user_mode(regs)) {
295		WARN_ON(regs != current_pt_regs());
296		current->thread.fault_address = 0;
297		current->thread.fault_code = err;
298
299		arm64_force_sig_fault(signo, sicode, far, str);
300	} else {
301		die(str, regs, err);
302	}
303}
304
305#ifdef CONFIG_COMPAT
306#define PSTATE_IT_1_0_SHIFT	25
307#define PSTATE_IT_1_0_MASK	(0x3 << PSTATE_IT_1_0_SHIFT)
308#define PSTATE_IT_7_2_SHIFT	10
309#define PSTATE_IT_7_2_MASK	(0x3f << PSTATE_IT_7_2_SHIFT)
310
311static u32 compat_get_it_state(struct pt_regs *regs)
312{
313	u32 it, pstate = regs->pstate;
314
315	it  = (pstate & PSTATE_IT_1_0_MASK) >> PSTATE_IT_1_0_SHIFT;
316	it |= ((pstate & PSTATE_IT_7_2_MASK) >> PSTATE_IT_7_2_SHIFT) << 2;
317
318	return it;
319}
320
321static void compat_set_it_state(struct pt_regs *regs, u32 it)
322{
323	u32 pstate_it;
324
325	pstate_it  = (it << PSTATE_IT_1_0_SHIFT) & PSTATE_IT_1_0_MASK;
326	pstate_it |= ((it >> 2) << PSTATE_IT_7_2_SHIFT) & PSTATE_IT_7_2_MASK;
327
328	regs->pstate &= ~PSR_AA32_IT_MASK;
329	regs->pstate |= pstate_it;
330}
331
332static void advance_itstate(struct pt_regs *regs)
333{
334	u32 it;
335
336	/* ARM mode */
337	if (!(regs->pstate & PSR_AA32_T_BIT) ||
338	    !(regs->pstate & PSR_AA32_IT_MASK))
339		return;
340
341	it  = compat_get_it_state(regs);
342
343	/*
344	 * If this is the last instruction of the block, wipe the IT
345	 * state. Otherwise advance it.
346	 */
347	if (!(it & 7))
348		it = 0;
349	else
350		it = (it & 0xe0) | ((it << 1) & 0x1f);
351
352	compat_set_it_state(regs, it);
353}
354#else
355static void advance_itstate(struct pt_regs *regs)
356{
357}
358#endif
359
360void arm64_skip_faulting_instruction(struct pt_regs *regs, unsigned long size)
361{
362	regs->pc += size;
363
364	/*
365	 * If we were single stepping, we want to get the step exception after
366	 * we return from the trap.
367	 */
368	if (user_mode(regs))
369		user_fastforward_single_step(current);
370
371	if (compat_user_mode(regs))
372		advance_itstate(regs);
373	else
374		regs->pstate &= ~PSR_BTYPE_MASK;
375}
376
377static int user_insn_read(struct pt_regs *regs, u32 *insnp)
378{
379	u32 instr;
380	unsigned long pc = instruction_pointer(regs);
381
382	if (compat_thumb_mode(regs)) {
383		/* 16-bit Thumb instruction */
384		__le16 instr_le;
385		if (get_user(instr_le, (__le16 __user *)pc))
386			return -EFAULT;
387		instr = le16_to_cpu(instr_le);
388		if (aarch32_insn_is_wide(instr)) {
389			u32 instr2;
390
391			if (get_user(instr_le, (__le16 __user *)(pc + 2)))
392				return -EFAULT;
393			instr2 = le16_to_cpu(instr_le);
394			instr = (instr << 16) | instr2;
395		}
396	} else {
397		/* 32-bit ARM instruction */
398		__le32 instr_le;
399		if (get_user(instr_le, (__le32 __user *)pc))
400			return -EFAULT;
401		instr = le32_to_cpu(instr_le);
402	}
403
404	*insnp = instr;
405	return 0;
406}
407
408void force_signal_inject(int signal, int code, unsigned long address, unsigned long err)
409{
410	const char *desc;
411	struct pt_regs *regs = current_pt_regs();
412
413	if (WARN_ON(!user_mode(regs)))
414		return;
415
416	switch (signal) {
417	case SIGILL:
418		desc = "undefined instruction";
419		break;
420	case SIGSEGV:
421		desc = "illegal memory access";
422		break;
423	default:
424		desc = "unknown or unrecoverable error";
425		break;
426	}
427
428	/* Force signals we don't understand to SIGKILL */
429	if (WARN_ON(signal != SIGKILL &&
430		    siginfo_layout(signal, code) != SIL_FAULT)) {
431		signal = SIGKILL;
432	}
433
434	arm64_notify_die(desc, regs, signal, code, address, err);
435}
436
437/*
438 * Set up process info to signal segmentation fault - called on access error.
