1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Hardware performance events for the Alpha.
4 *
5 * We implement HW counts on the EV67 and subsequent CPUs only.
6 *
7 * (C) 2010 Michael J. Cree
8 *
9 * Somewhat based on the Sparc code, and to a lesser extent the PowerPC and
10 * ARM code, which are copyright by their respective authors.
11 */
12
13#include <linux/perf_event.h>
14#include <linux/kprobes.h>
15#include <linux/kernel.h>
16#include <linux/kdebug.h>
17#include <linux/mutex.h>
18#include <linux/init.h>
19
20#include <asm/hwrpb.h>
21#include <linux/atomic.h>
22#include <asm/irq.h>
23#include <asm/irq_regs.h>
24#include <asm/pal.h>
25#include <asm/wrperfmon.h>
26#include <asm/hw_irq.h>
27
28
29/* The maximum number of PMCs on any Alpha CPU whatsoever. */
30#define MAX_HWEVENTS 3
31#define PMC_NO_INDEX -1
32
33/* For tracking PMCs and the hw events they monitor on each CPU. */
34struct cpu_hw_events {
35	int			enabled;
36	/* Number of events scheduled; also number entries valid in arrays below. */
37	int			n_events;
38	/* Number events added since last hw_perf_disable(). */
39	int			n_added;
40	/* Events currently scheduled. */
41	struct perf_event	*event[MAX_HWEVENTS];
42	/* Event type of each scheduled event. */
43	unsigned long		evtype[MAX_HWEVENTS];
44	/* Current index of each scheduled event; if not yet determined
45	 * contains PMC_NO_INDEX.
46	 */
47	int			current_idx[MAX_HWEVENTS];
48	/* The active PMCs' config for easy use with wrperfmon(). */
49	unsigned long		config;
50	/* The active counters' indices for easy use with wrperfmon(). */
51	unsigned long		idx_mask;
52};
53DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
54
55
56
57/*
58 * A structure to hold the description of the PMCs available on a particular
59 * type of Alpha CPU.
60 */
61struct alpha_pmu_t {
62	/* Mapping of the perf system hw event types to indigenous event types */
63	const int *event_map;
64	/* The number of entries in the event_map */
65	int  max_events;
66	/* The number of PMCs on this Alpha */
67	int  num_pmcs;
68	/*
69	 * All PMC counters reside in the IBOX register PCTR.  This is the
70	 * LSB of the counter.
71	 */
72	int  pmc_count_shift[MAX_HWEVENTS];
73	/*
74	 * The mask that isolates the PMC bits when the LSB of the counter
75	 * is shifted to bit 0.
76	 */
77	unsigned long pmc_count_mask[MAX_HWEVENTS];
78	/* The maximum period the PMC can count. */
79	unsigned long pmc_max_period[MAX_HWEVENTS];
80	/*
81	 * The maximum value that may be written to the counter due to
82	 * hardware restrictions is pmc_max_period - pmc_left.
83	 */
84	long pmc_left[3];
85	 /* Subroutine for allocation of PMCs.  Enforces constraints. */
86	int (*check_constraints)(struct perf_event **, unsigned long *, int);
87	/* Subroutine for checking validity of a raw event for this PMU. */
88	int (*raw_event_valid)(u64 config);
89};
90
91/*
92 * The Alpha CPU PMU description currently in operation.  This is set during
93 * the boot process to the specific CPU of the machine.
94 */
95static const struct alpha_pmu_t *alpha_pmu;
96
97
98#define HW_OP_UNSUPPORTED -1
99
100/*
101 * The hardware description of the EV67, EV68, EV69, EV7 and EV79 PMUs
102 * follow. Since they are identical we refer to them collectively as the
103 * EV67 henceforth.
104 */
105
106/*
107 * EV67 PMC event types
108 *
109 * There is no one-to-one mapping of the possible hw event types to the
110 * actual codes that are used to program the PMCs hence we introduce our
111 * own hw event type identifiers.
