1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _ALPHA_PGTABLE_H
3#define _ALPHA_PGTABLE_H
4
5#include <asm-generic/pgtable-nopud.h>
6
7/*
8 * This file contains the functions and defines necessary to modify and use
9 * the Alpha page table tree.
10 *
11 * This hopefully works with any standard Alpha page-size, as defined
12 * in <asm/page.h> (currently 8192).
13 */
14#include <linux/mmzone.h>
15
16#include <asm/page.h>
17#include <asm/processor.h>	/* For TASK_SIZE */
18#include <asm/machvec.h>
19#include <asm/setup.h>
20
21struct mm_struct;
22struct vm_area_struct;
23
24/* Certain architectures need to do special things when PTEs
25 * within a page table are directly modified.  Thus, the following
26 * hook is made available.
27 */
28#define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))
29
30/* PMD_SHIFT determines the size of the area a second-level page table can map */
31#define PMD_SHIFT	(PAGE_SHIFT + (PAGE_SHIFT-3))
32#define PMD_SIZE	(1UL << PMD_SHIFT)
33#define PMD_MASK	(~(PMD_SIZE-1))
34
35/* PGDIR_SHIFT determines what a third-level page table entry can map */
36#define PGDIR_SHIFT	(PAGE_SHIFT + 2*(PAGE_SHIFT-3))
37#define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
38#define PGDIR_MASK	(~(PGDIR_SIZE-1))
39
40/*
41 * Entries per page directory level:  the Alpha is three-level, with
42 * all levels having a one-page page table.
43 */
44#define PTRS_PER_PTE	(1UL << (PAGE_SHIFT-3))
45#define PTRS_PER_PMD	(1UL << (PAGE_SHIFT-3))
46#define PTRS_PER_PGD	(1UL << (PAGE_SHIFT-3))
47#define USER_PTRS_PER_PGD	(TASK_SIZE / PGDIR_SIZE)
48
49/* Number of pointers that fit on a page:  this will go away. */
50#define PTRS_PER_PAGE	(1UL << (PAGE_SHIFT-3))
51
52#ifdef CONFIG_ALPHA_LARGE_VMALLOC
53#define VMALLOC_START		0xfffffe0000000000
54#else
55#define VMALLOC_START		(-2*PGDIR_SIZE)
56#endif
57#define VMALLOC_END		(-PGDIR_SIZE)
58
59/*
60 * OSF/1 PAL-code-imposed page table bits
61 */
62#define _PAGE_VALID	0x0001
63#define _PAGE_FOR	0x0002	/* used for page protection (fault on read) */
64#define _PAGE_FOW	0x0004	/* used for page protection (fault on write) */
65#define _PAGE_FOE	0x0008	/* used for page protection (fault on exec) */
66#define _PAGE_ASM	0x0010
67#define _PAGE_KRE	0x0100	/* xxx - see below on the "accessed" bit */
68#define _PAGE_URE	0x0200	/* xxx */
69#define _PAGE_KWE	0x1000	/* used to do the dirty bit in software */
70#define _PAGE_UWE	0x2000	/* used to do the dirty bit in software */
71
72/* .. and these are ours ... */
73#define _PAGE_DIRTY	0x20000
74#define _PAGE_ACCESSED	0x40000
75
76/* We borrow bit 39 to store the exclusive marker in swap PTEs. */
77#define _PAGE_SWP_EXCLUSIVE	0x8000000000UL
78
79/*
80 * NOTE! The "accessed" bit isn't necessarily exact:  it can be kept exactly
81 * by software (use the KRE/URE/KWE/UWE bits appropriately), but I'll fake it.
82 * Under Linux/AXP, the "accessed" bit just means "read", and I'll just use
83 * the KRE/URE bits to watch for it. That way we don't need to overload the
84 * KWE/UWE bits with both handling dirty and accessed.
85 *
86 * Note that the kernel uses the accessed bit just to check whether to page
87 * out a page or not, so it doesn't have to be exact anyway.