439 */
440void arm64_notify_segfault(unsigned long addr)
441{
442	int code;
443
444	mmap_read_lock(current->mm);
445	if (find_vma(current->mm, untagged_addr(addr)) == NULL)
446		code = SEGV_MAPERR;
447	else
448		code = SEGV_ACCERR;
449	mmap_read_unlock(current->mm);
450
451	force_signal_inject(SIGSEGV, code, addr, 0);
452}
453
454void do_el0_undef(struct pt_regs *regs, unsigned long esr)
455{
456	u32 insn;
457
458	/* check for AArch32 breakpoint instructions */
459	if (!aarch32_break_handler(regs))
460		return;
461
462	if (user_insn_read(regs, &insn))
463		goto out_err;
464
465	if (try_emulate_mrs(regs, insn))
466		return;
467
468	if (try_emulate_armv8_deprecated(regs, insn))
469		return;
470
471out_err:
472	force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
473}
474
475void do_el1_undef(struct pt_regs *regs, unsigned long esr)
476{
477	u32 insn;
478
479	if (aarch64_insn_read((void *)regs->pc, &insn))
480		goto out_err;
481
482	if (try_emulate_el1_ssbs(regs, insn))
483		return;
484
485out_err:
486	die("Oops - Undefined instruction", regs, esr);
487}
488
489void do_el0_bti(struct pt_regs *regs)
490{
491	force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
492}
493
494void do_el1_bti(struct pt_regs *regs, unsigned long esr)
495{
496	if (efi_runtime_fixup_exception(regs, "BTI violation")) {
497		regs->pstate &= ~PSR_BTYPE_MASK;
498		return;
499	}
500	die("Oops - BTI", regs, esr);
501}
502
503void do_el0_fpac(struct pt_regs *regs, unsigned long esr)
504{
505	force_signal_inject(SIGILL, ILL_ILLOPN, regs->pc, esr);
506}
507
508void do_el1_fpac(struct pt_regs *regs, unsigned long esr)
509{
510	/*
511	 * Unexpected FPAC exception in the kernel: kill the task before it
512	 * does any more harm.
513	 */
514	die("Oops - FPAC", regs, esr);
515}
516
517void do_el0_mops(struct pt_regs *regs, unsigned long esr)
518{
519	arm64_mops_reset_regs(&regs->user_regs, esr);
520
521	/*
522	 * If single stepping then finish the step before executing the
523	 * prologue instruction.
