1/*-
2 * Copyright (c) 2007-2009 Damien Bergamini <damien.bergamini@free.fr>
3 * Copyright (c) 2008 Benjamin Close <benjsc@FreeBSD.org>
4 * Copyright (c) 2008 Sam Leffler, Errno Consulting
5 * Copyright (c) 2011 Intel Corporation
6 * Copyright (c) 2013 Cedric GROSS <c.gross@kreiz-it.fr>
7 * Copyright (c) 2013 Adrian Chadd <adrian@FreeBSD.org>
8 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 */
21
22/*
23 * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
24 * adapters.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: releng/12.0/sys/dev/iwn/if_iwn.c 338949 2018-09-26 17:12:30Z imp $");
29
30#include <sys/param.h>
31#include <sys/sockio.h>
32#include <sys/sysctl.h>
33#include <sys/mbuf.h>
34#include <sys/kernel.h>
35#include <sys/socket.h>
36#include <sys/systm.h>
37#include <sys/malloc.h>
38#include <sys/bus.h>
39#include <sys/conf.h>
40#include <sys/rman.h>
41#include <sys/endian.h>
42#include <sys/firmware.h>
43#include <sys/limits.h>
44#include <sys/module.h>
45#include <sys/priv.h>
46#include <sys/queue.h>
47#include <sys/taskqueue.h>
48
49#include <machine/bus.h>
50#include <machine/resource.h>
51#include <machine/clock.h>
52
53#include <dev/pci/pcireg.h>
54#include <dev/pci/pcivar.h>
55
56#include <net/if.h>
57#include <net/if_var.h>
58#include <net/if_dl.h>
59#include <net/if_media.h>
60
61#include <netinet/in.h>
62#include <netinet/if_ether.h>
63
64#include <net80211/ieee80211_var.h>
65#include <net80211/ieee80211_radiotap.h>
66#include <net80211/ieee80211_regdomain.h>
67#include <net80211/ieee80211_ratectl.h>
68
69#include <dev/iwn/if_iwnreg.h>
70#include <dev/iwn/if_iwnvar.h>
71#include <dev/iwn/if_iwn_devid.h>
72#include <dev/iwn/if_iwn_chip_cfg.h>
73#include <dev/iwn/if_iwn_debug.h>
74#include <dev/iwn/if_iwn_ioctl.h>
75
76struct iwn_ident {
77	uint16_t	vendor;
78	uint16_t	device;
79	const char	*name;
80};
81
82static const struct iwn_ident iwn_ident_table[] = {
83	{ 0x8086, IWN_DID_6x05_1, "Intel Centrino Advanced-N 6205"		},
84	{ 0x8086, IWN_DID_1000_1, "Intel Centrino Wireless-N 1000"		},
85	{ 0x8086, IWN_DID_1000_2, "Intel Centrino Wireless-N 1000"		},
86	{ 0x8086, IWN_DID_6x05_2, "Intel Centrino Advanced-N 6205"		},
87	{ 0x8086, IWN_DID_6050_1, "Intel Centrino Advanced-N + WiMAX 6250"	},
88	{ 0x8086, IWN_DID_6050_2, "Intel Centrino Advanced-N + WiMAX 6250"	},
89	{ 0x8086, IWN_DID_x030_1, "Intel Centrino Wireless-N 1030"		},
90	{ 0x8086, IWN_DID_x030_2, "Intel Centrino Wireless-N 1030"		},
91	{ 0x8086, IWN_DID_x030_3, "Intel Centrino Advanced-N 6230"		},
92	{ 0x8086, IWN_DID_x030_4, "Intel Centrino Advanced-N 6230"		},
93	{ 0x8086, IWN_DID_6150_1, "Intel Centrino Wireless-N + WiMAX 6150"	},
94	{ 0x8086, IWN_DID_6150_2, "Intel Centrino Wireless-N + WiMAX 6150"	},
95	{ 0x8086, IWN_DID_2x00_1, "Intel(R) Centrino(R) Wireless-N 2200 BGN"	},
96	{ 0x8086, IWN_DID_2x00_2, "Intel(R) Centrino(R) Wireless-N 2200 BGN"	},
97	/* XXX 2200D is IWN_SDID_2x00_4; there's no way to express this here! */
98	{ 0x8086, IWN_DID_2x30_1, "Intel Centrino Wireless-N 2230"		},
99	{ 0x8086, IWN_DID_2x30_2, "Intel Centrino Wireless-N 2230"		},
100	{ 0x8086, IWN_DID_130_1, "Intel Centrino Wireless-N 130"		},
101	{ 0x8086, IWN_DID_130_2, "Intel Centrino Wireless-N 130"		},
102	{ 0x8086, IWN_DID_100_1, "Intel Centrino Wireless-N 100"		},
103	{ 0x8086, IWN_DID_100_2, "Intel Centrino Wireless-N 100"		},
104	{ 0x8086, IWN_DID_105_1, "Intel Centrino Wireless-N 105"		},
105	{ 0x8086, IWN_DID_105_2, "Intel Centrino Wireless-N 105"		},
106	{ 0x8086, IWN_DID_135_1, "Intel Centrino Wireless-N 135"		},
107	{ 0x8086, IWN_DID_135_2, "Intel Centrino Wireless-N 135"		},
108	{ 0x8086, IWN_DID_4965_1, "Intel Wireless WiFi Link 4965"		},
109	{ 0x8086, IWN_DID_6x00_1, "Intel Centrino Ultimate-N 6300"		},
110	{ 0x8086, IWN_DID_6x00_2, "Intel Centrino Advanced-N 6200"		},
