1// SPDX-License-Identifier: GPL-2.0
2/*
3 * The ARCv2 backend of Just-In-Time compiler for eBPF bytecode.
4 *
5 * Copyright (c) 2024 Synopsys Inc.
6 * Author: Shahab Vahedi <shahab@synopsys.com>
7 */
8#include <linux/bug.h>
9#include "bpf_jit.h"
10
11/* ARC core registers. */
12enum {
13	ARC_R_0,  ARC_R_1,  ARC_R_2,  ARC_R_3,  ARC_R_4,  ARC_R_5,
14	ARC_R_6,  ARC_R_7,  ARC_R_8,  ARC_R_9,  ARC_R_10, ARC_R_11,
15	ARC_R_12, ARC_R_13, ARC_R_14, ARC_R_15, ARC_R_16, ARC_R_17,
16	ARC_R_18, ARC_R_19, ARC_R_20, ARC_R_21, ARC_R_22, ARC_R_23,
17	ARC_R_24, ARC_R_25, ARC_R_26, ARC_R_FP, ARC_R_SP, ARC_R_ILINK,
18	ARC_R_30, ARC_R_BLINK,
19	/*
20	 * Having ARC_R_IMM encoded as source register means there is an
21	 * immediate that must be interpreted from the next 4 bytes. If
22	 * encoded as the destination register though, it implies that the
23	 * output of the operation is not assigned to any register. The
24	 * latter is helpful if we only care about updating the CPU status
25	 * flags.
26	 */
27	ARC_R_IMM = 62
28};
29
30/*
31 * Remarks about the rationale behind the chosen mapping:
32 *
33 * - BPF_REG_{1,2,3,4} are the argument registers and must be mapped to
34 *   argument registers in ARCv2 ABI: r0-r7. The r7 registers is the last
35 *   argument register in the ABI. Therefore BPF_REG_5, as the fifth
36 *   argument, must be pushed onto the stack. This is a must for calling
37 *   in-kernel functions.
38 *
39 * - In ARCv2 ABI, the return value is in r0 for 32-bit results and (r1,r0)
40 *   for 64-bit results. However, because they're already used for BPF_REG_1,
41 *   the next available scratch registers, r8 and r9, are the best candidates
42 *   for BPF_REG_0. After a "call" to a(n) (in-kernel) function, the result
43 *   is "mov"ed to these registers. At a BPF_EXIT, their value is "mov"ed to
44 *   (r1,r0).
45 *   It is worth mentioning that scratch registers are the best choice for
46 *   BPF_REG_0, because it is very popular in BPF instruction encoding.
47 *
48 * - JIT_REG_TMP is an artifact needed to translate some BPF instructions.
49 *   Its life span is one single BPF instruction. Since during the
50 *   analyze_reg_usage(), it is not known if temporary registers are used,
51 *   it is mapped to ARC's scratch registers: r10 and r11. Therefore, they
52 *   don't matter in analysing phase and don't need saving. This temporary
53 *   register is added as yet another index in the bpf2arc array, so it will
54 *   unfold like the rest of registers during the code generation process.
55 *
56 * - Mapping of callee-saved BPF registers, BPF_REG_{6,7,8,9}, starts from
57 *   (r15,r14) register pair. The (r13,r12) is not a good choice, because
58 *   in ARCv2 ABI, r12 is not a callee-saved register and this can cause
59 *   problem when calling an in-kernel function. Theoretically, the mapping
60 *   could start from (r14,r13), but it is not a conventional ARCv2 register
61 *   pair. To have a future proof design, I opted for this arrangement.
62 *   If/when we decide to add ARCv2 instructions that do use register pairs,
63 *   the mapping, hopefully, doesn't need to be revisited.
64 */
65static const u8 bpf2arc[][2] = {
66	/* Return value from in-kernel function, and exit value from eBPF */
67	[BPF_REG_0] = {ARC_R_8, ARC_R_9},
68	/* Arguments from eBPF program to in-kernel function */
69	[BPF_REG_1] = {ARC_R_0, ARC_R_1},
70	[BPF_REG_2] = {ARC_R_2, ARC_R_3},
71	[BPF_REG_3] = {ARC_R_4, ARC_R_5},
72	[BPF_REG_4] = {ARC_R_6, ARC_R_7},
73	/* Remaining arguments, to be passed on the stack per 32-bit ABI */
74	[BPF_REG_5] = {ARC_R_22, ARC_R_23},
75	/* Callee-saved registers that in-kernel function will preserve */
76	[BPF_REG_6] = {ARC_R_14, ARC_R_15},
77	[BPF_REG_7] = {ARC_R_16, ARC_R_17},
78	[BPF_REG_8] = {ARC_R_18, ARC_R_19},
79	[BPF_REG_9] = {ARC_R_20, ARC_R_21},
80	/* Read-only frame pointer to access the eBPF stack. 32-bit only. */
81	[BPF_REG_FP] = {ARC_R_FP, },
82	/* Register for blinding constants */
83	[BPF_REG_AX] = {ARC_R_24, ARC_R_25},
84	/* Temporary registers for internal use */
85	[JIT_REG_TMP] = {ARC_R_10, ARC_R_11}
86};
87
88#define ARC_CALLEE_SAVED_REG_FIRST ARC_R_13
89#define ARC_CALLEE_SAVED_REG_LAST  ARC_R_25
90
91#define REG_LO(r) (bpf2arc[(r)][0])
92#define REG_HI(r) (bpf2arc[(r)][1])
93
94/*
95 * To comply with ARCv2 ABI, BPF's arg5 must be put on stack. After which,
96 * the stack needs to be restored by ARG5_SIZE.
97 */
98#define ARG5_SIZE 8
99
100/* Instruction lengths in bytes. */
101enum {
102	INSN_len_normal = 4,	/* Normal instructions length. */
103	INSN_len_imm = 4	/* Length of an extra 32-bit immediate. */
104};
105
106/* ZZ defines the size of operation in encodings that it is used. */
107enum {
108	ZZ_1_byte = 1,
109	ZZ_2_byte = 2,
110	ZZ_4_byte = 0,
111	ZZ_8_byte = 3
112};
113
114/*
115 * AA is mostly about address write back mode. It determines if the
116 * address in question should be updated before usage or after:
117 *   addr += offset; data = *addr;
118 *   data = *addr; addr += offset;
119 *
120 * In "scaling" mode, the effective address will become the sum
121 * of "address" + "index"*"size". The "size" is specified by the
122 * "ZZ" field. There is no write back when AA is set for scaling:
123 *   data = *(addr + offset<<zz)
124 */
125enum {
126	AA_none  = 0,
127	AA_pre   = 1,	/* in assembly known as "a/aw". */
128	AA_post  = 2,	/* in assembly known as "ab". */
129	AA_scale = 3	/* in assembly known as "as". */
130};
131
132/* X flag determines the mode of extension. */
133enum {
134	X_zero = 0,
135	X_sign = 1
136};
137
138/* Condition codes. */
139enum {
140	CC_always     = 0,	/* condition is true all the time */
141	CC_equal      = 1,	/* if status32.z flag is set */
142	CC_unequal    = 2,	/* if status32.z flag is clear */
143	CC_positive   = 3,	/* if status32.n flag is clear */
144	CC_negative   = 4,	/* if status32.n flag is set */
145	CC_less_u     = 5,	/* less than (unsigned) */
146	CC_less_eq_u  = 14,	/* less than or equal (unsigned) */
147	CC_great_eq_u = 6,	/* greater than or equal (unsigned) */
148	CC_great_u    = 13,	/* greater than (unsigned) */
149	CC_less_s     = 11,	/* less than (signed) */
150	CC_less_eq_s  = 12,	/* less than or equal (signed) */
151	CC_great_eq_s = 10,	/* greater than or equal (signed) */
152	CC_great_s    = 9	/* greater than (signed) */
153};
154
155#define IN_U6_RANGE(x)	((x) <= (0x40      - 1) && (x) >= 0)
156#define IN_S9_RANGE(x)	((x) <= (0x100     - 1) && (x) >= -0x100)
157#define IN_S12_RANGE(x)	((x) <= (0x800     - 1) && (x) >= -0x800)
158#define IN_S21_RANGE(x)	((x) <= (0x100000  - 1) && (x) >= -0x100000)
159#define IN_S25_RANGE(x)	((x) <= (0x1000000 - 1) && (x) >= -0x1000000)
160
161/* Operands in most of the encodings. */
162#define OP_A(x)	((x) & 0x03f)
163#define OP_B(x)	((((x) & 0x07) << 24) | (((x) & 0x38) <<  9))
164#define OP_C(x)	(((x) & 0x03f) << 6)
165#define OP_IMM	(OP_C(ARC_R_IMM))
166#define COND(x)	(OP_A((x) & 31))
167#define FLAG(x)	(((x) & 1) << 15)
168
169/*
170 * The 4-byte encoding of "mov b,c":
171 *
172 * 0010_0bbb 0000_1010 0BBB_cccc cc00_0000
173 *
174 * b:  BBBbbb		destination register
175 * c:  cccccc		source register
176 */
177#define OPC_MOV		0x200a0000
178
179/*
180 * The 4-byte encoding of "mov b,s12" (used for moving small immediates):
181 *
182 * 0010_0bbb 1000_1010 0BBB_ssss ssSS_SSSS
183 *
184 * b:  BBBbbb		destination register
185 * s:  SSSSSSssssss	source immediate (signed)
186 */
187#define OPC_MOVI	0x208a0000
188#define MOVI_S12(x)	((((x) & 0xfc0) >> 6) | (((x) & 0x3f) << 6))
189
190/*
191 * The 4-byte encoding of "mov[.qq] b,u6", used for conditional
192 * moving of even smaller immediates:
193 *
194 * 0010_0bbb 1100_1010 0BBB_cccc cciq_qqqq
195 *
196 * qq: qqqqq		condition code
197 * i:			If set, c is considered a 6-bit immediate, else a reg.
198 *
199 * b:  BBBbbb		destination register
200 * c:  cccccc		source
201 */
202#define OPC_MOV_CC	0x20ca0000
203#define MOV_CC_I	BIT(5)
204#define OPC_MOVU_CC	(OPC_MOV_CC | MOV_CC_I)
205
206/*
207 * The 4-byte encoding of "sexb b,c" (8-bit sign extension):
208 *
209 * 0010_0bbb 0010_1111 0BBB_cccc cc00_0101
210 *
211 * b:  BBBbbb		destination register
212 * c:  cccccc		source register
213 */
214#define OPC_SEXB	0x202f0005
215
216/*
217 * The 4-byte encoding of "sexh b,c" (16-bit sign extension):
218 *
219 * 0010_0bbb 0010_1111 0BBB_cccc cc00_0110
220 *
221 * b:  BBBbbb		destination register
222 * c:  cccccc		source register
223 */
224#define OPC_SEXH	0x202f0006
225
226/*
227 * The 4-byte encoding of "ld[zz][.x][.aa] c,[b,s9]":
228 *
229 * 0001_0bbb ssss_ssss SBBB_0aaz zxcc_cccc
230 *
231 * zz:			size mode
232 * aa:			address write back mode
233 * x:			extension mode
234 *
235 * s9: S_ssss_ssss	9-bit signed number
236 * b:  BBBbbb		source reg for address
237 * c:  cccccc		destination register
238 */
239#define OPC_LOAD	0x10000000
240#define LOAD_X(x)	((x) << 6)
241#define LOAD_ZZ(x)	((x) << 7)
242#define LOAD_AA(x)	((x) << 9)
243#define LOAD_S9(x)	((((x) & 0x0ff) << 16) | (((x) & 0x100) <<  7))
244#define LOAD_C(x)	((x) & 0x03f)
245/* Unsigned and signed loads. */
246#define OPC_LDU		(OPC_LOAD | LOAD_X(X_zero))
247#define OPC_LDS		(OPC_LOAD | LOAD_X(X_sign))
248/* 32-bit load. */
249#define OPC_LD32	(OPC_LDU | LOAD_ZZ(ZZ_4_byte))
250/* "pop reg" is merely a "ld.ab reg,[sp,4]". */
251#define OPC_POP		\
252	(OPC_LD32 | LOAD_AA(AA_post) | LOAD_S9(4) | OP_B(ARC_R_SP))
253
254/*
255 * The 4-byte encoding of "st[zz][.aa] c,[b,s9]":
256 *
257 * 0001_1bbb ssss_ssss SBBB_cccc cc0a_azz0
258 *
259 * zz: zz		size mode
260 * aa: aa		address write back mode
261 *
262 * s9: S_ssss_ssss	9-bit signed number
263 * b:  BBBbbb		source reg for address
264 * c:  cccccc		source reg to be stored
265 */
266#define OPC_STORE	0x18000000
267#define STORE_ZZ(x)	((x) << 1)
268#define STORE_AA(x)	((x) << 3)
269#define STORE_S9(x)	((((x) & 0x0ff) << 16) | (((x) & 0x100) <<  7))
270/* 32-bit store. */
271#define OPC_ST32	(OPC_STORE | STORE_ZZ(ZZ_4_byte))
272/* "push reg" is merely a "st.aw reg,[sp,-4]". */
273#define OPC_PUSH	\
274	(OPC_ST32 | STORE_AA(AA_pre) | STORE_S9(-4) | OP_B(ARC_R_SP))
275
276/*
277 * The 4-byte encoding of "add a,b,c":
278 *
279 * 0010_0bbb 0i00_0000 fBBB_cccc ccaa_aaaa
280 *
281 * f:                   indicates if flags (carry, etc.) should be updated
282 * i:			If set, c is considered a 6-bit immediate, else a reg.
283 *
284 * a:  aaaaaa		result
285 * b:  BBBbbb		the 1st input operand
286 * c:  cccccc		the 2nd input operand
287 */
288#define OPC_ADD		0x20000000
289/* Addition with updating the pertinent flags in "status32" register. */
290#define OPC_ADDF	(OPC_ADD | FLAG(1))
291#define ADDI		BIT(22)
292#define ADDI_U6(x)	OP_C(x)
293#define OPC_ADDI	(OPC_ADD | ADDI)
294#define OPC_ADDIF	(OPC_ADDI | FLAG(1))
295#define OPC_ADD_I	(OPC_ADD | OP_IMM)
296
297/*
298 * The 4-byte encoding of "adc a,b,c" (addition with carry):
299 *
300 * 0010_0bbb 0i00_0001 0BBB_cccc ccaa_aaaa
301 *
302 * i:			if set, c is considered a 6-bit immediate, else a reg.
303 *
304 * a:  aaaaaa		result
305 * b:  BBBbbb		the 1st input operand
306 * c:  cccccc		the 2nd input operand
307 */
308#define OPC_ADC		0x20010000
309#define ADCI		BIT(22)
310#define ADCI_U6(x)	OP_C(x)
311#define OPC_ADCI	(OPC_ADC | ADCI)
312
313/*
314 * The 4-byte encoding of "sub a,b,c":
315 *
316 * 0010_0bbb 0i00_0010 fBBB_cccc ccaa_aaaa
317 *
318 * f:                   indicates if flags (carry, etc.) should be updated
319 * i:			if set, c is considered a 6-bit immediate, else a reg.