112 */
113enum ev67_pmc_event_type {
114	EV67_CYCLES = 1,
115	EV67_INSTRUCTIONS,
116	EV67_BCACHEMISS,
117	EV67_MBOXREPLAY,
118	EV67_LAST_ET
119};
120#define EV67_NUM_EVENT_TYPES (EV67_LAST_ET-EV67_CYCLES)
121
122
123/* Mapping of the hw event types to the perf tool interface */
124static const int ev67_perfmon_event_map[] = {
125	[PERF_COUNT_HW_CPU_CYCLES]	 = EV67_CYCLES,
126	[PERF_COUNT_HW_INSTRUCTIONS]	 = EV67_INSTRUCTIONS,
127	[PERF_COUNT_HW_CACHE_REFERENCES] = HW_OP_UNSUPPORTED,
128	[PERF_COUNT_HW_CACHE_MISSES]	 = EV67_BCACHEMISS,
129};
130
131struct ev67_mapping_t {
132	int config;
133	int idx;
134};
135
136/*
137 * The mapping used for one event only - these must be in same order as enum
138 * ev67_pmc_event_type definition.
139 */
140static const struct ev67_mapping_t ev67_mapping[] = {
141	{EV67_PCTR_INSTR_CYCLES, 1},	 /* EV67_CYCLES, */
142	{EV67_PCTR_INSTR_CYCLES, 0},	 /* EV67_INSTRUCTIONS */
143	{EV67_PCTR_INSTR_BCACHEMISS, 1}, /* EV67_BCACHEMISS */
144	{EV67_PCTR_CYCLES_MBOX, 1}	 /* EV67_MBOXREPLAY */
145};
146
147
148/*
149 * Check that a group of events can be simultaneously scheduled on to the
150 * EV67 PMU.  Also allocate counter indices and config.
151 */
152static int ev67_check_constraints(struct perf_event **event,
153				unsigned long *evtype, int n_ev)
154{
155	int idx0;
156	unsigned long config;
157
158	idx0 = ev67_mapping[evtype[0]-1].idx;
159	config = ev67_mapping[evtype[0]-1].config;
160	if (n_ev == 1)
161		goto success;
162
163	BUG_ON(n_ev != 2);
164
165	if (evtype[0] == EV67_MBOXREPLAY || evtype[1] == EV67_MBOXREPLAY) {
166		/* MBOX replay traps must be on PMC 1 */
167		idx0 = (evtype[0] == EV67_MBOXREPLAY) ? 1 : 0;
168		/* Only cycles can accompany MBOX replay traps */
169		if (evtype[idx0] == EV67_CYCLES) {
170			config = EV67_PCTR_CYCLES_MBOX;
171			goto success;
172		}
173	}
174
175	if (evtype[0] == EV67_BCACHEMISS || evtype[1] == EV67_BCACHEMISS) {
176		/* Bcache misses must be on PMC 1 */
177		idx0 = (evtype[0] == EV67_BCACHEMISS) ? 1 : 0;
178		/* Only instructions can accompany Bcache misses */
179		if (evtype[idx0] == EV67_INSTRUCTIONS) {
180			config = EV67_PCTR_INSTR_BCACHEMISS;
181			goto success;
182		}
183	}
184
185	if (evtype[0] == EV67_INSTRUCTIONS || evtype[1] == EV67_INSTRUCTIONS) {
186		/* Instructions must be on PMC 0 */
187		idx0 = (evtype[0] == EV67_INSTRUCTIONS) ? 0 : 1;
188		/* By this point only cycles can accompany instructions */
189		if (evtype[idx0^1] == EV67_CYCLES) {
190			config = EV67_PCTR_INSTR_CYCLES;
191			goto success;
192		}
193	}
194
195	/* Otherwise, darn it, there is a conflict.  */
196	return -1;
197
198success:
199	event[0]->hw.idx = idx0;
200	event[0]->hw.config_base = config;
201	if (n_ev == 2) {
202		event[1]->hw.idx = idx0 ^ 1;
203		event[1]->hw.config_base = config;
204	}
205	return 0;
206}
207
208
209static int ev67_raw_event_valid(u64 config)
210{
211	return config >= EV67_CYCLES && config < EV67_LAST_ET;