111	{ 0x8086, IWN_DID_4965_2, "Intel Wireless WiFi Link 4965"		},
112	{ 0x8086, IWN_DID_4965_3, "Intel Wireless WiFi Link 4965"		},
113	{ 0x8086, IWN_DID_5x00_1, "Intel WiFi Link 5100"			},
114	{ 0x8086, IWN_DID_4965_4, "Intel Wireless WiFi Link 4965"		},
115	{ 0x8086, IWN_DID_5x00_3, "Intel Ultimate N WiFi Link 5300"		},
116	{ 0x8086, IWN_DID_5x00_4, "Intel Ultimate N WiFi Link 5300"		},
117	{ 0x8086, IWN_DID_5x00_2, "Intel WiFi Link 5100"			},
118	{ 0x8086, IWN_DID_6x00_3, "Intel Centrino Ultimate-N 6300"		},
119	{ 0x8086, IWN_DID_6x00_4, "Intel Centrino Advanced-N 6200"		},
120	{ 0x8086, IWN_DID_5x50_1, "Intel WiMAX/WiFi Link 5350"			},
121	{ 0x8086, IWN_DID_5x50_2, "Intel WiMAX/WiFi Link 5350"			},
122	{ 0x8086, IWN_DID_5x50_3, "Intel WiMAX/WiFi Link 5150"			},
123	{ 0x8086, IWN_DID_5x50_4, "Intel WiMAX/WiFi Link 5150"			},
124	{ 0x8086, IWN_DID_6035_1, "Intel Centrino Advanced 6235"		},
125	{ 0x8086, IWN_DID_6035_2, "Intel Centrino Advanced 6235"		},
126	{ 0, 0, NULL }
127};
128
129static int	iwn_probe(device_t);
130static int	iwn_attach(device_t);
131static void	iwn4965_attach(struct iwn_softc *, uint16_t);
132static void	iwn5000_attach(struct iwn_softc *, uint16_t);
133static int	iwn_config_specific(struct iwn_softc *, uint16_t);
134static void	iwn_radiotap_attach(struct iwn_softc *);
135static void	iwn_sysctlattach(struct iwn_softc *);
136static struct ieee80211vap *iwn_vap_create(struct ieee80211com *,
137		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
138		    const uint8_t [IEEE80211_ADDR_LEN],
139		    const uint8_t [IEEE80211_ADDR_LEN]);
140static void	iwn_vap_delete(struct ieee80211vap *);
141static int	iwn_detach(device_t);
142static int	iwn_shutdown(device_t);
143static int	iwn_suspend(device_t);
144static int	iwn_resume(device_t);
145static int	iwn_nic_lock(struct iwn_softc *);
146static int	iwn_eeprom_lock(struct iwn_softc *);
147static int	iwn_init_otprom(struct iwn_softc *);
148static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
149static void	iwn_dma_map_addr(void *, bus_dma_segment_t *, int, int);
150static int	iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *,
151		    void **, bus_size_t, bus_size_t);
152static void	iwn_dma_contig_free(struct iwn_dma_info *);
153static int	iwn_alloc_sched(struct iwn_softc *);
154static void	iwn_free_sched(struct iwn_softc *);
155static int	iwn_alloc_kw(struct iwn_softc *);
156static void	iwn_free_kw(struct iwn_softc *);
157static int	iwn_alloc_ict(struct iwn_softc *);
158static void	iwn_free_ict(struct iwn_softc *);
159static int	iwn_alloc_fwmem(struct iwn_softc *);
160static void	iwn_free_fwmem(struct iwn_softc *);
161static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
162static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
163static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
164static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
165		    int);
166static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
167static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
168static void	iwn_check_tx_ring(struct iwn_softc *, int);
169static void	iwn5000_ict_reset(struct iwn_softc *);
170static int	iwn_read_eeprom(struct iwn_softc *,
171		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
172static void	iwn4965_read_eeprom(struct iwn_softc *);
173#ifdef	IWN_DEBUG
174static void	iwn4965_print_power_group(struct iwn_softc *, int);
175#endif
176static void	iwn5000_read_eeprom(struct iwn_softc *);
177static uint32_t	iwn_eeprom_channel_flags(struct iwn_eeprom_chan *);
178static void	iwn_read_eeprom_band(struct iwn_softc *, int, int, int *,
179		    struct ieee80211_channel[]);
180static void	iwn_read_eeprom_ht40(struct iwn_softc *, int, int, int *,
181		    struct ieee80211_channel[]);
182static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