320 *
321 * a:  aaaaaa		result
322 * b:  BBBbbb		the 1st input operand
323 * c:  cccccc		the 2nd input operand
324 */
325#define OPC_SUB		0x20020000
326/* Subtraction with updating the pertinent flags in "status32" register. */
327#define OPC_SUBF	(OPC_SUB | FLAG(1))
328#define SUBI		BIT(22)
329#define SUBI_U6(x)	OP_C(x)
330#define OPC_SUBI	(OPC_SUB | SUBI)
331#define OPC_SUB_I	(OPC_SUB | OP_IMM)
332
333/*
334 * The 4-byte encoding of "sbc a,b,c" (subtraction with carry):
335 *
336 * 0010_0bbb 0000_0011 fBBB_cccc ccaa_aaaa
337 *
338 * f:                   indicates if flags (carry, etc.) should be updated
339 *
340 * a:  aaaaaa		result
341 * b:  BBBbbb		the 1st input operand
342 * c:  cccccc		the 2nd input operand
343 */
344#define OPC_SBC		0x20030000
345
346/*
347 * The 4-byte encoding of "cmp[.qq] b,c":
348 *
349 * 0010_0bbb 1100_1100 1BBB_cccc cc0q_qqqq
350 *
351 * qq:	qqqqq		condition code
352 *
353 * b:  BBBbbb		the 1st operand
354 * c:  cccccc		the 2nd operand
355 */
356#define OPC_CMP		0x20cc8000
357
358/*
359 * The 4-byte encoding of "neg a,b":
360 *
361 * 0010_0bbb 0100_1110 0BBB_0000 00aa_aaaa
362 *
363 * a:  aaaaaa		result
364 * b:  BBBbbb		input
365 */
366#define OPC_NEG		0x204e0000
367
368/*
369 * The 4-byte encoding of "mpy a,b,c".
370 * mpy is the signed 32-bit multiplication with the lower 32-bit
371 * of the product as the result.
372 *
373 * 0010_0bbb 0001_1010 0BBB_cccc ccaa_aaaa
374 *
375 * a:  aaaaaa		result
376 * b:  BBBbbb		the 1st input operand
377 * c:  cccccc		the 2nd input operand
378 */
379#define OPC_MPY		0x201a0000
380#define OPC_MPYI	(OPC_MPY | OP_IMM)
381
382/*
383 * The 4-byte encoding of "mpydu a,b,c".
384 * mpydu is the unsigned 32-bit multiplication with the lower 32-bit of
385 * the product in register "a" and the higher 32-bit in register "a+1".
386 *
387 * 0010_1bbb 0001_1001 0BBB_cccc ccaa_aaaa
388 *
389 * a:  aaaaaa		64-bit result in registers (R_a+1,R_a)
390 * b:  BBBbbb		the 1st input operand
391 * c:  cccccc		the 2nd input operand
392 */
393#define OPC_MPYDU	0x28190000
394#define OPC_MPYDUI	(OPC_MPYDU | OP_IMM)
395
396/*
397 * The 4-byte encoding of "divu a,b,c" (unsigned division):
398 *
399 * 0010_1bbb 0000_0101 0BBB_cccc ccaa_aaaa
400 *
401 * a:  aaaaaa		result (quotient)
402 * b:  BBBbbb		the 1st input operand
403 * c:  cccccc		the 2nd input operand (divisor)
404 */
405#define OPC_DIVU	0x28050000
406#define OPC_DIVUI	(OPC_DIVU | OP_IMM)
407
408/*
409 * The 4-byte encoding of "div a,b,c" (signed division):
410 *
411 * 0010_1bbb 0000_0100 0BBB_cccc ccaa_aaaa
412 *
413 * a:  aaaaaa		result (quotient)
414 * b:  BBBbbb		the 1st input operand
415 * c:  cccccc		the 2nd input operand (divisor)
416 */
417#define OPC_DIVS	0x28040000
418#define OPC_DIVSI	(OPC_DIVS | OP_IMM)
419
420/*
421 * The 4-byte encoding of "remu a,b,c" (unsigned remainder):
422 *
423 * 0010_1bbb 0000_1001 0BBB_cccc ccaa_aaaa
424 *
425 * a:  aaaaaa		result (remainder)
426 * b:  BBBbbb		the 1st input operand
427 * c:  cccccc		the 2nd input operand (divisor)
428 */
429#define OPC_REMU	0x28090000
430#define OPC_REMUI	(OPC_REMU | OP_IMM)
431
432/*
433 * The 4-byte encoding of "rem a,b,c" (signed remainder):
434 *
435 * 0010_1bbb 0000_1000 0BBB_cccc ccaa_aaaa
436 *
437 * a:  aaaaaa		result (remainder)
438 * b:  BBBbbb		the 1st input operand
439 * c:  cccccc		the 2nd input operand (divisor)
440 */
441#define OPC_REMS	0x28080000
442#define OPC_REMSI	(OPC_REMS | OP_IMM)
443
444/*
445 * The 4-byte encoding of "and a,b,c":
446 *
447 * 0010_0bbb 0000_0100 fBBB_cccc ccaa_aaaa
448 *
449 * f:                   indicates if zero and negative flags should be updated
450 *
451 * a:  aaaaaa		result
452 * b:  BBBbbb		the 1st input operand
453 * c:  cccccc		the 2nd input operand
454 */
455#define OPC_AND		0x20040000
456#define OPC_ANDI	(OPC_AND | OP_IMM)
457
458/*
459 * The 4-byte encoding of "tst[.qq] b,c".
460 * Checks if the two input operands have any bit set at the same
461 * position.
462 *
463 * 0010_0bbb 1100_1011 1BBB_cccc cc0q_qqqq
464 *
465 * qq:	qqqqq		condition code
466 *
467 * b:  BBBbbb		the 1st input operand
468 * c:  cccccc		the 2nd input operand
469 */
470#define OPC_TST		0x20cb8000
471
472/*
473 * The 4-byte encoding of "or a,b,c":
474 *
475 * 0010_0bbb 0000_0101 0BBB_cccc ccaa_aaaa
476 *
477 * a:  aaaaaa		result
478 * b:  BBBbbb		the 1st input operand
479 * c:  cccccc		the 2nd input operand
480 */
481#define OPC_OR		0x20050000
482#define OPC_ORI		(OPC_OR | OP_IMM)
483
484/*
485 * The 4-byte encoding of "xor a,b,c":
486 *
487 * 0010_0bbb 0000_0111 0BBB_cccc ccaa_aaaa
488 *
489 * a:  aaaaaa		result
490 * b:  BBBbbb		the 1st input operand
491 * c:  cccccc		the 2nd input operand
492 */
493#define OPC_XOR		0x20070000
494#define OPC_XORI	(OPC_XOR | OP_IMM)
495
496/*
497 * The 4-byte encoding of "not b,c":
498 *
499 * 0010_0bbb 0010_1111 0BBB_cccc cc00_1010
500 *
501 * b:  BBBbbb		result
502 * c:  cccccc		input
503 */
504#define OPC_NOT		0x202f000a
505
506/*
507 * The 4-byte encoding of "btst b,u6":
508 *
509 * 0010_0bbb 0101_0001 1BBB_uuuu uu00_0000
510 *
511 * b:  BBBbbb		input number to check
512 * u6: uuuuuu		6-bit unsigned number specifying bit position to check
513 */
514#define OPC_BTSTU6	0x20518000
515#define BTST_U6(x)	(OP_C((x) & 63))
516
517/*
518 * The 4-byte encoding of "asl[.qq] b,b,c" (arithmetic shift left):
519 *
520 * 0010_1bbb 0i00_0000 0BBB_cccc ccaa_aaaa
521 *
522 * i:			if set, c is considered a 5-bit immediate, else a reg.
523 *
524 * b:  BBBbbb		result and the first operand (number to be shifted)
525 * c:  cccccc		amount to be shifted
526 */
527#define OPC_ASL		0x28000000
528#define ASL_I		BIT(22)
529#define ASLI_U6(x)	OP_C((x) & 31)
530#define OPC_ASLI	(OPC_ASL | ASL_I)
531
532/*
533 * The 4-byte encoding of "asr a,b,c" (arithmetic shift right):
534 *
535 * 0010_1bbb 0i00_0010 0BBB_cccc ccaa_aaaa
536 *
537 * i:			if set, c is considered a 6-bit immediate, else a reg.
538 *
539 * a:  aaaaaa		result
540 * b:  BBBbbb		first input:  number to be shifted
541 * c:  cccccc		second input: amount to be shifted
542 */
543#define OPC_ASR		0x28020000
544#define ASR_I		ASL_I
545#define ASRI_U6(x)	ASLI_U6(x)
546#define OPC_ASRI	(OPC_ASR | ASR_I)
547
548/*
549 * The 4-byte encoding of "lsr a,b,c" (logical shift right):
550 *
551 * 0010_1bbb 0i00_0001 0BBB_cccc ccaa_aaaa
552 *
553 * i:			if set, c is considered a 6-bit immediate, else a reg.
554 *
555 * a:  aaaaaa		result
556 * b:  BBBbbb		first input:  number to be shifted
557 * c:  cccccc		second input: amount to be shifted
558 */
559#define OPC_LSR		0x28010000
560#define LSR_I		ASL_I
561#define LSRI_U6(x)	ASLI_U6(x)
562#define OPC_LSRI	(OPC_LSR | LSR_I)
563
564/*
565 * The 4-byte encoding of "swape b,c":
566 *
567 * 0010_1bbb 0010_1111 0bbb_cccc cc00_1001
568 *
569 * b:  BBBbbb		destination register
570 * c:  cccccc		source register
571 */
572#define OPC_SWAPE	0x282f0009
573
574/*
575 * Encoding for jump to an address in register:
576 * j reg_c
577 *
578 * 0010_0000 1110_0000 0000_cccc cc00_0000
579 *
580 * c:  cccccc		register holding the destination address
581 */
582#define OPC_JMP		0x20e00000
583/* Jump to "branch-and-link" register, which effectively is a "return". */
584#define OPC_J_BLINK	(OPC_JMP | OP_C(ARC_R_BLINK))
585
586/*
587 * Encoding for jump-and-link to an address in register:
588 * jl reg_c
589 *
590 * 0010_0000 0010_0010 0000_cccc cc00_0000
591 *
592 * c:  cccccc		register holding the destination address
593 */
594#define OPC_JL		0x20220000
595
596/*
597 * Encoding for (conditional) branch to an offset from the current location
598 * that is word aligned: (PC & 0xffff_fffc) + s21
599 * B[qq] s21
600 *
601 * 0000_0sss ssss_sss0 SSSS_SSSS SS0q_qqqq
602 *
603 * qq:	qqqqq				condition code
604 * s21:	SSSS SSSS_SSss ssss_ssss	The displacement (21-bit signed)
605 *
606 * The displacement is supposed to be 16-bit (2-byte) aligned. Therefore,
607 * it should be a multiple of 2. Hence, there is an implied '0' bit at its
608 * LSB: S_SSSS SSSS_Ssss ssss_sss0
609 */
610#define OPC_BCC		0x00000000
611#define BCC_S21(d)	((((d) & 0x7fe) << 16) | (((d) & 0x1ff800) >> 5))
612
613/*
614 * Encoding for unconditional branch to an offset from the current location
615 * that is word aligned: (PC & 0xffff_fffc) + s25
616 * B s25
617 *
618 * 0000_0sss ssss_sss1 SSSS_SSSS SS00_TTTT
619 *
620 * s25:	TTTT SSSS SSSS_SSss ssss_ssss	The displacement (25-bit signed)
621 *
622 * The displacement is supposed to be 16-bit (2-byte) aligned. Therefore,
623 * it should be a multiple of 2. Hence, there is an implied '0' bit at its
624 * LSB: T TTTS_SSSS SSSS_Ssss ssss_sss0
625 */
626#define OPC_B		0x00010000
627#define B_S25(d)	((((d) & 0x1e00000) >> 21) | BCC_S21(d))
628
629static inline void emit_2_bytes(u8 *buf, u16 bytes)
630{
631	*((u16 *)buf) = bytes;
632}
633
634static inline void emit_4_bytes(u8 *buf, u32 bytes)
635{
636	emit_2_bytes(buf, bytes >> 16);
637	emit_2_bytes(buf + 2, bytes & 0xffff);
638}
639
640static inline u8 bpf_to_arc_size(u8 size)
641{
642	switch (size) {
643	case BPF_B:
644		return ZZ_1_byte;
645	case BPF_H:
646		return ZZ_2_byte;
647	case BPF_W:
648		return ZZ_4_byte;
649	case BPF_DW:
650		return ZZ_8_byte;
651	default:
652		return ZZ_4_byte;
653	}
654}
655
656/************** Encoders (Deal with ARC regs) ************/
657
658/* Move an immediate to register with a 4-byte instruction. */
659static u8 arc_movi_r(u8 *buf, u8 reg, s16 imm)
660{
661	const u32 insn = OPC_MOVI | OP_B(reg) | MOVI_S12(imm);
662
663	if (buf)
664		emit_4_bytes(buf, insn);
665	return INSN_len_normal;
666}
667
668/* rd <- rs */
669static u8 arc_mov_r(u8 *buf, u8 rd, u8 rs)
670{
671	const u32 insn = OPC_MOV | OP_B(rd) | OP_C(rs);
672
673	if (buf)
674		emit_4_bytes(buf, insn);
675	return INSN_len_normal;
676}
677
678/* The emitted code may have different sizes based on "imm". */
679static u8 arc_mov_i(u8 *buf, u8 rd, s32 imm)
680{
681	const u32 insn = OPC_MOV | OP_B(rd) | OP_IMM;
682
683	if (IN_S12_RANGE(imm))
684		return arc_movi_r(buf, rd, imm);
685
686	if (buf) {
687		emit_4_bytes(buf, insn);
688		emit_4_bytes(buf + INSN_len_normal, imm);
689	}
690	return INSN_len_normal + INSN_len_imm;
691}
692
693/* The emitted code will always have the same size (8). */
694static u8 arc_mov_i_fixed(u8 *buf, u8 rd, s32 imm)
695{