524	 */
525	user_fastforward_single_step(current);
526}
527
528#define __user_cache_maint(insn, address, res)			\
529	if (address >= TASK_SIZE_MAX) {				\
530		res = -EFAULT;					\
531	} else {						\
532		uaccess_ttbr0_enable();				\
533		asm volatile (					\
534			"1:	" insn ", %1\n"			\
535			"	mov	%w0, #0\n"		\
536			"2:\n"					\
537			_ASM_EXTABLE_UACCESS_ERR(1b, 2b, %w0)	\
538			: "=r" (res)				\
539			: "r" (address));			\
540		uaccess_ttbr0_disable();			\
541	}
542
543static void user_cache_maint_handler(unsigned long esr, struct pt_regs *regs)
544{
545	unsigned long tagged_address, address;
546	int rt = ESR_ELx_SYS64_ISS_RT(esr);
547	int crm = (esr & ESR_ELx_SYS64_ISS_CRM_MASK) >> ESR_ELx_SYS64_ISS_CRM_SHIFT;
548	int ret = 0;
549
550	tagged_address = pt_regs_read_reg(regs, rt);
551	address = untagged_addr(tagged_address);
552
553	switch (crm) {
554	case ESR_ELx_SYS64_ISS_CRM_DC_CVAU:	/* DC CVAU, gets promoted */
555		__user_cache_maint("dc civac", address, ret);
556		break;
557	case ESR_ELx_SYS64_ISS_CRM_DC_CVAC:	/* DC CVAC, gets promoted */
558		__user_cache_maint("dc civac", address, ret);
559		break;
560	case ESR_ELx_SYS64_ISS_CRM_DC_CVADP:	/* DC CVADP */
561		__user_cache_maint("sys 3, c7, c13, 1", address, ret);
562		break;
563	case ESR_ELx_SYS64_ISS_CRM_DC_CVAP:	/* DC CVAP */
564		__user_cache_maint("sys 3, c7, c12, 1", address, ret);
565		break;
566	case ESR_ELx_SYS64_ISS_CRM_DC_CIVAC:	/* DC CIVAC */
567		__user_cache_maint("dc civac", address, ret);
568		break;
569	case ESR_ELx_SYS64_ISS_CRM_IC_IVAU:	/* IC IVAU */
570		__user_cache_maint("ic ivau", address, ret);
571		break;
572	default:
573		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
574		return;
575	}
576
577	if (ret)
578		arm64_notify_segfault(tagged_address);
579	else
580		arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
581}
582
583static void ctr_read_handler(unsigned long esr, struct pt_regs *regs)
584{
585	int rt = ESR_ELx_SYS64_ISS_RT(esr);
586	unsigned long val = arm64_ftr_reg_user_value(&arm64_ftr_reg_ctrel0);
587
588	if (cpus_have_final_cap(ARM64_WORKAROUND_1542419)) {
589		/* Hide DIC so that we can trap the unnecessary maintenance...*/
590		val &= ~BIT(CTR_EL0_DIC_SHIFT);
591
592		/* ... and fake IminLine to reduce the number of traps. */
593		val &= ~CTR_EL0_IminLine_MASK;
594		val |= (PAGE_SHIFT - 2) & CTR_EL0_IminLine_MASK;
595	}
596
597	pt_regs_write_reg(regs, rt, val);
598
599	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
600}
601
602static void cntvct_read_handler(unsigned long esr, struct pt_regs *regs)
603{
604	int rt = ESR_ELx_SYS64_ISS_RT(esr);
605
606	pt_regs_write_reg(regs, rt, arch_timer_read_counter());
607	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
608}
609
610static void cntfrq_read_handler(unsigned long esr, struct pt_regs *regs)
611{
612	int rt = ESR_ELx_SYS64_ISS_RT(esr);
613
614	pt_regs_write_reg(regs, rt, arch_timer_get_rate());
615	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
616}
617
618static void mrs_handler(unsigned long esr, struct pt_regs *regs)
619{
620	u32 sysreg, rt;
621
622	rt = ESR_ELx_SYS64_ISS_RT(esr);
623	sysreg = esr_sys64_to_sysreg(esr);
624
625	if (do_emulate_mrs(regs, sysreg, rt) != 0)
626		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
627}
628
629static void wfi_handler(unsigned long esr, struct pt_regs *regs)
630{
631	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
632}
633
634struct sys64_hook {
635	unsigned long esr_mask;
636	unsigned long esr_val;
637	void (*handler)(unsigned long esr, struct pt_regs *regs);