88 */
89
90#define __DIRTY_BITS	(_PAGE_DIRTY | _PAGE_KWE | _PAGE_UWE)
91#define __ACCESS_BITS	(_PAGE_ACCESSED | _PAGE_KRE | _PAGE_URE)
92
93#define _PFN_MASK	0xFFFFFFFF00000000UL
94
95#define _PAGE_TABLE	(_PAGE_VALID | __DIRTY_BITS | __ACCESS_BITS)
96#define _PAGE_CHG_MASK	(_PFN_MASK | __DIRTY_BITS | __ACCESS_BITS)
97
98/*
99 * All the normal masks have the "page accessed" bits on, as any time they are used,
100 * the page is accessed. They are cleared only by the page-out routines
101 */
102#define PAGE_NONE	__pgprot(_PAGE_VALID | __ACCESS_BITS | _PAGE_FOR | _PAGE_FOW | _PAGE_FOE)
103#define PAGE_SHARED	__pgprot(_PAGE_VALID | __ACCESS_BITS)
104#define PAGE_COPY	__pgprot(_PAGE_VALID | __ACCESS_BITS | _PAGE_FOW)
105#define PAGE_READONLY	__pgprot(_PAGE_VALID | __ACCESS_BITS | _PAGE_FOW)
106#define PAGE_KERNEL	__pgprot(_PAGE_VALID | _PAGE_ASM | _PAGE_KRE | _PAGE_KWE)
107
108#define _PAGE_NORMAL(x) __pgprot(_PAGE_VALID | __ACCESS_BITS | (x))
109
110#define _PAGE_P(x) _PAGE_NORMAL((x) | (((x) & _PAGE_FOW)?0:_PAGE_FOW))
111#define _PAGE_S(x) _PAGE_NORMAL(x)
112
113/*
114 * The hardware can handle write-only mappings, but as the Alpha
115 * architecture does byte-wide writes with a read-modify-write
116 * sequence, it's not practical to have write-without-read privs.
117 * Thus the "-w- -> rw-" and "-wx -> rwx" mapping here (and in
118 * arch/alpha/mm/fault.c)
119 */
120	/* xwr */
121
122/*
123 * pgprot_noncached() is only for infiniband pci support, and a real
124 * implementation for RAM would be more complicated.
125 */
126#define pgprot_noncached(prot)	(prot)
127
128/*
129 * BAD_PAGETABLE is used when we need a bogus page-table, while
130 * BAD_PAGE is used for a bogus page.
131 *
132 * ZERO_PAGE is a global shared page that is always zero:  used
133 * for zero-mapped memory areas etc..
134 */
135extern pte_t __bad_page(void);
136extern pmd_t * __bad_pagetable(void);
137
138extern unsigned long __zero_page(void);
139
140#define BAD_PAGETABLE	__bad_pagetable()
141#define BAD_PAGE	__bad_page()
142#define ZERO_PAGE(vaddr)	(virt_to_page(ZERO_PGE))
143
144/* number of bits that fit into a memory pointer */
145#define BITS_PER_PTR			(8*sizeof(unsigned long))
146
147/* to align the pointer to a pointer address */
148#define PTR_MASK			(~(sizeof(void*)-1))
149
150/* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
151#define SIZEOF_PTR_LOG2			3
152
153/* to find an entry in a page-table */
154#define PAGE_PTR(address)		\
155  ((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
156
157/*
158 * On certain platforms whose physical address space can overlap KSEG,
159 * namely EV6 and above, we must re-twiddle the physaddr to restore the
160 * correct high-order bits.
161 *
162 * This is extremely confusing until you realize that this is actually
163 * just working around a userspace bug.  The X server was intending to
164 * provide the physical address but instead provided the KSEG address.
165 * Or tried to, except it's not representable.
166 *
167 * On Tsunami there's nothing meaningful at 0x40000000000, so this is
168 * a safe thing to do.  Come the first core logic that does put something
169 * in this area -- memory or whathaveyou -- then this hack will have
170 * to go away.  So be prepared!
171 */
172
173#if defined(CONFIG_ALPHA_GENERIC) && defined(USE_48_BIT_KSEG)
174#error "EV6-only feature in a generic kernel"
175#endif
176#if defined(CONFIG_ALPHA_GENERIC) || \
177    (defined(CONFIG_ALPHA_EV6) && !defined(USE_48_BIT_KSEG))
178#define KSEG_PFN	(0xc0000000000UL >> PAGE_SHIFT)
179#define PHYS_TWIDDLE(pfn) \
180  ((((pfn) & KSEG_PFN) == (0x40000000000UL >> PAGE_SHIFT)) \
181  ? ((pfn) ^= KSEG_PFN) : (pfn))
182#else
183#define PHYS_TWIDDLE(pfn) (pfn)
184#endif
185
186/*
187 * Conversion functions:  convert a page and protection to a page entry,
188 * and a page entry and page directory to the page they refer to.