183static struct iwn_eeprom_chan *iwn_find_eeprom_channel(struct iwn_softc *,
184		    struct ieee80211_channel *);
185static void	iwn_getradiocaps(struct ieee80211com *, int, int *,
186		    struct ieee80211_channel[]);
187static int	iwn_setregdomain(struct ieee80211com *,
188		    struct ieee80211_regdomain *, int,
189		    struct ieee80211_channel[]);
190static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
191static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *,
192		    const uint8_t mac[IEEE80211_ADDR_LEN]);
193static void	iwn_newassoc(struct ieee80211_node *, int);
194static int	iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int);
195static void	iwn_calib_timeout(void *);
196static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *);
197static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
198		    struct iwn_rx_data *);
199static void	iwn_agg_tx_complete(struct iwn_softc *, struct iwn_tx_ring *,
200		    int, int, int);
201static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *);
202static void	iwn5000_rx_calib_results(struct iwn_softc *,
203		    struct iwn_rx_desc *);
204static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *);
205static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
206		    struct iwn_rx_data *);
207static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
208		    struct iwn_rx_data *);
209static void	iwn_adj_ampdu_ptr(struct iwn_softc *, struct iwn_tx_ring *);
210static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int, int,
211		    uint8_t);
212static int	iwn_ampdu_check_bitmap(uint64_t, int, int);
213static int	iwn_ampdu_index_check(struct iwn_softc *, struct iwn_tx_ring *,
214		    uint64_t, int, int);
215static void	iwn_ampdu_tx_done(struct iwn_softc *, int, int, int, void *);
216static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
217static void	iwn_notif_intr(struct iwn_softc *);
218static void	iwn_wakeup_intr(struct iwn_softc *);
219static void	iwn_rftoggle_task(void *, int);
220static void	iwn_fatal_intr(struct iwn_softc *);
221static void	iwn_intr(void *);
222static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
223		    uint16_t);
224static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
225		    uint16_t);
226#ifdef notyet
227static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
228#endif
229static int	iwn_tx_data(struct iwn_softc *, struct mbuf *,
230		    struct ieee80211_node *);
231static int	iwn_tx_data_raw(struct iwn_softc *, struct mbuf *,
232		    struct ieee80211_node *,
233		    const struct ieee80211_bpf_params *params);
234static int	iwn_tx_cmd(struct iwn_softc *, struct mbuf *,
235		    struct ieee80211_node *, struct iwn_tx_ring *);
236static void	iwn_xmit_task(void *arg0, int pending);
237static int	iwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
238		    const struct ieee80211_bpf_params *);
239static int	iwn_transmit(struct ieee80211com *, struct mbuf *);
240static void	iwn_scan_timeout(void *);
241static void	iwn_watchdog(void *);
242static int	iwn_ioctl(struct ieee80211com *, u_long , void *);
243static void	iwn_parent(struct ieee80211com *);
244static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
245static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
246		    int);
247static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
248		    int);
249static int	iwn_set_link_quality(struct iwn_softc *,
250		    struct ieee80211_node *);
251static int	iwn_add_broadcast_node(struct iwn_softc *, int);
252static int	iwn_updateedca(struct ieee80211com *);
253static void	iwn_set_promisc(struct iwn_softc *);
254static void	iwn_update_promisc(struct ieee80211com *);
255static void	iwn_update_mcast(struct ieee80211com *);
256static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
257static int	iwn_set_critical_temp(struct iwn_softc *);