212};
213
214
215static const struct alpha_pmu_t ev67_pmu = {
216	.event_map = ev67_perfmon_event_map,
217	.max_events = ARRAY_SIZE(ev67_perfmon_event_map),
218	.num_pmcs = 2,
219	.pmc_count_shift = {EV67_PCTR_0_COUNT_SHIFT, EV67_PCTR_1_COUNT_SHIFT, 0},
220	.pmc_count_mask = {EV67_PCTR_0_COUNT_MASK,  EV67_PCTR_1_COUNT_MASK,  0},
221	.pmc_max_period = {(1UL<<20) - 1, (1UL<<20) - 1, 0},
222	.pmc_left = {16, 4, 0},
223	.check_constraints = ev67_check_constraints,
224	.raw_event_valid = ev67_raw_event_valid,
225};
226
227
228
229/*
230 * Helper routines to ensure that we read/write only the correct PMC bits
231 * when calling the wrperfmon PALcall.
232 */
233static inline void alpha_write_pmc(int idx, unsigned long val)
234{
235	val &= alpha_pmu->pmc_count_mask[idx];
236	val <<= alpha_pmu->pmc_count_shift[idx];
237	val |= (1<<idx);
238	wrperfmon(PERFMON_CMD_WRITE, val);
239}
240
241static inline unsigned long alpha_read_pmc(int idx)
242{
243	unsigned long val;
244
245	val = wrperfmon(PERFMON_CMD_READ, 0);
246	val >>= alpha_pmu->pmc_count_shift[idx];
247	val &= alpha_pmu->pmc_count_mask[idx];
248	return val;
249}
250
251/* Set a new period to sample over */
252static int alpha_perf_event_set_period(struct perf_event *event,
253				struct hw_perf_event *hwc, int idx)
254{
255	long left = local64_read(&hwc->period_left);
256	long period = hwc->sample_period;
257	int ret = 0;
258
259	if (unlikely(left <= -period)) {
260		left = period;
261		local64_set(&hwc->period_left, left);
262		hwc->last_period = period;
263		ret = 1;
264	}
265
266	if (unlikely(left <= 0)) {
267		left += period;
268		local64_set(&hwc->period_left, left);
269		hwc->last_period = period;
270		ret = 1;
271	}
272
273	/*
274	 * Hardware restrictions require that the counters must not be
275	 * written with values that are too close to the maximum period.
276	 */
277	if (unlikely(left < alpha_pmu->pmc_left[idx]))
278		left = alpha_pmu->pmc_left[idx];
279
280	if (left > (long)alpha_pmu->pmc_max_period[idx])
281		left = alpha_pmu->pmc_max_period[idx];
282
283	local64_set(&hwc->prev_count, (unsigned long)(-left));
284
285	alpha_write_pmc(idx, (unsigned long)(-left));
286
287	perf_event_update_userpage(event);
288
289	return ret;
290}
291
292
293/*
294 * Calculates the count (the 'delta') since the last time the PMC was read.
295 *
296 * As the PMCs' full period can easily be exceeded within the perf system
297 * sampling period we cannot use any high order bits as a guard bit in the
298 * PMCs to detect overflow as is done by other architectures.  The code here
299 * calculates the delta on the basis that there is no overflow when ovf is
300 * zero.  The value passed via ovf by the interrupt handler corrects for
301 * overflow.
302 *
303 * This can be racey on rare occasions -- a call to this routine can occur
304 * with an overflowed counter just before the PMI service routine is called.