189 */
190#define page_to_pa(page)	(page_to_pfn(page) << PAGE_SHIFT)
191#define PFN_PTE_SHIFT		32
192#define pte_pfn(pte)		(pte_val(pte) >> PFN_PTE_SHIFT)
193
194#define pte_page(pte)	pfn_to_page(pte_pfn(pte))
195#define mk_pte(page, pgprot)						\
196({									\
197	pte_t pte;							\
198									\
199	pte_val(pte) = (page_to_pfn(page) << 32) | pgprot_val(pgprot);	\
200	pte;								\
201})
202
203extern inline pte_t pfn_pte(unsigned long physpfn, pgprot_t pgprot)
204{ pte_t pte; pte_val(pte) = (PHYS_TWIDDLE(physpfn) << 32) | pgprot_val(pgprot); return pte; }
205
206extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
207{ pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; }
208
209extern inline void pmd_set(pmd_t * pmdp, pte_t * ptep)
210{ pmd_val(*pmdp) = _PAGE_TABLE | ((((unsigned long) ptep) - PAGE_OFFSET) << (32-PAGE_SHIFT)); }
211
212extern inline void pud_set(pud_t * pudp, pmd_t * pmdp)
213{ pud_val(*pudp) = _PAGE_TABLE | ((((unsigned long) pmdp) - PAGE_OFFSET) << (32-PAGE_SHIFT)); }
214
215
216extern inline unsigned long
217pmd_page_vaddr(pmd_t pmd)
218{
219	return ((pmd_val(pmd) & _PFN_MASK) >> (32-PAGE_SHIFT)) + PAGE_OFFSET;
220}
221
222#define pmd_pfn(pmd)	(pmd_val(pmd) >> 32)
223#define pmd_page(pmd)	(pfn_to_page(pmd_val(pmd) >> 32))
224#define pud_page(pud)	(pfn_to_page(pud_val(pud) >> 32))
225
226extern inline pmd_t *pud_pgtable(pud_t pgd)
227{
228	return (pmd_t *)(PAGE_OFFSET + ((pud_val(pgd) & _PFN_MASK) >> (32-PAGE_SHIFT)));
229}
230
231extern inline int pte_none(pte_t pte)		{ return !pte_val(pte); }
232extern inline int pte_present(pte_t pte)	{ return pte_val(pte) & _PAGE_VALID; }
233extern inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
234{
235	pte_val(*ptep) = 0;
236}
237
238extern inline int pmd_none(pmd_t pmd)		{ return !pmd_val(pmd); }
239extern inline int pmd_bad(pmd_t pmd)		{ return (pmd_val(pmd) & ~_PFN_MASK) != _PAGE_TABLE; }
240extern inline int pmd_present(pmd_t pmd)	{ return pmd_val(pmd) & _PAGE_VALID; }
241extern inline void pmd_clear(pmd_t * pmdp)	{ pmd_val(*pmdp) = 0; }
242
243extern inline int pud_none(pud_t pud)		{ return !pud_val(pud); }
244extern inline int pud_bad(pud_t pud)		{ return (pud_val(pud) & ~_PFN_MASK) != _PAGE_TABLE; }
245extern inline int pud_present(pud_t pud)	{ return pud_val(pud) & _PAGE_VALID; }
246extern inline void pud_clear(pud_t * pudp)	{ pud_val(*pudp) = 0; }
247
248/*
249 * The following only work if pte_present() is true.
250 * Undefined behaviour if not..
