1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: releng/12.0/sys/net80211/ieee80211_superg.c 326272 2017-11-27 15:23:17Z pfg $");
30
31#include "opt_wlan.h"
32
33#ifdef	IEEE80211_SUPPORT_SUPERG
34
35#include <sys/param.h>
36#include <sys/systm.h>
37#include <sys/mbuf.h>
38#include <sys/kernel.h>
39#include <sys/endian.h>
40
41#include <sys/socket.h>
42
43#include <net/if.h>
44#include <net/if_var.h>
45#include <net/if_llc.h>
46#include <net/if_media.h>
47#include <net/bpf.h>
48#include <net/ethernet.h>
49
50#include <net80211/ieee80211_var.h>
51#include <net80211/ieee80211_input.h>
52#include <net80211/ieee80211_phy.h>
53#include <net80211/ieee80211_superg.h>
54
55/*
56 * Atheros fast-frame encapsulation format.
57 * FF max payload:
58 * 802.2 + FFHDR + HPAD + 802.3 + 802.2 + 1500 + SPAD + 802.3 + 802.2 + 1500:
59 *   8   +   4   +  4   +   14  +   8   + 1500 +  6   +   14  +   8   + 1500
60 * = 3066
61 */
62/* fast frame header is 32-bits */
63#define	ATH_FF_PROTO	0x0000003f	/* protocol */
64#define	ATH_FF_PROTO_S	0
65#define	ATH_FF_FTYPE	0x000000c0	/* frame type */
66#define	ATH_FF_FTYPE_S	6
67#define	ATH_FF_HLEN32	0x00000300	/* optional hdr length */
68#define	ATH_FF_HLEN32_S	8
69#define	ATH_FF_SEQNUM	0x001ffc00	/* sequence number */
70#define	ATH_FF_SEQNUM_S	10
71#define	ATH_FF_OFFSET	0xffe00000	/* offset to 2nd payload */
72#define	ATH_FF_OFFSET_S	21
73
74#define	ATH_FF_MAX_HDR_PAD	4
75#define	ATH_FF_MAX_SEP_PAD	6
76#define	ATH_FF_MAX_HDR		30
77
78#define	ATH_FF_PROTO_L2TUNNEL	0	/* L2 tunnel protocol */
79#define	ATH_FF_ETH_TYPE		0x88bd	/* Ether type for encapsulated frames */
80#define	ATH_FF_SNAP_ORGCODE_0	0x00
81#define	ATH_FF_SNAP_ORGCODE_1	0x03
82#define	ATH_FF_SNAP_ORGCODE_2	0x7f
83
84#define	ATH_FF_TXQMIN	2		/* min txq depth for staging */
85#define	ATH_FF_TXQMAX	50		/* maximum # of queued frames allowed */
86#define	ATH_FF_STAGEMAX	5		/* max waiting period for staged frame*/
87
88#define	ETHER_HEADER_COPY(dst, src) \
89	memcpy(dst, src, sizeof(struct ether_header))
90
91static	int ieee80211_ffppsmin = 2;	/* pps threshold for ff aggregation */
92SYSCTL_INT(_net_wlan, OID_AUTO, ffppsmin, CTLFLAG_RW,
93	&ieee80211_ffppsmin, 0, "min packet rate before fast-frame staging");
94static	int ieee80211_ffagemax = -1;	/* max time frames held on stage q */
95SYSCTL_PROC(_net_wlan, OID_AUTO, ffagemax,
96    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
97    &ieee80211_ffagemax, 0, ieee80211_sysctl_msecs_ticks, "I",
98    "max hold time for fast-frame staging (ms)");
99
100static void
101ff_age_all(void *arg, int npending)
102{
103	struct ieee80211com *ic = arg;
104
105	/* XXX cache timer value somewhere (racy) */
106	ieee80211_ff_age_all(ic, ieee80211_ffagemax + 1);
107}
108
109void
110ieee80211_superg_attach(struct ieee80211com *ic)
111{
112	struct ieee80211_superg *sg;
113
114	IEEE80211_FF_LOCK_INIT(ic, ic->ic_name);
115
116	sg = (struct ieee80211_superg *) IEEE80211_MALLOC(
117	     sizeof(struct ieee80211_superg), M_80211_VAP,
118	     IEEE80211_M_NOWAIT | IEEE80211_M_ZERO);
119	if (sg == NULL) {
120		printf("%s: cannot allocate SuperG state block\n",
121		    __func__);
122		return;
123	}
124	TIMEOUT_TASK_INIT(ic->ic_tq, &sg->ff_qtimer, 0, ff_age_all, ic);
125	ic->ic_superg = sg;
126
127	/*
128	 * Default to not being so aggressive for FF/AMSDU
129	 * aging, otherwise we may hold a frame around
130	 * for way too long before we expire it out.
