1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *  linux/arch/arm/kernel/smp.c
4 *
5 *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
6 */
7#include <linux/module.h>
8#include <linux/delay.h>
9#include <linux/init.h>
10#include <linux/spinlock.h>
11#include <linux/sched/mm.h>
12#include <linux/sched/hotplug.h>
13#include <linux/sched/task_stack.h>
14#include <linux/interrupt.h>
15#include <linux/cache.h>
16#include <linux/profile.h>
17#include <linux/errno.h>
18#include <linux/mm.h>
19#include <linux/err.h>
20#include <linux/cpu.h>
21#include <linux/seq_file.h>
22#include <linux/irq.h>
23#include <linux/nmi.h>
24#include <linux/percpu.h>
25#include <linux/clockchips.h>
26#include <linux/completion.h>
27#include <linux/cpufreq.h>
28#include <linux/irq_work.h>
29#include <linux/kernel_stat.h>
30
31#include <linux/atomic.h>
32#include <asm/bugs.h>
33#include <asm/smp.h>
34#include <asm/cacheflush.h>
35#include <asm/cpu.h>
36#include <asm/cputype.h>
37#include <asm/exception.h>
38#include <asm/idmap.h>
39#include <asm/topology.h>
40#include <asm/mmu_context.h>
41#include <asm/procinfo.h>
42#include <asm/processor.h>
43#include <asm/sections.h>
44#include <asm/tlbflush.h>
45#include <asm/ptrace.h>
46#include <asm/smp_plat.h>
47#include <asm/virt.h>
48#include <asm/mach/arch.h>
49#include <asm/mpu.h>
50
51#include <trace/events/ipi.h>
52
53/*
54 * as from 2.5, kernels no longer have an init_tasks structure
55 * so we need some other way of telling a new secondary core
56 * where to place its SVC stack
57 */
58struct secondary_data secondary_data;
59
60enum ipi_msg_type {
61	IPI_WAKEUP,
62	IPI_TIMER,
63	IPI_RESCHEDULE,
64	IPI_CALL_FUNC,
65	IPI_CPU_STOP,
66	IPI_IRQ_WORK,
67	IPI_COMPLETION,
68	NR_IPI,
69	/*
70	 * CPU_BACKTRACE is special and not included in NR_IPI
71	 * or tracable with trace_ipi_*
72	 */
73	IPI_CPU_BACKTRACE = NR_IPI,
74	/*
75	 * SGI8-15 can be reserved by secure firmware, and thus may
76	 * not be usable by the kernel. Please keep the above limited
77	 * to at most 8 entries.
78	 */
79	MAX_IPI
80};
81
82static int ipi_irq_base __read_mostly;
83static int nr_ipi __read_mostly = NR_IPI;
84static struct irq_desc *ipi_desc[MAX_IPI] __read_mostly;
85
86static void ipi_setup(int cpu);
87
88static DECLARE_COMPLETION(cpu_running);
89
90static struct smp_operations smp_ops __ro_after_init;
91
92void __init smp_set_ops(const struct smp_operations *ops)
93{
94	if (ops)
95		smp_ops = *ops;
96};
97
98static unsigned long get_arch_pgd(pgd_t *pgd)
99{
100#ifdef CONFIG_ARM_LPAE
101	return __phys_to_pfn(virt_to_phys(pgd));
102#else
103	return virt_to_phys(pgd);
104#endif
105}
106
107#if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR)
108static int secondary_biglittle_prepare(unsigned int cpu)
109{
110	if (!cpu_vtable[cpu])
111		cpu_vtable[cpu] = kzalloc(sizeof(*cpu_vtable[cpu]), GFP_KERNEL);
112
113	return cpu_vtable[cpu] ? 0 : -ENOMEM;
114}
115
116static void secondary_biglittle_init(void)
117{
118	init_proc_vtable(lookup_processor(read_cpuid_id())->proc);
119}
120#else
121static int secondary_biglittle_prepare(unsigned int cpu)
122{
123	return 0;
124}
125
126static void secondary_biglittle_init(void)
127{
128}
129#endif
130
131int __cpu_up(unsigned int cpu, struct task_struct *idle)
132{
133	int ret;
134
135	if (!smp_ops.smp_boot_secondary)
136		return -ENOSYS;
137
138	ret = secondary_biglittle_prepare(cpu);
139	if (ret)
140		return ret;
141
142	/*
143	 * We need to tell the secondary core where to find
144	 * its stack and the page tables.