638};
639
640static const struct sys64_hook sys64_hooks[] = {
641	{
642		.esr_mask = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_MASK,
643		.esr_val = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_VAL,
644		.handler = user_cache_maint_handler,
645	},
646	{
647		/* Trap read access to CTR_EL0 */
648		.esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
649		.esr_val = ESR_ELx_SYS64_ISS_SYS_CTR_READ,
650		.handler = ctr_read_handler,
651	},
652	{
653		/* Trap read access to CNTVCT_EL0 */
654		.esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
655		.esr_val = ESR_ELx_SYS64_ISS_SYS_CNTVCT,
656		.handler = cntvct_read_handler,
657	},
658	{
659		/* Trap read access to CNTVCTSS_EL0 */
660		.esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
661		.esr_val = ESR_ELx_SYS64_ISS_SYS_CNTVCTSS,
662		.handler = cntvct_read_handler,
663	},
664	{
665		/* Trap read access to CNTFRQ_EL0 */
666		.esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
667		.esr_val = ESR_ELx_SYS64_ISS_SYS_CNTFRQ,
668		.handler = cntfrq_read_handler,
669	},
670	{
671		/* Trap read access to CPUID registers */
672		.esr_mask = ESR_ELx_SYS64_ISS_SYS_MRS_OP_MASK,
673		.esr_val = ESR_ELx_SYS64_ISS_SYS_MRS_OP_VAL,
674		.handler = mrs_handler,
675	},
676	{
677		/* Trap WFI instructions executed in userspace */
678		.esr_mask = ESR_ELx_WFx_MASK,
679		.esr_val = ESR_ELx_WFx_WFI_VAL,
680		.handler = wfi_handler,
681	},
682	{},
683};
684
685#ifdef CONFIG_COMPAT
686static bool cp15_cond_valid(unsigned long esr, struct pt_regs *regs)
687{
688	int cond;
689
690	/* Only a T32 instruction can trap without CV being set */
691	if (!(esr & ESR_ELx_CV)) {
692		u32 it;
693
694		it = compat_get_it_state(regs);
695		if (!it)
696			return true;
697
698		cond = it >> 4;
699	} else {
700		cond = (esr & ESR_ELx_COND_MASK) >> ESR_ELx_COND_SHIFT;
701	}
702
703	return aarch32_opcode_cond_checks[cond](regs->pstate);
704}
705
706static void compat_cntfrq_read_handler(unsigned long esr, struct pt_regs *regs)
707{
708	int reg = (esr & ESR_ELx_CP15_32_ISS_RT_MASK) >> ESR_ELx_CP15_32_ISS_RT_SHIFT;
709
710	pt_regs_write_reg(regs, reg, arch_timer_get_rate());
711	arm64_skip_faulting_instruction(regs, 4);
712}
713
714static const struct sys64_hook cp15_32_hooks[] = {
715	{
716		.esr_mask = ESR_ELx_CP15_32_ISS_SYS_MASK,
717		.esr_val = ESR_ELx_CP15_32_ISS_SYS_CNTFRQ,
718		.handler = compat_cntfrq_read_handler,
719	},
720	{},
721};
722
723static void compat_cntvct_read_handler(unsigned long esr, struct pt_regs *regs)
724{
725	int rt = (esr & ESR_ELx_CP15_64_ISS_RT_MASK) >> ESR_ELx_CP15_64_ISS_RT_SHIFT;
726	int rt2 = (esr & ESR_ELx_CP15_64_ISS_RT2_MASK) >> ESR_ELx_CP15_64_ISS_RT2_SHIFT;
727	u64 val = arch_timer_read_counter();
728
729	pt_regs_write_reg(regs, rt, lower_32_bits(val));
730	pt_regs_write_reg(regs, rt2, upper_32_bits(val));
731	arm64_skip_faulting_instruction(regs, 4);
732}
733
734static const struct sys64_hook cp15_64_hooks[] = {
735	{
736		.esr_mask = ESR_ELx_CP15_64_ISS_SYS_MASK,
737		.esr_val = ESR_ELx_CP15_64_ISS_SYS_CNTVCT,
738		.handler = compat_cntvct_read_handler,
739	},
740	{
741		.esr_mask = ESR_ELx_CP15_64_ISS_SYS_MASK,
742		.esr_val = ESR_ELx_CP15_64_ISS_SYS_CNTVCTSS,
743		.handler = compat_cntvct_read_handler,
744	},
745	{},
746};
747
748void do_el0_cp15(unsigned long esr, struct pt_regs *regs)
749{
750	const struct sys64_hook *hook, *hook_base;
751
752	if (!cp15_cond_valid(esr, regs)) {
753		/*
754		 * There is no T16 variant of a CP access, so we
755		 * always advance PC by 4 bytes.
