1/*
2 *  linux/arch/arm/vfp/vfpsingle.c
3 *
4 * This code is derived in part from John R. Housers softfloat library, which
5 * carries the following notice:
6 *
7 * ===========================================================================
8 * This C source file is part of the SoftFloat IEC/IEEE Floating-point
9 * Arithmetic Package, Release 2.
10 *
11 * Written by John R. Hauser.  This work was made possible in part by the
12 * International Computer Science Institute, located at Suite 600, 1947 Center
13 * Street, Berkeley, California 94704.  Funding was partially provided by the
14 * National Science Foundation under grant MIP-9311980.  The original version
15 * of this code was written as part of a project to build a fixed-point vector
16 * processor in collaboration with the University of California at Berkeley,
17 * overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
18 * is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
19 * arithmetic/softfloat.html'.
20 *
21 * THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
22 * has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
23 * TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
24 * PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
25 * AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
26 *
27 * Derivative works are acceptable, even for commercial purposes, so long as
28 * (1) they include prominent notice that the work is derivative, and (2) they
29 * include prominent notice akin to these three paragraphs for those parts of
30 * this code that are retained.
31 * ===========================================================================
32 */
33#include <linux/kernel.h>
34#include <linux/bitops.h>
35
36#include <asm/div64.h>
37#include <asm/vfp.h>
38
39#include "vfpinstr.h"
40#include "vfp.h"
41
42static struct vfp_single vfp_single_default_qnan = {
43	.exponent	= 255,
44	.sign		= 0,
45	.significand	= VFP_SINGLE_SIGNIFICAND_QNAN,
46};
47
48static void vfp_single_dump(const char *str, struct vfp_single *s)
49{
50	pr_debug("VFP: %s: sign=%d exponent=%d significand=%08x\n",
51		 str, s->sign != 0, s->exponent, s->significand);
52}
53
54static void vfp_single_normalise_denormal(struct vfp_single *vs)
55{
56	int bits = 31 - fls(vs->significand);
57
58	vfp_single_dump("normalise_denormal: in", vs);
59
60	if (bits) {
61		vs->exponent -= bits - 1;
62		vs->significand <<= bits;
63	}
64
65	vfp_single_dump("normalise_denormal: out", vs);
66}
67
68#ifndef DEBUG
69#define vfp_single_normaliseround(sd,vsd,fpscr,except,func) __vfp_single_normaliseround(sd,vsd,fpscr,except)
70u32 __vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions)
71#else
72u32 vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func)
73#endif
74{
75	u32 significand, incr, rmode;
76	int exponent, shift, underflow;
77
78	vfp_single_dump("pack: in", vs);
79
80	/*
81	 * Infinities and NaNs are a special case.
82	 */
83	if (vs->exponent == 255 && (vs->significand == 0 || exceptions))
84		goto pack;
85
86	/*
87	 * Special-case zero.
88	 */
89	if (vs->significand == 0) {
90		vs->exponent = 0;
91		goto pack;
92	}
93
94	exponent = vs->exponent;
95	significand = vs->significand;
96
97	/*
98	 * Normalise first.  Note that we shift the significand up to
99	 * bit 31, so we have VFP_SINGLE_LOW_BITS + 1 below the least
100	 * significant bit.
101	 */
102	shift = 32 - fls(significand);
103	if (shift < 32 && shift) {
104		exponent -= shift;
105		significand <<= shift;
106	}
107
108#ifdef DEBUG
109	vs->exponent = exponent;
110	vs->significand = significand;
111	vfp_single_dump("pack: normalised", vs);
112#endif
113
114	/*
115	 * Tiny number?
116	 */
117	underflow = exponent < 0;
118	if (underflow) {
119		significand = vfp_shiftright32jamming(significand, -exponent);
120		exponent = 0;
121#ifdef DEBUG
122		vs->exponent = exponent;
123		vs->significand = significand;
124		vfp_single_dump("pack: tiny number", vs);
125#endif
126		if (!(significand & ((1 << (VFP_SINGLE_LOW_BITS + 1)) - 1)))
127			underflow = 0;
128	}
129
130	/*
131	 * Select rounding increment.
132	 */
133	incr = 0;
134	rmode = fpscr & FPSCR_RMODE_MASK;
135
136	if (rmode == FPSCR_ROUND_NEAREST) {
137		incr = 1 << VFP_SINGLE_LOW_BITS;
138		if ((significand & (1 << (VFP_SINGLE_LOW_BITS + 1))) == 0)
139			incr -= 1;
140	} else if (rmode == FPSCR_ROUND_TOZERO) {
141		incr = 0;
142	} else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vs->sign != 0))
143		incr = (1 << (VFP_SINGLE_LOW_BITS + 1)) - 1;
144
145	pr_debug("VFP: rounding increment = 0x%08x\n", incr);
146
147	/*
148	 * Is our rounding going to overflow?
149	 */
150	if ((significand + incr) < significand) {
151		exponent += 1;
152		significand = (significand >> 1) | (significand & 1);
153		incr >>= 1;
154#ifdef DEBUG
155		vs->exponent = exponent;
156		vs->significand = significand;
157		vfp_single_dump("pack: overflow", vs);
158#endif
159	}
160
161	/*
162	 * If any of the low bits (which will be shifted out of the
163	 * number) are non-zero, the result is inexact.
164	 */
165	if (significand & ((1 << (VFP_SINGLE_LOW_BITS + 1)) - 1))
166		exceptions |= FPSCR_IXC;
167
168	/*
169	 * Do our rounding.
170	 */
171	significand += incr;
172
173	/*
174	 * Infinity?