305 * The check for delta negative hopefully always rectifies this situation.
306 */
307static unsigned long alpha_perf_event_update(struct perf_event *event,
308					struct hw_perf_event *hwc, int idx, long ovf)
309{
310	long prev_raw_count, new_raw_count;
311	long delta;
312
313again:
314	prev_raw_count = local64_read(&hwc->prev_count);
315	new_raw_count = alpha_read_pmc(idx);
316
317	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
318			     new_raw_count) != prev_raw_count)
319		goto again;
320
321	delta = (new_raw_count - (prev_raw_count & alpha_pmu->pmc_count_mask[idx])) + ovf;
322
323	/* It is possible on very rare occasions that the PMC has overflowed
324	 * but the interrupt is yet to come.  Detect and fix this situation.
325	 */
326	if (unlikely(delta < 0)) {
327		delta += alpha_pmu->pmc_max_period[idx] + 1;
328	}
329
330	local64_add(delta, &event->count);
331	local64_sub(delta, &hwc->period_left);
332
333	return new_raw_count;
334}
335
336
337/*
338 * Collect all HW events into the array event[].
339 */
340static int collect_events(struct perf_event *group, int max_count,
341			  struct perf_event *event[], unsigned long *evtype,
342			  int *current_idx)
343{
344	struct perf_event *pe;
345	int n = 0;
346
347	if (!is_software_event(group)) {
348		if (n >= max_count)
349			return -1;
350		event[n] = group;
351		evtype[n] = group->hw.event_base;
352		current_idx[n++] = PMC_NO_INDEX;
353	}
354	for_each_sibling_event(pe, group) {
355		if (!is_software_event(pe) && pe->state != PERF_EVENT_STATE_OFF) {
356			if (n >= max_count)
357				return -1;
358			event[n] = pe;
359			evtype[n] = pe->hw.event_base;
360			current_idx[n++] = PMC_NO_INDEX;
361		}
362	}
363	return n;
364}
365
366
367
368/*
369 * Check that a group of events can be simultaneously scheduled on to the PMU.
370 */
371static int alpha_check_constraints(struct perf_event **events,
372				   unsigned long *evtypes, int n_ev)
373{
374
375	/* No HW events is possible from hw_perf_group_sched_in(). */
376	if (n_ev == 0)
377		return 0;
378
379	if (n_ev > alpha_pmu->num_pmcs)
380		return -1;
381
382	return alpha_pmu->check_constraints(events, evtypes, n_ev);
383}
384
385
386/*
387 * If new events have been scheduled then update cpuc with the new
388 * configuration.  This may involve shifting cycle counts from one PMC to
389 * another.
390 */
391static void maybe_change_configuration(struct cpu_hw_events *cpuc)
392{
393	int j;
394
395	if (cpuc->n_added == 0)
396		return;
397
398	/* Find counters that are moving to another PMC and update */
399	for (j = 0; j < cpuc->n_events; j++) {
400		struct perf_event *pe = cpuc->event[j];
401
402		if (cpuc->current_idx[j] != PMC_NO_INDEX &&
403			cpuc->current_idx[j] != pe->hw.idx) {
404			alpha_perf_event_update(pe, &pe->hw, cpuc->current_idx[j], 0);
405			cpuc->current_idx[j] = PMC_NO_INDEX;
406		}
407	}
408
409	/* Assign to counters all unassigned events. */
410	cpuc->idx_mask = 0;
411	for (j = 0; j < cpuc->n_events; j++) {
412		struct perf_event *pe = cpuc->event[j];
413		struct hw_perf_event *hwc = &pe->hw;
414		int idx = hwc->idx;
415
416		if (cpuc->current_idx[j] == PMC_NO_INDEX) {
417			alpha_perf_event_set_period(pe, hwc, idx);
418			cpuc->current_idx[j] = idx;
419		}
420
421		if (!(hwc->state & PERF_HES_STOPPED))
422			cpuc->idx_mask |= (1<<cpuc->current_idx[j]);
423	}
424	cpuc->config = cpuc->event[0]->hw.config_base;
425}
426
427
428
429/* Schedule perf HW event on to PMU.