696	const u32 insn = OPC_MOV | OP_B(rd) | OP_IMM;
697
698	if (buf) {
699		emit_4_bytes(buf, insn);
700		emit_4_bytes(buf + INSN_len_normal, imm);
701	}
702	return INSN_len_normal + INSN_len_imm;
703}
704
705/* Conditional move. */
706static u8 arc_mov_cc_r(u8 *buf, u8 cc, u8 rd, u8 rs)
707{
708	const u32 insn = OPC_MOV_CC | OP_B(rd) | OP_C(rs) | COND(cc);
709
710	if (buf)
711		emit_4_bytes(buf, insn);
712	return INSN_len_normal;
713}
714
715/* Conditional move of a small immediate to rd. */
716static u8 arc_movu_cc_r(u8 *buf, u8 cc, u8 rd, u8 imm)
717{
718	const u32 insn = OPC_MOVU_CC | OP_B(rd) | OP_C(imm) | COND(cc);
719
720	if (buf)
721		emit_4_bytes(buf, insn);
722	return INSN_len_normal;
723}
724
725/* Sign extension from a byte. */
726static u8 arc_sexb_r(u8 *buf, u8 rd, u8 rs)
727{
728	const u32 insn = OPC_SEXB | OP_B(rd) | OP_C(rs);
729
730	if (buf)
731		emit_4_bytes(buf, insn);
732	return INSN_len_normal;
733}
734
735/* Sign extension from two bytes. */
736static u8 arc_sexh_r(u8 *buf, u8 rd, u8 rs)
737{
738	const u32 insn = OPC_SEXH | OP_B(rd) | OP_C(rs);
739
740	if (buf)
741		emit_4_bytes(buf, insn);
742	return INSN_len_normal;
743}
744
745/* st reg, [reg_mem, off] */
746static u8 arc_st_r(u8 *buf, u8 reg, u8 reg_mem, s16 off, u8 zz)
747{
748	const u32 insn = OPC_STORE | STORE_ZZ(zz) | OP_C(reg) |
749		OP_B(reg_mem) | STORE_S9(off);
750
751	if (buf)
752		emit_4_bytes(buf, insn);
753	return INSN_len_normal;
754}
755
756/* st.aw reg, [sp, -4] */
757static u8 arc_push_r(u8 *buf, u8 reg)
758{
759	const u32 insn = OPC_PUSH | OP_C(reg);
760
761	if (buf)
762		emit_4_bytes(buf, insn);
763	return INSN_len_normal;
764}
765
766/* ld reg, [reg_mem, off] (unsigned) */
767static u8 arc_ld_r(u8 *buf, u8 reg, u8 reg_mem, s16 off, u8 zz)
768{
769	const u32 insn = OPC_LDU | LOAD_ZZ(zz) | LOAD_C(reg) |
770		OP_B(reg_mem) | LOAD_S9(off);
771
772	if (buf)
773		emit_4_bytes(buf, insn);
774	return INSN_len_normal;
775}
776
777/* ld.x reg, [reg_mem, off] (sign extend) */
778static u8 arc_ldx_r(u8 *buf, u8 reg, u8 reg_mem, s16 off, u8 zz)
779{
780	const u32 insn = OPC_LDS | LOAD_ZZ(zz) | LOAD_C(reg) |
781		OP_B(reg_mem) | LOAD_S9(off);
782
783	if (buf)
784		emit_4_bytes(buf, insn);
785	return INSN_len_normal;
786}
787
788/* ld.ab reg,[sp,4] */
789static u8 arc_pop_r(u8 *buf, u8 reg)
790{
791	const u32 insn = OPC_POP | LOAD_C(reg);
792
793	if (buf)
794		emit_4_bytes(buf, insn);
795	return INSN_len_normal;
796}
797
798/* add Ra,Ra,Rc */
799static u8 arc_add_r(u8 *buf, u8 ra, u8 rc)
800{
801	const u32 insn = OPC_ADD | OP_A(ra) | OP_B(ra) | OP_C(rc);
802
803	if (buf)
804		emit_4_bytes(buf, insn);
805	return INSN_len_normal;
806}
807
808/* add.f Ra,Ra,Rc */
809static u8 arc_addf_r(u8 *buf, u8 ra, u8 rc)
810{
811	const u32 insn = OPC_ADDF | OP_A(ra) | OP_B(ra) | OP_C(rc);
812
813	if (buf)
814		emit_4_bytes(buf, insn);
815	return INSN_len_normal;
816}
817
818/* add.f Ra,Ra,u6 */
819static u8 arc_addif_r(u8 *buf, u8 ra, u8 u6)
820{
821	const u32 insn = OPC_ADDIF | OP_A(ra) | OP_B(ra) | ADDI_U6(u6);
822
823	if (buf)
824		emit_4_bytes(buf, insn);
825	return INSN_len_normal;
826}
827
828/* add Ra,Ra,u6 */
829static u8 arc_addi_r(u8 *buf, u8 ra, u8 u6)
830{
831	const u32 insn = OPC_ADDI | OP_A(ra) | OP_B(ra) | ADDI_U6(u6);
832
833	if (buf)
834		emit_4_bytes(buf, insn);
835	return INSN_len_normal;
836}
837
838/* add Ra,Rb,imm */
839static u8 arc_add_i(u8 *buf, u8 ra, u8 rb, s32 imm)
840{
841	const u32 insn = OPC_ADD_I | OP_A(ra) | OP_B(rb);
842
843	if (buf) {
844		emit_4_bytes(buf, insn);
845		emit_4_bytes(buf + INSN_len_normal, imm);
846	}
847	return INSN_len_normal + INSN_len_imm;
848}
849
850/* adc Ra,Ra,Rc */
851static u8 arc_adc_r(u8 *buf, u8 ra, u8 rc)
852{
853	const u32 insn = OPC_ADC | OP_A(ra) | OP_B(ra) | OP_C(rc);
854
855	if (buf)
856		emit_4_bytes(buf, insn);
857	return INSN_len_normal;
858}
859
860/* adc Ra,Ra,u6 */
861static u8 arc_adci_r(u8 *buf, u8 ra, u8 u6)
862{
863	const u32 insn = OPC_ADCI | OP_A(ra) | OP_B(ra) | ADCI_U6(u6);
864
865	if (buf)
866		emit_4_bytes(buf, insn);
867	return INSN_len_normal;
868}
869
870/* sub Ra,Ra,Rc */
871static u8 arc_sub_r(u8 *buf, u8 ra, u8 rc)
872{
873	const u32 insn = OPC_SUB | OP_A(ra) | OP_B(ra) | OP_C(rc);
874
875	if (buf)
876		emit_4_bytes(buf, insn);
877	return INSN_len_normal;
878}
879
880/* sub.f Ra,Ra,Rc */
881static u8 arc_subf_r(u8 *buf, u8 ra, u8 rc)
882{
883	const u32 insn = OPC_SUBF | OP_A(ra) | OP_B(ra) | OP_C(rc);
884
885	if (buf)
886		emit_4_bytes(buf, insn);
887	return INSN_len_normal;
888}
889
890/* sub Ra,Ra,u6 */
891static u8 arc_subi_r(u8 *buf, u8 ra, u8 u6)
892{
893	const u32 insn = OPC_SUBI | OP_A(ra) | OP_B(ra) | SUBI_U6(u6);
894
895	if (buf)
896		emit_4_bytes(buf, insn);
897	return INSN_len_normal;
898}
899
900/* sub Ra,Ra,imm */
901static u8 arc_sub_i(u8 *buf, u8 ra, s32 imm)
902{
903	const u32 insn = OPC_SUB_I | OP_A(ra) | OP_B(ra);
904
905	if (buf) {
906		emit_4_bytes(buf, insn);
907		emit_4_bytes(buf + INSN_len_normal, imm);
908	}
909	return INSN_len_normal + INSN_len_imm;
910}
911
912/* sbc Ra,Ra,Rc */
913static u8 arc_sbc_r(u8 *buf, u8 ra, u8 rc)
914{
915	const u32 insn = OPC_SBC | OP_A(ra) | OP_B(ra) | OP_C(rc);
916
917	if (buf)
918		emit_4_bytes(buf, insn);
919	return INSN_len_normal;
920}
921
922/* cmp Rb,Rc */
923static u8 arc_cmp_r(u8 *buf, u8 rb, u8 rc)
924{
925	const u32 insn = OPC_CMP | OP_B(rb) | OP_C(rc);
926
927	if (buf)
928		emit_4_bytes(buf, insn);
929	return INSN_len_normal;
930}
931
932/*
933 * cmp.z Rb,Rc
934 *
935 * This "cmp.z" variant of compare instruction is used on lower
936 * 32-bits of register pairs after "cmp"ing their upper parts. If the
937 * upper parts are equal (z), then this one will proceed to check the
938 * rest.
939 */
940static u8 arc_cmpz_r(u8 *buf, u8 rb, u8 rc)
941{
942	const u32 insn = OPC_CMP | OP_B(rb) | OP_C(rc) | CC_equal;
943
944	if (buf)
945		emit_4_bytes(buf, insn);
946	return INSN_len_normal;
947}
948
949/* neg Ra,Rb */
950static u8 arc_neg_r(u8 *buf, u8 ra, u8 rb)
951{
952	const u32 insn = OPC_NEG | OP_A(ra) | OP_B(rb);
953
954	if (buf)
955		emit_4_bytes(buf, insn);
956	return INSN_len_normal;
957}
958
959/* mpy Ra,Rb,Rc */
960static u8 arc_mpy_r(u8 *buf, u8 ra, u8 rb, u8 rc)
961{
962	const u32 insn = OPC_MPY | OP_A(ra) | OP_B(rb) | OP_C(rc);
963
964	if (buf)
965		emit_4_bytes(buf, insn);
966	return INSN_len_normal;
967}
968
969/* mpy Ra,Rb,imm */
970static u8 arc_mpy_i(u8 *buf, u8 ra, u8 rb, s32 imm)
971{
972	const u32 insn = OPC_MPYI | OP_A(ra) | OP_B(rb);
973
974	if (buf) {
975		emit_4_bytes(buf, insn);
976		emit_4_bytes(buf + INSN_len_normal, imm);
977	}
978	return INSN_len_normal + INSN_len_imm;
979}
980
981/* mpydu Ra,Ra,Rc */
982static u8 arc_mpydu_r(u8 *buf, u8 ra, u8 rc)
983{
984	const u32 insn = OPC_MPYDU | OP_A(ra) | OP_B(ra) | OP_C(rc);
985
986	if (buf)
987		emit_4_bytes(buf, insn);
988	return INSN_len_normal;
989}
990
991/* mpydu Ra,Ra,imm */
992static u8 arc_mpydu_i(u8 *buf, u8 ra, s32 imm)
993{
994	const u32 insn = OPC_MPYDUI | OP_A(ra) | OP_B(ra);
995
996	if (buf) {
997		emit_4_bytes(buf, insn);
998		emit_4_bytes(buf + INSN_len_normal, imm);
999	}
1000	return INSN_len_normal + INSN_len_imm;
1001}
1002
1003/* divu Rd,Rd,Rs */
1004static u8 arc_divu_r(u8 *buf, u8 rd, u8 rs)
1005{
1006	const u32 insn = OPC_DIVU | OP_A(rd) | OP_B(rd) | OP_C(rs);
1007
1008	if (buf)
1009		emit_4_bytes(buf, insn);
1010	return INSN_len_normal;
1011}
1012
1013/* divu Rd,Rd,imm */
1014static u8 arc_divu_i(u8 *buf, u8 rd, s32 imm)
1015{
1016	const u32 insn = OPC_DIVUI | OP_A(rd) | OP_B(rd);
1017
1018	if (buf) {
1019		emit_4_bytes(buf, insn);
1020		emit_4_bytes(buf + INSN_len_normal, imm);
1021	}
1022	return INSN_len_normal + INSN_len_imm;
1023}
1024
1025/* div Rd,Rd,Rs */
1026static u8 arc_divs_r(u8 *buf, u8 rd, u8 rs)
1027{
1028	const u32 insn = OPC_DIVS | OP_A(rd) | OP_B(rd) | OP_C(rs);
1029
1030	if (buf)
1031		emit_4_bytes(buf, insn);
1032	return INSN_len_normal;
1033}
1034
1035/* div Rd,Rd,imm */
1036static u8 arc_divs_i(u8 *buf, u8 rd, s32 imm)
1037{
1038	const u32 insn = OPC_DIVSI | OP_A(rd) | OP_B(rd);
1039
1040	if (buf) {
1041		emit_4_bytes(buf, insn);
1042		emit_4_bytes(buf + INSN_len_normal, imm);
1043	}
1044	return INSN_len_normal + INSN_len_imm;
1045}
1046
1047/* remu Rd,Rd,Rs */
1048static u8 arc_remu_r(u8 *buf, u8 rd, u8 rs)
1049{
1050	const u32 insn = OPC_REMU | OP_A(rd) | OP_B(rd) | OP_C(rs);
1051
1052	if (buf)
1053		emit_4_bytes(buf, insn);
1054	return INSN_len_normal;
1055}
1056
1057/* remu Rd,Rd,imm */
1058static u8 arc_remu_i(u8 *buf, u8 rd, s32 imm)
1059{
1060	const u32 insn = OPC_REMUI | OP_A(rd) | OP_B(rd);
1061
1062	if (buf) {
1063		emit_4_bytes(buf, insn);
1064		emit_4_bytes(buf + INSN_len_normal, imm);
1065	}
1066	return INSN_len_normal + INSN_len_imm;
1067}
1068
1069/* rem Rd,Rd,Rs */
1070static u8 arc_rems_r(u8 *buf, u8 rd, u8 rs)
1071{
1072	const u32 insn = OPC_REMS | OP_A(rd) | OP_B(rd) | OP_C(rs);
1073
1074	if (buf)
1075		emit_4_bytes(buf, insn);
1076	return INSN_len_normal;
1077}
1078
1079/* rem Rd,Rd,imm */
1080static u8 arc_rems_i(u8 *buf, u8 rd, s32 imm)
1081{
1082	const u32 insn = OPC_REMSI | OP_A(rd) | OP_B(rd);
1083
1084	if (buf) {
1085		emit_4_bytes(buf, insn);
1086		emit_4_bytes(buf + INSN_len_normal, imm);
1087	}
1088	return INSN_len_normal + INSN_len_imm;
1089}
1090
1091/* and Rd,Rd,Rs */
1092static u8 arc_and_r(u8 *buf, u8 rd, u8 rs)
1093{
1094	const u32 insn = OPC_AND | OP_A(rd) | OP_B(rd) | OP_C(rs);
1095
1096	if (buf)
1097		emit_4_bytes(buf, insn);
1098	return INSN_len_normal;
1099}
1100
1101/* and Rd,Rd,limm */
1102static u8 arc_and_i(u8 *buf, u8 rd, s32 imm)
1103{
1104	const u32 insn = OPC_ANDI | OP_A(rd) | OP_B(rd);
1105
1106	if (buf) {
1107		emit_4_bytes(buf, insn);
1108		emit_4_bytes(buf + INSN_len_normal, imm);
1109	}
1110	return INSN_len_normal + INSN_len_imm;
1111}
1112
1113/* tst Rd,Rs */
1114static u8 arc_tst_r(u8 *buf, u8 rd, u8 rs)
1115{
1116	const u32 insn = OPC_TST | OP_B(rd) | OP_C(rs);
1117
1118	if (buf)
1119		emit_4_bytes(buf, insn);
1120	return INSN_len_normal;
1121}
1122
1123/*
1124 * This particular version, "tst.z ...", is meant to be used after a
1125 * "tst" on the low 32-bit of register pairs. If that "tst" is not
1126 * zero, then we don't need to test the upper 32-bits lest it sets
1127 * the zero flag.