175	 */
176	if (exponent >= 254) {
177		exceptions |= FPSCR_OFC | FPSCR_IXC;
178		if (incr == 0) {
179			vs->exponent = 253;
180			vs->significand = 0x7fffffff;
181		} else {
182			vs->exponent = 255;		/* infinity */
183			vs->significand = 0;
184		}
185	} else {
186		if (significand >> (VFP_SINGLE_LOW_BITS + 1) == 0)
187			exponent = 0;
188		if (exponent || significand > 0x80000000)
189			underflow = 0;
190		if (underflow)
191			exceptions |= FPSCR_UFC;
192		vs->exponent = exponent;
193		vs->significand = significand >> 1;
194	}
195
196 pack:
197	vfp_single_dump("pack: final", vs);
198	{
199		s32 d = vfp_single_pack(vs);
200#ifdef DEBUG
201		pr_debug("VFP: %s: d(s%d)=%08x exceptions=%08x\n", func,
202			 sd, d, exceptions);
203#endif
204		vfp_put_float(d, sd);
205	}
206
207	return exceptions;
208}
209
210/*
211 * Propagate the NaN, setting exceptions if it is signalling.
212 * 'n' is always a NaN.  'm' may be a number, NaN or infinity.
213 */
214static u32
215vfp_propagate_nan(struct vfp_single *vsd, struct vfp_single *vsn,
216		  struct vfp_single *vsm, u32 fpscr)
217{
218	struct vfp_single *nan;
219	int tn, tm = 0;
220
221	tn = vfp_single_type(vsn);
222
223	if (vsm)
224		tm = vfp_single_type(vsm);
225
226	if (fpscr & FPSCR_DEFAULT_NAN)
227		/*
228		 * Default NaN mode - always returns a quiet NaN
229		 */
230		nan = &vfp_single_default_qnan;
231	else {
232		/*
233		 * Contemporary mode - select the first signalling
234		 * NAN, or if neither are signalling, the first
235		 * quiet NAN.
236		 */
237		if (tn == VFP_SNAN || (tm != VFP_SNAN && tn == VFP_QNAN))
238			nan = vsn;
239		else
240			nan = vsm;
241		/*
242		 * Make the NaN quiet.
243		 */
244		nan->significand |= VFP_SINGLE_SIGNIFICAND_QNAN;
245	}
246
247	*vsd = *nan;
248
249	/*
250	 * If one was a signalling NAN, raise invalid operation.
251	 */
252	return tn == VFP_SNAN || tm == VFP_SNAN ? FPSCR_IOC : VFP_NAN_FLAG;
253}
254
255
256/*
257 * Extended operations
258 */
259static u32 vfp_single_fabs(int sd, int unused, s32 m, u32 fpscr)
260{
261	vfp_put_float(vfp_single_packed_abs(m), sd);
262	return 0;
263}
264
265static u32 vfp_single_fcpy(int sd, int unused, s32 m, u32 fpscr)
266{
267	vfp_put_float(m, sd);
268	return 0;
269}
270
271static u32 vfp_single_fneg(int sd, int unused, s32 m, u32 fpscr)
272{
273	vfp_put_float(vfp_single_packed_negate(m), sd);
274	return 0;
275}
276
277static const u16 sqrt_oddadjust[] = {
278	0x0004, 0x0022, 0x005d, 0x00b1, 0x011d, 0x019f, 0x0236, 0x02e0,
279	0x039c, 0x0468, 0x0545, 0x0631, 0x072b, 0x0832, 0x0946, 0x0a67
280};
281
282static const u16 sqrt_evenadjust[] = {
283	0x0a2d, 0x08af, 0x075a, 0x0629, 0x051a, 0x0429, 0x0356, 0x029e,
284	0x0200, 0x0179, 0x0109, 0x00af, 0x0068, 0x0034, 0x0012, 0x0002
285};
286
287u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand)
288{
289	int index;
290	u32 z, a;
291
292	if ((significand & 0xc0000000) != 0x40000000) {
293		pr_warn("VFP: estimate_sqrt: invalid significand\n");
294	}
295
296	a = significand << 1;
297	index = (a >> 27) & 15;
298	if (exponent & 1) {
299		z = 0x4000 + (a >> 17) - sqrt_oddadjust[index];
300		z = ((a / z) << 14) + (z << 15);
301		a >>= 1;
302	} else {
303		z = 0x8000 + (a >> 17) - sqrt_evenadjust[index];
304		z = a / z + z;
305		z = (z >= 0x20000) ? 0xffff8000 : (z << 15);
306		if (z <= a)
307			return (s32)a >> 1;
308	}
309	{
310		u64 v = (u64)a << 31;
311		do_div(v, z);
312		return v + (z >> 1);
313	}
314}
315
316static u32 vfp_single_fsqrt(int sd, int unused, s32 m, u32 fpscr)
317{
318	struct vfp_single vsm, vsd;
319	int ret, tm;
320
321	vfp_single_unpack(&vsm, m);
322	tm = vfp_single_type(&vsm);
323	if (tm & (VFP_NAN|VFP_INFINITY)) {
324		struct vfp_single *vsp = &vsd;
325
326		if (tm & VFP_NAN)
327			ret = vfp_propagate_nan(vsp, &vsm, NULL, fpscr);
328		else if (vsm.sign == 0) {
329 sqrt_copy:
330			vsp = &vsm;
331			ret = 0;
332		} else {
333 sqrt_invalid:
334			vsp = &vfp_single_default_qnan;
335			ret = FPSCR_IOC;
336		}
337		vfp_put_float(vfp_single_pack(vsp), sd);
338		return ret;
339	}
340
341	/*
342	 * sqrt(+/- 0) == +/- 0
343	 */
344	if (tm & VFP_ZERO)
345		goto sqrt_copy;
346
347	/*
348	 * Normalise a denormalised number
349	 */
350	if (tm & VFP_DENORMAL)
351		vfp_single_normalise_denormal(&vsm);
352
353	/*
354	 * sqrt(<0) = invalid
355	 */
356	if (vsm.sign)
357		goto sqrt_invalid;
358
359	vfp_single_dump("sqrt", &vsm);
360
361	/*
362	 * Estimate the square root.