131	 */
132	ieee80211_ffagemax = msecs_to_ticks(2);
133}
134
135void
136ieee80211_superg_detach(struct ieee80211com *ic)
137{
138
139	if (ic->ic_superg != NULL) {
140		struct timeout_task *qtask = &ic->ic_superg->ff_qtimer;
141
142		while (taskqueue_cancel_timeout(ic->ic_tq, qtask, NULL) != 0)
143			taskqueue_drain_timeout(ic->ic_tq, qtask);
144		IEEE80211_FREE(ic->ic_superg, M_80211_VAP);
145		ic->ic_superg = NULL;
146	}
147	IEEE80211_FF_LOCK_DESTROY(ic);
148}
149
150void
151ieee80211_superg_vattach(struct ieee80211vap *vap)
152{
153	struct ieee80211com *ic = vap->iv_ic;
154
155	if (ic->ic_superg == NULL)	/* NB: can't do fast-frames w/o state */
156		vap->iv_caps &= ~IEEE80211_C_FF;
157	if (vap->iv_caps & IEEE80211_C_FF)
158		vap->iv_flags |= IEEE80211_F_FF;
159	/* NB: we only implement sta mode */
160	if (vap->iv_opmode == IEEE80211_M_STA &&
161	    (vap->iv_caps & IEEE80211_C_TURBOP))
162		vap->iv_flags |= IEEE80211_F_TURBOP;
163}
164
165void
166ieee80211_superg_vdetach(struct ieee80211vap *vap)
167{
168}
169
170#define	ATH_OUI_BYTES		0x00, 0x03, 0x7f
171/*
172 * Add a WME information element to a frame.
173 */
174uint8_t *
175ieee80211_add_ath(uint8_t *frm, uint8_t caps, ieee80211_keyix defkeyix)
176{
177	static const struct ieee80211_ath_ie info = {
178		.ath_id		= IEEE80211_ELEMID_VENDOR,
179		.ath_len	= sizeof(struct ieee80211_ath_ie) - 2,
180		.ath_oui	= { ATH_OUI_BYTES },
181		.ath_oui_type	= ATH_OUI_TYPE,
182		.ath_oui_subtype= ATH_OUI_SUBTYPE,
183		.ath_version	= ATH_OUI_VERSION,
184	};
185	struct ieee80211_ath_ie *ath = (struct ieee80211_ath_ie *) frm;
186
187	memcpy(frm, &info, sizeof(info));
188	ath->ath_capability = caps;
189	if (defkeyix != IEEE80211_KEYIX_NONE) {
190		ath->ath_defkeyix[0] = (defkeyix & 0xff);
191		ath->ath_defkeyix[1] = ((defkeyix >> 8) & 0xff);
192	} else {
193		ath->ath_defkeyix[0] = 0xff;
194		ath->ath_defkeyix[1] = 0x7f;
195	}
196	return frm + sizeof(info);
197}
198#undef ATH_OUI_BYTES
199
200uint8_t *
201ieee80211_add_athcaps(uint8_t *frm, const struct ieee80211_node *bss)
202{
203	const struct ieee80211vap *vap = bss->ni_vap;
204
205	return ieee80211_add_ath(frm,
206	    vap->iv_flags & IEEE80211_F_ATHEROS,
207	    ((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
208	    bss->ni_authmode != IEEE80211_AUTH_8021X) ?
209	    vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
210}
211
212void
213ieee80211_parse_ath(struct ieee80211_node *ni, uint8_t *ie)
214{
215	const struct ieee80211_ath_ie *ath =
216		(const struct ieee80211_ath_ie *) ie;
217
218	ni->ni_ath_flags = ath->ath_capability;
219	ni->ni_ath_defkeyix = le16dec(&ath->ath_defkeyix);
220}
221
222int
223ieee80211_parse_athparams(struct ieee80211_node *ni, uint8_t *frm,
224	const struct ieee80211_frame *wh)
225{
226	struct ieee80211vap *vap = ni->ni_vap;
227	const struct ieee80211_ath_ie *ath;
228	u_int len = frm[1];
229	int capschanged;
230	uint16_t defkeyix;
231
232	if (len < sizeof(struct ieee80211_ath_ie)-2) {
233		IEEE80211_DISCARD_IE(vap,
234		    IEEE80211_MSG_ELEMID | IEEE80211_MSG_SUPERG,
235		    wh, "Atheros", "too short, len %u", len);
236		return -1;
237	}
238	ath = (const struct ieee80211_ath_ie *)frm;
239	capschanged = (ni->ni_ath_flags != ath->ath_capability);
240	defkeyix = le16dec(ath->ath_defkeyix);
241	if (capschanged || defkeyix != ni->ni_ath_defkeyix) {
242		ni->ni_ath_flags = ath->ath_capability;
243		ni->ni_ath_defkeyix = defkeyix;
244		IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni,
245		    "ath ie change: new caps 0x%x defkeyix 0x%x",
246		    ni->ni_ath_flags, ni->ni_ath_defkeyix);
247	}
248	if (IEEE80211_ATH_CAP(vap, ni, ATHEROS_CAP_TURBO_PRIME)) {
249		uint16_t curflags, newflags;
250
251		/*
252		 * Check for turbo mode switch.  Calculate flags
253		 * for the new mode and effect the switch.