1128 */
1129static u8 arc_tstz_r(u8 *buf, u8 rd, u8 rs)
1130{
1131	const u32 insn = OPC_TST | OP_B(rd) | OP_C(rs) | CC_equal;
1132
1133	if (buf)
1134		emit_4_bytes(buf, insn);
1135	return INSN_len_normal;
1136}
1137
1138static u8 arc_or_r(u8 *buf, u8 rd, u8 rs1, u8 rs2)
1139{
1140	const u32 insn = OPC_OR | OP_A(rd) | OP_B(rs1) | OP_C(rs2);
1141
1142	if (buf)
1143		emit_4_bytes(buf, insn);
1144	return INSN_len_normal;
1145}
1146
1147static u8 arc_or_i(u8 *buf, u8 rd, s32 imm)
1148{
1149	const u32 insn = OPC_ORI | OP_A(rd) | OP_B(rd);
1150
1151	if (buf) {
1152		emit_4_bytes(buf, insn);
1153		emit_4_bytes(buf + INSN_len_normal, imm);
1154	}
1155	return INSN_len_normal + INSN_len_imm;
1156}
1157
1158static u8 arc_xor_r(u8 *buf, u8 rd, u8 rs)
1159{
1160	const u32 insn = OPC_XOR | OP_A(rd) | OP_B(rd) | OP_C(rs);
1161
1162	if (buf)
1163		emit_4_bytes(buf, insn);
1164	return INSN_len_normal;
1165}
1166
1167static u8 arc_xor_i(u8 *buf, u8 rd, s32 imm)
1168{
1169	const u32 insn = OPC_XORI | OP_A(rd) | OP_B(rd);
1170
1171	if (buf) {
1172		emit_4_bytes(buf, insn);
1173		emit_4_bytes(buf + INSN_len_normal, imm);
1174	}
1175	return INSN_len_normal + INSN_len_imm;
1176}
1177
1178static u8 arc_not_r(u8 *buf, u8 rd, u8 rs)
1179{
1180	const u32 insn = OPC_NOT | OP_B(rd) | OP_C(rs);
1181
1182	if (buf)
1183		emit_4_bytes(buf, insn);
1184	return INSN_len_normal;
1185}
1186
1187static u8 arc_btst_i(u8 *buf, u8 rs, u8 imm)
1188{
1189	const u32 insn = OPC_BTSTU6 | OP_B(rs) | BTST_U6(imm);
1190
1191	if (buf)
1192		emit_4_bytes(buf, insn);
1193	return INSN_len_normal;
1194}
1195
1196static u8 arc_asl_r(u8 *buf, u8 rd, u8 rs1, u8 rs2)
1197{
1198	const u32 insn = OPC_ASL | OP_A(rd) | OP_B(rs1) | OP_C(rs2);
1199
1200	if (buf)
1201		emit_4_bytes(buf, insn);
1202	return INSN_len_normal;
1203}
1204
1205static u8 arc_asli_r(u8 *buf, u8 rd, u8 rs, u8 imm)
1206{
1207	const u32 insn = OPC_ASLI | OP_A(rd) | OP_B(rs) | ASLI_U6(imm);
1208
1209	if (buf)
1210		emit_4_bytes(buf, insn);
1211	return INSN_len_normal;
1212}
1213
1214static u8 arc_asr_r(u8 *buf, u8 rd, u8 rs1, u8 rs2)
1215{
1216	const u32 insn = OPC_ASR | OP_A(rd) | OP_B(rs1) | OP_C(rs2);
1217
1218	if (buf)
1219		emit_4_bytes(buf, insn);
1220	return INSN_len_normal;
1221}
1222
1223static u8 arc_asri_r(u8 *buf, u8 rd, u8 rs, u8 imm)
1224{
1225	const u32 insn = OPC_ASRI | OP_A(rd) | OP_B(rs) | ASRI_U6(imm);
1226
1227	if (buf)
1228		emit_4_bytes(buf, insn);
1229	return INSN_len_normal;
1230}
1231
1232static u8 arc_lsr_r(u8 *buf, u8 rd, u8 rs1, u8 rs2)
1233{
1234	const u32 insn = OPC_LSR | OP_A(rd) | OP_B(rs1) | OP_C(rs2);
1235
1236	if (buf)
1237		emit_4_bytes(buf, insn);
1238	return INSN_len_normal;
1239}
1240
1241static u8 arc_lsri_r(u8 *buf, u8 rd, u8 rs, u8 imm)
1242{
1243	const u32 insn = OPC_LSRI | OP_A(rd) | OP_B(rs) | LSRI_U6(imm);
1244
1245	if (buf)
1246		emit_4_bytes(buf, insn);
1247	return INSN_len_normal;
1248}
1249
1250static u8 arc_swape_r(u8 *buf, u8 r)
1251{
1252	const u32 insn = OPC_SWAPE | OP_B(r) | OP_C(r);
1253
1254	if (buf)
1255		emit_4_bytes(buf, insn);
1256	return INSN_len_normal;
1257}
1258
1259static u8 arc_jmp_return(u8 *buf)
1260{
1261	if (buf)
1262		emit_4_bytes(buf, OPC_J_BLINK);
1263	return INSN_len_normal;
1264}
1265
1266static u8 arc_jl(u8 *buf, u8 reg)
1267{
1268	const u32 insn = OPC_JL | OP_C(reg);
1269
1270	if (buf)
1271		emit_4_bytes(buf, insn);
1272	return INSN_len_normal;
1273}
1274
1275/*
1276 * Conditional jump to an address that is max 21 bits away (signed).
1277 *
1278 * b<cc> s21
1279 */
1280static u8 arc_bcc(u8 *buf, u8 cc, int offset)
1281{
1282	const u32 insn = OPC_BCC | BCC_S21(offset) | COND(cc);
1283
1284	if (buf)
1285		emit_4_bytes(buf, insn);
1286	return INSN_len_normal;
1287}
1288
1289/*
1290 * Unconditional jump to an address that is max 25 bits away (signed).
1291 *
1292 * b     s25
1293 */
1294static u8 arc_b(u8 *buf, s32 offset)
1295{
1296	const u32 insn = OPC_B | B_S25(offset);
1297
1298	if (buf)
1299		emit_4_bytes(buf, insn);
1300	return INSN_len_normal;
1301}
1302
1303/************* Packers (Deal with BPF_REGs) **************/
1304
1305u8 zext(u8 *buf, u8 rd)
1306{
1307	if (rd != BPF_REG_FP)
1308		return arc_movi_r(buf, REG_HI(rd), 0);
1309	else
1310		return 0;
1311}
1312
1313u8 mov_r32(u8 *buf, u8 rd, u8 rs, u8 sign_ext)
1314{
1315	u8 len = 0;
1316
1317	if (sign_ext) {
1318		if (sign_ext == 8)
1319			len = arc_sexb_r(buf, REG_LO(rd), REG_LO(rs));
1320		else if (sign_ext == 16)
1321			len = arc_sexh_r(buf, REG_LO(rd), REG_LO(rs));
1322		else if (sign_ext == 32 && rd != rs)
1323			len = arc_mov_r(buf, REG_LO(rd), REG_LO(rs));
1324
1325		return len;
1326	}
1327
1328	/* Unsigned move. */
1329
1330	if (rd != rs)
1331		len = arc_mov_r(buf, REG_LO(rd), REG_LO(rs));
1332
1333	return len;
1334}
1335
1336u8 mov_r32_i32(u8 *buf, u8 reg, s32 imm)
1337{
1338	return arc_mov_i(buf, REG_LO(reg), imm);
1339}
1340
1341u8 mov_r64(u8 *buf, u8 rd, u8 rs, u8 sign_ext)
1342{
1343	u8 len = 0;
1344
1345	if (sign_ext) {
1346		/* First handle the low 32-bit part. */
1347		len = mov_r32(buf, rd, rs, sign_ext);
1348
1349		/* Now propagate the sign bit of LO to HI. */
1350		if (sign_ext == 8 || sign_ext == 16 || sign_ext == 32) {
1351			len += arc_asri_r(BUF(buf, len),
1352					  REG_HI(rd), REG_LO(rd), 31);
1353		}
1354
1355		return len;
1356	}
1357
1358	/* Unsigned move. */
1359
1360	if (rd == rs)
1361		return 0;
1362
1363	len = arc_mov_r(buf, REG_LO(rd), REG_LO(rs));
1364
1365	if (rs != BPF_REG_FP)
1366		len += arc_mov_r(BUF(buf, len), REG_HI(rd), REG_HI(rs));
1367	/* BPF_REG_FP is mapped to 32-bit "fp" register. */
1368	else
1369		len += arc_movi_r(BUF(buf, len), REG_HI(rd), 0);
1370
1371	return len;
1372}
1373
1374/* Sign extend the 32-bit immediate into 64-bit register pair. */
1375u8 mov_r64_i32(u8 *buf, u8 reg, s32 imm)
1376{
1377	u8 len = 0;
1378
1379	len = arc_mov_i(buf, REG_LO(reg), imm);
1380
1381	/* BPF_REG_FP is mapped to 32-bit "fp" register. */
1382	if (reg != BPF_REG_FP) {
1383		if (imm >= 0)
1384			len += arc_movi_r(BUF(buf, len), REG_HI(reg), 0);
1385		else
1386			len += arc_movi_r(BUF(buf, len), REG_HI(reg), -1);
1387	}
1388
1389	return len;
1390}
1391
1392/*
1393 * This is merely used for translation of "LD R, IMM64" instructions
1394 * of the BPF. These sort of instructions are sometimes used for
1395 * relocations. If during the normal pass, the relocation value is
1396 * not known, the BPF instruction may look something like:
1397 *
1398 * LD R <- 0x0000_0001_0000_0001
1399 *
1400 * Which will nicely translate to two 4-byte ARC instructions:
1401 *
1402 * mov R_lo, 1               # imm is small enough to be s12
1403 * mov R_hi, 1               # same
1404 *
1405 * However, during the extra pass, the IMM64 will have changed
1406 * to the resolved address and looks something like:
1407 *
1408 * LD R <- 0x0000_0000_1234_5678
1409 *
1410 * Now, the translated code will require 12 bytes:
1411 *
1412 * mov R_lo, 0x12345678      # this is an 8-byte instruction
1413 * mov R_hi, 0               # still 4 bytes
1414 *
1415 * Which in practice will result in overwriting the following
1416 * instruction. To avoid such cases, we will always emit codes
1417 * with fixed sizes.
1418 */
1419u8 mov_r64_i64(u8 *buf, u8 reg, u32 lo, u32 hi)
1420{
1421	u8 len;
1422
1423	len  = arc_mov_i_fixed(buf, REG_LO(reg), lo);
1424	len += arc_mov_i_fixed(BUF(buf, len), REG_HI(reg), hi);
1425
1426	return len;
1427}
1428
1429/*
1430 * If the "off"set is too big (doesn't encode as S9) for:
1431 *
1432 *   {ld,st}  r, [rm, off]
1433 *
1434 * Then emit:
1435 *
1436 *   add r10, REG_LO(rm), off
1437 *
1438 * and make sure that r10 becomes the effective address:
1439 *
1440 *   {ld,st}  r, [r10, 0]
1441 */
1442static u8 adjust_mem_access(u8 *buf, s16 *off, u8 size,
1443			    u8 rm, u8 *arc_reg_mem)
1444{
1445	u8 len = 0;
1446	*arc_reg_mem = REG_LO(rm);
1447
1448	if (!IN_S9_RANGE(*off) ||
1449	    (size == BPF_DW && !IN_S9_RANGE(*off + 4))) {
1450		len += arc_add_i(BUF(buf, len),
1451				 REG_LO(JIT_REG_TMP), REG_LO(rm), (u32)(*off));
1452		*arc_reg_mem = REG_LO(JIT_REG_TMP);
1453		*off = 0;
1454	}
1455
1456	return len;
1457}
1458
1459/* store rs, [rd, off] */
1460u8 store_r(u8 *buf, u8 rs, u8 rd, s16 off, u8 size)
1461{
1462	u8 len, arc_reg_mem;
1463
1464	len = adjust_mem_access(buf, &off, size, rd, &arc_reg_mem);
1465
1466	if (size == BPF_DW) {
1467		len += arc_st_r(BUF(buf, len), REG_LO(rs), arc_reg_mem,
1468				off, ZZ_4_byte);
1469		len += arc_st_r(BUF(buf, len), REG_HI(rs), arc_reg_mem,
1470				off + 4, ZZ_4_byte);
1471	} else {
1472		u8 zz = bpf_to_arc_size(size);
1473
1474		len += arc_st_r(BUF(buf, len), REG_LO(rs), arc_reg_mem,
1475				off, zz);
1476	}
1477
1478	return len;
1479}
1480
1481/*
1482 * For {8,16,32}-bit stores:
1483 *   mov r21, imm
1484 *   st  r21, [...]
1485 * For 64-bit stores:
1486 *   mov r21, imm
1487 *   st  r21, [...]
1488 *   mov r21, {0,-1}
1489 *   st  r21, [...+4]
1490 */
1491u8 store_i(u8 *buf, s32 imm, u8 rd, s16 off, u8 size)
1492{
1493	u8 len, arc_reg_mem;
1494	/* REG_LO(JIT_REG_TMP) might be used by "adjust_mem_access()". */
1495	const u8 arc_rs = REG_HI(JIT_REG_TMP);
1496
1497	len = adjust_mem_access(buf, &off, size, rd, &arc_reg_mem);
1498
1499	if (size == BPF_DW) {
1500		len += arc_mov_i(BUF(buf, len), arc_rs, imm);
1501		len += arc_st_r(BUF(buf, len), arc_rs, arc_reg_mem,
1502				off, ZZ_4_byte);
1503		imm = (imm >= 0 ? 0 : -1);
1504		len += arc_mov_i(BUF(buf, len), arc_rs, imm);
1505		len += arc_st_r(BUF(buf, len), arc_rs, arc_reg_mem,
1506				off + 4, ZZ_4_byte);
1507	} else {
1508		u8 zz = bpf_to_arc_size(size);
1509
1510		len += arc_mov_i(BUF(buf, len), arc_rs, imm);
1511		len += arc_st_r(BUF(buf, len), arc_rs, arc_reg_mem, off, zz);
1512	}
1513
1514	return len;
1515}
1516
1517/*
1518 * For the calling convention of a little endian machine, the LO part
1519 * must be on top of the stack.