363	 */
364	vsd.sign = 0;
365	vsd.exponent = ((vsm.exponent - 127) >> 1) + 127;
366	vsd.significand = vfp_estimate_sqrt_significand(vsm.exponent, vsm.significand) + 2;
367
368	vfp_single_dump("sqrt estimate", &vsd);
369
370	/*
371	 * And now adjust.
372	 */
373	if ((vsd.significand & VFP_SINGLE_LOW_BITS_MASK) <= 5) {
374		if (vsd.significand < 2) {
375			vsd.significand = 0xffffffff;
376		} else {
377			u64 term;
378			s64 rem;
379			vsm.significand <<= !(vsm.exponent & 1);
380			term = (u64)vsd.significand * vsd.significand;
381			rem = ((u64)vsm.significand << 32) - term;
382
383			pr_debug("VFP: term=%016llx rem=%016llx\n", term, rem);
384
385			while (rem < 0) {
386				vsd.significand -= 1;
387				rem += ((u64)vsd.significand << 1) | 1;
388			}
389			vsd.significand |= rem != 0;
390		}
391	}
392	vsd.significand = vfp_shiftright32jamming(vsd.significand, 1);
393
394	return vfp_single_normaliseround(sd, &vsd, fpscr, 0, "fsqrt");
395}
396
397/*
398 * Equal	:= ZC
399 * Less than	:= N
400 * Greater than	:= C
401 * Unordered	:= CV
402 */
403static u32 vfp_compare(int sd, int signal_on_qnan, s32 m, u32 fpscr)
404{
405	s32 d;
406	u32 ret = 0;
407
408	d = vfp_get_float(sd);
409	if (vfp_single_packed_exponent(m) == 255 && vfp_single_packed_mantissa(m)) {
410		ret |= FPSCR_C | FPSCR_V;
411		if (signal_on_qnan || !(vfp_single_packed_mantissa(m) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1))))
412			/*
413			 * Signalling NaN, or signalling on quiet NaN
414			 */
415			ret |= FPSCR_IOC;
416	}
417
418	if (vfp_single_packed_exponent(d) == 255 && vfp_single_packed_mantissa(d)) {
419		ret |= FPSCR_C | FPSCR_V;
420		if (signal_on_qnan || !(vfp_single_packed_mantissa(d) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1))))
421			/*
422			 * Signalling NaN, or signalling on quiet NaN
423			 */
424			ret |= FPSCR_IOC;
425	}
426
427	if (ret == 0) {
428		if (d == m || vfp_single_packed_abs(d | m) == 0) {
429			/*
430			 * equal
431			 */
432			ret |= FPSCR_Z | FPSCR_C;
433		} else if (vfp_single_packed_sign(d ^ m)) {
434			/*
435			 * different signs
436			 */
437			if (vfp_single_packed_sign(d))
438				/*
439				 * d is negative, so d < m
440				 */
441				ret |= FPSCR_N;
442			else
443				/*
444				 * d is positive, so d > m
445				 */
446				ret |= FPSCR_C;
447		} else if ((vfp_single_packed_sign(d) != 0) ^ (d < m)) {
448			/*
449			 * d < m
450			 */
451			ret |= FPSCR_N;
452		} else if ((vfp_single_packed_sign(d) != 0) ^ (d > m)) {
453			/*
454			 * d > m
455			 */
456			ret |= FPSCR_C;
457		}
458	}
459	return ret;
460}
461
462static u32 vfp_single_fcmp(int sd, int unused, s32 m, u32 fpscr)
463{
464	return vfp_compare(sd, 0, m, fpscr);
465}
466
467static u32 vfp_single_fcmpe(int sd, int unused, s32 m, u32 fpscr)
468{
469	return vfp_compare(sd, 1, m, fpscr);
470}
471
472static u32 vfp_single_fcmpz(int sd, int unused, s32 m, u32 fpscr)
473{
474	return vfp_compare(sd, 0, 0, fpscr);
475}
476
477static u32 vfp_single_fcmpez(int sd, int unused, s32 m, u32 fpscr)
478{
479	return vfp_compare(sd, 1, 0, fpscr);
480}
481
482static u32 vfp_single_fcvtd(int dd, int unused, s32 m, u32 fpscr)
483{
484	struct vfp_single vsm;
485	struct vfp_double vdd;
486	int tm;
487	u32 exceptions = 0;
488
489	vfp_single_unpack(&vsm, m);
490
491	tm = vfp_single_type(&vsm);
492
493	/*
494	 * If we have a signalling NaN, signal invalid operation.
495	 */
496	if (tm == VFP_SNAN)
497		exceptions = FPSCR_IOC;
498
499	if (tm & VFP_DENORMAL)
500		vfp_single_normalise_denormal(&vsm);
501
502	vdd.sign = vsm.sign;
503	vdd.significand = (u64)vsm.significand << 32;
504
505	/*
506	 * If we have an infinity or NaN, the exponent must be 2047.