254		 */
255		newflags = curflags = vap->iv_ic->ic_bsschan->ic_flags;
256		/* NB: BOOST is not in ic_flags, so get it from the ie */
257		if (ath->ath_capability & ATHEROS_CAP_BOOST)
258			newflags |= IEEE80211_CHAN_TURBO;
259		else
260			newflags &= ~IEEE80211_CHAN_TURBO;
261		if (newflags != curflags)
262			ieee80211_dturbo_switch(vap, newflags);
263	}
264	return capschanged;
265}
266
267/*
268 * Decap the encapsulated frame pair and dispatch the first
269 * for delivery.  The second frame is returned for delivery
270 * via the normal path.
271 */
272struct mbuf *
273ieee80211_ff_decap(struct ieee80211_node *ni, struct mbuf *m)
274{
275#define	FF_LLC_SIZE	(sizeof(struct ether_header) + sizeof(struct llc))
276	struct ieee80211vap *vap = ni->ni_vap;
277	struct llc *llc;
278	uint32_t ath;
279	struct mbuf *n;
280	int framelen;
281
282	/* NB: we assume caller does this check for us */
283	KASSERT(IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF),
284	    ("ff not negotiated"));
285	/*
286	 * Check for fast-frame tunnel encapsulation.
287	 */
288	if (m->m_pkthdr.len < 3*FF_LLC_SIZE)
289		return m;
290	if (m->m_len < FF_LLC_SIZE &&
291	    (m = m_pullup(m, FF_LLC_SIZE)) == NULL) {
292		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
293		    ni->ni_macaddr, "fast-frame",
294		    "%s", "m_pullup(llc) failed");
295		vap->iv_stats.is_rx_tooshort++;
296		return NULL;
297	}
298	llc = (struct llc *)(mtod(m, uint8_t *) +
299	    sizeof(struct ether_header));
300	if (llc->llc_snap.ether_type != htons(ATH_FF_ETH_TYPE))
301		return m;
302	m_adj(m, FF_LLC_SIZE);
303	m_copydata(m, 0, sizeof(uint32_t), (caddr_t) &ath);
304	if (_IEEE80211_MASKSHIFT(ath, ATH_FF_PROTO) != ATH_FF_PROTO_L2TUNNEL) {
305		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
306		    ni->ni_macaddr, "fast-frame",
307		    "unsupport tunnel protocol, header 0x%x", ath);
308		vap->iv_stats.is_ff_badhdr++;
309		m_freem(m);
310		return NULL;
311	}
312	/* NB: skip header and alignment padding */
313	m_adj(m, roundup(sizeof(uint32_t) - 2, 4) + 2);
314
315	vap->iv_stats.is_ff_decap++;
316
317	/*
318	 * Decap the first frame, bust it apart from the
319	 * second and deliver; then decap the second frame
320	 * and return it to the caller for normal delivery.
321	 */
322	m = ieee80211_decap1(m, &framelen);
323	if (m == NULL) {
324		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
325		    ni->ni_macaddr, "fast-frame", "%s", "first decap failed");
326		vap->iv_stats.is_ff_tooshort++;
327		return NULL;
328	}
329	n = m_split(m, framelen, M_NOWAIT);
330	if (n == NULL) {
331		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
332		    ni->ni_macaddr, "fast-frame",
333		    "%s", "unable to split encapsulated frames");
334		vap->iv_stats.is_ff_split++;
335		m_freem(m);			/* NB: must reclaim */
336		return NULL;
337	}
338	/* XXX not right for WDS */
339	vap->iv_deliver_data(vap, ni, m);	/* 1st of pair */
340
341	/*
342	 * Decap second frame.
343	 */
344	m_adj(n, roundup2(framelen, 4) - framelen);	/* padding */
345	n = ieee80211_decap1(n, &framelen);
346	if (n == NULL) {
347		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
348		    ni->ni_macaddr, "fast-frame", "%s", "second decap failed");
349		vap->iv_stats.is_ff_tooshort++;
350	}
351	/* XXX verify framelen against mbuf contents */
352	return n;				/* 2nd delivered by caller */
353#undef FF_LLC_SIZE
354}
355
356/*
357 * Fast frame encapsulation.  There must be two packets
358 * chained with m_nextpkt.  We do header adjustment for
359 * each, add the tunnel encapsulation, and then concatenate
360 * the mbuf chains to form a single frame for transmission.
361 */
362struct mbuf *
363ieee80211_ff_encap(struct ieee80211vap *vap, struct mbuf *m1, int hdrspace,
364	struct ieee80211_key *key)
365{
366	struct mbuf *m2;
367	struct ether_header eh1, eh2;
368	struct llc *llc;
369	struct mbuf *m;
370	int pad;
371
372	m2 = m1->m_nextpkt;
373	if (m2 == NULL) {
374		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
375		    "%s: only one frame\n", __func__);
376		goto bad;
377	}
378	m1->m_nextpkt = NULL;
379
380	/*
381	 * Adjust to include 802.11 header requirement.
382	 */
383	KASSERT(m1->m_len >= sizeof(eh1), ("no ethernet header!"));
384	ETHER_HEADER_COPY(&eh1, mtod(m1, caddr_t));
385	m1 = ieee80211_mbuf_adjust(vap, hdrspace, key, m1);
386	if (m1 == NULL) {
387		printf("%s: failed initial mbuf_adjust\n", __func__);
388		/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
389		m_freem(m2);
390		goto bad;
391	}
392
393	/*
394	 * Copy second frame's Ethernet header out of line
395	 * and adjust for possible padding in case there isn't room
396	 * at the end of first frame.