1520 */
1521static u8 push_r64(u8 *buf, u8 reg)
1522{
1523	u8 len = 0;
1524
1525#ifdef __LITTLE_ENDIAN
1526	/* BPF_REG_FP is mapped to 32-bit "fp" register. */
1527	if (reg != BPF_REG_FP)
1528		len += arc_push_r(BUF(buf, len), REG_HI(reg));
1529	len += arc_push_r(BUF(buf, len), REG_LO(reg));
1530#else
1531	len += arc_push_r(BUF(buf, len), REG_LO(reg));
1532	if (reg != BPF_REG_FP)
1533		len += arc_push_r(BUF(buf, len), REG_HI(reg));
1534#endif
1535
1536	return len;
1537}
1538
1539/* load rd, [rs, off] */
1540u8 load_r(u8 *buf, u8 rd, u8 rs, s16 off, u8 size, bool sign_ext)
1541{
1542	u8 len, arc_reg_mem;
1543
1544	len = adjust_mem_access(buf, &off, size, rs, &arc_reg_mem);
1545
1546	if (size == BPF_B || size == BPF_H || size == BPF_W) {
1547		const u8 zz = bpf_to_arc_size(size);
1548
1549		/* Use LD.X only if the data size is less than 32-bit. */
1550		if (sign_ext && (zz == ZZ_1_byte || zz == ZZ_2_byte)) {
1551			len += arc_ldx_r(BUF(buf, len), REG_LO(rd),
1552					 arc_reg_mem, off, zz);
1553		} else {
1554			len += arc_ld_r(BUF(buf, len), REG_LO(rd),
1555					arc_reg_mem, off, zz);
1556		}
1557
1558		if (sign_ext) {
1559			/* Propagate the sign bit to the higher reg. */
1560			len += arc_asri_r(BUF(buf, len),
1561					  REG_HI(rd), REG_LO(rd), 31);
1562		} else {
1563			len += arc_movi_r(BUF(buf, len), REG_HI(rd), 0);
1564		}
1565	} else if (size == BPF_DW) {
1566		/*
1567		 * We are about to issue 2 consecutive loads:
1568		 *
1569		 *   ld rx, [rb, off+0]
1570		 *   ld ry, [rb, off+4]
1571		 *
1572		 * If "rx" and "rb" are the same registers, then the order
1573		 * should change to guarantee that "rb" remains intact
1574		 * during these 2 operations:
1575		 *
1576		 *   ld ry, [rb, off+4]
1577		 *   ld rx, [rb, off+0]
1578		 */
1579		if (REG_LO(rd) != arc_reg_mem) {
1580			len += arc_ld_r(BUF(buf, len), REG_LO(rd), arc_reg_mem,
1581					off, ZZ_4_byte);
1582			len += arc_ld_r(BUF(buf, len), REG_HI(rd), arc_reg_mem,
1583					off + 4, ZZ_4_byte);
1584		} else {
1585			len += arc_ld_r(BUF(buf, len), REG_HI(rd), arc_reg_mem,
1586					off + 4, ZZ_4_byte);
1587			len += arc_ld_r(BUF(buf, len), REG_LO(rd), arc_reg_mem,
1588					off, ZZ_4_byte);
1589		}
1590	}
1591
1592	return len;
1593}
1594
1595u8 add_r32(u8 *buf, u8 rd, u8 rs)
1596{
1597	return arc_add_r(buf, REG_LO(rd), REG_LO(rs));
1598}
1599
1600u8 add_r32_i32(u8 *buf, u8 rd, s32 imm)
1601{
1602	if (IN_U6_RANGE(imm))
1603		return arc_addi_r(buf, REG_LO(rd), imm);
1604	else
1605		return arc_add_i(buf, REG_LO(rd), REG_LO(rd), imm);
1606}
1607
1608u8 add_r64(u8 *buf, u8 rd, u8 rs)
1609{
1610	u8 len;
1611
1612	len  = arc_addf_r(buf, REG_LO(rd), REG_LO(rs));
1613	len += arc_adc_r(BUF(buf, len), REG_HI(rd), REG_HI(rs));
1614	return len;
1615}
1616
1617u8 add_r64_i32(u8 *buf, u8 rd, s32 imm)
1618{
1619	u8 len;
1620
1621	if (IN_U6_RANGE(imm)) {
1622		len  = arc_addif_r(buf, REG_LO(rd), imm);
1623		len += arc_adci_r(BUF(buf, len), REG_HI(rd), 0);
1624	} else {
1625		len  = mov_r64_i32(buf, JIT_REG_TMP, imm);
1626		len += add_r64(BUF(buf, len), rd, JIT_REG_TMP);
1627	}
1628	return len;
1629}
1630
1631u8 sub_r32(u8 *buf, u8 rd, u8 rs)
1632{
1633	return arc_sub_r(buf, REG_LO(rd), REG_LO(rs));
1634}
1635
1636u8 sub_r32_i32(u8 *buf, u8 rd, s32 imm)
1637{
1638	if (IN_U6_RANGE(imm))
1639		return arc_subi_r(buf, REG_LO(rd), imm);
1640	else
1641		return arc_sub_i(buf, REG_LO(rd), imm);
1642}
1643
1644u8 sub_r64(u8 *buf, u8 rd, u8 rs)
1645{
1646	u8 len;
1647
1648	len  = arc_subf_r(buf, REG_LO(rd), REG_LO(rs));
1649	len += arc_sbc_r(BUF(buf, len), REG_HI(rd), REG_HI(rs));
1650	return len;
1651}
1652
1653u8 sub_r64_i32(u8 *buf, u8 rd, s32 imm)
1654{
1655	u8 len;
1656
1657	len  = mov_r64_i32(buf, JIT_REG_TMP, imm);
1658	len += sub_r64(BUF(buf, len), rd, JIT_REG_TMP);
1659	return len;
1660}
1661
1662static u8 cmp_r32(u8 *buf, u8 rd, u8 rs)
1663{
1664	return arc_cmp_r(buf, REG_LO(rd), REG_LO(rs));
1665}
1666
1667u8 neg_r32(u8 *buf, u8 r)
1668{
1669	return arc_neg_r(buf, REG_LO(r), REG_LO(r));
1670}
1671
1672/* In a two's complement system, -r is (~r + 1). */
1673u8 neg_r64(u8 *buf, u8 r)
1674{
1675	u8 len;
1676
1677	len  = arc_not_r(buf, REG_LO(r), REG_LO(r));
1678	len += arc_not_r(BUF(buf, len), REG_HI(r), REG_HI(r));
1679	len += add_r64_i32(BUF(buf, len), r, 1);
1680	return len;
1681}
1682
1683u8 mul_r32(u8 *buf, u8 rd, u8 rs)
1684{
1685	return arc_mpy_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs));
1686}
1687
1688u8 mul_r32_i32(u8 *buf, u8 rd, s32 imm)
1689{
1690	return arc_mpy_i(buf, REG_LO(rd), REG_LO(rd), imm);
1691}
1692
1693/*
1694 * MUL B, C
1695 * --------
1696 * mpy       t0, B_hi, C_lo
1697 * mpy       t1, B_lo, C_hi
1698 * mpydu   B_lo, B_lo, C_lo
1699 * add     B_hi, B_hi,   t0
1700 * add     B_hi, B_hi,   t1
1701 */
1702u8 mul_r64(u8 *buf, u8 rd, u8 rs)
1703{
1704	const u8 t0   = REG_LO(JIT_REG_TMP);
1705	const u8 t1   = REG_HI(JIT_REG_TMP);
1706	const u8 C_lo = REG_LO(rs);
1707	const u8 C_hi = REG_HI(rs);
1708	const u8 B_lo = REG_LO(rd);
1709	const u8 B_hi = REG_HI(rd);
1710	u8 len;
1711
1712	len  = arc_mpy_r(buf, t0, B_hi, C_lo);
1713	len += arc_mpy_r(BUF(buf, len), t1, B_lo, C_hi);
1714	len += arc_mpydu_r(BUF(buf, len), B_lo, C_lo);
1715	len += arc_add_r(BUF(buf, len), B_hi, t0);
1716	len += arc_add_r(BUF(buf, len), B_hi, t1);
1717
1718	return len;
1719}
1720
1721/*
1722 * MUL B, imm
1723 * ----------
1724 *
1725 *  To get a 64-bit result from a signed 64x32 multiplication:
1726 *
1727 *         B_hi             B_lo   *
1728 *         sign             imm
1729 *  -----------------------------
1730 *  HI(B_lo*imm)     LO(B_lo*imm)  +
1731 *     B_hi*imm                    +
1732 *     B_lo*sign
1733 *  -----------------------------
1734 *        res_hi           res_lo
1735 *
1736 * mpy     t1, B_lo, sign(imm)
1737 * mpy     t0, B_hi, imm
1738 * mpydu B_lo, B_lo, imm
1739 * add   B_hi, B_hi,  t0
1740 * add   B_hi, B_hi,  t1
1741 *
1742 * Note: We can't use signed double multiplication, "mpyd", instead of an
1743 * unsigned version, "mpydu", and then get rid of the sign adjustments
1744 * calculated in "t1". The signed multiplication, "mpyd", will consider
1745 * both operands, "B_lo" and "imm", as signed inputs. However, for this
1746 * 64x32 multiplication, "B_lo" must be treated as an unsigned number.
1747 */
1748u8 mul_r64_i32(u8 *buf, u8 rd, s32 imm)
1749{
1750	const u8 t0   = REG_LO(JIT_REG_TMP);
1751	const u8 t1   = REG_HI(JIT_REG_TMP);
1752	const u8 B_lo = REG_LO(rd);
1753	const u8 B_hi = REG_HI(rd);
1754	u8 len = 0;
1755
1756	if (imm == 1)
1757		return 0;
1758
1759	/* Is the sign-extension of the immediate "-1"? */
1760	if (imm < 0)
1761		len += arc_neg_r(BUF(buf, len), t1, B_lo);
1762
1763	len += arc_mpy_i(BUF(buf, len), t0, B_hi, imm);
1764	len += arc_mpydu_i(BUF(buf, len), B_lo, imm);
1765	len += arc_add_r(BUF(buf, len), B_hi, t0);
1766
1767	/* Add the "sign*B_lo" part, if necessary. */
1768	if (imm < 0)
1769		len += arc_add_r(BUF(buf, len), B_hi, t1);
1770
1771	return len;
1772}
1773
1774u8 div_r32(u8 *buf, u8 rd, u8 rs, bool sign_ext)
1775{
1776	if (sign_ext)
1777		return arc_divs_r(buf, REG_LO(rd), REG_LO(rs));
1778	else
1779		return arc_divu_r(buf, REG_LO(rd), REG_LO(rs));
1780}
1781
1782u8 div_r32_i32(u8 *buf, u8 rd, s32 imm, bool sign_ext)
1783{
1784	if (imm == 0)
1785		return 0;
1786
1787	if (sign_ext)
1788		return arc_divs_i(buf, REG_LO(rd), imm);
1789	else
1790		return arc_divu_i(buf, REG_LO(rd), imm);
1791}
1792
1793u8 mod_r32(u8 *buf, u8 rd, u8 rs, bool sign_ext)
1794{
1795	if (sign_ext)
1796		return arc_rems_r(buf, REG_LO(rd), REG_LO(rs));
1797	else
1798		return arc_remu_r(buf, REG_LO(rd), REG_LO(rs));
1799}
1800
1801u8 mod_r32_i32(u8 *buf, u8 rd, s32 imm, bool sign_ext)
1802{
1803	if (imm == 0)
1804		return 0;
1805
1806	if (sign_ext)
1807		return arc_rems_i(buf, REG_LO(rd), imm);
1808	else
1809		return arc_remu_i(buf, REG_LO(rd), imm);
1810}
1811
1812u8 and_r32(u8 *buf, u8 rd, u8 rs)
1813{
1814	return arc_and_r(buf, REG_LO(rd), REG_LO(rs));
1815}
1816
1817u8 and_r32_i32(u8 *buf, u8 rd, s32 imm)
1818{
1819	return arc_and_i(buf, REG_LO(rd), imm);
1820}
1821
1822u8 and_r64(u8 *buf, u8 rd, u8 rs)
1823{
1824	u8 len;
1825
1826	len  = arc_and_r(buf, REG_LO(rd), REG_LO(rs));
1827	len += arc_and_r(BUF(buf, len), REG_HI(rd), REG_HI(rs));
1828	return len;
1829}
1830
1831u8 and_r64_i32(u8 *buf, u8 rd, s32 imm)
1832{
1833	u8 len;
1834
1835	len  = mov_r64_i32(buf, JIT_REG_TMP, imm);
1836	len += and_r64(BUF(buf, len), rd, JIT_REG_TMP);
1837	return len;
1838}
1839
1840static u8 tst_r32(u8 *buf, u8 rd, u8 rs)
1841{
1842	return arc_tst_r(buf, REG_LO(rd), REG_LO(rs));
1843}
1844
1845u8 or_r32(u8 *buf, u8 rd, u8 rs)
1846{
1847	return arc_or_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs));
1848}
1849
1850u8 or_r32_i32(u8 *buf, u8 rd, s32 imm)
1851{
1852	return arc_or_i(buf, REG_LO(rd), imm);
1853}
1854
1855u8 or_r64(u8 *buf, u8 rd, u8 rs)
1856{
1857	u8 len;
1858
1859	len  = arc_or_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs));
1860	len += arc_or_r(BUF(buf, len), REG_HI(rd), REG_HI(rd), REG_HI(rs));
1861	return len;
1862}
1863
1864u8 or_r64_i32(u8 *buf, u8 rd, s32 imm)
1865{
1866	u8 len;
1867
1868	len  = mov_r64_i32(buf, JIT_REG_TMP, imm);
1869	len += or_r64(BUF(buf, len), rd, JIT_REG_TMP);
1870	return len;
1871}
1872
1873u8 xor_r32(u8 *buf, u8 rd, u8 rs)
1874{
1875	return arc_xor_r(buf, REG_LO(rd), REG_LO(rs));
1876}
1877
1878u8 xor_r32_i32(u8 *buf, u8 rd, s32 imm)
1879{
1880	return arc_xor_i(buf, REG_LO(rd), imm);
1881}
1882
1883u8 xor_r64(u8 *buf, u8 rd, u8 rs)
1884{
1885	u8 len;
1886
1887	len  = arc_xor_r(buf, REG_LO(rd), REG_LO(rs));
1888	len += arc_xor_r(BUF(buf, len), REG_HI(rd), REG_HI(rs));
1889	return len;
1890}
1891
1892u8 xor_r64_i32(u8 *buf, u8 rd, s32 imm)
1893{
1894	u8 len;
1895
1896	len  = mov_r64_i32(buf, JIT_REG_TMP, imm);
1897	len += xor_r64(BUF(buf, len), rd, JIT_REG_TMP);
1898	return len;
1899}
1900
1901/* "asl a,b,c" --> "a = (b << (c & 31))". */
1902u8 lsh_r32(u8 *buf, u8 rd, u8 rs)
1903{
1904	return arc_asl_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs));
1905}
1906
1907u8 lsh_r32_i32(u8 *buf, u8 rd, u8 imm)
1908{
1909	return arc_asli_r(buf, REG_LO(rd), REG_LO(rd), imm);
1910}
1911
1912/*
1913 * algorithm
1914 * ---------
1915 * if (n <= 32)
1916 *   to_hi = lo >> (32-n)   # (32-n) is the negate of "n" in a 5-bit width.