507	 */
508	if (tm & (VFP_INFINITY|VFP_NAN)) {
509		vdd.exponent = 2047;
510		if (tm == VFP_QNAN)
511			vdd.significand |= VFP_DOUBLE_SIGNIFICAND_QNAN;
512		goto pack_nan;
513	} else if (tm & VFP_ZERO)
514		vdd.exponent = 0;
515	else
516		vdd.exponent = vsm.exponent + (1023 - 127);
517
518	return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fcvtd");
519
520 pack_nan:
521	vfp_put_double(vfp_double_pack(&vdd), dd);
522	return exceptions;
523}
524
525static u32 vfp_single_fuito(int sd, int unused, s32 m, u32 fpscr)
526{
527	struct vfp_single vs;
528
529	vs.sign = 0;
530	vs.exponent = 127 + 31 - 1;
531	vs.significand = (u32)m;
532
533	return vfp_single_normaliseround(sd, &vs, fpscr, 0, "fuito");
534}
535
536static u32 vfp_single_fsito(int sd, int unused, s32 m, u32 fpscr)
537{
538	struct vfp_single vs;
539
540	vs.sign = (m & 0x80000000) >> 16;
541	vs.exponent = 127 + 31 - 1;
542	vs.significand = vs.sign ? -m : m;
543
544	return vfp_single_normaliseround(sd, &vs, fpscr, 0, "fsito");
545}
546
547static u32 vfp_single_ftoui(int sd, int unused, s32 m, u32 fpscr)
548{
549	struct vfp_single vsm;
550	u32 d, exceptions = 0;
551	int rmode = fpscr & FPSCR_RMODE_MASK;
552	int tm;
553
554	vfp_single_unpack(&vsm, m);
555	vfp_single_dump("VSM", &vsm);
556
557	/*
558	 * Do we have a denormalised number?
559	 */
560	tm = vfp_single_type(&vsm);
561	if (tm & VFP_DENORMAL)
562		exceptions |= FPSCR_IDC;
563
564	if (tm & VFP_NAN)
565		vsm.sign = 0;
566
567	if (vsm.exponent >= 127 + 32) {
568		d = vsm.sign ? 0 : 0xffffffff;
569		exceptions = FPSCR_IOC;
570	} else if (vsm.exponent >= 127 - 1) {
571		int shift = 127 + 31 - vsm.exponent;
572		u32 rem, incr = 0;
573
574		/*
575		 * 2^0 <= m < 2^32-2^8
576		 */
577		d = (vsm.significand << 1) >> shift;
578		rem = vsm.significand << (33 - shift);
579
580		if (rmode == FPSCR_ROUND_NEAREST) {
581			incr = 0x80000000;
582			if ((d & 1) == 0)
583				incr -= 1;
584		} else if (rmode == FPSCR_ROUND_TOZERO) {
585			incr = 0;
586		} else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vsm.sign != 0)) {
587			incr = ~0;
588		}
589
590		if ((rem + incr) < rem) {
591			if (d < 0xffffffff)
592				d += 1;
593			else
594				exceptions |= FPSCR_IOC;
595		}
596
597		if (d && vsm.sign) {
598			d = 0;
599			exceptions |= FPSCR_IOC;
600		} else if (rem)
601			exceptions |= FPSCR_IXC;
602	} else {
603		d = 0;
604		if (vsm.exponent | vsm.significand) {
605			exceptions |= FPSCR_IXC;
606			if (rmode == FPSCR_ROUND_PLUSINF && vsm.sign == 0)
607				d = 1;
608			else if (rmode == FPSCR_ROUND_MINUSINF && vsm.sign) {
609				d = 0;
610				exceptions |= FPSCR_IOC;
611			}
612		}
613	}
614
615	pr_debug("VFP: ftoui: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions);
616
617	vfp_put_float(d, sd);
618
619	return exceptions;
620}
621
622static u32 vfp_single_ftouiz(int sd, int unused, s32 m, u32 fpscr)
623{
624	return vfp_single_ftoui(sd, unused, m, FPSCR_ROUND_TOZERO);
625}
626
627static u32 vfp_single_ftosi(int sd, int unused, s32 m, u32 fpscr)
628{
629	struct vfp_single vsm;
630	u32 d, exceptions = 0;
631	int rmode = fpscr & FPSCR_RMODE_MASK;
632	int tm;
633
634	vfp_single_unpack(&vsm, m);
635	vfp_single_dump("VSM", &vsm);
636
637	/*
638	 * Do we have a denormalised number?