145	 */
146	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
147#ifdef CONFIG_ARM_MPU
148	secondary_data.mpu_rgn_info = &mpu_rgn_info;
149#endif
150
151#ifdef CONFIG_MMU
152	secondary_data.pgdir = virt_to_phys(idmap_pgd);
153	secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
154#endif
155	secondary_data.task = idle;
156	sync_cache_w(&secondary_data);
157
158	/*
159	 * Now bring the CPU into our world.
160	 */
161	ret = smp_ops.smp_boot_secondary(cpu, idle);
162	if (ret == 0) {
163		/*
164		 * CPU was successfully started, wait for it
165		 * to come online or time out.
166		 */
167		wait_for_completion_timeout(&cpu_running,
168						 msecs_to_jiffies(1000));
169
170		if (!cpu_online(cpu)) {
171			pr_crit("CPU%u: failed to come online\n", cpu);
172			ret = -EIO;
173		}
174	} else {
175		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
176	}
177
178
179	memset(&secondary_data, 0, sizeof(secondary_data));
180	return ret;
181}
182
183/* platform specific SMP operations */
184void __init smp_init_cpus(void)
185{
186	if (smp_ops.smp_init_cpus)
187		smp_ops.smp_init_cpus();
188}
189
190int platform_can_secondary_boot(void)
191{
192	return !!smp_ops.smp_boot_secondary;
193}
194
195int platform_can_cpu_hotplug(void)
196{
197#ifdef CONFIG_HOTPLUG_CPU
198	if (smp_ops.cpu_kill)
199		return 1;
200#endif
201
202	return 0;
203}
204
205#ifdef CONFIG_HOTPLUG_CPU
206static int platform_cpu_kill(unsigned int cpu)
207{
208	if (smp_ops.cpu_kill)
209		return smp_ops.cpu_kill(cpu);
210	return 1;
211}
212
213static int platform_cpu_disable(unsigned int cpu)
214{
215	if (smp_ops.cpu_disable)
216		return smp_ops.cpu_disable(cpu);
217
218	return 0;
219}
220
221int platform_can_hotplug_cpu(unsigned int cpu)
222{
223	/* cpu_die must be specified to support hotplug */
224	if (!smp_ops.cpu_die)
225		return 0;
226
227	if (smp_ops.cpu_can_disable)
228		return smp_ops.cpu_can_disable(cpu);
229
230	/*
231	 * By default, allow disabling all CPUs except the first one,
232	 * since this is special on a lot of platforms, e.g. because
233	 * of clock tick interrupts.
234	 */
235	return cpu != 0;
236}
237
238static void ipi_teardown(int cpu)
239{
240	int i;
241
242	if (WARN_ON_ONCE(!ipi_irq_base))
243		return;
244
245	for (i = 0; i < nr_ipi; i++)
246		disable_percpu_irq(ipi_irq_base + i);
247}
248
249/*
250 * __cpu_disable runs on the processor to be shutdown.
251 */
252int __cpu_disable(void)
253{
254	unsigned int cpu = smp_processor_id();
255	int ret;
256
257	ret = platform_cpu_disable(cpu);
258	if (ret)
259		return ret;
260
261#ifdef CONFIG_GENERIC_ARCH_TOPOLOGY
262	remove_cpu_topology(cpu);
263#endif
264
265	/*
266	 * Take this CPU offline.  Once we clear this, we can't return,
267	 * and we must not schedule until we're ready to give up the cpu.
268	 */
269	set_cpu_online(cpu, false);
270	ipi_teardown(cpu);
271
272	/*
273	 * OK - migrate IRQs away from this CPU
274	 */
275	irq_migrate_all_off_this_cpu();
276
277	/*
278	 * Flush user cache and TLB mappings, and then remove this CPU
279	 * from the vm mask set of all processes.
280	 *
281	 * Caches are flushed to the Level of Unification Inner Shareable
282	 * to write-back dirty lines to unified caches shared by all CPUs.
283	 */
284	flush_cache_louis();
285	local_flush_tlb_all();
286
287	return 0;
288}
289
290/*
291 * called on the thread which is asking for a CPU to be shutdown after the
292 * shutdown completed.