258static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
259static void	iwn4965_power_calibration(struct iwn_softc *, int);
260static int	iwn4965_set_txpower(struct iwn_softc *, int);
261static int	iwn5000_set_txpower(struct iwn_softc *, int);
262static int	iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
263static int	iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
264static int	iwn_get_noise(const struct iwn_rx_general_stats *);
265static int	iwn4965_get_temperature(struct iwn_softc *);
266static int	iwn5000_get_temperature(struct iwn_softc *);
267static int	iwn_init_sensitivity(struct iwn_softc *);
268static void	iwn_collect_noise(struct iwn_softc *,
269		    const struct iwn_rx_general_stats *);
270static int	iwn4965_init_gains(struct iwn_softc *);
271static int	iwn5000_init_gains(struct iwn_softc *);
272static int	iwn4965_set_gains(struct iwn_softc *);
273static int	iwn5000_set_gains(struct iwn_softc *);
274static void	iwn_tune_sensitivity(struct iwn_softc *,
275		    const struct iwn_rx_stats *);
276static void	iwn_save_stats_counters(struct iwn_softc *,
277		    const struct iwn_stats *);
278static int	iwn_send_sensitivity(struct iwn_softc *);
279static void	iwn_check_rx_recovery(struct iwn_softc *, struct iwn_stats *);
280static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
281static int	iwn_send_btcoex(struct iwn_softc *);
282static int	iwn_send_advanced_btcoex(struct iwn_softc *);
283static int	iwn5000_runtime_calib(struct iwn_softc *);
284static int	iwn_check_bss_filter(struct iwn_softc *);
285static int	iwn4965_rxon_assoc(struct iwn_softc *, int);
286static int	iwn5000_rxon_assoc(struct iwn_softc *, int);
287static int	iwn_send_rxon(struct iwn_softc *, int, int);
288static int	iwn_config(struct iwn_softc *);
289static int	iwn_scan(struct iwn_softc *, struct ieee80211vap *,
290		    struct ieee80211_scan_state *, struct ieee80211_channel *);
291static int	iwn_auth(struct iwn_softc *, struct ieee80211vap *vap);
292static int	iwn_run(struct iwn_softc *, struct ieee80211vap *vap);
293static int	iwn_ampdu_rx_start(struct ieee80211_node *,
294		    struct ieee80211_rx_ampdu *, int, int, int);
295static void	iwn_ampdu_rx_stop(struct ieee80211_node *,
296		    struct ieee80211_rx_ampdu *);
297static int	iwn_addba_request(struct ieee80211_node *,
298		    struct ieee80211_tx_ampdu *, int, int, int);
299static int	iwn_addba_response(struct ieee80211_node *,
300		    struct ieee80211_tx_ampdu *, int, int, int);
301static int	iwn_ampdu_tx_start(struct ieee80211com *,
302		    struct ieee80211_node *, uint8_t);
303static void	iwn_ampdu_tx_stop(struct ieee80211_node *,
304		    struct ieee80211_tx_ampdu *);
305static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
306		    struct ieee80211_node *, int, uint8_t, uint16_t);
307static void	iwn4965_ampdu_tx_stop(struct iwn_softc *, int,
308		    uint8_t, uint16_t);
309static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
310		    struct ieee80211_node *, int, uint8_t, uint16_t);
311static void	iwn5000_ampdu_tx_stop(struct iwn_softc *, int,
312		    uint8_t, uint16_t);
313static int	iwn5000_query_calibration(struct iwn_softc *);
314static int	iwn5000_send_calibration(struct iwn_softc *);
315static int	iwn5000_send_wimax_coex(struct iwn_softc *);
316static int	iwn5000_crystal_calib(struct iwn_softc *);
317static int	iwn5000_temp_offset_calib(struct iwn_softc *);
318static int	iwn5000_temp_offset_calibv2(struct iwn_softc *);
319static int	iwn4965_post_alive(struct iwn_softc *);
320static int	iwn5000_post_alive(struct iwn_softc *);
321static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
322		    int);
323static int	iwn4965_load_firmware(struct iwn_softc *);
324static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
325		    const uint8_t *, int);