639	 */
640	tm = vfp_single_type(&vsm);
641	if (vfp_single_type(&vsm) & VFP_DENORMAL)
642		exceptions |= FPSCR_IDC;
643
644	if (tm & VFP_NAN) {
645		d = 0;
646		exceptions |= FPSCR_IOC;
647	} else if (vsm.exponent >= 127 + 32) {
648		/*
649		 * m >= 2^31-2^7: invalid
650		 */
651		d = 0x7fffffff;
652		if (vsm.sign)
653			d = ~d;
654		exceptions |= FPSCR_IOC;
655	} else if (vsm.exponent >= 127 - 1) {
656		int shift = 127 + 31 - vsm.exponent;
657		u32 rem, incr = 0;
658
659		/* 2^0 <= m <= 2^31-2^7 */
660		d = (vsm.significand << 1) >> shift;
661		rem = vsm.significand << (33 - shift);
662
663		if (rmode == FPSCR_ROUND_NEAREST) {
664			incr = 0x80000000;
665			if ((d & 1) == 0)
666				incr -= 1;
667		} else if (rmode == FPSCR_ROUND_TOZERO) {
668			incr = 0;
669		} else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vsm.sign != 0)) {
670			incr = ~0;
671		}
672
673		if ((rem + incr) < rem && d < 0xffffffff)
674			d += 1;
675		if (d > 0x7fffffff + (vsm.sign != 0)) {
676			d = 0x7fffffff + (vsm.sign != 0);
677			exceptions |= FPSCR_IOC;
678		} else if (rem)
679			exceptions |= FPSCR_IXC;
680
681		if (vsm.sign)
682			d = -d;
683	} else {
684		d = 0;
685		if (vsm.exponent | vsm.significand) {
686			exceptions |= FPSCR_IXC;
687			if (rmode == FPSCR_ROUND_PLUSINF && vsm.sign == 0)
688				d = 1;
689			else if (rmode == FPSCR_ROUND_MINUSINF && vsm.sign)
690				d = -1;
691		}
692	}
693
694	pr_debug("VFP: ftosi: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions);
695
696	vfp_put_float((s32)d, sd);
697
698	return exceptions;
699}
700
701static u32 vfp_single_ftosiz(int sd, int unused, s32 m, u32 fpscr)
702{
703	return vfp_single_ftosi(sd, unused, m, FPSCR_ROUND_TOZERO);
704}
705
706static struct op fops_ext[32] = {
707	[FEXT_TO_IDX(FEXT_FCPY)]	= { vfp_single_fcpy,   0 },
708	[FEXT_TO_IDX(FEXT_FABS)]	= { vfp_single_fabs,   0 },
709	[FEXT_TO_IDX(FEXT_FNEG)]	= { vfp_single_fneg,   0 },
710	[FEXT_TO_IDX(FEXT_FSQRT)]	= { vfp_single_fsqrt,  0 },
711	[FEXT_TO_IDX(FEXT_FCMP)]	= { vfp_single_fcmp,   OP_SCALAR },
712	[FEXT_TO_IDX(FEXT_FCMPE)]	= { vfp_single_fcmpe,  OP_SCALAR },
713	[FEXT_TO_IDX(FEXT_FCMPZ)]	= { vfp_single_fcmpz,  OP_SCALAR },
714	[FEXT_TO_IDX(FEXT_FCMPEZ)]	= { vfp_single_fcmpez, OP_SCALAR },
715	[FEXT_TO_IDX(FEXT_FCVT)]	= { vfp_single_fcvtd,  OP_SCALAR|OP_DD },
716	[FEXT_TO_IDX(FEXT_FUITO)]	= { vfp_single_fuito,  OP_SCALAR },
717	[FEXT_TO_IDX(FEXT_FSITO)]	= { vfp_single_fsito,  OP_SCALAR },
718	[FEXT_TO_IDX(FEXT_FTOUI)]	= { vfp_single_ftoui,  OP_SCALAR },
719	[FEXT_TO_IDX(FEXT_FTOUIZ)]	= { vfp_single_ftouiz, OP_SCALAR },
720	[FEXT_TO_IDX(FEXT_FTOSI)]	= { vfp_single_ftosi,  OP_SCALAR },
721	[FEXT_TO_IDX(FEXT_FTOSIZ)]	= { vfp_single_ftosiz, OP_SCALAR },
722};
723
724
725
726
727
728static u32
729vfp_single_fadd_nonnumber(struct vfp_single *vsd, struct vfp_single *vsn,
730			  struct vfp_single *vsm, u32 fpscr)
731{
732	struct vfp_single *vsp;
733	u32 exceptions = 0;
734	int tn, tm;
735
736	tn = vfp_single_type(vsn);
737	tm = vfp_single_type(vsm);
738
739	if (tn & tm & VFP_INFINITY) {
740		/*
741		 * Two infinities.  Are they different signs?
742		 */
743		if (vsn->sign ^ vsm->sign) {
744			/*
745			 * different signs -> invalid
746			 */
747			exceptions = FPSCR_IOC;
748			vsp = &vfp_single_default_qnan;
749		} else {
750			/*
751			 * same signs -> valid
752			 */
753			vsp = vsn;
754		}
755	} else if (tn & VFP_INFINITY && tm & VFP_NUMBER) {
756		/*
757		 * One infinity and one number -> infinity
758		 */
759		vsp = vsn;
760	} else {
761		/*
762		 * 'n' is a NaN of some type
763		 */
764		return vfp_propagate_nan(vsd, vsn, vsm, fpscr);
765	}
766	*vsd = *vsp;
767	return exceptions;
768}
769
770static u32
771vfp_single_add(struct vfp_single *vsd, struct vfp_single *vsn,
772	       struct vfp_single *vsm, u32 fpscr)
773{
774	u32 exp_diff, m_sig;
775
776	if (vsn->significand & 0x80000000 ||
777	    vsm->significand & 0x80000000) {
778		pr_info("VFP: bad FP values in %s\n", __func__);
779		vfp_single_dump("VSN", vsn);
780		vfp_single_dump("VSM", vsm);
781	}
782
783	/*
784	 * Ensure that 'n' is the largest magnitude number.  Note that
785	 * if 'n' and 'm' have equal exponents, we do not swap them.
786	 * This ensures that NaN propagation works correctly.
787	 */
788	if (vsn->exponent < vsm->exponent) {
789		struct vfp_single *t = vsn;
790		vsn = vsm;
791		vsm = t;
792	}
793
794	/*
795	 * Is 'n' an infinity or a NaN?  Note that 'm' may be a number,
796	 * infinity or a NaN here.
797	 */
798	if (vsn->exponent == 255)
799		return vfp_single_fadd_nonnumber(vsd, vsn, vsm, fpscr);
800
801	/*
802	 * We have two proper numbers, where 'vsn' is the larger magnitude.
803	 *
804	 * Copy 'n' to 'd' before doing the arithmetic.
805	 */
806	*vsd = *vsn;
807
808	/*
809	 * Align both numbers.