293 */
294void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)
295{
296	pr_debug("CPU%u: shutdown\n", cpu);
297
298	clear_tasks_mm_cpumask(cpu);
299	/*
300	 * platform_cpu_kill() is generally expected to do the powering off
301	 * and/or cutting of clocks to the dying CPU.  Optionally, this may
302	 * be done by the CPU which is dying in preference to supporting
303	 * this call, but that means there is _no_ synchronisation between
304	 * the requesting CPU and the dying CPU actually losing power.
305	 */
306	if (!platform_cpu_kill(cpu))
307		pr_err("CPU%u: unable to kill\n", cpu);
308}
309
310/*
311 * Called from the idle thread for the CPU which has been shutdown.
312 *
313 * Note that we disable IRQs here, but do not re-enable them
314 * before returning to the caller. This is also the behaviour
315 * of the other hotplug-cpu capable cores, so presumably coming
316 * out of idle fixes this.
317 */
318void __noreturn arch_cpu_idle_dead(void)
319{
320	unsigned int cpu = smp_processor_id();
321
322	idle_task_exit();
323
324	local_irq_disable();
325
326	/*
327	 * Flush the data out of the L1 cache for this CPU.  This must be
328	 * before the completion to ensure that data is safely written out
329	 * before platform_cpu_kill() gets called - which may disable
330	 * *this* CPU and power down its cache.
331	 */
332	flush_cache_louis();
333
334	/*
335	 * Tell cpuhp_bp_sync_dead() that this CPU is now safe to dispose
336	 * of. Once this returns, power and/or clocks can be removed at
337	 * any point from this CPU and its cache by platform_cpu_kill().
338	 */
339	cpuhp_ap_report_dead();
340
341	/*
342	 * Ensure that the cache lines associated with that completion are
343	 * written out.  This covers the case where _this_ CPU is doing the
344	 * powering down, to ensure that the completion is visible to the
345	 * CPU waiting for this one.
346	 */
347	flush_cache_louis();
348
349	/*
350	 * The actual CPU shutdown procedure is at least platform (if not
351	 * CPU) specific.  This may remove power, or it may simply spin.
352	 *
353	 * Platforms are generally expected *NOT* to return from this call,
354	 * although there are some which do because they have no way to
355	 * power down the CPU.  These platforms are the _only_ reason we
356	 * have a return path which uses the fragment of assembly below.
357	 *
358	 * The return path should not be used for platforms which can
359	 * power off the CPU.
360	 */
361	if (smp_ops.cpu_die)
362		smp_ops.cpu_die(cpu);
363
364	pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
365		cpu);
366
367	/*
368	 * Do not return to the idle loop - jump back to the secondary
369	 * cpu initialisation.  There's some initialisation which needs
370	 * to be repeated to undo the effects of taking the CPU offline.
371	 */
372	__asm__("mov	sp, %0\n"
373	"	mov	fp, #0\n"
374	"	mov	r0, %1\n"
375	"	b	secondary_start_kernel"
376		:
377		: "r" (task_stack_page(current) + THREAD_SIZE - 8),
378		  "r" (current)
379		: "r0");
380
381	unreachable();
382}
383#endif /* CONFIG_HOTPLUG_CPU */
384
385/*
386 * Called by both boot and secondaries to move global data into
387 * per-processor storage.
388 */
389static void smp_store_cpu_info(unsigned int cpuid)
390{
391	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
392
393	cpu_info->loops_per_jiffy = loops_per_jiffy;
394	cpu_info->cpuid = read_cpuid_id();
395
396	store_cpu_topology(cpuid);
397	check_cpu_icache_size(cpuid);
398}
399
400static void set_current(struct task_struct *cur)
401{
402	/* Set TPIDRURO */
403	asm("mcr p15, 0, %0, c13, c0, 3" :: "r"(cur) : "memory");
404}
405
406/*
407 * This is the secondary CPU boot entry.  We're using this CPUs
408 * idle thread stack, but a set of temporary page tables.
409 */
410asmlinkage void secondary_start_kernel(struct task_struct *task)
411{
412	struct mm_struct *mm = &init_mm;
413	unsigned int cpu;
414
415	set_current(task);
416
417	secondary_biglittle_init();
418
419	/*
420	 * The identity mapping is uncached (strongly ordered), so
421	 * switch away from it before attempting any exclusive accesses.