756		 */
757		arm64_skip_faulting_instruction(regs, 4);
758		return;
759	}
760
761	switch (ESR_ELx_EC(esr)) {
762	case ESR_ELx_EC_CP15_32:
763		hook_base = cp15_32_hooks;
764		break;
765	case ESR_ELx_EC_CP15_64:
766		hook_base = cp15_64_hooks;
767		break;
768	default:
769		do_el0_undef(regs, esr);
770		return;
771	}
772
773	for (hook = hook_base; hook->handler; hook++)
774		if ((hook->esr_mask & esr) == hook->esr_val) {
775			hook->handler(esr, regs);
776			return;
777		}
778
779	/*
780	 * New cp15 instructions may previously have been undefined at
781	 * EL0. Fall back to our usual undefined instruction handler
782	 * so that we handle these consistently.
783	 */
784	do_el0_undef(regs, esr);
785}
786#endif
787
788void do_el0_sys(unsigned long esr, struct pt_regs *regs)
789{
790	const struct sys64_hook *hook;
791
792	for (hook = sys64_hooks; hook->handler; hook++)
793		if ((hook->esr_mask & esr) == hook->esr_val) {
794			hook->handler(esr, regs);
795			return;
796		}
797
798	/*
799	 * New SYS instructions may previously have been undefined at EL0. Fall
800	 * back to our usual undefined instruction handler so that we handle
801	 * these consistently.
802	 */
803	do_el0_undef(regs, esr);
804}
805
806static const char *esr_class_str[] = {
807	[0 ... ESR_ELx_EC_MAX]		= "UNRECOGNIZED EC",
808	[ESR_ELx_EC_UNKNOWN]		= "Unknown/Uncategorized",
809	[ESR_ELx_EC_WFx]		= "WFI/WFE",
810	[ESR_ELx_EC_CP15_32]		= "CP15 MCR/MRC",
811	[ESR_ELx_EC_CP15_64]		= "CP15 MCRR/MRRC",
812	[ESR_ELx_EC_CP14_MR]		= "CP14 MCR/MRC",
813	[ESR_ELx_EC_CP14_LS]		= "CP14 LDC/STC",
814	[ESR_ELx_EC_FP_ASIMD]		= "ASIMD",
815	[ESR_ELx_EC_CP10_ID]		= "CP10 MRC/VMRS",
816	[ESR_ELx_EC_PAC]		= "PAC",
817	[ESR_ELx_EC_CP14_64]		= "CP14 MCRR/MRRC",
818	[ESR_ELx_EC_BTI]		= "BTI",
819	[ESR_ELx_EC_ILL]		= "PSTATE.IL",
820	[ESR_ELx_EC_SVC32]		= "SVC (AArch32)",
821	[ESR_ELx_EC_HVC32]		= "HVC (AArch32)",
822	[ESR_ELx_EC_SMC32]		= "SMC (AArch32)",
823	[ESR_ELx_EC_SVC64]		= "SVC (AArch64)",
824	[ESR_ELx_EC_HVC64]		= "HVC (AArch64)",
825	[ESR_ELx_EC_SMC64]		= "SMC (AArch64)",
826	[ESR_ELx_EC_SYS64]		= "MSR/MRS (AArch64)",
827	[ESR_ELx_EC_SVE]		= "SVE",
828	[ESR_ELx_EC_ERET]		= "ERET/ERETAA/ERETAB",
829	[ESR_ELx_EC_FPAC]		= "FPAC",
830	[ESR_ELx_EC_SME]		= "SME",
831	[ESR_ELx_EC_IMP_DEF]		= "EL3 IMP DEF",
832	[ESR_ELx_EC_IABT_LOW]		= "IABT (lower EL)",
833	[ESR_ELx_EC_IABT_CUR]		= "IABT (current EL)",
834	[ESR_ELx_EC_PC_ALIGN]		= "PC Alignment",
835	[ESR_ELx_EC_DABT_LOW]		= "DABT (lower EL)",
836	[ESR_ELx_EC_DABT_CUR]		= "DABT (current EL)",
837	[ESR_ELx_EC_SP_ALIGN]		= "SP Alignment",
838	[ESR_ELx_EC_MOPS]		= "MOPS",
839	[ESR_ELx_EC_FP_EXC32]		= "FP (AArch32)",
840	[ESR_ELx_EC_FP_EXC64]		= "FP (AArch64)",
841	[ESR_ELx_EC_SERROR]		= "SError",
842	[ESR_ELx_EC_BREAKPT_LOW]	= "Breakpoint (lower EL)",
843	[ESR_ELx_EC_BREAKPT_CUR]	= "Breakpoint (current EL)",
844	[ESR_ELx_EC_SOFTSTP_LOW]	= "Software Step (lower EL)",
845	[ESR_ELx_EC_SOFTSTP_CUR]	= "Software Step (current EL)",
846	[ESR_ELx_EC_WATCHPT_LOW]	= "Watchpoint (lower EL)",
847	[ESR_ELx_EC_WATCHPT_CUR]	= "Watchpoint (current EL)",
848	[ESR_ELx_EC_BKPT32]		= "BKPT (AArch32)",
849	[ESR_ELx_EC_VECTOR32]		= "Vector catch (AArch32)",
850	[ESR_ELx_EC_BRK64]		= "BRK (AArch64)",
851};
852
853const char *esr_get_class_string(unsigned long esr)
854{
855	return esr_class_str[ESR_ELx_EC(esr)];
856}
857
858/*
859 * bad_el0_sync handles unexpected, but potentially recoverable synchronous
860 * exceptions taken from EL0.