326static int	iwn5000_load_firmware(struct iwn_softc *);
327static int	iwn_read_firmware_leg(struct iwn_softc *,
328		    struct iwn_fw_info *);
329static int	iwn_read_firmware_tlv(struct iwn_softc *,
330		    struct iwn_fw_info *, uint16_t);
331static int	iwn_read_firmware(struct iwn_softc *);
332static void	iwn_unload_firmware(struct iwn_softc *);
333static int	iwn_clock_wait(struct iwn_softc *);
334static int	iwn_apm_init(struct iwn_softc *);
335static void	iwn_apm_stop_master(struct iwn_softc *);
336static void	iwn_apm_stop(struct iwn_softc *);
337static int	iwn4965_nic_config(struct iwn_softc *);
338static int	iwn5000_nic_config(struct iwn_softc *);
339static int	iwn_hw_prepare(struct iwn_softc *);
340static int	iwn_hw_init(struct iwn_softc *);
341static void	iwn_hw_stop(struct iwn_softc *);
342static void	iwn_panicked(void *, int);
343static int	iwn_init_locked(struct iwn_softc *);
344static int	iwn_init(struct iwn_softc *);
345static void	iwn_stop_locked(struct iwn_softc *);
346static void	iwn_stop(struct iwn_softc *);
347static void	iwn_scan_start(struct ieee80211com *);
348static void	iwn_scan_end(struct ieee80211com *);
349static void	iwn_set_channel(struct ieee80211com *);
350static void	iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long);
351static void	iwn_scan_mindwell(struct ieee80211_scan_state *);
352#ifdef	IWN_DEBUG
353static char	*iwn_get_csr_string(int);
354static void	iwn_debug_register(struct iwn_softc *);
355#endif
356
357static device_method_t iwn_methods[] = {
358	/* Device interface */
359	DEVMETHOD(device_probe,		iwn_probe),
360	DEVMETHOD(device_attach,	iwn_attach),
361	DEVMETHOD(device_detach,	iwn_detach),
362	DEVMETHOD(device_shutdown,	iwn_shutdown),
363	DEVMETHOD(device_suspend,	iwn_suspend),
364	DEVMETHOD(device_resume,	iwn_resume),
365
366	DEVMETHOD_END
367};
368
369static driver_t iwn_driver = {
370	"iwn",
371	iwn_methods,
372	sizeof(struct iwn_softc)
373};
374static devclass_t iwn_devclass;
375
376DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, NULL, NULL);
377MODULE_PNP_INFO("U16:vendor;U16:device;D:#", pci, iwn, iwn_ident_table,
378    nitems(iwn_ident_table) - 1);
379MODULE_VERSION(iwn, 1);
380
381MODULE_DEPEND(iwn, firmware, 1, 1, 1);
382MODULE_DEPEND(iwn, pci, 1, 1, 1);
383MODULE_DEPEND(iwn, wlan, 1, 1, 1);
384
385#ifndef __HAIKU__
386static d_ioctl_t iwn_cdev_ioctl;
387static d_open_t iwn_cdev_open;
388static d_close_t iwn_cdev_close;
389
390static struct cdevsw iwn_cdevsw = {
391	.d_version = D_VERSION,
392	.d_flags = 0,
393	.d_open = iwn_cdev_open,
394	.d_close = iwn_cdev_close,
395	.d_ioctl = iwn_cdev_ioctl,
396	.d_name = "iwn",
397};
398#endif
399
400static int
401iwn_probe(device_t dev)
402{
403	const struct iwn_ident *ident;
404
405	for (ident = iwn_ident_table; ident->name != NULL; ident++) {
406		if (pci_get_vendor(dev) == ident->vendor &&
407		    pci_get_device(dev) == ident->device) {
408			device_set_desc(dev, ident->name);
409			return (BUS_PROBE_DEFAULT);
410		}
411	}
412	return ENXIO;
413}
414
415static int
416iwn_is_3stream_device(struct iwn_softc *sc)
417{
418	/* XXX for now only 5300, until the 5350 can be tested */
419	if (sc->hw_type == IWN_HW_REV_TYPE_5300)
420		return (1);
421	return (0);
422}
423
424static int
425iwn_attach(device_t dev)
426{
427	struct iwn_softc *sc = device_get_softc(dev);
428	struct ieee80211com *ic;
429	int i, error, rid;
430
431	sc->sc_dev = dev;
432
433#ifdef	IWN_DEBUG
434	error = resource_int_value(device_get_name(sc->sc_dev),
435	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
436	if (error != 0)
437		sc->sc_debug = 0;
438#else
439	sc->sc_debug = 0;
440#endif
441
442	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: begin\n",__func__);
443
444	/*
445	 * Get the offset of the PCI Express Capability Structure in PCI
446	 * Configuration Space.