422	 */
423	cpu_switch_mm(mm->pgd, mm);
424	local_flush_bp_all();
425	enter_lazy_tlb(mm, current);
426	local_flush_tlb_all();
427
428	/*
429	 * All kernel threads share the same mm context; grab a
430	 * reference and switch to it.
431	 */
432	cpu = smp_processor_id();
433	mmgrab(mm);
434	current->active_mm = mm;
435	cpumask_set_cpu(cpu, mm_cpumask(mm));
436
437	cpu_init();
438
439#ifndef CONFIG_MMU
440	setup_vectors_base();
441#endif
442	pr_debug("CPU%u: Booted secondary processor\n", cpu);
443
444	trace_hardirqs_off();
445
446	/*
447	 * Give the platform a chance to do its own initialisation.
448	 */
449	if (smp_ops.smp_secondary_init)
450		smp_ops.smp_secondary_init(cpu);
451
452	notify_cpu_starting(cpu);
453
454	ipi_setup(cpu);
455
456	calibrate_delay();
457
458	smp_store_cpu_info(cpu);
459
460	/*
461	 * OK, now it's safe to let the boot CPU continue.  Wait for
462	 * the CPU migration code to notice that the CPU is online
463	 * before we continue - which happens after __cpu_up returns.
464	 */
465	set_cpu_online(cpu, true);
466
467	check_other_bugs();
468
469	complete(&cpu_running);
470
471	local_irq_enable();
472	local_fiq_enable();
473	local_abt_enable();
474
475	/*
476	 * OK, it's off to the idle thread for us
477	 */
478	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
479}
480
481void __init smp_cpus_done(unsigned int max_cpus)
482{
483	int cpu;
484	unsigned long bogosum = 0;
485
486	for_each_online_cpu(cpu)
487		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
488
489	printk(KERN_INFO "SMP: Total of %d processors activated "
490	       "(%lu.%02lu BogoMIPS).\n",
491	       num_online_cpus(),
492	       bogosum / (500000/HZ),
493	       (bogosum / (5000/HZ)) % 100);
494
495	hyp_mode_check();
496}
497
498void __init smp_prepare_boot_cpu(void)
499{
500	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
501}
502
503void __init smp_prepare_cpus(unsigned int max_cpus)
504{
505	unsigned int ncores = num_possible_cpus();
506
507	init_cpu_topology();
508
509	smp_store_cpu_info(smp_processor_id());
510
511	/*
512	 * are we trying to boot more cores than exist?
513	 */
514	if (max_cpus > ncores)
515		max_cpus = ncores;
516	if (ncores > 1 && max_cpus) {
517		/*
518		 * Initialise the present map, which describes the set of CPUs
519		 * actually populated at the present time. A platform should
520		 * re-initialize the map in the platforms smp_prepare_cpus()
521		 * if present != possible (e.g. physical hotplug).
522		 */
523		init_cpu_present(cpu_possible_mask);
524
525		/*
526		 * Initialise the SCU if there are more than one CPU
527		 * and let them know where to start.
528		 */
529		if (smp_ops.smp_prepare_cpus)
530			smp_ops.smp_prepare_cpus(max_cpus);
531	}
532}
533
534static const char *ipi_types[NR_IPI] __tracepoint_string = {
535	[IPI_WAKEUP]		= "CPU wakeup interrupts",
536	[IPI_TIMER]		= "Timer broadcast interrupts",
537	[IPI_RESCHEDULE]	= "Rescheduling interrupts",
538	[IPI_CALL_FUNC]		= "Function call interrupts",
539	[IPI_CPU_STOP]		= "CPU stop interrupts",
540	[IPI_IRQ_WORK]		= "IRQ work interrupts",
541	[IPI_COMPLETION]	= "completion interrupts",
542};
543
544static void smp_cross_call(const struct cpumask *target, unsigned int ipinr);
545
546void show_ipi_list(struct seq_file *p, int prec)
547{
548	unsigned int cpu, i;
549
550	for (i = 0; i < NR_IPI; i++) {
551		if (!ipi_desc[i])
552			continue;
553
554		seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
555
556		for_each_online_cpu(cpu)
557			seq_printf(p, "%10u ", irq_desc_kstat_cpu(ipi_desc[i], cpu));
558
559		seq_printf(p, " %s\n", ipi_types[i]);