1917 *   lo <<= n
1918 *   hi <<= n
1919 *   hi |= to_hi
1920 * else
1921 *   hi = lo << (n-32)
1922 *   lo = 0
1923 *
1924 * assembly translation for "LSH B, C"
1925 * (heavily influenced by ARC gcc)
1926 * -----------------------------------
1927 * not    t0, C_lo            # The first 3 lines are almost the same as:
1928 * lsr    t1, B_lo, 1         #   neg   t0, C_lo
1929 * lsr    t1, t1, t0          #   lsr   t1, B_lo, t0   --> t1 is "to_hi"
1930 * mov    t0, C_lo*           # with one important difference. In "neg"
1931 * asl    B_lo, B_lo, t0      # version, when C_lo=0, t1 becomes B_lo while
1932 * asl    B_hi, B_hi, t0      # it should be 0. The "not" approach instead,
1933 * or     B_hi, B_hi, t1      # "shift"s t1 once and 31 times, practically
1934 * btst   t0, 5               # setting it to 0 when C_lo=0.
1935 * mov.ne B_hi, B_lo**
1936 * mov.ne B_lo, 0
1937 *
1938 * *The "mov t0, C_lo" is necessary to cover the cases that C is the same
1939 * register as B.
1940 *
1941 * **ARC performs a shift in this manner: B <<= (C & 31)
1942 * For 32<=n<64, "n-32" and "n&31" are the same. Therefore, "B << n" and
1943 * "B << (n-32)" yield the same results. e.g. the results of "B << 35" and
1944 * "B << 3" are the same.
1945 *
1946 * The behaviour is undefined for n >= 64.
1947 */
1948u8 lsh_r64(u8 *buf, u8 rd, u8 rs)
1949{
1950	const u8 t0   = REG_LO(JIT_REG_TMP);
1951	const u8 t1   = REG_HI(JIT_REG_TMP);
1952	const u8 C_lo = REG_LO(rs);
1953	const u8 B_lo = REG_LO(rd);
1954	const u8 B_hi = REG_HI(rd);
1955	u8 len;
1956
1957	len  = arc_not_r(buf, t0, C_lo);
1958	len += arc_lsri_r(BUF(buf, len), t1, B_lo, 1);
1959	len += arc_lsr_r(BUF(buf, len), t1, t1, t0);
1960	len += arc_mov_r(BUF(buf, len), t0, C_lo);
1961	len += arc_asl_r(BUF(buf, len), B_lo, B_lo, t0);
1962	len += arc_asl_r(BUF(buf, len), B_hi, B_hi, t0);
1963	len += arc_or_r(BUF(buf, len), B_hi, B_hi, t1);
1964	len += arc_btst_i(BUF(buf, len), t0, 5);
1965	len += arc_mov_cc_r(BUF(buf, len), CC_unequal, B_hi, B_lo);
1966	len += arc_movu_cc_r(BUF(buf, len), CC_unequal, B_lo, 0);
1967
1968	return len;
1969}
1970
1971/*
1972 * if (n < 32)
1973 *   to_hi = B_lo >> 32-n          # extract upper n bits
1974 *   lo <<= n
1975 *   hi <<=n
1976 *   hi |= to_hi
1977 * else if (n < 64)
1978 *   hi = lo << n-32
1979 *   lo = 0
1980 */
1981u8 lsh_r64_i32(u8 *buf, u8 rd, s32 imm)
1982{
1983	const u8 t0   = REG_LO(JIT_REG_TMP);
1984	const u8 B_lo = REG_LO(rd);
1985	const u8 B_hi = REG_HI(rd);
1986	const u8 n    = (u8)imm;
1987	u8 len = 0;
1988
1989	if (n == 0) {
1990		return 0;
1991	} else if (n <= 31) {
1992		len  = arc_lsri_r(buf, t0, B_lo, 32 - n);
1993		len += arc_asli_r(BUF(buf, len), B_lo, B_lo, n);
1994		len += arc_asli_r(BUF(buf, len), B_hi, B_hi, n);
1995		len += arc_or_r(BUF(buf, len), B_hi, B_hi, t0);
1996	} else if (n <= 63) {
1997		len  = arc_asli_r(buf, B_hi, B_lo, n - 32);
1998		len += arc_movi_r(BUF(buf, len), B_lo, 0);
1999	}
2000	/* n >= 64 is undefined behaviour. */
2001
2002	return len;
2003}
2004
2005/* "lsr a,b,c" --> "a = (b >> (c & 31))". */
2006u8 rsh_r32(u8 *buf, u8 rd, u8 rs)
2007{
2008	return arc_lsr_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs));
2009}
2010
2011u8 rsh_r32_i32(u8 *buf, u8 rd, u8 imm)
2012{
2013	return arc_lsri_r(buf, REG_LO(rd), REG_LO(rd), imm);
2014}
2015
2016/*
2017 * For better commentary, see lsh_r64().
2018 *
2019 * algorithm
2020 * ---------
2021 * if (n <= 32)
2022 *   to_lo = hi << (32-n)
2023 *   hi >>= n
2024 *   lo >>= n
2025 *   lo |= to_lo
2026 * else
2027 *   lo = hi >> (n-32)
2028 *   hi = 0
2029 *
2030 * RSH    B,C
2031 * ----------
2032 * not    t0, C_lo
2033 * asl    t1, B_hi, 1
2034 * asl    t1, t1, t0
2035 * mov    t0, C_lo
2036 * lsr    B_hi, B_hi, t0
2037 * lsr    B_lo, B_lo, t0
2038 * or     B_lo, B_lo, t1
2039 * btst   t0, 5
2040 * mov.ne B_lo, B_hi
2041 * mov.ne B_hi, 0
2042 */
2043u8 rsh_r64(u8 *buf, u8 rd, u8 rs)
2044{
2045	const u8 t0   = REG_LO(JIT_REG_TMP);
2046	const u8 t1   = REG_HI(JIT_REG_TMP);
2047	const u8 C_lo = REG_LO(rs);
2048	const u8 B_lo = REG_LO(rd);
2049	const u8 B_hi = REG_HI(rd);
2050	u8 len;
2051
2052	len  = arc_not_r(buf, t0, C_lo);
2053	len += arc_asli_r(BUF(buf, len), t1, B_hi, 1);
2054	len += arc_asl_r(BUF(buf, len), t1, t1, t0);
2055	len += arc_mov_r(BUF(buf, len), t0, C_lo);
2056	len += arc_lsr_r(BUF(buf, len), B_hi, B_hi, t0);
2057	len += arc_lsr_r(BUF(buf, len), B_lo, B_lo, t0);
2058	len += arc_or_r(BUF(buf, len), B_lo, B_lo, t1);
2059	len += arc_btst_i(BUF(buf, len), t0, 5);
2060	len += arc_mov_cc_r(BUF(buf, len), CC_unequal, B_lo, B_hi);
2061	len += arc_movu_cc_r(BUF(buf, len), CC_unequal, B_hi, 0);
2062
2063	return len;
2064}
2065
2066/*
2067 * if (n < 32)
2068 *   to_lo = B_lo << 32-n     # extract lower n bits, right-padded with 32-n 0s
2069 *   lo >>=n
2070 *   hi >>=n
2071 *   hi |= to_lo
2072 * else if (n < 64)
2073 *   lo = hi >> n-32
2074 *   hi = 0
2075 */
2076u8 rsh_r64_i32(u8 *buf, u8 rd, s32 imm)
2077{
2078	const u8 t0   = REG_LO(JIT_REG_TMP);
2079	const u8 B_lo = REG_LO(rd);
2080	const u8 B_hi = REG_HI(rd);
2081	const u8 n    = (u8)imm;
2082	u8 len = 0;
2083
2084	if (n == 0) {
2085		return 0;
2086	} else if (n <= 31) {
2087		len  = arc_asli_r(buf, t0, B_hi, 32 - n);
2088		len += arc_lsri_r(BUF(buf, len), B_lo, B_lo, n);
2089		len += arc_lsri_r(BUF(buf, len), B_hi, B_hi, n);
2090		len += arc_or_r(BUF(buf, len), B_lo, B_lo, t0);
2091	} else if (n <= 63) {
2092		len  = arc_lsri_r(buf, B_lo, B_hi, n - 32);
2093		len += arc_movi_r(BUF(buf, len), B_hi, 0);
2094	}
2095	/* n >= 64 is undefined behaviour. */
2096
2097	return len;
2098}
2099
2100/* "asr a,b,c" --> "a = (b s>> (c & 31))". */
2101u8 arsh_r32(u8 *buf, u8 rd, u8 rs)
2102{
2103	return arc_asr_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs));
2104}
2105
2106u8 arsh_r32_i32(u8 *buf, u8 rd, u8 imm)
2107{
2108	return arc_asri_r(buf, REG_LO(rd), REG_LO(rd), imm);
2109}
2110
2111/*
2112 * For comparison, see rsh_r64().
2113 *
2114 * algorithm
2115 * ---------
2116 * if (n <= 32)
2117 *   to_lo = hi << (32-n)
2118 *   hi s>>= n
2119 *   lo  >>= n
2120 *   lo |= to_lo
2121 * else
2122 *   hi_sign = hi s>>31
2123 *   lo = hi s>> (n-32)
2124 *   hi = hi_sign
2125 *
2126 * ARSH   B,C
2127 * ----------
2128 * not    t0, C_lo
2129 * asl    t1, B_hi, 1
2130 * asl    t1, t1, t0
2131 * mov    t0, C_lo
2132 * asr    B_hi, B_hi, t0
2133 * lsr    B_lo, B_lo, t0
2134 * or     B_lo, B_lo, t1
2135 * btst   t0, 5
2136 * asr    t0, B_hi, 31        # now, t0 = 0 or -1 based on B_hi's sign
2137 * mov.ne B_lo, B_hi
2138 * mov.ne B_hi, t0
2139 */
2140u8 arsh_r64(u8 *buf, u8 rd, u8 rs)
2141{
2142	const u8 t0   = REG_LO(JIT_REG_TMP);
2143	const u8 t1   = REG_HI(JIT_REG_TMP);
2144	const u8 C_lo = REG_LO(rs);
2145	const u8 B_lo = REG_LO(rd);
2146	const u8 B_hi = REG_HI(rd);
2147	u8 len;
2148
2149	len  = arc_not_r(buf, t0, C_lo);
2150	len += arc_asli_r(BUF(buf, len), t1, B_hi, 1);
2151	len += arc_asl_r(BUF(buf, len), t1, t1, t0);
2152	len += arc_mov_r(BUF(buf, len), t0, C_lo);
2153	len += arc_asr_r(BUF(buf, len), B_hi, B_hi, t0);
2154	len += arc_lsr_r(BUF(buf, len), B_lo, B_lo, t0);
2155	len += arc_or_r(BUF(buf, len), B_lo, B_lo, t1);
2156	len += arc_btst_i(BUF(buf, len), t0, 5);
2157	len += arc_asri_r(BUF(buf, len), t0, B_hi, 31);
2158	len += arc_mov_cc_r(BUF(buf, len), CC_unequal, B_lo, B_hi);
2159	len += arc_mov_cc_r(BUF(buf, len), CC_unequal, B_hi, t0);
2160
2161	return len;
2162}
2163
2164/*
2165 * if (n < 32)
2166 *   to_lo = lo << 32-n     # extract lower n bits, right-padded with 32-n 0s
2167 *   lo >>=n
2168 *   hi s>>=n
2169 *   hi |= to_lo
2170 * else if (n < 64)
2171 *   lo = hi s>> n-32
2172 *   hi = (lo[msb] ? -1 : 0)
2173 */
2174u8 arsh_r64_i32(u8 *buf, u8 rd, s32 imm)
2175{
2176	const u8 t0   = REG_LO(JIT_REG_TMP);
2177	const u8 B_lo = REG_LO(rd);
2178	const u8 B_hi = REG_HI(rd);
2179	const u8 n    = (u8)imm;
2180	u8 len = 0;
2181
2182	if (n == 0) {
2183		return 0;
2184	} else if (n <= 31) {
2185		len  = arc_asli_r(buf, t0, B_hi, 32 - n);
2186		len += arc_lsri_r(BUF(buf, len), B_lo, B_lo, n);
2187		len += arc_asri_r(BUF(buf, len), B_hi, B_hi, n);
2188		len += arc_or_r(BUF(buf, len), B_lo, B_lo, t0);
2189	} else if (n <= 63) {
2190		len  = arc_asri_r(buf, B_lo, B_hi, n - 32);
2191		len += arc_movi_r(BUF(buf, len), B_hi, -1);
2192		len += arc_btst_i(BUF(buf, len), B_lo, 31);
2193		len += arc_movu_cc_r(BUF(buf, len), CC_equal, B_hi, 0);
2194	}
2195	/* n >= 64 is undefined behaviour. */
2196
2197	return len;
2198}
2199
2200u8 gen_swap(u8 *buf, u8 rd, u8 size, u8 endian, bool force, bool do_zext)
2201{
2202	u8 len = 0;
2203#ifdef __BIG_ENDIAN
2204	const u8 host_endian = BPF_FROM_BE;
2205#else
2206	const u8 host_endian = BPF_FROM_LE;
2207#endif
2208	if (host_endian != endian || force) {
2209		switch (size) {
2210		case 16:
2211			/*
2212			 * r = B4B3_B2B1 << 16 --> r = B2B1_0000
2213			 * then, swape(r) would become the desired 0000_B1B2
2214			 */
2215			len = arc_asli_r(buf, REG_LO(rd), REG_LO(rd), 16);
2216			fallthrough;
2217		case 32:
2218			len += arc_swape_r(BUF(buf, len), REG_LO(rd));
2219			if (do_zext)
2220				len += zext(BUF(buf, len), rd);
2221			break;
2222		case 64:
2223			/*
2224			 * swap "hi" and "lo":
2225			 *   hi ^= lo;
2226			 *   lo ^= hi;
2227			 *   hi ^= lo;
2228			 * and then swap the bytes in "hi" and "lo".
2229			 */
2230			len  = arc_xor_r(buf, REG_HI(rd), REG_LO(rd));
2231			len += arc_xor_r(BUF(buf, len), REG_LO(rd), REG_HI(rd));
2232			len += arc_xor_r(BUF(buf, len), REG_HI(rd), REG_LO(rd));
2233			len += arc_swape_r(BUF(buf, len), REG_LO(rd));
2234			len += arc_swape_r(BUF(buf, len), REG_HI(rd));
2235			break;
2236		default:
2237			/* The caller must have handled this. */
2238			break;
2239		}
2240	} else {
2241		/*
2242		 * If the same endianness, there's not much to do other
2243		 * than zeroing out the upper bytes based on the "size".
2244		 */
2245		switch (size) {
2246		case 16:
2247			len = arc_and_i(buf, REG_LO(rd), 0xffff);
2248			fallthrough;
2249		case 32:
2250			if (do_zext)
2251				len += zext(BUF(buf, len), rd);
2252			break;
2253		case 64:
2254			break;
2255		default:
2256			/* The caller must have handled this. */
2257			break;
2258		}
2259	}
2260
2261	return len;
2262}
2263
2264/*
2265 * To create a frame, all that is needed is:
2266 *
2267 *  push fp
2268 *  mov  fp, sp
2269 *  sub  sp, <frame_size>
2270 *
2271 * "push fp" is taken care of separately while saving the clobbered registers.
