1#ifndef _LIBM_H
2#define _LIBM_H
3
4#include <stdint.h>
5#include <float.h>
6#include <math.h>
7#include <endian.h>
8#include <features.h>
9#include "fp_arch.h"
10
11#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
12#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384 && __BYTE_ORDER == __LITTLE_ENDIAN
13union ldshape {
14	long double f;
15	struct {
16		uint64_t m;
17		uint16_t se;
18	} i;
19};
20#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384 && __BYTE_ORDER == __BIG_ENDIAN
21/* This is the m68k variant of 80-bit long double, and this definition only works
22 * on archs where the alignment requirement of uint64_t is <= 4. */
23union ldshape {
24	long double f;
25	struct {
26		uint16_t se;
27		uint16_t pad;
28		uint64_t m;
29	} i;
30};
31#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384 && __BYTE_ORDER == __LITTLE_ENDIAN
32union ldshape {
33	long double f;
34	struct {
35		uint64_t lo;
36		uint32_t mid;
37		uint16_t top;
38		uint16_t se;
39	} i;
40	struct {
41		uint64_t lo;
42		uint64_t hi;
43	} i2;
44};
45#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384 && __BYTE_ORDER == __BIG_ENDIAN
46union ldshape {
47	long double f;
48	struct {
49		uint16_t se;
50		uint16_t top;
51		uint32_t mid;
52		uint64_t lo;
53	} i;
54	struct {
55		uint64_t hi;
56		uint64_t lo;
57	} i2;
58};
59#else
60#error Unsupported long double representation
61#endif
62
63/* Support non-nearest rounding mode.  */
64#define WANT_ROUNDING 1
65/* Support signaling NaNs.  */
66#define WANT_SNAN 0
67
68#if WANT_SNAN
69#error SNaN is unsupported
70#else
71#define issignalingf_inline(x) 0
72#define issignaling_inline(x) 0
73#endif
74
75#ifndef TOINT_INTRINSICS
76#define TOINT_INTRINSICS 0
77#endif
78
79#if TOINT_INTRINSICS
80/* Round x to nearest int in all rounding modes, ties have to be rounded
81   consistently with converttoint so the results match.  If the result
82   would be outside of [-2^31, 2^31-1] then the semantics is unspecified.  */
83static double_t roundtoint(double_t);
84
85/* Convert x to nearest int in all rounding modes, ties have to be rounded
86   consistently with roundtoint.  If the result is not representible in an
87   int32_t then the semantics is unspecified.  */
88static int32_t converttoint(double_t);
89#endif
90
91/* Helps static branch prediction so hot path can be better optimized.  */
92#ifdef __GNUC__
93#define predict_true(x) __builtin_expect(!!(x), 1)
94#define predict_false(x) __builtin_expect(x, 0)
95#else
96#define predict_true(x) (x)
97#define predict_false(x) (x)
98#endif
99
100/* Evaluate an expression as the specified type. With standard excess
101   precision handling a type cast or assignment is enough (with
102   -ffloat-store an assignment is required, in old compilers argument
103   passing and return statement may not drop excess precision).  */
104
105static inline float eval_as_float(float x)
106{
107	float y = x;
108	return y;
109}
110
111static inline double eval_as_double(double x)
112{
113	double y = x;
114	return y;
115}
116
117/* fp_barrier returns its input, but limits code transformations
118   as if it had a side-effect (e.g. observable io) and returned
119   an arbitrary value.  */
120
121#ifndef fp_barrierf
122#define fp_barrierf fp_barrierf
123static inline float fp_barrierf(float x)
124{
125	volatile float y = x;
126	return y;
127}
128#endif
129
130#ifndef fp_barrier
131#define fp_barrier fp_barrier
132static inline double fp_barrier(double x)
133{
134	volatile double y = x;
135	return y;
136}
137#endif
138
139#ifndef fp_barrierl
140#define fp_barrierl fp_barrierl
141static inline long double fp_barrierl(long double x)
142{
143	volatile long double y = x;
144	return y;
145}
146#endif
147
148/* fp_force_eval ensures that the input value is computed when that's
149   otherwise unused.  To prevent the constant folding of the input
150   expression, an additional fp_barrier may be needed or a compilation
151   mode that does so (e.g. -frounding-math in gcc). Then it can be
152   used to evaluate an expression for its fenv side-effects only.   */