251 */
252extern inline int pte_write(pte_t pte)		{ return !(pte_val(pte) & _PAGE_FOW); }
253extern inline int pte_dirty(pte_t pte)		{ return pte_val(pte) & _PAGE_DIRTY; }
254extern inline int pte_young(pte_t pte)		{ return pte_val(pte) & _PAGE_ACCESSED; }
255
256extern inline pte_t pte_wrprotect(pte_t pte)	{ pte_val(pte) |= _PAGE_FOW; return pte; }
257extern inline pte_t pte_mkclean(pte_t pte)	{ pte_val(pte) &= ~(__DIRTY_BITS); return pte; }
258extern inline pte_t pte_mkold(pte_t pte)	{ pte_val(pte) &= ~(__ACCESS_BITS); return pte; }
259extern inline pte_t pte_mkwrite_novma(pte_t pte){ pte_val(pte) &= ~_PAGE_FOW; return pte; }
260extern inline pte_t pte_mkdirty(pte_t pte)	{ pte_val(pte) |= __DIRTY_BITS; return pte; }
261extern inline pte_t pte_mkyoung(pte_t pte)	{ pte_val(pte) |= __ACCESS_BITS; return pte; }
262
263/*
264 * The smp_rmb() in the following functions are required to order the load of
265 * *dir (the pointer in the top level page table) with any subsequent load of
266 * the returned pmd_t *ret (ret is data dependent on *dir).
267 *
268 * If this ordering is not enforced, the CPU might load an older value of
269 * *ret, which may be uninitialized data. See mm/memory.c:__pte_alloc for
270 * more details.
271 *
272 * Note that we never change the mm->pgd pointer after the task is running, so
273 * pgd_offset does not require such a barrier.
274 */
275
276/* Find an entry in the second-level page table.. */
277extern inline pmd_t * pmd_offset(pud_t * dir, unsigned long address)
278{
279	pmd_t *ret = pud_pgtable(*dir) + ((address >> PMD_SHIFT) & (PTRS_PER_PAGE - 1));
280	smp_rmb(); /* see above */
281	return ret;
282}
283#define pmd_offset pmd_offset
284
285/* Find an entry in the third-level page table.. */
286extern inline pte_t * pte_offset_kernel(pmd_t * dir, unsigned long address)
287{
288	pte_t *ret = (pte_t *) pmd_page_vaddr(*dir)
289		+ ((address >> PAGE_SHIFT) & (PTRS_PER_PAGE - 1));
290	smp_rmb(); /* see above */
291	return ret;
292}
293#define pte_offset_kernel pte_offset_kernel
294
295extern pgd_t swapper_pg_dir[1024];
296
297/*
298 * The Alpha doesn't have any external MMU info:  the kernel page
299 * tables contain all the necessary information.
300 */
301extern inline void update_mmu_cache(struct vm_area_struct * vma,
302	unsigned long address, pte_t *ptep)
303{
304}
305
306static inline void update_mmu_cache_range(struct vm_fault *vmf,
307		struct vm_area_struct *vma, unsigned long address,
308		pte_t *ptep, unsigned int nr)
309{
310}
311
312/*
313 * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that
314 * are !pte_none() && !pte_present().
315 *
316 * Format of swap PTEs:
317 *
318 *   6 6 6 6 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3
319 *   3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2
320 *   <------------------- offset ------------------> E <--- type -->
321 *
322 *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
323 *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
324 *   <--------------------------- zeroes -------------------------->
325 *
326 *   E is the exclusive marker that is not stored in swap entries.
327 */
328extern inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
329{ pte_t pte; pte_val(pte) = ((type & 0x7f) << 32) | (offset << 40); return pte; }
330
331#define __swp_type(x)		(((x).val >> 32) & 0x7f)
332#define __swp_offset(x)		((x).val >> 40)
333#define __swp_entry(type, off)	((swp_entry_t) { pte_val(mk_swap_pte((type), (off))) })
334#define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
335#define __swp_entry_to_pte(x)	((pte_t) { (x).val })
336
337static inline int pte_swp_exclusive(pte_t pte)
338{
339	return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
340}
341
342static inline pte_t pte_swp_mkexclusive(pte_t pte)
343{
344	pte_val(pte) |= _PAGE_SWP_EXCLUSIVE;
345	return pte;
346}
347
348static inline pte_t pte_swp_clear_exclusive(pte_t pte)
349{
350	pte_val(pte) &= ~_PAGE_SWP_EXCLUSIVE;
351	return pte;
352}
353
354#define pte_ERROR(e) \
355	printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
356#define pmd_ERROR(e) \
357	printk("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
358#define pgd_ERROR(e) \
359	printk("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
360
361extern void paging_init(void);
362
363/* We have our own get_unmapped_area to cope with ADDR_LIMIT_32BIT.  */
364#define HAVE_ARCH_UNMAPPED_AREA
365
366#endif /* _ALPHA_PGTABLE_H */
367