397	 */
398	KASSERT(m2->m_len >= sizeof(eh2), ("no ethernet header!"));
399	ETHER_HEADER_COPY(&eh2, mtod(m2, caddr_t));
400	m2 = ieee80211_mbuf_adjust(vap, 4, NULL, m2);
401	if (m2 == NULL) {
402		/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
403		printf("%s: failed second \n", __func__);
404		goto bad;
405	}
406
407	/*
408	 * Now do tunnel encapsulation.  First, each
409	 * frame gets a standard encapsulation.
410	 */
411	m1 = ieee80211_ff_encap1(vap, m1, &eh1);
412	if (m1 == NULL)
413		goto bad;
414	m2 = ieee80211_ff_encap1(vap, m2, &eh2);
415	if (m2 == NULL)
416		goto bad;
417
418	/*
419	 * Pad leading frame to a 4-byte boundary.  If there
420	 * is space at the end of the first frame, put it
421	 * there; otherwise prepend to the front of the second
422	 * frame.  We know doing the second will always work
423	 * because we reserve space above.  We prefer appending
424	 * as this typically has better DMA alignment properties.
425	 */
426	for (m = m1; m->m_next != NULL; m = m->m_next)
427		;
428	pad = roundup2(m1->m_pkthdr.len, 4) - m1->m_pkthdr.len;
429	if (pad) {
430		if (M_TRAILINGSPACE(m) < pad) {		/* prepend to second */
431			m2->m_data -= pad;
432			m2->m_len += pad;
433			m2->m_pkthdr.len += pad;
434		} else {				/* append to first */
435			m->m_len += pad;
436			m1->m_pkthdr.len += pad;
437		}
438	}
439
440	/*
441	 * A-MSDU's are just appended; the "I'm A-MSDU!" bit is in the
442	 * QoS header.
443	 *
444	 * XXX optimize by prepending together
445	 */
446	m->m_next = m2;			/* NB: last mbuf from above */
447	m1->m_pkthdr.len += m2->m_pkthdr.len;
448	M_PREPEND(m1, sizeof(uint32_t)+2, M_NOWAIT);
449	if (m1 == NULL) {		/* XXX cannot happen */
450		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
451		    "%s: no space for tunnel header\n", __func__);
452		vap->iv_stats.is_tx_nobuf++;
453		return NULL;
454	}
455	memset(mtod(m1, void *), 0, sizeof(uint32_t)+2);
456
457	M_PREPEND(m1, sizeof(struct llc), M_NOWAIT);
458	if (m1 == NULL) {		/* XXX cannot happen */
459		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
460		    "%s: no space for llc header\n", __func__);
461		vap->iv_stats.is_tx_nobuf++;
462		return NULL;
463	}
464	llc = mtod(m1, struct llc *);
465	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
466	llc->llc_control = LLC_UI;
467	llc->llc_snap.org_code[0] = ATH_FF_SNAP_ORGCODE_0;
468	llc->llc_snap.org_code[1] = ATH_FF_SNAP_ORGCODE_1;
469	llc->llc_snap.org_code[2] = ATH_FF_SNAP_ORGCODE_2;
470	llc->llc_snap.ether_type = htons(ATH_FF_ETH_TYPE);
471
472	vap->iv_stats.is_ff_encap++;
473
474	return m1;
475bad:
476	vap->iv_stats.is_ff_encapfail++;
477	if (m1 != NULL)
478		m_freem(m1);
479	if (m2 != NULL)
480		m_freem(m2);
481	return NULL;
482}
483
484/*
485 * A-MSDU encapsulation.
486 *
487 * This assumes just two frames for now, since we're borrowing the
488 * same queuing code and infrastructure as fast-frames.
489 *
490 * There must be two packets chained with m_nextpkt.
491 * We do header adjustment for each, and then concatenate the mbuf chains
492 * to form a single frame for transmission.
493 */
494struct mbuf *
495ieee80211_amsdu_encap(struct ieee80211vap *vap, struct mbuf *m1, int hdrspace,
496	struct ieee80211_key *key)
497{
498	struct mbuf *m2;
499	struct ether_header eh1, eh2;
500	struct mbuf *m;
501	int pad;
502
503	m2 = m1->m_nextpkt;
504	if (m2 == NULL) {
505		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
506		    "%s: only one frame\n", __func__);
507		goto bad;
508	}
509	m1->m_nextpkt = NULL;
510
511	/*
512	 * Include A-MSDU header in adjusting header layout.
513	 */
514	KASSERT(m1->m_len >= sizeof(eh1), ("no ethernet header!"));
515	ETHER_HEADER_COPY(&eh1, mtod(m1, caddr_t));
516	m1 = ieee80211_mbuf_adjust(vap,
517		hdrspace + sizeof(struct llc) + sizeof(uint32_t) +
518		    sizeof(struct ether_header),
519		key, m1);
520	if (m1 == NULL) {
521		/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
522		m_freem(m2);
523		goto bad;
524	}
525
526	/*
527	 * Copy second frame's Ethernet header out of line
528	 * and adjust for encapsulation headers.  Note that
529	 * we make room for padding in case there isn't room
530	 * at the end of first frame.