430 *  - this function is called from outside this module via the pmu struct
431 *    returned from perf event initialisation.
432 */
433static int alpha_pmu_add(struct perf_event *event, int flags)
434{
435	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
436	struct hw_perf_event *hwc = &event->hw;
437	int n0;
438	int ret;
439	unsigned long irq_flags;
440
441	/*
442	 * The Sparc code has the IRQ disable first followed by the perf
443	 * disable, however this can lead to an overflowed counter with the
444	 * PMI disabled on rare occasions.  The alpha_perf_event_update()
445	 * routine should detect this situation by noting a negative delta,
446	 * nevertheless we disable the PMCs first to enable a potential
447	 * final PMI to occur before we disable interrupts.
448	 */
449	perf_pmu_disable(event->pmu);
450	local_irq_save(irq_flags);
451
452	/* Default to error to be returned */
453	ret = -EAGAIN;
454
455	/* Insert event on to PMU and if successful modify ret to valid return */
456	n0 = cpuc->n_events;
457	if (n0 < alpha_pmu->num_pmcs) {
458		cpuc->event[n0] = event;
459		cpuc->evtype[n0] = event->hw.event_base;
460		cpuc->current_idx[n0] = PMC_NO_INDEX;
461
462		if (!alpha_check_constraints(cpuc->event, cpuc->evtype, n0+1)) {
463			cpuc->n_events++;
464			cpuc->n_added++;
465			ret = 0;
466		}
467	}
468
469	hwc->state = PERF_HES_UPTODATE;
470	if (!(flags & PERF_EF_START))
471		hwc->state |= PERF_HES_STOPPED;
472
473	local_irq_restore(irq_flags);
474	perf_pmu_enable(event->pmu);
475
476	return ret;
477}
478
479
480
481/* Disable performance monitoring unit
482 *  - this function is called from outside this module via the pmu struct
483 *    returned from perf event initialisation.
484 */
485static void alpha_pmu_del(struct perf_event *event, int flags)
486{
487	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
488	struct hw_perf_event *hwc = &event->hw;
489	unsigned long irq_flags;
490	int j;
491
492	perf_pmu_disable(event->pmu);
493	local_irq_save(irq_flags);
494
495	for (j = 0; j < cpuc->n_events; j++) {
496		if (event == cpuc->event[j]) {
497			int idx = cpuc->current_idx[j];
498
499			/* Shift remaining entries down into the existing
500			 * slot.
501			 */
502			while (++j < cpuc->n_events) {
503				cpuc->event[j - 1] = cpuc->event[j];
504				cpuc->evtype[j - 1] = cpuc->evtype[j];
505				cpuc->current_idx[j - 1] =
506					cpuc->current_idx[j];
507			}
508
509			/* Absorb the final count and turn off the event. */
510			alpha_perf_event_update(event, hwc, idx, 0);
511			perf_event_update_userpage(event);
512
513			cpuc->idx_mask &= ~(1UL<<idx);
514			cpuc->n_events--;
515			break;
516		}
517	}
518
519	local_irq_restore(irq_flags);
520	perf_pmu_enable(event->pmu);
521}
522
523
524static void alpha_pmu_read(struct perf_event *event)
525{
526	struct hw_perf_event *hwc = &event->hw;
527
528	alpha_perf_event_update(event, hwc, hwc->idx, 0);
529}
530
531
532static void alpha_pmu_stop(struct perf_event *event, int flags)
533{
534	struct hw_perf_event *hwc = &event->hw;
535	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
536
537	if (!(hwc->state & PERF_HES_STOPPED)) {
538		cpuc->idx_mask &= ~(1UL<<hwc->idx);
539		hwc->state |= PERF_HES_STOPPED;
540	}
541
542	if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
543		alpha_perf_event_update(event, hwc, hwc->idx, 0);
544		hwc->state |= PERF_HES_UPTODATE;
545	}
546
547	if (cpuc->enabled)
548		wrperfmon(PERFMON_CMD_DISABLE, (1UL<<hwc->idx));
549}
550
551
552static void alpha_pmu_start(struct perf_event *event, int flags)
553{
554	struct hw_perf_event *hwc = &event->hw;
555	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
556
557	if (WARN_ON_ONCE(!(hwc->state & PERF_HES_STOPPED)))
558		return;
559
560	if (flags & PERF_EF_RELOAD) {
561		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
562		alpha_perf_event_set_period(event, hwc, hwc->idx);
563	}
564
565	hwc->state = 0;
566
567	cpuc->idx_mask |= 1UL<<hwc->idx;
568	if (cpuc->enabled)
569		wrperfmon(PERFMON_CMD_ENABLE, (1UL<<hwc->idx));
570}
571
572
573/*
574 * Check that CPU performance counters are supported.