560	}
561}
562
563void arch_send_call_function_ipi_mask(const struct cpumask *mask)
564{
565	smp_cross_call(mask, IPI_CALL_FUNC);
566}
567
568void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
569{
570	smp_cross_call(mask, IPI_WAKEUP);
571}
572
573void arch_send_call_function_single_ipi(int cpu)
574{
575	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
576}
577
578#ifdef CONFIG_IRQ_WORK
579void arch_irq_work_raise(void)
580{
581	if (arch_irq_work_has_interrupt())
582		smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
583}
584#endif
585
586#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
587void tick_broadcast(const struct cpumask *mask)
588{
589	smp_cross_call(mask, IPI_TIMER);
590}
591#endif
592
593static DEFINE_RAW_SPINLOCK(stop_lock);
594
595/*
596 * ipi_cpu_stop - handle IPI from smp_send_stop()
597 */
598static void ipi_cpu_stop(unsigned int cpu)
599{
600	local_fiq_disable();
601
602	if (system_state <= SYSTEM_RUNNING) {
603		raw_spin_lock(&stop_lock);
604		pr_crit("CPU%u: stopping\n", cpu);
605		dump_stack();
606		raw_spin_unlock(&stop_lock);
607	}
608
609	set_cpu_online(cpu, false);
610
611	while (1) {
612		cpu_relax();
613		wfe();
614	}
615}
616
617static DEFINE_PER_CPU(struct completion *, cpu_completion);
618
619int register_ipi_completion(struct completion *completion, int cpu)
620{
621	per_cpu(cpu_completion, cpu) = completion;
622	return IPI_COMPLETION;
623}
624
625static void ipi_complete(unsigned int cpu)
626{
627	complete(per_cpu(cpu_completion, cpu));
628}
629
630/*
631 * Main handler for inter-processor interrupts
632 */
633static void do_handle_IPI(int ipinr)
634{
635	unsigned int cpu = smp_processor_id();
636
637	if ((unsigned)ipinr < NR_IPI)
638		trace_ipi_entry(ipi_types[ipinr]);
639
640	switch (ipinr) {
641	case IPI_WAKEUP:
642		break;
643
644#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
645	case IPI_TIMER:
646		tick_receive_broadcast();
647		break;
648#endif
649
650	case IPI_RESCHEDULE:
651		scheduler_ipi();
652		break;
653
654	case IPI_CALL_FUNC:
655		generic_smp_call_function_interrupt();
656		break;
657
658	case IPI_CPU_STOP:
659		ipi_cpu_stop(cpu);
660		break;
661
662#ifdef CONFIG_IRQ_WORK
663	case IPI_IRQ_WORK:
664		irq_work_run();
665		break;
666#endif
667
668	case IPI_COMPLETION:
669		ipi_complete(cpu);
670		break;
671
672	case IPI_CPU_BACKTRACE:
673		printk_deferred_enter();
674		nmi_cpu_backtrace(get_irq_regs());
675		printk_deferred_exit();
676		break;
677
678	default:
679		pr_crit("CPU%u: Unknown IPI message 0x%x\n",
680		        cpu, ipinr);
681		break;
682	}
683
684	if ((unsigned)ipinr < NR_IPI)
685		trace_ipi_exit(ipi_types[ipinr]);
686}
687
688/* Legacy version, should go away once all irqchips have been converted */
689void handle_IPI(int ipinr, struct pt_regs *regs)
690{
691	struct pt_regs *old_regs = set_irq_regs(regs);
692
693	irq_enter();
694	do_handle_IPI(ipinr);
695	irq_exit();
696
697	set_irq_regs(old_regs);
698}
699
700static irqreturn_t ipi_handler(int irq, void *data)
701{
702	do_handle_IPI(irq - ipi_irq_base);
703	return IRQ_HANDLED;
704}
705
706static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
707{
708	trace_ipi_raise(target, ipi_types[ipinr]);
709	__ipi_send_mask(ipi_desc[ipinr], target);
710}
711
712static void ipi_setup(int cpu)
713{
714	int i;
715
716	if (WARN_ON_ONCE(!ipi_irq_base))
717		return;
718
719	for (i = 0; i < nr_ipi; i++)
720		enable_percpu_irq(ipi_irq_base + i, 0);
721}
722
723void __init set_smp_ipi_range(int ipi_base, int n)
724{
725	int i;
726
727	WARN_ON(n < MAX_IPI);
728	nr_ipi = min(n, MAX_IPI);