810	 */
811	exp_diff = vsn->exponent - vsm->exponent;
812	m_sig = vfp_shiftright32jamming(vsm->significand, exp_diff);
813
814	/*
815	 * If the signs are different, we are really subtracting.
816	 */
817	if (vsn->sign ^ vsm->sign) {
818		m_sig = vsn->significand - m_sig;
819		if ((s32)m_sig < 0) {
820			vsd->sign = vfp_sign_negate(vsd->sign);
821			m_sig = -m_sig;
822		} else if (m_sig == 0) {
823			vsd->sign = (fpscr & FPSCR_RMODE_MASK) ==
824				      FPSCR_ROUND_MINUSINF ? 0x8000 : 0;
825		}
826	} else {
827		m_sig = vsn->significand + m_sig;
828	}
829	vsd->significand = m_sig;
830
831	return 0;
832}
833
834static u32
835vfp_single_multiply(struct vfp_single *vsd, struct vfp_single *vsn, struct vfp_single *vsm, u32 fpscr)
836{
837	vfp_single_dump("VSN", vsn);
838	vfp_single_dump("VSM", vsm);
839
840	/*
841	 * Ensure that 'n' is the largest magnitude number.  Note that
842	 * if 'n' and 'm' have equal exponents, we do not swap them.
843	 * This ensures that NaN propagation works correctly.
844	 */
845	if (vsn->exponent < vsm->exponent) {
846		struct vfp_single *t = vsn;
847		vsn = vsm;
848		vsm = t;
849		pr_debug("VFP: swapping M <-> N\n");
850	}
851
852	vsd->sign = vsn->sign ^ vsm->sign;
853
854	/*
855	 * If 'n' is an infinity or NaN, handle it.  'm' may be anything.
856	 */
857	if (vsn->exponent == 255) {
858		if (vsn->significand || (vsm->exponent == 255 && vsm->significand))
859			return vfp_propagate_nan(vsd, vsn, vsm, fpscr);
860		if ((vsm->exponent | vsm->significand) == 0) {
861			*vsd = vfp_single_default_qnan;
862			return FPSCR_IOC;
863		}
864		vsd->exponent = vsn->exponent;
865		vsd->significand = 0;
866		return 0;
867	}
868
869	/*
870	 * If 'm' is zero, the result is always zero.  In this case,
871	 * 'n' may be zero or a number, but it doesn't matter which.
872	 */
873	if ((vsm->exponent | vsm->significand) == 0) {
874		vsd->exponent = 0;
875		vsd->significand = 0;
876		return 0;
877	}
878
879	/*
880	 * We add 2 to the destination exponent for the same reason as
881	 * the addition case - though this time we have +1 from each
882	 * input operand.
883	 */
884	vsd->exponent = vsn->exponent + vsm->exponent - 127 + 2;
885	vsd->significand = vfp_hi64to32jamming((u64)vsn->significand * vsm->significand);
886
887	vfp_single_dump("VSD", vsd);
888	return 0;
889}
890
891#define NEG_MULTIPLY	(1 << 0)
892#define NEG_SUBTRACT	(1 << 1)
893
894static u32
895vfp_single_multiply_accumulate(int sd, int sn, s32 m, u32 fpscr, u32 negate, char *func)
896{
897	struct vfp_single vsd, vsp, vsn, vsm;
898	u32 exceptions;
899	s32 v;
900
901	v = vfp_get_float(sn);
902	pr_debug("VFP: s%u = %08x\n", sn, v);
903	vfp_single_unpack(&vsn, v);
904	if (vsn.exponent == 0 && vsn.significand)
905		vfp_single_normalise_denormal(&vsn);
906
907	vfp_single_unpack(&vsm, m);
908	if (vsm.exponent == 0 && vsm.significand)
909		vfp_single_normalise_denormal(&vsm);
910
911	exceptions = vfp_single_multiply(&vsp, &vsn, &vsm, fpscr);
912	if (negate & NEG_MULTIPLY)
913		vsp.sign = vfp_sign_negate(vsp.sign);
914
915	v = vfp_get_float(sd);
916	pr_debug("VFP: s%u = %08x\n", sd, v);
917	vfp_single_unpack(&vsn, v);
918	if (vsn.exponent == 0 && vsn.significand)
919		vfp_single_normalise_denormal(&vsn);
920	if (negate & NEG_SUBTRACT)
921		vsn.sign = vfp_sign_negate(vsn.sign);
922
923	exceptions |= vfp_single_add(&vsd, &vsn, &vsp, fpscr);
924
925	return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, func);
926}
927
928/*
929 * Standard operations
930 */
931
932/*
933 * sd = sd + (sn * sm)
934 */
935static u32 vfp_single_fmac(int sd, int sn, s32 m, u32 fpscr)
936{
937	return vfp_single_multiply_accumulate(sd, sn, m, fpscr, 0, "fmac");
938}
939
940/*
941 * sd = sd - (sn * sm)
942 */
943static u32 vfp_single_fnmac(int sd, int sn, s32 m, u32 fpscr)
944{
945	return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_MULTIPLY, "fnmac");
946}
947
948/*
949 * sd = -sd + (sn * sm)
950 */
951static u32 vfp_single_fmsc(int sd, int sn, s32 m, u32 fpscr)
952{