575 * - currently support EV67 and later CPUs.
576 * - actually some later revisions of the EV6 have the same PMC model as the
577 *     EV67 but we don't do sufficiently deep CPU detection to detect them.
578 *     Bad luck to the very few people who might have one, I guess.
579 */
580static int supported_cpu(void)
581{
582	struct percpu_struct *cpu;
583	unsigned long cputype;
584
585	/* Get cpu type from HW */
586	cpu = (struct percpu_struct *)((char *)hwrpb + hwrpb->processor_offset);
587	cputype = cpu->type & 0xffffffff;
588	/* Include all of EV67, EV68, EV7, EV79 and EV69 as supported. */
589	return (cputype >= EV67_CPU) && (cputype <= EV69_CPU);
590}
591
592
593
594static void hw_perf_event_destroy(struct perf_event *event)
595{
596	/* Nothing to be done! */
597	return;
598}
599
600
601
602static int __hw_perf_event_init(struct perf_event *event)
603{
604	struct perf_event_attr *attr = &event->attr;
605	struct hw_perf_event *hwc = &event->hw;
606	struct perf_event *evts[MAX_HWEVENTS];
607	unsigned long evtypes[MAX_HWEVENTS];
608	int idx_rubbish_bin[MAX_HWEVENTS];
609	int ev;
610	int n;
611
612	/* We only support a limited range of HARDWARE event types with one
613	 * only programmable via a RAW event type.
614	 */
615	if (attr->type == PERF_TYPE_HARDWARE) {
616		if (attr->config >= alpha_pmu->max_events)
617			return -EINVAL;
618		ev = alpha_pmu->event_map[attr->config];
619	} else if (attr->type == PERF_TYPE_HW_CACHE) {
620		return -EOPNOTSUPP;
621	} else if (attr->type == PERF_TYPE_RAW) {
622		if (!alpha_pmu->raw_event_valid(attr->config))
623			return -EINVAL;
624		ev = attr->config;
625	} else {
626		return -EOPNOTSUPP;
627	}
628
629	if (ev < 0) {
630		return ev;
631	}
632
633	/*
634	 * We place the event type in event_base here and leave calculation
635	 * of the codes to programme the PMU for alpha_pmu_enable() because
636	 * it is only then we will know what HW events are actually
637	 * scheduled on to the PMU.  At that point the code to programme the
638	 * PMU is put into config_base and the PMC to use is placed into
639	 * idx.  We initialise idx (below) to PMC_NO_INDEX to indicate that
640	 * it is yet to be determined.
641	 */
642	hwc->event_base = ev;
643
644	/* Collect events in a group together suitable for calling
645	 * alpha_check_constraints() to verify that the group as a whole can
646	 * be scheduled on to the PMU.