2272 * All that remains is copying SP value to FP and shrinking SP's address space
2273 * for any possible function call to come.
2274 */
2275static inline u8 frame_create(u8 *buf, u16 size)
2276{
2277	u8 len;
2278
2279	len = arc_mov_r(buf, ARC_R_FP, ARC_R_SP);
2280	if (IN_U6_RANGE(size))
2281		len += arc_subi_r(BUF(buf, len), ARC_R_SP, size);
2282	else
2283		len += arc_sub_i(BUF(buf, len), ARC_R_SP, size);
2284	return len;
2285}
2286
2287/*
2288 * mov sp, fp
2289 *
2290 * The value of SP upon entering was copied to FP.
2291 */
2292static inline u8 frame_restore(u8 *buf)
2293{
2294	return arc_mov_r(buf, ARC_R_SP, ARC_R_FP);
2295}
2296
2297/*
2298 * Going from a JITed code to the native caller:
2299 *
2300 * mov ARC_ABI_RET_lo, BPF_REG_0_lo     # r0 <- r8
2301 * mov ARC_ABI_RET_hi, BPF_REG_0_hi     # r1 <- r9
2302 */
2303static u8 bpf_to_arc_return(u8 *buf)
2304{
2305	u8 len;
2306
2307	len  = arc_mov_r(buf, ARC_R_0, REG_LO(BPF_REG_0));
2308	len += arc_mov_r(BUF(buf, len), ARC_R_1, REG_HI(BPF_REG_0));
2309	return len;
2310}
2311
2312/*
2313 * Coming back from an external (in-kernel) function to the JITed code:
2314 *
2315 * mov ARC_ABI_RET_lo, BPF_REG_0_lo     # r8 <- r0
2316 * mov ARC_ABI_RET_hi, BPF_REG_0_hi     # r9 <- r1
2317 */
2318u8 arc_to_bpf_return(u8 *buf)
2319{
2320	u8 len;
2321
2322	len  = arc_mov_r(buf, REG_LO(BPF_REG_0), ARC_R_0);
2323	len += arc_mov_r(BUF(buf, len), REG_HI(BPF_REG_0), ARC_R_1);
2324	return len;
2325}
2326
2327/*
2328 * This translation leads to:
2329 *
2330 *   mov r10, addr                # always an 8-byte instruction
2331 *   jl  [r10]
2332 *
2333 * The length of the "mov" must be fixed (8), otherwise it may diverge
2334 * during the normal and extra passes:
2335 *
2336 *          normal pass                  extra pass
2337 *
2338 *   180:  mov     r10,0        |   180:  mov     r10,0x700578d8
2339 *   184:  jl      [r10]        |   188:  jl      [r10]
2340 *   188:  add.f   r16,r16,0x1  |   18c:  adc     r17,r17,0
2341 *   18c:  adc     r17,r17,0    |
2342 *
2343 * In the above example, the change from "r10 <- 0" to "r10 <- 0x700578d8"
2344 * has led to an increase in the length of the "mov" instruction.
2345 * Inadvertently, that caused the loss of the "add.f" instruction.
2346 */
2347static u8 jump_and_link(u8 *buf, u32 addr)
2348{
2349	u8 len;
2350
2351	len  = arc_mov_i_fixed(buf, REG_LO(JIT_REG_TMP), addr);
2352	len += arc_jl(BUF(buf, len), REG_LO(JIT_REG_TMP));
2353	return len;
2354}
2355
2356/*
2357 * This function determines which ARC registers must be saved and restored.
2358 * It does so by looking into:
2359 *
2360 * "bpf_reg": The clobbered (destination) BPF register
2361 * "is_call": Indicator if the current instruction is a call
2362 *
2363 * When a register of interest is clobbered, its corresponding bit position
2364 * in return value, "usage", is set to true.
2365 */
2366u32 mask_for_used_regs(u8 bpf_reg, bool is_call)
2367{
2368	u32 usage = 0;
2369
2370	/* BPF registers that must be saved. */
2371	if (bpf_reg >= BPF_REG_6 && bpf_reg <= BPF_REG_9) {
2372		usage |= BIT(REG_LO(bpf_reg));
2373		usage |= BIT(REG_HI(bpf_reg));
2374	/*
2375	 * Using the frame pointer register implies that it should
2376	 * be saved and reinitialised with the current frame data.
2377	 */
2378	} else if (bpf_reg == BPF_REG_FP) {
2379		usage |= BIT(REG_LO(BPF_REG_FP));
2380	/* Could there be some ARC registers that must to be saved? */
2381	} else {
2382		if (REG_LO(bpf_reg) >= ARC_CALLEE_SAVED_REG_FIRST &&
2383		    REG_LO(bpf_reg) <= ARC_CALLEE_SAVED_REG_LAST)
2384			usage |= BIT(REG_LO(bpf_reg));
2385
2386		if (REG_HI(bpf_reg) >= ARC_CALLEE_SAVED_REG_FIRST &&
2387		    REG_HI(bpf_reg) <= ARC_CALLEE_SAVED_REG_LAST)
2388			usage |= BIT(REG_HI(bpf_reg));
2389	}
2390
2391	/* A "call" indicates that ARC's "blink" reg must be saved. */
2392	usage |= is_call ? BIT(ARC_R_BLINK) : 0;
2393
2394	return usage;
2395}
2396
2397/*
2398 * push blink             # if blink is marked as clobbered
2399 * push r[0-n]            # if r[i] is marked as clobbered
2400 * push fp                # if fp is marked as clobbered
2401 * mov  fp, sp            # if frame_size > 0 (clobbers fp)
2402 * sub  sp, <frame_size>  # same as above
2403 */
2404u8 arc_prologue(u8 *buf, u32 usage, u16 frame_size)
2405{
2406	u8 len = 0;
2407	u32 gp_regs = 0;
2408
2409	/* Deal with blink first. */
2410	if (usage & BIT(ARC_R_BLINK))
2411		len += arc_push_r(BUF(buf, len), ARC_R_BLINK);
2412
2413	gp_regs = usage & ~(BIT(ARC_R_BLINK) | BIT(ARC_R_FP));
2414	while (gp_regs) {
2415		u8 reg = __builtin_ffs(gp_regs) - 1;
2416
2417		len += arc_push_r(BUF(buf, len), reg);
2418		gp_regs &= ~BIT(reg);
2419	}
2420
2421	/* Deal with fp last. */
2422	if ((usage & BIT(ARC_R_FP)) || frame_size > 0)
2423		len += arc_push_r(BUF(buf, len), ARC_R_FP);
2424
2425	if (frame_size > 0)
2426		len += frame_create(BUF(buf, len), frame_size);
2427
2428#ifdef ARC_BPF_JIT_DEBUG
2429	if ((usage & BIT(ARC_R_FP)) && frame_size == 0) {
2430		pr_err("FP is being saved while there is no frame.");
2431		BUG();
2432	}
2433#endif
2434
2435	return len;
2436}
2437
2438/*
2439 * mov  sp, fp            # if frame_size > 0
2440 * pop  fp                # if fp is marked as clobbered
2441 * pop  r[n-0]            # if r[i] is marked as clobbered
2442 * pop  blink             # if blink is marked as clobbered
2443 * mov  r0, r8            # always: ABI_return <- BPF_return
2444 * mov  r1, r9            # continuation of above
2445 * j    [blink]           # always
2446 *
2447 * "fp being marked as clobbered" and "frame_size > 0" are the two sides of
2448 * the same coin.
2449 */
2450u8 arc_epilogue(u8 *buf, u32 usage, u16 frame_size)
2451{
2452	u32 len = 0;
2453	u32 gp_regs = 0;
2454
2455#ifdef ARC_BPF_JIT_DEBUG
2456	if ((usage & BIT(ARC_R_FP)) && frame_size == 0) {
2457		pr_err("FP is being saved while there is no frame.");
2458		BUG();
2459	}
2460#endif
2461
2462	if (frame_size > 0)
2463		len += frame_restore(BUF(buf, len));
2464
2465	/* Deal with fp first. */
2466	if ((usage & BIT(ARC_R_FP)) || frame_size > 0)
2467		len += arc_pop_r(BUF(buf, len), ARC_R_FP);
2468
2469	gp_regs = usage & ~(BIT(ARC_R_BLINK) | BIT(ARC_R_FP));
2470	while (gp_regs) {
2471		/* "usage" is 32-bit, each bit indicating an ARC register. */
2472		u8 reg = 31 - __builtin_clz(gp_regs);
2473
2474		len += arc_pop_r(BUF(buf, len), reg);
2475		gp_regs &= ~BIT(reg);
2476	}
2477
2478	/* Deal with blink last. */
2479	if (usage & BIT(ARC_R_BLINK))
2480		len += arc_pop_r(BUF(buf, len), ARC_R_BLINK);
2481
2482	/* Wrap up the return value and jump back to the caller. */
2483	len += bpf_to_arc_return(BUF(buf, len));
2484	len += arc_jmp_return(BUF(buf, len));
2485
2486	return len;
2487}
2488
2489/*
2490 * For details on the algorithm, see the comments of "gen_jcc_64()".
2491 *
2492 * This data structure is holding information for jump translations.
2493 *
2494 * jit_off: How many bytes into the current JIT address, "b"ranch insn. occurs
2495 * cond: The condition that the ARC branch instruction must use
2496 *
2497 * e.g.:
2498 *
2499 * BPF_JGE  R1, R0, @target
2500 * ------------------------
2501 *            |
2502 *            v
2503 * 0x1000: cmp  r3, r1     # 0x1000 is the JIT address for "BPF_JGE ..." insn
2504 * 0x1004: bhi  @target    # first jump (branch higher)
2505 * 0x1008: blo  @end       # second jump acting as a skip (end is 0x1014)
2506 * 0x100C: cmp  r2, r0     # the lower 32 bits are evaluated
2507 * 0x1010: bhs  @target    # third jump (branch higher or same)
2508 * 0x1014: ...
2509 *
2510 * The jit_off(set) of the "bhi" is 4 bytes.
2511 * The cond(ition) for the "bhi" is "CC_great_u".
2512 *
2513 * The jit_off(set) is necessary for calculating the exact displacement
2514 * to the "target" address:
2515 *
2516 * jit_address + jit_off(set) - @target
2517 * 0x1000      + 4            - @target
2518 */
2519#define JCC64_NR_OF_JMPS 3	/* Number of jumps in jcc64 template. */
2520#define JCC64_INSNS_TO_END 3	/* Number of insn. inclusive the 2nd jmp to end. */
2521#define JCC64_SKIP_JMP 1	/* Index of the "skip" jump to "end". */
2522static const struct {
2523	/*
2524	 * "jit_off" is common between all "jmp[]" and is coupled with
2525	 * "cond" of each "jmp[]" instance. e.g.:
2526	 *
2527	 * arcv2_64_jccs.jit_off[1]
2528	 * arcv2_64_jccs.jmp[ARC_CC_UGT].cond[1]
2529	 *
2530	 * Are indicating that the second jump in JITed code of "UGT"
2531	 * is at offset "jit_off[1]" while its condition is "cond[1]".
2532	 */
2533	u8 jit_off[JCC64_NR_OF_JMPS];
2534
2535	struct {
2536		u8 cond[JCC64_NR_OF_JMPS];
2537	} jmp[ARC_CC_SLE + 1];
2538} arcv2_64_jccs = {
2539	.jit_off = {
2540		INSN_len_normal * 1,
2541		INSN_len_normal * 2,
2542		INSN_len_normal * 4
2543	},
2544	/*
2545	 *   cmp  rd_hi, rs_hi
2546	 *   bhi  @target         # 1: u>
2547	 *   blo  @end            # 2: u<
2548	 *   cmp  rd_lo, rs_lo
2549	 *   bhi  @target         # 3: u>
2550	 * end:
2551	 */
2552	.jmp[ARC_CC_UGT] = {
2553		.cond = {CC_great_u, CC_less_u, CC_great_u}
2554	},
2555	/*
2556	 *   cmp  rd_hi, rs_hi
2557	 *   bhi  @target         # 1: u>
2558	 *   blo  @end            # 2: u<
2559	 *   cmp  rd_lo, rs_lo
2560	 *   bhs  @target         # 3: u>=
2561	 * end:
2562	 */
2563	.jmp[ARC_CC_UGE] = {
2564		.cond = {CC_great_u, CC_less_u, CC_great_eq_u}
2565	},
2566	/*
2567	 *   cmp  rd_hi, rs_hi
2568	 *   blo  @target         # 1: u<
2569	 *   bhi  @end            # 2: u>
2570	 *   cmp  rd_lo, rs_lo
2571	 *   blo  @target         # 3: u<
2572	 * end:
2573	 */
2574	.jmp[ARC_CC_ULT] = {
2575		.cond = {CC_less_u, CC_great_u, CC_less_u}
2576	},
2577	/*
2578	 *   cmp  rd_hi, rs_hi
2579	 *   blo  @target         # 1: u<
2580	 *   bhi  @end            # 2: u>
2581	 *   cmp  rd_lo, rs_lo
2582	 *   bls  @target         # 3: u<=
2583	 * end:
2584	 */
2585	.jmp[ARC_CC_ULE] = {
2586		.cond = {CC_less_u, CC_great_u, CC_less_eq_u}
2587	},
2588	/*
2589	 *   cmp  rd_hi, rs_hi
2590	 *   bgt  @target         # 1: s>
2591	 *   blt  @end            # 2: s<
2592	 *   cmp  rd_lo, rs_lo
2593	 *   bhi  @target         # 3: u>
2594	 * end:
2595	 */
2596	.jmp[ARC_CC_SGT] = {
2597		.cond = {CC_great_s, CC_less_s, CC_great_u}
2598	},
2599	/*
2600	 *   cmp  rd_hi, rs_hi
2601	 *   bgt  @target         # 1: s>
2602	 *   blt  @end            # 2: s<
2603	 *   cmp  rd_lo, rs_lo
2604	 *   bhs  @target         # 3: u>=
2605	 * end:
2606	 */
2607	.jmp[ARC_CC_SGE] = {
2608		.cond = {CC_great_s, CC_less_s, CC_great_eq_u}
2609	},
2610	/*
2611	 *   cmp  rd_hi, rs_hi
2612	 *   blt  @target         # 1: s<
2613	 *   bgt  @end            # 2: s>
2614	 *   cmp  rd_lo, rs_lo
2615	 *   blo  @target         # 3: u<
2616	 * end:
2617	 */
2618	.jmp[ARC_CC_SLT] = {
2619		.cond = {CC_less_s, CC_great_s, CC_less_u}
2620	},
2621	/*
2622	 *   cmp  rd_hi, rs_hi
2623	 *   blt  @target         # 1: s<
2624	 *   bgt  @end            # 2: s>
2625	 *   cmp  rd_lo, rs_lo
2626	 *   bls  @target         # 3: u<=
2627	 * end:
2628	 */
2629	.jmp[ARC_CC_SLE] = {
2630		.cond = {CC_less_s, CC_great_s, CC_less_eq_u}
2631	}
2632};
2633
2634/*
2635 * The displacement (offset) for ARC's "b"ranch instruction is the distance
2636 * from the aligned version of _current_ instruction (PCL) to the target
2637 * instruction:
2638 *
2639 * DISP = TARGET - PCL          # PCL is the word aligned PC
2640 */
2641static inline s32 get_displacement(u32 curr_off, u32 targ_off)
2642{
2643	return (s32)(targ_off - (curr_off & ~3L));
2644}
2645
2646/*
2647 * "disp"lacement should be:
2648 *
2649 * 1. 16-bit aligned.
