1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2014-2015 Broadcom Corporation
4 * Copyright 2014 Linaro Limited
5 */
6
7#include <linux/cpumask.h>
8#include <linux/delay.h>
9#include <linux/errno.h>
10#include <linux/init.h>
11#include <linux/io.h>
12#include <linux/irqchip/irq-bcm2836.h>
13#include <linux/jiffies.h>
14#include <linux/of.h>
15#include <linux/of_address.h>
16#include <linux/sched.h>
17#include <linux/sched/clock.h>
18#include <linux/smp.h>
19
20#include <asm/cacheflush.h>
21#include <asm/smp.h>
22#include <asm/smp_plat.h>
23#include <asm/smp_scu.h>
24
25#include "platsmp.h"
26
27/* Size of mapped Cortex A9 SCU address space */
28#define CORTEX_A9_SCU_SIZE	0x58
29
30#define SECONDARY_TIMEOUT_NS	NSEC_PER_MSEC	/* 1 msec (in nanoseconds) */
31#define BOOT_ADDR_CPUID_MASK	0x3
32
33/* Name of device node property defining secondary boot register location */
34#define OF_SECONDARY_BOOT	"secondary-boot-reg"
35#define MPIDR_CPUID_BITMASK	0x3
36
37/*
38 * Enable the Cortex A9 Snoop Control Unit
39 *
40 * By the time this is called we already know there are multiple
41 * cores present.  We assume we're running on a Cortex A9 processor,
42 * so any trouble getting the base address register or getting the
43 * SCU base is a problem.
44 *
45 * Return 0 if successful or an error code otherwise.
46 */
47static int __init scu_a9_enable(void)
48{
49	unsigned long config_base;
50	void __iomem *scu_base;
51
52	if (!scu_a9_has_base()) {
53		pr_err("no configuration base address register!\n");
54		return -ENXIO;
55	}
56
57	/* Config base address register value is zero for uniprocessor */
58	config_base = scu_a9_get_base();
59	if (!config_base) {
60		pr_err("hardware reports only one core\n");
61		return -ENOENT;
62	}
63
64	scu_base = ioremap((phys_addr_t)config_base, CORTEX_A9_SCU_SIZE);
65	if (!scu_base) {
66		pr_err("failed to remap config base (%lu/%u) for SCU\n",
67			config_base, CORTEX_A9_SCU_SIZE);
68		return -ENOMEM;
69	}
70
71	scu_enable(scu_base);
72
73	iounmap(scu_base);	/* That's the last we'll need of this */
74
75	return 0;
76}
77
78static u32 secondary_boot_addr_for(unsigned int cpu)
79{
80	u32 secondary_boot_addr = 0;
81	struct device_node *cpu_node = of_get_cpu_node(cpu, NULL);
82
83        if (!cpu_node) {
84		pr_err("Failed to find device tree node for CPU%u\n", cpu);
85		return 0;
86	}
87
88	if (of_property_read_u32(cpu_node,
89				 OF_SECONDARY_BOOT,
90				 &secondary_boot_addr))
91		pr_err("required secondary boot register not specified for CPU%u\n",
92			cpu);
93
94	of_node_put(cpu_node);
95
96	return secondary_boot_addr;
97}
98
99static int nsp_write_lut(unsigned int cpu)
100{
101	void __iomem *sku_rom_lut;
102	phys_addr_t secondary_startup_phy;
103	const u32 secondary_boot_addr = secondary_boot_addr_for(cpu);
104
105	if (!secondary_boot_addr)
106		return -EINVAL;
107
108	sku_rom_lut = ioremap((phys_addr_t)secondary_boot_addr,
109				      sizeof(phys_addr_t));
110	if (!sku_rom_lut) {
111		pr_warn("unable to ioremap SKU-ROM LUT register for cpu %u\n", cpu);
112		return -ENOMEM;
113	}
114
115	secondary_startup_phy = __pa_symbol(secondary_startup);
116	BUG_ON(secondary_startup_phy > (phys_addr_t)U32_MAX);
117
118	writel_relaxed(secondary_startup_phy, sku_rom_lut);
119
120	/* Ensure the write is visible to the secondary core */
121	smp_wmb();
122
123	iounmap(sku_rom_lut);
124
125	return 0;
126}
127
128static void __init bcm_smp_prepare_cpus(unsigned int max_cpus)
129{
130	const cpumask_t only_cpu_0 = { CPU_BITS_CPU0 };
131
132	/* Enable the SCU on Cortex A9 based SoCs */
133	if (scu_a9_enable()) {
134		/* Update the CPU present map to reflect uniprocessor mode */
135		pr_warn("failed to enable A9 SCU - disabling SMP\n");
136		init_cpu_present(&only_cpu_0);
137	}
138}
139
140/*
141 * The ROM code has the secondary cores looping, waiting for an event.