861 */
862void bad_el0_sync(struct pt_regs *regs, int reason, unsigned long esr)
863{
864	unsigned long pc = instruction_pointer(regs);
865
866	current->thread.fault_address = 0;
867	current->thread.fault_code = esr;
868
869	arm64_force_sig_fault(SIGILL, ILL_ILLOPC, pc,
870			      "Bad EL0 synchronous exception");
871}
872
873#ifdef CONFIG_VMAP_STACK
874
875DEFINE_PER_CPU(unsigned long [OVERFLOW_STACK_SIZE/sizeof(long)], overflow_stack)
876	__aligned(16);
877
878void __noreturn panic_bad_stack(struct pt_regs *regs, unsigned long esr, unsigned long far)
879{
880	unsigned long tsk_stk = (unsigned long)current->stack;
881	unsigned long irq_stk = (unsigned long)this_cpu_read(irq_stack_ptr);
882	unsigned long ovf_stk = (unsigned long)this_cpu_ptr(overflow_stack);
883
884	console_verbose();
885	pr_emerg("Insufficient stack space to handle exception!");
886
887	pr_emerg("ESR: 0x%016lx -- %s\n", esr, esr_get_class_string(esr));
888	pr_emerg("FAR: 0x%016lx\n", far);
889
890	pr_emerg("Task stack:     [0x%016lx..0x%016lx]\n",
891		 tsk_stk, tsk_stk + THREAD_SIZE);
892	pr_emerg("IRQ stack:      [0x%016lx..0x%016lx]\n",
893		 irq_stk, irq_stk + IRQ_STACK_SIZE);
894	pr_emerg("Overflow stack: [0x%016lx..0x%016lx]\n",
895		 ovf_stk, ovf_stk + OVERFLOW_STACK_SIZE);
896
897	__show_regs(regs);
898
899	/*
900	 * We use nmi_panic to limit the potential for recusive overflows, and
901	 * to get a better stack trace.
902	 */
903	nmi_panic(NULL, "kernel stack overflow");
904	cpu_park_loop();
905}
906#endif
907
908void __noreturn arm64_serror_panic(struct pt_regs *regs, unsigned long esr)
909{
910	console_verbose();
911
912	pr_crit("SError Interrupt on CPU%d, code 0x%016lx -- %s\n",
913		smp_processor_id(), esr, esr_get_class_string(esr));
914	if (regs)
915		__show_regs(regs);
916
917	nmi_panic(regs, "Asynchronous SError Interrupt");
918
919	cpu_park_loop();
920}
921
922bool arm64_is_fatal_ras_serror(struct pt_regs *regs, unsigned long esr)
923{
924	unsigned long aet = arm64_ras_serror_get_severity(esr);
925
926	switch (aet) {
927	case ESR_ELx_AET_CE:	/* corrected error */
928	case ESR_ELx_AET_UEO:	/* restartable, not yet consumed */
929		/*
930		 * The CPU can make progress. We may take UEO again as
931		 * a more severe error.