531	 */
532	KASSERT(m2->m_len >= sizeof(eh2), ("no ethernet header!"));
533	ETHER_HEADER_COPY(&eh2, mtod(m2, caddr_t));
534	m2 = ieee80211_mbuf_adjust(vap, 4, NULL, m2);
535	if (m2 == NULL) {
536		/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
537		goto bad;
538	}
539
540	/*
541	 * Now do tunnel encapsulation.  First, each
542	 * frame gets a standard encapsulation.
543	 */
544	m1 = ieee80211_ff_encap1(vap, m1, &eh1);
545	if (m1 == NULL)
546		goto bad;
547	m2 = ieee80211_ff_encap1(vap, m2, &eh2);
548	if (m2 == NULL)
549		goto bad;
550
551	/*
552	 * Pad leading frame to a 4-byte boundary.  If there
553	 * is space at the end of the first frame, put it
554	 * there; otherwise prepend to the front of the second
555	 * frame.  We know doing the second will always work
556	 * because we reserve space above.  We prefer appending
557	 * as this typically has better DMA alignment properties.
558	 */
559	for (m = m1; m->m_next != NULL; m = m->m_next)
560		;
561	pad = roundup2(m1->m_pkthdr.len, 4) - m1->m_pkthdr.len;
562	if (pad) {
563		if (M_TRAILINGSPACE(m) < pad) {		/* prepend to second */
564			m2->m_data -= pad;
565			m2->m_len += pad;
566			m2->m_pkthdr.len += pad;
567		} else {				/* append to first */
568			m->m_len += pad;
569			m1->m_pkthdr.len += pad;
570		}
571	}
572
573	/*
574	 * Now, stick 'em together.
575	 */
576	m->m_next = m2;			/* NB: last mbuf from above */
577	m1->m_pkthdr.len += m2->m_pkthdr.len;
578
579	vap->iv_stats.is_amsdu_encap++;
580
581	return m1;
582bad:
583	vap->iv_stats.is_amsdu_encapfail++;
584	if (m1 != NULL)
585		m_freem(m1);
586	if (m2 != NULL)
587		m_freem(m2);
588	return NULL;
589}
590
591static void
592ff_transmit(struct ieee80211_node *ni, struct mbuf *m)
593{
594	struct ieee80211vap *vap = ni->ni_vap;
595	struct ieee80211com *ic = ni->ni_ic;
596
597	IEEE80211_TX_LOCK_ASSERT(ic);
598
599	/* encap and xmit */
600	m = ieee80211_encap(vap, ni, m);
601	if (m != NULL)
602		(void) ieee80211_parent_xmitpkt(ic, m);
603	else
604		ieee80211_free_node(ni);
605}
606
607/*
608 * Flush frames to device; note we re-use the linked list
609 * the frames were stored on and use the sentinel (unchanged)
610 * which may be non-NULL.
611 */
612static void
613ff_flush(struct mbuf *head, struct mbuf *last)
614{
615	struct mbuf *m, *next;
616	struct ieee80211_node *ni;
617	struct ieee80211vap *vap;
618
619	for (m = head; m != last; m = next) {
620		next = m->m_nextpkt;
621		m->m_nextpkt = NULL;
622
623		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
624		vap = ni->ni_vap;
625
626		IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni,
627		    "%s: flush frame, age %u", __func__, M_AGE_GET(m));
628		vap->iv_stats.is_ff_flush++;
629
630		ff_transmit(ni, m);
631	}
632}
633
634/*
635 * Age frames on the staging queue.