142 * When an event occurs each core examines the bottom two bits of the
143 * secondary boot register.  When a core finds those bits contain its
144 * own core id, it performs initialization, including computing its boot
145 * address by clearing the boot register value's bottom two bits.  The
146 * core signals that it is beginning its execution by writing its boot
147 * address back to the secondary boot register, and finally jumps to
148 * that address.
149 *
150 * So to start a core executing we need to:
151 * - Encode the (hardware) CPU id with the bottom bits of the secondary
152 *   start address.
153 * - Write that value into the secondary boot register.
154 * - Generate an event to wake up the secondary CPU(s).
155 * - Wait for the secondary boot register to be re-written, which
156 *   indicates the secondary core has started.
157 */
158static int kona_boot_secondary(unsigned int cpu, struct task_struct *idle)
159{
160	void __iomem *boot_reg;
161	phys_addr_t boot_func;
162	u64 start_clock;
163	u32 cpu_id;
164	u32 boot_val;
165	bool timeout = false;
166	const u32 secondary_boot_addr = secondary_boot_addr_for(cpu);
167
168	cpu_id = cpu_logical_map(cpu);
169	if (cpu_id & ~BOOT_ADDR_CPUID_MASK) {
170		pr_err("bad cpu id (%u > %u)\n", cpu_id, BOOT_ADDR_CPUID_MASK);
171		return -EINVAL;
172	}
173
174	if (!secondary_boot_addr)
175		return -EINVAL;
176
177	boot_reg = ioremap((phys_addr_t)secondary_boot_addr,
178				   sizeof(phys_addr_t));
179	if (!boot_reg) {
180		pr_err("unable to map boot register for cpu %u\n", cpu_id);
181		return -ENOMEM;
182	}
183
184	/*
185	 * Secondary cores will start in secondary_startup(),
186	 * defined in "arch/arm/kernel/head.S"
187	 */
188	boot_func = __pa_symbol(secondary_startup);
189	BUG_ON(boot_func & BOOT_ADDR_CPUID_MASK);
190	BUG_ON(boot_func > (phys_addr_t)U32_MAX);
191
192	/* The core to start is encoded in the low bits */
193	boot_val = (u32)boot_func | cpu_id;
194	writel_relaxed(boot_val, boot_reg);
195
196	sev();
197
198	/* The low bits will be cleared once the core has started */
199	start_clock = local_clock();
200	while (!timeout && readl_relaxed(boot_reg) == boot_val)
201		timeout = local_clock() - start_clock > SECONDARY_TIMEOUT_NS;
202
203	iounmap(boot_reg);
204
205	if (!timeout)
206		return 0;
207
208	pr_err("timeout waiting for cpu %u to start\n", cpu_id);
209
210	return -ENXIO;
211}
212
213/* Cluster Dormant Control command to bring CPU into a running state */
214#define CDC_CMD			6
215#define CDC_CMD_OFFSET		0
216#define CDC_CMD_REG(cpu)	(CDC_CMD_OFFSET + 4*(cpu))
217
218/*
219 * BCM23550 has a Cluster Dormant Control block that keeps the core in
220 * idle state. A command needs to be sent to the block to bring the CPU
221 * into running state.