729
730	for (i = 0; i < nr_ipi; i++) {
731		int err;
732
733		err = request_percpu_irq(ipi_base + i, ipi_handler,
734					 "IPI", &irq_stat);
735		WARN_ON(err);
736
737		ipi_desc[i] = irq_to_desc(ipi_base + i);
738		irq_set_status_flags(ipi_base + i, IRQ_HIDDEN);
739	}
740
741	ipi_irq_base = ipi_base;
742
743	/* Setup the boot CPU immediately */
744	ipi_setup(smp_processor_id());
745}
746
747void arch_smp_send_reschedule(int cpu)
748{
749	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
750}
751
752void smp_send_stop(void)
753{
754	unsigned long timeout;
755	struct cpumask mask;
756
757	cpumask_copy(&mask, cpu_online_mask);
758	cpumask_clear_cpu(smp_processor_id(), &mask);
759	if (!cpumask_empty(&mask))
760		smp_cross_call(&mask, IPI_CPU_STOP);
761
762	/* Wait up to one second for other CPUs to stop */
763	timeout = USEC_PER_SEC;
764	while (num_online_cpus() > 1 && timeout--)
765		udelay(1);
766
767	if (num_online_cpus() > 1)
768		pr_warn("SMP: failed to stop secondary CPUs\n");
769}
770
771/* In case panic() and panic() called at the same time on CPU1 and CPU2,
772 * and CPU 1 calls panic_smp_self_stop() before crash_smp_send_stop()
773 * CPU1 can't receive the ipi irqs from CPU2, CPU1 will be always online,
774 * kdump fails. So split out the panic_smp_self_stop() and add
775 * set_cpu_online(smp_processor_id(), false).
776 */
777void __noreturn panic_smp_self_stop(void)
778{
779	pr_debug("CPU %u will stop doing anything useful since another CPU has paniced\n",
780	         smp_processor_id());
781	set_cpu_online(smp_processor_id(), false);
782	while (1)
783		cpu_relax();
784}
785
786#ifdef CONFIG_CPU_FREQ
787
788static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
789static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
790static unsigned long global_l_p_j_ref;
791static unsigned long global_l_p_j_ref_freq;
792
793static int cpufreq_callback(struct notifier_block *nb,
794					unsigned long val, void *data)
795{
796	struct cpufreq_freqs *freq = data;
797	struct cpumask *cpus = freq->policy->cpus;
798	int cpu, first = cpumask_first(cpus);
799	unsigned int lpj;
800
801	if (freq->flags & CPUFREQ_CONST_LOOPS)
802		return NOTIFY_OK;
803
804	if (!per_cpu(l_p_j_ref, first)) {
805		for_each_cpu(cpu, cpus) {
806			per_cpu(l_p_j_ref, cpu) =
807				per_cpu(cpu_data, cpu).loops_per_jiffy;
808			per_cpu(l_p_j_ref_freq, cpu) = freq->old;
809		}
810
811		if (!global_l_p_j_ref) {
812			global_l_p_j_ref = loops_per_jiffy;
813			global_l_p_j_ref_freq = freq->old;
814		}
815	}
816
817	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
818	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
819		loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
820						global_l_p_j_ref_freq,
821						freq->new);
822
823		lpj = cpufreq_scale(per_cpu(l_p_j_ref, first),
824				    per_cpu(l_p_j_ref_freq, first), freq->new);
825		for_each_cpu(cpu, cpus)
826			per_cpu(cpu_data, cpu).loops_per_jiffy = lpj;
827	}
828	return NOTIFY_OK;
829}
830
831static struct notifier_block cpufreq_notifier = {
832	.notifier_call  = cpufreq_callback,
833};
834
835static int __init register_cpufreq_notifier(void)
836{
837	return cpufreq_register_notifier(&cpufreq_notifier,
838						CPUFREQ_TRANSITION_NOTIFIER);
839}
840core_initcall(register_cpufreq_notifier);
841
842#endif
843
844static void raise_nmi(cpumask_t *mask)
845{
846	__ipi_send_mask(ipi_desc[IPI_CPU_BACKTRACE], mask);
847}
848
849void arch_trigger_cpumask_backtrace(const cpumask_t *mask, int exclude_cpu)
850{
851	nmi_trigger_cpumask_backtrace(mask, exclude_cpu, raise_nmi);
852}
853