647	 */
648	n = 0;
649	if (event->group_leader != event) {
650		n = collect_events(event->group_leader,
651				alpha_pmu->num_pmcs - 1,
652				evts, evtypes, idx_rubbish_bin);
653		if (n < 0)
654			return -EINVAL;
655	}
656	evtypes[n] = hwc->event_base;
657	evts[n] = event;
658
659	if (alpha_check_constraints(evts, evtypes, n + 1))
660		return -EINVAL;
661
662	/* Indicate that PMU config and idx are yet to be determined. */
663	hwc->config_base = 0;
664	hwc->idx = PMC_NO_INDEX;
665
666	event->destroy = hw_perf_event_destroy;
667
668	/*
669	 * Most architectures reserve the PMU for their use at this point.
670	 * As there is no existing mechanism to arbitrate usage and there
671	 * appears to be no other user of the Alpha PMU we just assume
672	 * that we can just use it, hence a NO-OP here.
673	 *
674	 * Maybe an alpha_reserve_pmu() routine should be implemented but is
675	 * anything else ever going to use it?
676	 */
677
678	if (!hwc->sample_period) {
679		hwc->sample_period = alpha_pmu->pmc_max_period[0];
680		hwc->last_period = hwc->sample_period;
681		local64_set(&hwc->period_left, hwc->sample_period);
682	}
683
684	return 0;
685}
686
687/*
688 * Main entry point to initialise a HW performance event.
689 */
690static int alpha_pmu_event_init(struct perf_event *event)
691{
692	/* does not support taken branch sampling */
693	if (has_branch_stack(event))
694		return -EOPNOTSUPP;
695
696	switch (event->attr.type) {
697	case PERF_TYPE_RAW:
698	case PERF_TYPE_HARDWARE:
699	case PERF_TYPE_HW_CACHE:
700		break;
701
702	default:
703		return -ENOENT;
704	}
705
706	if (!alpha_pmu)
707		return -ENODEV;
708
709	/* Do the real initialisation work. */
710	return __hw_perf_event_init(event);
711}
712
713/*
714 * Main entry point - enable HW performance counters.
715 */
716static void alpha_pmu_enable(struct pmu *pmu)
717{
718	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
719
720	if (cpuc->enabled)
721		return;
722
723	cpuc->enabled = 1;
724	barrier();
725
726	if (cpuc->n_events > 0) {
727		/* Update cpuc with information from any new scheduled events. */
728		maybe_change_configuration(cpuc);
729
730		/* Start counting the desired events. */
731		wrperfmon(PERFMON_CMD_LOGGING_OPTIONS, EV67_PCTR_MODE_AGGREGATE);
732		wrperfmon(PERFMON_CMD_DESIRED_EVENTS, cpuc->config);
733		wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask);
734	}
735}
736
737
738/*
739 * Main entry point - disable HW performance counters.
740 */
741
742static void alpha_pmu_disable(struct pmu *pmu)
743{
744	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
745
746	if (!cpuc->enabled)
747		return;
748
749	cpuc->enabled = 0;
750	cpuc->n_added = 0;
751
752	wrperfmon(PERFMON_CMD_DISABLE, cpuc->idx_mask);
753}
754
755static struct pmu pmu = {
756	.pmu_enable	= alpha_pmu_enable,
757	.pmu_disable	= alpha_pmu_disable,
758	.event_init	= alpha_pmu_event_init,
759	.add		= alpha_pmu_add,
760	.del		= alpha_pmu_del,
761	.start		= alpha_pmu_start,
762	.stop		= alpha_pmu_stop,
763	.read		= alpha_pmu_read,
764	.capabilities	= PERF_PMU_CAP_NO_EXCLUDE,
765};
766
767
768/*
769 * Main entry point - don't know when this is called but it
770 * obviously dumps debug info.