953	return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_SUBTRACT, "fmsc");
954}
955
956/*
957 * sd = -sd - (sn * sm)
958 */
959static u32 vfp_single_fnmsc(int sd, int sn, s32 m, u32 fpscr)
960{
961	return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_SUBTRACT | NEG_MULTIPLY, "fnmsc");
962}
963
964/*
965 * sd = sn * sm
966 */
967static u32 vfp_single_fmul(int sd, int sn, s32 m, u32 fpscr)
968{
969	struct vfp_single vsd, vsn, vsm;
970	u32 exceptions;
971	s32 n = vfp_get_float(sn);
972
973	pr_debug("VFP: s%u = %08x\n", sn, n);
974
975	vfp_single_unpack(&vsn, n);
976	if (vsn.exponent == 0 && vsn.significand)
977		vfp_single_normalise_denormal(&vsn);
978
979	vfp_single_unpack(&vsm, m);
980	if (vsm.exponent == 0 && vsm.significand)
981		vfp_single_normalise_denormal(&vsm);
982
983	exceptions = vfp_single_multiply(&vsd, &vsn, &vsm, fpscr);
984	return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fmul");
985}
986
987/*
988 * sd = -(sn * sm)
989 */
990static u32 vfp_single_fnmul(int sd, int sn, s32 m, u32 fpscr)
991{
992	struct vfp_single vsd, vsn, vsm;
993	u32 exceptions;
994	s32 n = vfp_get_float(sn);
995
996	pr_debug("VFP: s%u = %08x\n", sn, n);
997
998	vfp_single_unpack(&vsn, n);
999	if (vsn.exponent == 0 && vsn.significand)
1000		vfp_single_normalise_denormal(&vsn);
1001
1002	vfp_single_unpack(&vsm, m);
1003	if (vsm.exponent == 0 && vsm.significand)
1004		vfp_single_normalise_denormal(&vsm);
1005
1006	exceptions = vfp_single_multiply(&vsd, &vsn, &vsm, fpscr);
1007	vsd.sign = vfp_sign_negate(vsd.sign);
1008	return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fnmul");
1009}
1010
1011/*
1012 * sd = sn + sm
1013 */
1014static u32 vfp_single_fadd(int sd, int sn, s32 m, u32 fpscr)
1015{
1016	struct vfp_single vsd, vsn, vsm;
1017	u32 exceptions;
1018	s32 n = vfp_get_float(sn);
1019
1020	pr_debug("VFP: s%u = %08x\n", sn, n);
1021
1022	/*
1023	 * Unpack and normalise denormals.
1024	 */
1025	vfp_single_unpack(&vsn, n);
1026	if (vsn.exponent == 0 && vsn.significand)
1027		vfp_single_normalise_denormal(&vsn);
1028
1029	vfp_single_unpack(&vsm, m);
1030	if (vsm.exponent == 0 && vsm.significand)
1031		vfp_single_normalise_denormal(&vsm);
1032
1033	exceptions = vfp_single_add(&vsd, &vsn, &vsm, fpscr);
1034
1035	return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fadd");
1036}
1037
1038/*
1039 * sd = sn - sm
1040 */
1041static u32 vfp_single_fsub(int sd, int sn, s32 m, u32 fpscr)
1042{
1043	/*
1044	 * Subtraction is addition with one sign inverted.
1045	 */
1046	return vfp_single_fadd(sd, sn, vfp_single_packed_negate(m), fpscr);
1047}
1048
1049/*
1050 * sd = sn / sm
1051 */
1052static u32 vfp_single_fdiv(int sd, int sn, s32 m, u32 fpscr)
1053{
1054	struct vfp_single vsd, vsn, vsm;
1055	u32 exceptions = 0;
1056	s32 n = vfp_get_float(sn);
1057	int tm, tn;
1058
1059	pr_debug("VFP: s%u = %08x\n", sn, n);
1060
1061	vfp_single_unpack(&vsn, n);
1062	vfp_single_unpack(&vsm, m);
1063
1064	vsd.sign = vsn.sign ^ vsm.sign;
1065
1066	tn = vfp_single_type(&vsn);
1067	tm = vfp_single_type(&vsm);
1068
1069	/*
1070	 * Is n a NAN?
1071	 */
1072	if (tn & VFP_NAN)
1073		goto vsn_nan;
1074
1075	/*
1076	 * Is m a NAN?
1077	 */
1078	if (tm & VFP_NAN)
1079		goto vsm_nan;
1080
1081	/*
1082	 * If n and m are infinity, the result is invalid
1083	 * If n and m are zero, the result is invalid
1084	 */
1085	if (tm & tn & (VFP_INFINITY|VFP_ZERO))
1086		goto invalid;
1087
1088	/*
1089	 * If n is infinity, the result is infinity
1090	 */
1091	if (tn & VFP_INFINITY)
1092		goto infinity;
1093
1094	/*
1095	 * If m is zero, raise div0 exception
1096	 */
1097	if (tm & VFP_ZERO)
1098		goto divzero;
1099
1100	/*
1101	 * If m is infinity, or n is zero, the result is zero
1102	 */
1103	if (tm & VFP_INFINITY || tn & VFP_ZERO)
1104		goto zero;
1105
1106	if (tn & VFP_DENORMAL)
1107		vfp_single_normalise_denormal(&vsn);
1108	if (tm & VFP_DENORMAL)
1109		vfp_single_normalise_denormal(&vsm);
1110
1111	/*
1112	 * Ok, we have two numbers, we can perform division.