932		 */
933		return false;
934
935	case ESR_ELx_AET_UEU:	/* Uncorrected Unrecoverable */
936	case ESR_ELx_AET_UER:	/* Uncorrected Recoverable */
937		/*
938		 * The CPU can't make progress. The exception may have
939		 * been imprecise.
940		 *
941		 * Neoverse-N1 #1349291 means a non-KVM SError reported as
942		 * Unrecoverable should be treated as Uncontainable. We
943		 * call arm64_serror_panic() in both cases.
944		 */
945		return true;
946
947	case ESR_ELx_AET_UC:	/* Uncontainable or Uncategorized error */
948	default:
949		/* Error has been silently propagated */
950		arm64_serror_panic(regs, esr);
951	}
952}
953
954void do_serror(struct pt_regs *regs, unsigned long esr)
955{
956	/* non-RAS errors are not containable */
957	if (!arm64_is_ras_serror(esr) || arm64_is_fatal_ras_serror(regs, esr))
958		arm64_serror_panic(regs, esr);
959}
960
961/* GENERIC_BUG traps */
962#ifdef CONFIG_GENERIC_BUG
963int is_valid_bugaddr(unsigned long addr)
964{
965	/*
966	 * bug_handler() only called for BRK #BUG_BRK_IMM.
967	 * So the answer is trivial -- any spurious instances with no
968	 * bug table entry will be rejected by report_bug() and passed
969	 * back to the debug-monitors code and handled as a fatal
970	 * unexpected debug exception.
971	 */
972	return 1;
973}
974#endif
975
976static int bug_handler(struct pt_regs *regs, unsigned long esr)
977{
978	switch (report_bug(regs->pc, regs)) {
979	case BUG_TRAP_TYPE_BUG:
980		die("Oops - BUG", regs, esr);
981		break;
982
983	case BUG_TRAP_TYPE_WARN:
984		break;
985
986	default:
987		/* unknown/unrecognised bug trap type */
988		return DBG_HOOK_ERROR;
989	}
990
991	/* If thread survives, skip over the BUG instruction and continue: */
992	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
993	return DBG_HOOK_HANDLED;
994}
995
996static struct break_hook bug_break_hook = {
997	.fn = bug_handler,
998	.imm = BUG_BRK_IMM,
999};
1000
1001#ifdef CONFIG_CFI_CLANG
1002static int cfi_handler(struct pt_regs *regs, unsigned long esr)
1003{
1004	unsigned long target;
1005	u32 type;
1006
1007	target = pt_regs_read_reg(regs, FIELD_GET(CFI_BRK_IMM_TARGET, esr));
1008	type = (u32)pt_regs_read_reg(regs, FIELD_GET(CFI_BRK_IMM_TYPE, esr));
1009
1010	switch (report_cfi_failure(regs, regs->pc, &target, type)) {
1011	case BUG_TRAP_TYPE_BUG:
1012		die("Oops - CFI", regs, esr);
1013		break;
1014
1015	case BUG_TRAP_TYPE_WARN:
1016		break;
1017
1018	default:
1019		return DBG_HOOK_ERROR;
1020	}
1021
1022	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
1023	return DBG_HOOK_HANDLED;
1024}
1025
1026static struct break_hook cfi_break_hook = {
1027	.fn = cfi_handler,
1028	.imm = CFI_BRK_IMM_BASE,
1029	.mask = CFI_BRK_IMM_MASK,
1030};
1031#endif /* CONFIG_CFI_CLANG */
1032
1033static int reserved_fault_handler(struct pt_regs *regs, unsigned long esr)
1034{
1035	pr_err("%s generated an invalid instruction at %pS!\n",
1036		"Kernel text patching",
1037		(void *)instruction_pointer(regs));
1038
1039	/* We cannot handle this */
1040	return DBG_HOOK_ERROR;
1041}
1042
1043static struct break_hook fault_break_hook = {
1044	.fn = reserved_fault_handler,
1045	.imm = FAULT_BRK_IMM,
1046};
1047
1048#ifdef CONFIG_KASAN_SW_TAGS
1049
1050#define KASAN_ESR_RECOVER	0x20
1051#define KASAN_ESR_WRITE	0x10
1052#define KASAN_ESR_SIZE_MASK	0x0f
1053#define KASAN_ESR_SIZE(esr)	(1 << ((esr) & KASAN_ESR_SIZE_MASK))
1054
1055static int kasan_handler(struct pt_regs *regs, unsigned long esr)
1056{
1057	bool recover = esr & KASAN_ESR_RECOVER;
1058	bool write = esr & KASAN_ESR_WRITE;
1059	size_t size = KASAN_ESR_SIZE(esr);
1060	void *addr = (void *)regs->regs[0];
1061	u64 pc = regs->pc;
1062
1063	kasan_report(addr, size, write, pc);
1064
1065	/*
1066	 * The instrumentation allows to control whether we can proceed after
1067	 * a crash was detected. This is done by passing the -recover flag to
1068	 * the compiler. Disabling recovery allows to generate more compact
1069	 * code.