636 */
637void
638ieee80211_ff_age(struct ieee80211com *ic, struct ieee80211_stageq *sq,
639    int quanta)
640{
641	struct mbuf *m, *head;
642	struct ieee80211_node *ni;
643
644	IEEE80211_FF_LOCK(ic);
645	if (sq->depth == 0) {
646		IEEE80211_FF_UNLOCK(ic);
647		return;		/* nothing to do */
648	}
649
650	KASSERT(sq->head != NULL, ("stageq empty"));
651
652	head = sq->head;
653	while ((m = sq->head) != NULL && M_AGE_GET(m) < quanta) {
654		int tid = WME_AC_TO_TID(M_WME_GETAC(m));
655
656		/* clear staging ref to frame */
657		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
658		KASSERT(ni->ni_tx_superg[tid] == m, ("staging queue empty"));
659		ni->ni_tx_superg[tid] = NULL;
660
661		sq->head = m->m_nextpkt;
662		sq->depth--;
663	}
664	if (m == NULL)
665		sq->tail = NULL;
666	else
667		M_AGE_SUB(m, quanta);
668	IEEE80211_FF_UNLOCK(ic);
669
670	IEEE80211_TX_LOCK(ic);
671	ff_flush(head, m);
672	IEEE80211_TX_UNLOCK(ic);
673}
674
675static void
676stageq_add(struct ieee80211com *ic, struct ieee80211_stageq *sq, struct mbuf *m)
677{
678	int age = ieee80211_ffagemax;
679
680	IEEE80211_FF_LOCK_ASSERT(ic);
681
682	if (sq->tail != NULL) {
683		sq->tail->m_nextpkt = m;
684		age -= M_AGE_GET(sq->head);
685	} else {
686		sq->head = m;
687
688		struct timeout_task *qtask = &ic->ic_superg->ff_qtimer;
689		taskqueue_enqueue_timeout(ic->ic_tq, qtask, age);
690	}
691	KASSERT(age >= 0, ("age %d", age));
692	M_AGE_SET(m, age);
693	m->m_nextpkt = NULL;
694	sq->tail = m;
695	sq->depth++;
696}
697
698static void
699stageq_remove(struct ieee80211com *ic, struct ieee80211_stageq *sq, struct mbuf *mstaged)
700{
701	struct mbuf *m, *mprev;
702
703	IEEE80211_FF_LOCK_ASSERT(ic);
704
705	mprev = NULL;
706	for (m = sq->head; m != NULL; m = m->m_nextpkt) {
707		if (m == mstaged) {
708			if (mprev == NULL)
709				sq->head = m->m_nextpkt;
710			else
711				mprev->m_nextpkt = m->m_nextpkt;
712			if (sq->tail == m)
713				sq->tail = mprev;
714			sq->depth--;
715			return;
716		}
717		mprev = m;
718	}
719	printf("%s: packet not found\n", __func__);
720}
721
722static uint32_t
723ff_approx_txtime(struct ieee80211_node *ni,
724	const struct mbuf *m1, const struct mbuf *m2)
725{
726	struct ieee80211com *ic = ni->ni_ic;
727	struct ieee80211vap *vap = ni->ni_vap;
728	uint32_t framelen;
729	uint32_t frame_time;
730
731	/*
732	 * Approximate the frame length to be transmitted. A swag to add
733	 * the following maximal values to the skb payload:
734	 *   - 32: 802.11 encap + CRC
735	 *   - 24: encryption overhead (if wep bit)
736	 *   - 4 + 6: fast-frame header and padding
737	 *   - 16: 2 LLC FF tunnel headers
738	 *   - 14: 1 802.3 FF tunnel header (mbuf already accounts for 2nd)
739	 */
740	framelen = m1->m_pkthdr.len + 32 +
741	    ATH_FF_MAX_HDR_PAD + ATH_FF_MAX_SEP_PAD + ATH_FF_MAX_HDR;
742	if (vap->iv_flags & IEEE80211_F_PRIVACY)
743		framelen += 24;
744	if (m2 != NULL)
745		framelen += m2->m_pkthdr.len;
746
747	/*
748	 * For now, we assume non-shortgi, 20MHz, just because I want to
749	 * at least test 802.11n.
750	 */
751	if (ni->ni_txrate & IEEE80211_RATE_MCS)
752		frame_time = ieee80211_compute_duration_ht(framelen,
753		    ni->ni_txrate,
754		    IEEE80211_HT_RC_2_STREAMS(ni->ni_txrate),
755		    0, /* isht40 */
756		    0); /* isshortgi */
757	else
758		frame_time = ieee80211_compute_duration(ic->ic_rt, framelen,
759			    ni->ni_txrate, 0);
760	return (frame_time);
761}
762
763/*
764 * Check if the supplied frame can be partnered with an existing
765 * or pending frame.  Return a reference to any frame that should be
766 * sent on return; otherwise return NULL.
767 */
768struct mbuf *
769ieee80211_ff_check(struct ieee80211_node *ni, struct mbuf *m)
770{
771	struct ieee80211vap *vap = ni->ni_vap;
772	struct ieee80211com *ic = ni->ni_ic;
773	struct ieee80211_superg *sg = ic->ic_superg;
774	const int pri = M_WME_GETAC(m);
775	struct ieee80211_stageq *sq;
776	struct ieee80211_tx_ampdu *tap;
777	struct mbuf *mstaged;
778	uint32_t txtime, limit;
779
780	IEEE80211_TX_UNLOCK_ASSERT(ic);
781
782	IEEE80211_LOCK(ic);
783	limit = IEEE80211_TXOP_TO_US(
784	    ic->ic_wme.wme_chanParams.cap_wmeParams[pri].wmep_txopLimit);
785	IEEE80211_UNLOCK(ic);
786
787	/*
788	 * Check if the supplied frame can be aggregated.
789	 *
790	 * NB: we allow EAPOL frames to be aggregated with other ucast traffic.
791	 *     Do 802.1x EAPOL frames proceed in the clear? Then they couldn't
792	 *     be aggregated with other types of frames when encryption is on?
793	 */
794	IEEE80211_FF_LOCK(ic);
795	tap = &ni->ni_tx_ampdu[WME_AC_TO_TID(pri)];
796	mstaged = ni->ni_tx_superg[WME_AC_TO_TID(pri)];
797	/* XXX NOTE: reusing packet counter state from A-MPDU */
798	/*
799	 * XXX NOTE: this means we're double-counting; it should just
800	 * be done in ieee80211_output.c once for both superg and A-MPDU.