1113	 */
1114	vsd.exponent = vsn.exponent - vsm.exponent + 127 - 1;
1115	vsm.significand <<= 1;
1116	if (vsm.significand <= (2 * vsn.significand)) {
1117		vsn.significand >>= 1;
1118		vsd.exponent++;
1119	}
1120	{
1121		u64 significand = (u64)vsn.significand << 32;
1122		do_div(significand, vsm.significand);
1123		vsd.significand = significand;
1124	}
1125	if ((vsd.significand & 0x3f) == 0)
1126		vsd.significand |= ((u64)vsm.significand * vsd.significand != (u64)vsn.significand << 32);
1127
1128	return vfp_single_normaliseround(sd, &vsd, fpscr, 0, "fdiv");
1129
1130 vsn_nan:
1131	exceptions = vfp_propagate_nan(&vsd, &vsn, &vsm, fpscr);
1132 pack:
1133	vfp_put_float(vfp_single_pack(&vsd), sd);
1134	return exceptions;
1135
1136 vsm_nan:
1137	exceptions = vfp_propagate_nan(&vsd, &vsm, &vsn, fpscr);
1138	goto pack;
1139
1140 zero:
1141	vsd.exponent = 0;
1142	vsd.significand = 0;
1143	goto pack;
1144
1145 divzero:
1146	exceptions = FPSCR_DZC;
1147 infinity:
1148	vsd.exponent = 255;
1149	vsd.significand = 0;
1150	goto pack;
1151
1152 invalid:
1153	vfp_put_float(vfp_single_pack(&vfp_single_default_qnan), sd);
1154	return FPSCR_IOC;
1155}
1156
1157static struct op fops[16] = {
1158	[FOP_TO_IDX(FOP_FMAC)]	= { vfp_single_fmac,  0 },
1159	[FOP_TO_IDX(FOP_FNMAC)]	= { vfp_single_fnmac, 0 },
1160	[FOP_TO_IDX(FOP_FMSC)]	= { vfp_single_fmsc,  0 },
1161	[FOP_TO_IDX(FOP_FNMSC)]	= { vfp_single_fnmsc, 0 },
1162	[FOP_TO_IDX(FOP_FMUL)]	= { vfp_single_fmul,  0 },
1163	[FOP_TO_IDX(FOP_FNMUL)]	= { vfp_single_fnmul, 0 },
1164	[FOP_TO_IDX(FOP_FADD)]	= { vfp_single_fadd,  0 },
1165	[FOP_TO_IDX(FOP_FSUB)]	= { vfp_single_fsub,  0 },
1166	[FOP_TO_IDX(FOP_FDIV)]	= { vfp_single_fdiv,  0 },
1167};
1168
1169#define FREG_BANK(x)	((x) & 0x18)
1170#define FREG_IDX(x)	((x) & 7)
1171
1172u32 vfp_single_cpdo(u32 inst, u32 fpscr)
1173{
1174	u32 op = inst & FOP_MASK;
1175	u32 exceptions = 0;
1176	unsigned int dest;
1177	unsigned int sn = vfp_get_sn(inst);
1178	unsigned int sm = vfp_get_sm(inst);
1179	unsigned int vecitr, veclen, vecstride;
1180	struct op *fop;
1181
1182	vecstride = 1 + ((fpscr & FPSCR_STRIDE_MASK) == FPSCR_STRIDE_MASK);
1183
1184	fop = (op == FOP_EXT) ? &fops_ext[FEXT_TO_IDX(inst)] : &fops[FOP_TO_IDX(op)];
1185
1186	/*
1187	 * fcvtsd takes a dN register number as destination, not sN.
1188	 * Technically, if bit 0 of dd is set, this is an invalid
1189	 * instruction.  However, we ignore this for efficiency.
1190	 * It also only operates on scalars.
1191	 */
1192	if (fop->flags & OP_DD)
1193		dest = vfp_get_dd(inst);
1194	else
1195		dest = vfp_get_sd(inst);
1196
1197	/*
1198	 * If destination bank is zero, vector length is always '1'.
1199	 * ARM DDI0100F C5.1.3, C5.3.2.
1200	 */
1201	if ((fop->flags & OP_SCALAR) || FREG_BANK(dest) == 0)
1202		veclen = 0;
1203	else
1204		veclen = fpscr & FPSCR_LENGTH_MASK;
1205
1206	pr_debug("VFP: vecstride=%u veclen=%u\n", vecstride,
1207		 (veclen >> FPSCR_LENGTH_BIT) + 1);
1208
1209	if (!fop->fn)
1210		goto invalid;
1211
1212	for (vecitr = 0; vecitr <= veclen; vecitr += 1 << FPSCR_LENGTH_BIT) {
1213		s32 m = vfp_get_float(sm);
1214		u32 except;
1215		char type;
1216
1217		type = fop->flags & OP_DD ? 'd' : 's';
1218		if (op == FOP_EXT)
1219			pr_debug("VFP: itr%d (%c%u) = op[%u] (s%u=%08x)\n",
1220				 vecitr >> FPSCR_LENGTH_BIT, type, dest, sn,
1221				 sm, m);
1222		else
1223			pr_debug("VFP: itr%d (%c%u) = (s%u) op[%u] (s%u=%08x)\n",
1224				 vecitr >> FPSCR_LENGTH_BIT, type, dest, sn,
1225				 FOP_TO_IDX(op), sm, m);
1226
1227		except = fop->fn(dest, sn, m, fpscr);
1228		pr_debug("VFP: itr%d: exceptions=%08x\n",
1229			 vecitr >> FPSCR_LENGTH_BIT, except);
1230
1231		exceptions |= except;
1232
1233		/*
1234		 * CHECK: It appears to be undefined whether we stop when
1235		 * we encounter an exception.  We continue.
1236		 */
1237		dest = FREG_BANK(dest) + ((FREG_IDX(dest) + vecstride) & 7);
1238		sn = FREG_BANK(sn) + ((FREG_IDX(sn) + vecstride) & 7);
1239		if (FREG_BANK(sm) != 0)
1240			sm = FREG_BANK(sm) + ((FREG_IDX(sm) + vecstride) & 7);
1241	}
1242	return exceptions;
1243
1244 invalid:
1245	return (u32)-1;
1246}
1247