1070	 *
1071	 * Unfortunately disabling recovery doesn't work for the kernel right
1072	 * now. KASAN reporting is disabled in some contexts (for example when
1073	 * the allocator accesses slab object metadata; this is controlled by
1074	 * current->kasan_depth). All these accesses are detected by the tool,
1075	 * even though the reports for them are not printed.
1076	 *
1077	 * This is something that might be fixed at some point in the future.
1078	 */
1079	if (!recover)
1080		die("Oops - KASAN", regs, esr);
1081
1082	/* If thread survives, skip over the brk instruction and continue: */
1083	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
1084	return DBG_HOOK_HANDLED;
1085}
1086
1087static struct break_hook kasan_break_hook = {
1088	.fn	= kasan_handler,
1089	.imm	= KASAN_BRK_IMM,
1090	.mask	= KASAN_BRK_MASK,
1091};
1092#endif
1093
1094#ifdef CONFIG_UBSAN_TRAP
1095static int ubsan_handler(struct pt_regs *regs, unsigned long esr)
1096{
1097	die(report_ubsan_failure(regs, esr & UBSAN_BRK_MASK), regs, esr);
1098	return DBG_HOOK_HANDLED;
1099}
1100
1101static struct break_hook ubsan_break_hook = {
1102	.fn	= ubsan_handler,
1103	.imm	= UBSAN_BRK_IMM,
1104	.mask	= UBSAN_BRK_MASK,
1105};
1106#endif
1107
1108#define esr_comment(esr) ((esr) & ESR_ELx_BRK64_ISS_COMMENT_MASK)
1109
1110/*
1111 * Initial handler for AArch64 BRK exceptions
1112 * This handler only used until debug_traps_init().
1113 */
1114int __init early_brk64(unsigned long addr, unsigned long esr,
1115		struct pt_regs *regs)
1116{
1117#ifdef CONFIG_CFI_CLANG
1118	if ((esr_comment(esr) & ~CFI_BRK_IMM_MASK) == CFI_BRK_IMM_BASE)
1119		return cfi_handler(regs, esr) != DBG_HOOK_HANDLED;
1120#endif
1121#ifdef CONFIG_KASAN_SW_TAGS
1122	if ((esr_comment(esr) & ~KASAN_BRK_MASK) == KASAN_BRK_IMM)
1123		return kasan_handler(regs, esr) != DBG_HOOK_HANDLED;
1124#endif
1125#ifdef CONFIG_UBSAN_TRAP
1126	if ((esr_comment(esr) & ~UBSAN_BRK_MASK) == UBSAN_BRK_IMM)
1127		return ubsan_handler(regs, esr) != DBG_HOOK_HANDLED;
1128#endif
1129	return bug_handler(regs, esr) != DBG_HOOK_HANDLED;
1130}
1131
1132void __init trap_init(void)
1133{
1134	register_kernel_break_hook(&bug_break_hook);
1135#ifdef CONFIG_CFI_CLANG
1136	register_kernel_break_hook(&cfi_break_hook);
1137#endif
1138	register_kernel_break_hook(&fault_break_hook);
1139#ifdef CONFIG_KASAN_SW_TAGS
1140	register_kernel_break_hook(&kasan_break_hook);
1141#endif
1142#ifdef CONFIG_UBSAN_TRAP
1143	register_kernel_break_hook(&ubsan_break_hook);
1144#endif
1145	debug_traps_init();
1146}
1147