222 */
223static int bcm23550_boot_secondary(unsigned int cpu, struct task_struct *idle)
224{
225	void __iomem *cdc_base;
226	struct device_node *dn;
227	char *name;
228	int ret;
229
230	/* Make sure a CDC node exists before booting the
231	 * secondary core.
232	 */
233	name = "brcm,bcm23550-cdc";
234	dn = of_find_compatible_node(NULL, NULL, name);
235	if (!dn) {
236		pr_err("unable to find cdc node\n");
237		return -ENODEV;
238	}
239
240	cdc_base = of_iomap(dn, 0);
241	of_node_put(dn);
242
243	if (!cdc_base) {
244		pr_err("unable to remap cdc base register\n");
245		return -ENOMEM;
246	}
247
248	/* Boot the secondary core */
249	ret = kona_boot_secondary(cpu, idle);
250	if (ret)
251		goto out;
252
253	/* Bring this CPU to RUN state so that nIRQ nFIQ
254	 * signals are unblocked.
255	 */
256	writel_relaxed(CDC_CMD, cdc_base + CDC_CMD_REG(cpu));
257
258out:
259	iounmap(cdc_base);
260
261	return ret;
262}
263
264static int nsp_boot_secondary(unsigned int cpu, struct task_struct *idle)
265{
266	int ret;
267
268	/*
269	 * After wake up, secondary core branches to the startup
270	 * address programmed at SKU ROM LUT location.
271	 */
272	ret = nsp_write_lut(cpu);
273	if (ret) {
274		pr_err("unable to write startup addr to SKU ROM LUT\n");
275		goto out;
276	}
277
278	/* Send a CPU wakeup interrupt to the secondary core */
279	arch_send_wakeup_ipi_mask(cpumask_of(cpu));
280
281out:
282	return ret;
283}
284
285static int bcm2836_boot_secondary(unsigned int cpu, struct task_struct *idle)
286{
287	void __iomem *intc_base;
288	struct device_node *dn;
289	char *name;
290
291	name = "brcm,bcm2836-l1-intc";
292	dn = of_find_compatible_node(NULL, NULL, name);
293	if (!dn) {
294		pr_err("unable to find intc node\n");
295		return -ENODEV;
296	}
297
298	intc_base = of_iomap(dn, 0);
299	of_node_put(dn);
300
301	if (!intc_base) {
302		pr_err("unable to remap intc base register\n");
303		return -ENOMEM;
304	}
305
306	writel(virt_to_phys(secondary_startup),
307	       intc_base + LOCAL_MAILBOX3_SET0 + 16 * cpu);
308
309	dsb(sy);
310	sev();
311
312	iounmap(intc_base);
313
314	return 0;
315}
316
317static const struct smp_operations kona_smp_ops __initconst = {
318	.smp_prepare_cpus	= bcm_smp_prepare_cpus,
319	.smp_boot_secondary	= kona_boot_secondary,
320};
321CPU_METHOD_OF_DECLARE(bcm_smp_bcm281xx, "brcm,bcm11351-cpu-method",
322			&kona_smp_ops);
323
324static const struct smp_operations bcm23550_smp_ops __initconst = {
325	.smp_boot_secondary	= bcm23550_boot_secondary,
326};
327CPU_METHOD_OF_DECLARE(bcm_smp_bcm23550, "brcm,bcm23550",
328			&bcm23550_smp_ops);
329
330static const struct smp_operations nsp_smp_ops __initconst = {
331	.smp_prepare_cpus	= bcm_smp_prepare_cpus,
332	.smp_boot_secondary	= nsp_boot_secondary,
333};
334CPU_METHOD_OF_DECLARE(bcm_smp_nsp, "brcm,bcm-nsp-smp", &nsp_smp_ops);
335
336const struct smp_operations bcm2836_smp_ops __initconst = {
337	.smp_boot_secondary	= bcm2836_boot_secondary,
338};
339CPU_METHOD_OF_DECLARE(bcm_smp_bcm2836, "brcm,bcm2836-smp", &bcm2836_smp_ops);
340