801	 */
802	ieee80211_txampdu_count_packet(tap);
803
804	/*
805	 * When not in station mode never aggregate a multicast
806	 * frame; this insures, for example, that a combined frame
807	 * does not require multiple encryption keys.
808	 */
809	if (vap->iv_opmode != IEEE80211_M_STA &&
810	    ETHER_IS_MULTICAST(mtod(m, struct ether_header *)->ether_dhost)) {
811		/* XXX flush staged frame? */
812		IEEE80211_FF_UNLOCK(ic);
813		return m;
814	}
815	/*
816	 * If there is no frame to combine with and the pps is
817	 * too low; then do not attempt to aggregate this frame.
818	 */
819	if (mstaged == NULL &&
820	    ieee80211_txampdu_getpps(tap) < ieee80211_ffppsmin) {
821		IEEE80211_FF_UNLOCK(ic);
822		return m;
823	}
824	sq = &sg->ff_stageq[pri];
825	/*
826	 * Check the txop limit to insure the aggregate fits.
827	 */
828	if (limit != 0 &&
829	    (txtime = ff_approx_txtime(ni, m, mstaged)) > limit) {
830		/*
831		 * Aggregate too long, return to the caller for direct
832		 * transmission.  In addition, flush any pending frame
833		 * before sending this one.
834		 */
835		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
836		    "%s: txtime %u exceeds txop limit %u\n",
837		    __func__, txtime, limit);
838
839		ni->ni_tx_superg[WME_AC_TO_TID(pri)] = NULL;
840		if (mstaged != NULL)
841			stageq_remove(ic, sq, mstaged);
842		IEEE80211_FF_UNLOCK(ic);
843
844		if (mstaged != NULL) {
845			IEEE80211_TX_LOCK(ic);
846			IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni,
847			    "%s: flush staged frame", __func__);
848			/* encap and xmit */
849			ff_transmit(ni, mstaged);
850			IEEE80211_TX_UNLOCK(ic);
851		}
852		return m;		/* NB: original frame */
853	}
854	/*
855	 * An aggregation candidate.  If there's a frame to partner
856	 * with then combine and return for processing.  Otherwise
857	 * save this frame and wait for a partner to show up (or
858	 * the frame to be flushed).  Note that staged frames also
859	 * hold their node reference.
860	 */
861	if (mstaged != NULL) {
862		ni->ni_tx_superg[WME_AC_TO_TID(pri)] = NULL;
863		stageq_remove(ic, sq, mstaged);
864		IEEE80211_FF_UNLOCK(ic);
865
866		IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni,
867		    "%s: aggregate fast-frame", __func__);
868		/*
869		 * Release the node reference; we only need
870		 * the one already in mstaged.
871		 */
872		KASSERT(mstaged->m_pkthdr.rcvif == (void *)ni,
873		    ("rcvif %p ni %p", mstaged->m_pkthdr.rcvif, ni));
874		ieee80211_free_node(ni);
875
876		m->m_nextpkt = NULL;
877		mstaged->m_nextpkt = m;
878		mstaged->m_flags |= M_FF; /* NB: mark for encap work */
879	} else {
880		KASSERT(ni->ni_tx_superg[WME_AC_TO_TID(pri)] == NULL,
881		    ("ni_tx_superg[]: %p",
882		    ni->ni_tx_superg[WME_AC_TO_TID(pri)]));
883		ni->ni_tx_superg[WME_AC_TO_TID(pri)] = m;
884
885		stageq_add(ic, sq, m);
886		IEEE80211_FF_UNLOCK(ic);
887
888		IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni,
889		    "%s: stage frame, %u queued", __func__, sq->depth);
890		/* NB: mstaged is NULL */
891	}
892	return mstaged;
893}
894
895struct mbuf *
896ieee80211_amsdu_check(struct ieee80211_node *ni, struct mbuf *m)
897{
898	/*
899	 * XXX TODO: actually enforce the node support
900	 * and HTCAP requirements for the maximum A-MSDU
901	 * size.
902	 */
903
904	/* First: software A-MSDU transmit? */
905	if (! ieee80211_amsdu_tx_ok(ni))
906		return (m);
907
908	/* Next - EAPOL? Nope, don't aggregate; we don't QoS encap them */
909	if (m->m_flags & (M_EAPOL | M_MCAST | M_BCAST))
910		return (m);
911
912	/* Next - needs to be a data frame, non-broadcast, etc */
913	if (ETHER_IS_MULTICAST(mtod(m, struct ether_header *)->ether_dhost))
914		return (m);
915
916	return (ieee80211_ff_check(ni, m));
917}
918
919void
920ieee80211_ff_node_init(struct ieee80211_node *ni)
921{
922	/*
923	 * Clean FF state on re-associate.  This handles the case
924	 * where a station leaves w/o notifying us and then returns
925	 * before node is reaped for inactivity.
926	 */
927	ieee80211_ff_node_cleanup(ni);
928}
929
930void
931ieee80211_ff_node_cleanup(struct ieee80211_node *ni)
932{
933	struct ieee80211com *ic = ni->ni_ic;
934	struct ieee80211_superg *sg = ic->ic_superg;
935	struct mbuf *m, *next_m, *head;
936	int tid;
937
938	IEEE80211_FF_LOCK(ic);
939	head = NULL;
940	for (tid = 0; tid < WME_NUM_TID; tid++) {
941		int ac = TID_TO_WME_AC(tid);
942		/*
943		 * XXX Initialise the packet counter.