771 */
772void perf_event_print_debug(void)
773{
774	unsigned long flags;
775	unsigned long pcr;
776	int pcr0, pcr1;
777	int cpu;
778
779	if (!supported_cpu())
780		return;
781
782	local_irq_save(flags);
783
784	cpu = smp_processor_id();
785
786	pcr = wrperfmon(PERFMON_CMD_READ, 0);
787	pcr0 = (pcr >> alpha_pmu->pmc_count_shift[0]) & alpha_pmu->pmc_count_mask[0];
788	pcr1 = (pcr >> alpha_pmu->pmc_count_shift[1]) & alpha_pmu->pmc_count_mask[1];
789
790	pr_info("CPU#%d: PCTR0[%06x] PCTR1[%06x]\n", cpu, pcr0, pcr1);
791
792	local_irq_restore(flags);
793}
794
795
796/*
797 * Performance Monitoring Interrupt Service Routine called when a PMC
798 * overflows.  The PMC that overflowed is passed in la_ptr.
799 */
800static void alpha_perf_event_irq_handler(unsigned long la_ptr,
801					struct pt_regs *regs)
802{
803	struct cpu_hw_events *cpuc;
804	struct perf_sample_data data;
805	struct perf_event *event;
806	struct hw_perf_event *hwc;
807	int idx, j;
808
809	__this_cpu_inc(irq_pmi_count);
810	cpuc = this_cpu_ptr(&cpu_hw_events);
811
812	/* Completely counting through the PMC's period to trigger a new PMC
813	 * overflow interrupt while in this interrupt routine is utterly
814	 * disastrous!  The EV6 and EV67 counters are sufficiently large to
815	 * prevent this but to be really sure disable the PMCs.
816	 */
817	wrperfmon(PERFMON_CMD_DISABLE, cpuc->idx_mask);
818
819	/* la_ptr is the counter that overflowed. */
820	if (unlikely(la_ptr >= alpha_pmu->num_pmcs)) {
821		/* This should never occur! */
822		irq_err_count++;
823		pr_warn("PMI: silly index %ld\n", la_ptr);
824		wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask);
825		return;
826	}
827
828	idx = la_ptr;
829
830	for (j = 0; j < cpuc->n_events; j++) {
831		if (cpuc->current_idx[j] == idx)
832			break;
833	}
834
835	if (unlikely(j == cpuc->n_events)) {
836		/* This can occur if the event is disabled right on a PMC overflow. */
837		wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask);
838		return;
839	}
840
841	event = cpuc->event[j];
842
843	if (unlikely(!event)) {
844		/* This should never occur! */
845		irq_err_count++;
846		pr_warn("PMI: No event at index %d!\n", idx);
847		wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask);
848		return;
849	}
850
851	hwc = &event->hw;
852	alpha_perf_event_update(event, hwc, idx, alpha_pmu->pmc_max_period[idx]+1);
853	perf_sample_data_init(&data, 0, hwc->last_period);
854
855	if (alpha_perf_event_set_period(event, hwc, idx)) {
856		if (perf_event_overflow(event, &data, regs)) {
857			/* Interrupts coming too quickly; "throttle" the
858			 * counter, i.e., disable it for a little while.
859			 */
860			alpha_pmu_stop(event, 0);
861		}
862	}
863	wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask);
864
865	return;
866}
867
868
869
870/*
871 * Init call to initialise performance events at kernel startup.
872 */
873int __init init_hw_perf_events(void)
874{
875	pr_info("Performance events: ");
876
877	if (!supported_cpu()) {
878		pr_cont("No support for your CPU.\n");
879		return 0;
880	}
881
882	pr_cont("Supported CPU type!\n");
883
884	/* Override performance counter IRQ vector */
885
886	perf_irq = alpha_perf_event_irq_handler;
887
888	/* And set up PMU specification */
889	alpha_pmu = &ev67_pmu;
890
891	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
892
893	return 0;
894}
895early_initcall(init_hw_perf_events);
896