153
154#ifndef fp_force_evalf
155#define fp_force_evalf fp_force_evalf
156static inline void fp_force_evalf(float x)
157{
158	volatile float y;
159	y = x;
160}
161#endif
162
163#ifndef fp_force_eval
164#define fp_force_eval fp_force_eval
165static inline void fp_force_eval(double x)
166{
167	volatile double y;
168	y = x;
169}
170#endif
171
172#ifndef fp_force_evall
173#define fp_force_evall fp_force_evall
174static inline void fp_force_evall(long double x)
175{
176	volatile long double y;
177	y = x;
178}
179#endif
180
181#define FORCE_EVAL(x) do {                        \
182	if (sizeof(x) == sizeof(float)) {         \
183		fp_force_evalf(x);                \
184	} else if (sizeof(x) == sizeof(double)) { \
185		fp_force_eval(x);                 \
186	} else {                                  \
187		fp_force_evall(x);                \
188	}                                         \
189} while(0)
190
191#define asuint(f) ((union{float _f; uint32_t _i;}){f})._i
192#define asfloat(i) ((union{uint32_t _i; float _f;}){i})._f
193#define asuint64(f) ((union{double _f; uint64_t _i;}){f})._i
194#define asdouble(i) ((union{uint64_t _i; double _f;}){i})._f
195
196#define EXTRACT_WORDS(hi,lo,d)                    \
197do {                                              \
198  uint64_t __u = asuint64(d);                     \
199  (hi) = __u >> 32;                               \
200  (lo) = (uint32_t)__u;                           \
201} while (0)
202
203#define GET_HIGH_WORD(hi,d)                       \
204do {                                              \
205  (hi) = asuint64(d) >> 32;                       \
206} while (0)
207
208#define GET_LOW_WORD(lo,d)                        \
209do {                                              \
210  (lo) = (uint32_t)asuint64(d);                   \
211} while (0)
212
213#define INSERT_WORDS(d,hi,lo)                     \
214do {                                              \
215  (d) = asdouble(((uint64_t)(hi)<<32) | (uint32_t)(lo)); \
216} while (0)
217
218#define SET_HIGH_WORD(d,hi)                       \
219  INSERT_WORDS(d, hi, (uint32_t)asuint64(d))
220
221#define SET_LOW_WORD(d,lo)                        \
222  INSERT_WORDS(d, asuint64(d)>>32, lo)
223
224#define GET_FLOAT_WORD(w,d)                       \
225do {                                              \
226  (w) = asuint(d);                                \
227} while (0)
228
229#define SET_FLOAT_WORD(d,w)                       \
230do {                                              \
231  (d) = asfloat(w);                               \
232} while (0)
233
234hidden int    __rem_pio2_large(double*,double*,int,int,int);
235
236hidden int    __rem_pio2(double,double*);
237hidden double __sin(double,double,int);
238hidden double __cos(double,double);
239hidden double __tan(double,double,int);
240hidden double __expo2(double);
241
242hidden int    __rem_pio2f(float,double*);
243hidden float  __sindf(double);
244hidden float  __cosdf(double);
245hidden float  __tandf(double,int);
246hidden float  __expo2f(float);
247
248hidden int __rem_pio2l(long double, long double *);
249hidden long double __sinl(long double, long double, int);
250hidden long double __cosl(long double, long double);
251hidden long double __tanl(long double, long double, int);
252
253hidden long double __polevll(long double, const long double *, int);
254hidden long double __p1evll(long double, const long double *, int);
255
256extern int __signgam;
257hidden double __lgamma_r(double, int *);
258hidden float __lgammaf_r(float, int *);
259
260/* error handling functions */
261hidden float __math_xflowf(uint32_t, float);
262hidden float __math_uflowf(uint32_t);
263hidden float __math_oflowf(uint32_t);
264hidden float __math_divzerof(uint32_t);
265hidden float __math_invalidf(float);
266hidden double __math_xflow(uint32_t, double);
267hidden double __math_uflow(uint32_t);
268hidden double __math_oflow(uint32_t);
269hidden double __math_divzero(uint32_t);
270hidden double __math_invalid(double);
271
272#endif
273