944		 *
945		 * This may be double-work for 11n stations;
946		 * but without it we never setup things.
947		 */
948		ieee80211_txampdu_init_pps(&ni->ni_tx_ampdu[tid]);
949		m = ni->ni_tx_superg[tid];
950		if (m != NULL) {
951			ni->ni_tx_superg[tid] = NULL;
952			stageq_remove(ic, &sg->ff_stageq[ac], m);
953			m->m_nextpkt = head;
954			head = m;
955		}
956	}
957	IEEE80211_FF_UNLOCK(ic);
958
959	/*
960	 * Free mbufs, taking care to not dereference the mbuf after
961	 * we free it (hence grabbing m_nextpkt before we free it.)
962	 */
963	m = head;
964	while (m != NULL) {
965		next_m = m->m_nextpkt;
966		m_freem(m);
967		ieee80211_free_node(ni);
968		m = next_m;
969	}
970}
971
972/*
973 * Switch between turbo and non-turbo operating modes.
974 * Use the specified channel flags to locate the new
975 * channel, update 802.11 state, and then call back into
976 * the driver to effect the change.
977 */
978void
979ieee80211_dturbo_switch(struct ieee80211vap *vap, int newflags)
980{
981	struct ieee80211com *ic = vap->iv_ic;
982	struct ieee80211_channel *chan;
983
984	chan = ieee80211_find_channel(ic, ic->ic_bsschan->ic_freq, newflags);
985	if (chan == NULL) {		/* XXX should not happen */
986		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
987		    "%s: no channel with freq %u flags 0x%x\n",
988		    __func__, ic->ic_bsschan->ic_freq, newflags);
989		return;
990	}
991
992	IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
993	    "%s: %s -> %s (freq %u flags 0x%x)\n", __func__,
994	    ieee80211_phymode_name[ieee80211_chan2mode(ic->ic_bsschan)],
995	    ieee80211_phymode_name[ieee80211_chan2mode(chan)],
996	    chan->ic_freq, chan->ic_flags);
997
998	ic->ic_bsschan = chan;
999	ic->ic_prevchan = ic->ic_curchan;
1000	ic->ic_curchan = chan;
1001	ic->ic_rt = ieee80211_get_ratetable(chan);
1002	ic->ic_set_channel(ic);
1003	ieee80211_radiotap_chan_change(ic);
1004	/* NB: do not need to reset ERP state 'cuz we're in sta mode */
1005}
1006
1007/*
1008 * Return the current ``state'' of an Atheros capbility.
1009 * If associated in station mode report the negotiated
1010 * setting. Otherwise report the current setting.
1011 */
1012static int
1013getathcap(struct ieee80211vap *vap, int cap)
1014{
1015	if (vap->iv_opmode == IEEE80211_M_STA &&
1016	    vap->iv_state == IEEE80211_S_RUN)
1017		return IEEE80211_ATH_CAP(vap, vap->iv_bss, cap) != 0;
1018	else
1019		return (vap->iv_flags & cap) != 0;
1020}
1021
1022static int
1023superg_ioctl_get80211(struct ieee80211vap *vap, struct ieee80211req *ireq)
1024{
1025	switch (ireq->i_type) {
1026	case IEEE80211_IOC_FF:
1027		ireq->i_val = getathcap(vap, IEEE80211_F_FF);
1028		break;
1029	case IEEE80211_IOC_TURBOP:
1030		ireq->i_val = getathcap(vap, IEEE80211_F_TURBOP);
1031		break;
1032	default:
1033		return ENOSYS;
1034	}
1035	return 0;
1036}
1037IEEE80211_IOCTL_GET(superg, superg_ioctl_get80211);
1038
1039static int
1040superg_ioctl_set80211(struct ieee80211vap *vap, struct ieee80211req *ireq)
1041{
1042	switch (ireq->i_type) {
1043	case IEEE80211_IOC_FF:
1044		if (ireq->i_val) {
1045			if ((vap->iv_caps & IEEE80211_C_FF) == 0)
1046				return EOPNOTSUPP;
1047			vap->iv_flags |= IEEE80211_F_FF;
1048		} else
1049			vap->iv_flags &= ~IEEE80211_F_FF;
1050		return ENETRESET;
1051	case IEEE80211_IOC_TURBOP:
1052		if (ireq->i_val) {
1053			if ((vap->iv_caps & IEEE80211_C_TURBOP) == 0)
1054				return EOPNOTSUPP;
1055			vap->iv_flags |= IEEE80211_F_TURBOP;
1056		} else
1057			vap->iv_flags &= ~IEEE80211_F_TURBOP;
1058		return ENETRESET;
1059	default:
1060		return ENOSYS;
1061	}
1062}
1063IEEE80211_IOCTL_SET(superg, superg_ioctl_set80211);
1064
1065#endif	/* IEEE80211_SUPPORT_SUPERG */
1066