2650 * 2. fit in S25, because no "condition code" is supposed to be encoded.
2651 */
2652static inline bool is_valid_far_disp(s32 disp)
2653{
2654	return (!(disp & 1) && IN_S25_RANGE(disp));
2655}
2656
2657/*
2658 * "disp"lacement should be:
2659 *
2660 * 1. 16-bit aligned.
2661 * 2. fit in S21, because "condition code" is supposed to be encoded too.
2662 */
2663static inline bool is_valid_near_disp(s32 disp)
2664{
2665	return (!(disp & 1) && IN_S21_RANGE(disp));
2666}
2667
2668/*
2669 * cmp        rd_hi, rs_hi
2670 * cmp.z      rd_lo, rs_lo
2671 * b{eq,ne}   @target
2672 *   |  |
2673 *   |  `-->  "eq" param is false (JNE)
2674 *   `----->  "eq" param is true  (JEQ)
2675 */
2676static int gen_j_eq_64(u8 *buf, u8 rd, u8 rs, bool eq,
2677		       u32 curr_off, u32 targ_off)
2678{
2679	s32 disp;
2680	u8 len = 0;
2681
2682	len += arc_cmp_r(BUF(buf, len), REG_HI(rd), REG_HI(rs));
2683	len += arc_cmpz_r(BUF(buf, len), REG_LO(rd), REG_LO(rs));
2684	disp = get_displacement(curr_off + len, targ_off);
2685	len += arc_bcc(BUF(buf, len), eq ? CC_equal : CC_unequal, disp);
2686
2687	return len;
2688}
2689
2690/*
2691 * tst   rd_hi, rs_hi
2692 * tst.z rd_lo, rs_lo
2693 * bne   @target
2694 */
2695static u8 gen_jset_64(u8 *buf, u8 rd, u8 rs, u32 curr_off, u32 targ_off)
2696{
2697	u8 len = 0;
2698	s32 disp;
2699
2700	len += arc_tst_r(BUF(buf, len), REG_HI(rd), REG_HI(rs));
2701	len += arc_tstz_r(BUF(buf, len), REG_LO(rd), REG_LO(rs));
2702	disp = get_displacement(curr_off + len, targ_off);
2703	len += arc_bcc(BUF(buf, len), CC_unequal, disp);
2704
2705	return len;
2706}
2707
2708/*
2709 * Verify if all the jumps for a JITed jcc64 operation are valid,
2710 * by consulting the data stored at "arcv2_64_jccs".
2711 */
2712static bool check_jcc_64(u32 curr_off, u32 targ_off, u8 cond)
2713{
2714	size_t i;
2715
2716	if (cond >= ARC_CC_LAST)
2717		return false;
2718
2719	for (i = 0; i < JCC64_NR_OF_JMPS; i++) {
2720		u32 from, to;
2721
2722		from = curr_off + arcv2_64_jccs.jit_off[i];
2723		/* for the 2nd jump, we jump to the end of block. */
2724		if (i != JCC64_SKIP_JMP)
2725			to = targ_off;
2726		else
2727			to = from + (JCC64_INSNS_TO_END * INSN_len_normal);
2728		/* There is a "cc" in the instruction, so a "near" jump. */
2729		if (!is_valid_near_disp(get_displacement(from, to)))
2730			return false;
2731	}
2732
2733	return true;
2734}
2735
2736/* Can the jump from "curr_off" to "targ_off" actually happen? */
2737bool check_jmp_64(u32 curr_off, u32 targ_off, u8 cond)
2738{
2739	s32 disp;
2740
2741	switch (cond) {
2742	case ARC_CC_UGT:
2743	case ARC_CC_UGE:
2744	case ARC_CC_ULT:
2745	case ARC_CC_ULE:
2746	case ARC_CC_SGT:
2747	case ARC_CC_SGE:
2748	case ARC_CC_SLT:
2749	case ARC_CC_SLE:
2750		return check_jcc_64(curr_off, targ_off, cond);
2751	case ARC_CC_EQ:
2752	case ARC_CC_NE:
2753	case ARC_CC_SET:
2754		/*
2755		 * The "jump" for the JITed BPF_J{SET,EQ,NE} is actually the
2756		 * 3rd instruction. See comments of "gen_j{set,_eq}_64()".
2757		 */
2758		curr_off += 2 * INSN_len_normal;
2759		disp = get_displacement(curr_off, targ_off);
2760		/* There is a "cc" field in the issued instruction. */
2761		return is_valid_near_disp(disp);
2762	case ARC_CC_AL:
2763		disp = get_displacement(curr_off, targ_off);
2764		return is_valid_far_disp(disp);
2765	default:
2766		return false;
2767	}
2768}
2769
2770/*
2771 * The template for the 64-bit jumps with the following BPF conditions
2772 *
2773 * u< u<= u> u>= s< s<= s> s>=
2774 *
2775 * Looks like below:
2776 *
2777 *   cmp   rd_hi, rs_hi
2778 *   b<c1> @target
2779 *   b<c2> @end
2780 *   cmp   rd_lo, rs_lo   # if execution reaches here, r{d,s}_hi are equal
2781 *   b<c3> @target
2782 * end:
2783 *
2784 * "c1" is the condition that JIT is handling minus the equality part.
2785 * For instance if we have to translate an "unsigned greater or equal",
2786 * then "c1" will be "unsigned greater". We won't know about equality
2787 * until all 64-bits of data (higeher and lower registers) are processed.
2788 *
2789 * "c2" is the counter logic of "c1". For instance, if "c1" is originated
2790 * from "s>", then "c2" would be "s<". Notice that equality doesn't play
2791 * a role here either, because the lower 32 bits are not processed yet.
2792 *
2793 * "c3" is the unsigned version of "c1", no matter if the BPF condition
2794 * was signed or unsigned. An unsigned version is necessary, because the
2795 * MSB of the lower 32 bits does not reflect a sign in the whole 64-bit
2796 * scheme. Otherwise, 64-bit comparisons like
2797 * (0x0000_0000,0x8000_0000) s>= (0x0000_0000,0x0000_0000)
2798 * would yield an incorrect result. Finally, if there is an equality
2799 * check in the BPF condition, it will be reflected in "c3".
2800 *
2801 * You can find all the instances of this template where the
2802 * "arcv2_64_jccs" is getting initialised.
2803 */
2804static u8 gen_jcc_64(u8 *buf, u8 rd, u8 rs, u8 cond,
2805		     u32 curr_off, u32 targ_off)
2806{
2807	s32 disp;
2808	u32 end_off;
2809	const u8 *cc = arcv2_64_jccs.jmp[cond].cond;
2810	u8 len = 0;
2811
2812	/* cmp rd_hi, rs_hi */
2813	len += arc_cmp_r(buf, REG_HI(rd), REG_HI(rs));
2814
2815	/* b<c1> @target */
2816	disp = get_displacement(curr_off + len, targ_off);
2817	len += arc_bcc(BUF(buf, len), cc[0], disp);
2818
2819	/* b<c2> @end */
2820	end_off = curr_off + len + (JCC64_INSNS_TO_END * INSN_len_normal);
2821	disp = get_displacement(curr_off + len, end_off);
2822	len += arc_bcc(BUF(buf, len), cc[1], disp);
2823
2824	/* cmp rd_lo, rs_lo */
2825	len += arc_cmp_r(BUF(buf, len), REG_LO(rd), REG_LO(rs));
2826
2827	/* b<c3> @target */
2828	disp = get_displacement(curr_off + len, targ_off);
2829	len += arc_bcc(BUF(buf, len), cc[2], disp);
2830
2831	return len;
2832}
2833
2834/*
2835 * This function only applies the necessary logic to make the proper
2836 * translations. All the sanity checks must have already been done
2837 * by calling the check_jmp_64().
2838 */
2839u8 gen_jmp_64(u8 *buf, u8 rd, u8 rs, u8 cond, u32 curr_off, u32 targ_off)
2840{
2841	u8 len = 0;
2842	bool eq = false;
2843	s32 disp;
2844
2845	switch (cond) {
2846	case ARC_CC_AL:
2847		disp = get_displacement(curr_off, targ_off);
2848		len = arc_b(buf, disp);
2849		break;
2850	case ARC_CC_UGT:
2851	case ARC_CC_UGE:
2852	case ARC_CC_ULT:
2853	case ARC_CC_ULE:
2854	case ARC_CC_SGT:
2855	case ARC_CC_SGE:
2856	case ARC_CC_SLT:
2857	case ARC_CC_SLE:
2858		len = gen_jcc_64(buf, rd, rs, cond, curr_off, targ_off);
2859		break;
2860	case ARC_CC_EQ:
2861		eq = true;
2862		fallthrough;
2863	case ARC_CC_NE:
2864		len = gen_j_eq_64(buf, rd, rs, eq, curr_off, targ_off);
2865		break;
2866	case ARC_CC_SET:
2867		len = gen_jset_64(buf, rd, rs, curr_off, targ_off);
2868		break;
2869	default:
2870#ifdef ARC_BPF_JIT_DEBUG
2871		pr_err("64-bit jump condition is not known.");
2872		BUG();
2873#endif
2874	}
2875	return len;
2876}
2877
2878/*
2879 * The condition codes to use when generating JIT instructions
2880 * for 32-bit jumps.
2881 *
2882 * The "ARC_CC_AL" index is not really used by the code, but it
2883 * is here for the sake of completeness.
2884 *
2885 * The "ARC_CC_SET" becomes "CC_unequal" because of the "tst"
2886 * instruction that precedes the conditional branch.
2887 */
2888static const u8 arcv2_32_jmps[ARC_CC_LAST] = {
2889	[ARC_CC_UGT] = CC_great_u,
2890	[ARC_CC_UGE] = CC_great_eq_u,
2891	[ARC_CC_ULT] = CC_less_u,
2892	[ARC_CC_ULE] = CC_less_eq_u,
2893	[ARC_CC_SGT] = CC_great_s,
2894	[ARC_CC_SGE] = CC_great_eq_s,
2895	[ARC_CC_SLT] = CC_less_s,
2896	[ARC_CC_SLE] = CC_less_eq_s,
2897	[ARC_CC_AL]  = CC_always,
2898	[ARC_CC_EQ]  = CC_equal,
2899	[ARC_CC_NE]  = CC_unequal,
2900	[ARC_CC_SET] = CC_unequal
2901};
2902
2903/* Can the jump from "curr_off" to "targ_off" actually happen? */
2904bool check_jmp_32(u32 curr_off, u32 targ_off, u8 cond)
2905{
2906	u8 addendum;
2907	s32 disp;
2908
2909	if (cond >= ARC_CC_LAST)
2910		return false;
2911
2912	/*
2913	 * The unconditional jump happens immediately, while the rest
2914	 * are either preceded by a "cmp" or "tst" instruction.
2915	 */
2916	addendum = (cond == ARC_CC_AL) ? 0 : INSN_len_normal;
2917	disp = get_displacement(curr_off + addendum, targ_off);
2918
2919	if (ARC_CC_AL)
2920		return is_valid_far_disp(disp);
2921	else
2922		return is_valid_near_disp(disp);
2923}
2924
2925/*
2926 * The JITed code for 32-bit (conditional) branches:
2927 *
2928 * ARC_CC_AL  @target
2929 *   b @jit_targ_addr
2930 *
2931 * ARC_CC_SET rd, rs, @target
2932 *   tst rd, rs
2933 *   bnz @jit_targ_addr
2934 *
2935 * ARC_CC_xx  rd, rs, @target
2936 *   cmp rd, rs
2937 *   b<cc> @jit_targ_addr            # cc = arcv2_32_jmps[xx]
2938 */
2939u8 gen_jmp_32(u8 *buf, u8 rd, u8 rs, u8 cond, u32 curr_off, u32 targ_off)
2940{
2941	s32 disp;
2942	u8 len = 0;
2943
2944	/*
2945	 * Although this must have already been checked by "check_jmp_32()",
2946	 * we're not going to risk accessing "arcv2_32_jmps" array without
2947	 * the boundary check.
2948	 */
2949	if (cond >= ARC_CC_LAST) {
2950#ifdef ARC_BPF_JIT_DEBUG
2951		pr_err("32-bit jump condition is not known.");
2952		BUG();
2953#endif
2954		return 0;
2955	}
2956
2957	/* If there is a "condition", issue the "cmp" or "tst" first. */
2958	if (cond != ARC_CC_AL) {
2959		if (cond == ARC_CC_SET)
2960			len = tst_r32(buf, rd, rs);
2961		else
2962			len = cmp_r32(buf, rd, rs);
2963		/*
2964		 * The issued instruction affects the "disp"lacement as
2965		 * it alters the "curr_off" by its "len"gth. The "curr_off"
2966		 * should always point to the jump instruction.
2967		 */
2968		disp = get_displacement(curr_off + len, targ_off);
2969		len += arc_bcc(BUF(buf, len), arcv2_32_jmps[cond], disp);
2970	} else {
2971		/* The straight forward unconditional jump. */
2972		disp = get_displacement(curr_off, targ_off);
2973		len = arc_b(buf, disp);
2974	}
2975
2976	return len;
2977}
2978
2979/*
2980 * Generate code for functions calls. There can be two types of calls:
2981 *
2982 * - Calling another BPF function
2983 * - Calling an in-kernel function which is compiled by ARC gcc
2984 *
2985 * In the later case, we must comply to ARCv2 ABI and handle arguments
2986 * and return values accordingly.
2987 */
2988u8 gen_func_call(u8 *buf, ARC_ADDR func_addr, bool external_func)
2989{
2990	u8 len = 0;
2991
2992	/*
2993	 * In case of an in-kernel function call, always push the 5th
2994	 * argument onto the stack, because that's where the ABI dictates
2995	 * it should be found. If the callee doesn't really use it, no harm
2996	 * is done. The stack is readjusted either way after the call.
2997	 */
2998	if (external_func)
2999		len += push_r64(BUF(buf, len), BPF_REG_5);
3000
3001	len += jump_and_link(BUF(buf, len), func_addr);
3002
3003	if (external_func)
3004		len += arc_add_i(BUF(buf, len), ARC_R_SP, ARC_R_SP, ARG5_SIZE);
3005
3006	return len;
3007}
3008