447	 */
448	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
449	if (error != 0) {
450		device_printf(dev, "PCIe capability structure not found!\n");
451		return error;
452	}
453
454	/* Clear device-specific "PCI retry timeout" register (41h). */
455	pci_write_config(dev, 0x41, 0, 1);
456
457	/* Enable bus-mastering. */
458	pci_enable_busmaster(dev);
459
460	rid = PCIR_BAR(0);
461	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
462	    RF_ACTIVE);
463	if (sc->mem == NULL) {
464		device_printf(dev, "can't map mem space\n");
465		error = ENOMEM;
466		return error;
467	}
468	sc->sc_st = rman_get_bustag(sc->mem);
469	sc->sc_sh = rman_get_bushandle(sc->mem);
470
471	i = 1;
472	rid = 0;
473	if (pci_alloc_msi(dev, &i) == 0)
474		rid = 1;
475	/* Install interrupt handler. */
476	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
477	    (rid != 0 ? 0 : RF_SHAREABLE));
478	if (sc->irq == NULL) {
479		device_printf(dev, "can't map interrupt\n");
480		error = ENOMEM;
481		goto fail;
482	}
483
484	IWN_LOCK_INIT(sc);
485
486	/* Read hardware revision and attach. */
487	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> IWN_HW_REV_TYPE_SHIFT)
488	    & IWN_HW_REV_TYPE_MASK;
489	sc->subdevice_id = pci_get_subdevice(dev);
490
491	/*
492	 * 4965 versus 5000 and later have different methods.
493	 * Let's set those up first.
494	 */
495	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
496		iwn4965_attach(sc, pci_get_device(dev));
497	else
498		iwn5000_attach(sc, pci_get_device(dev));
499
500	/*
501	 * Next, let's setup the various parameters of each NIC.
502	 */
503	error = iwn_config_specific(sc, pci_get_device(dev));
504	if (error != 0) {
505		device_printf(dev, "could not attach device, error %d\n",
506		    error);
507		goto fail;
508	}
509
510	if ((error = iwn_hw_prepare(sc)) != 0) {
511		device_printf(dev, "hardware not ready, error %d\n", error);
512		goto fail;
513	}
514
515	/* Allocate DMA memory for firmware transfers. */
516	if ((error = iwn_alloc_fwmem(sc)) != 0) {
517		device_printf(dev,
518		    "could not allocate memory for firmware, error %d\n",
519		    error);
520		goto fail;
521	}
522
523	/* Allocate "Keep Warm" page. */
524	if ((error = iwn_alloc_kw(sc)) != 0) {
525		device_printf(dev,
526		    "could not allocate keep warm page, error %d\n", error);
527		goto fail;
528	}
529
530	/* Allocate ICT table for 5000 Series. */
531	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
532	    (error = iwn_alloc_ict(sc)) != 0) {
533		device_printf(dev, "could not allocate ICT table, error %d\n",
534		    error);
535		goto fail;
536	}
537
538	/* Allocate TX scheduler "rings". */
539	if ((error = iwn_alloc_sched(sc)) != 0) {
540		device_printf(dev,
541		    "could not allocate TX scheduler rings, error %d\n", error);
542		goto fail;
543	}
544
545	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
546	for (i = 0; i < sc->ntxqs; i++) {
547		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
548			device_printf(dev,
549			    "could not allocate TX ring %d, error %d\n", i,
550			    error);
551			goto fail;
552		}
553	}
554
555	/* Allocate RX ring. */
556	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
557		device_printf(dev, "could not allocate RX ring, error %d\n",
558		    error);
559		goto fail;
560	}
561
562	/* Clear pending interrupts. */
563	IWN_WRITE(sc, IWN_INT, 0xffffffff);
564
565	ic = &sc->sc_ic;
566	ic->ic_softc = sc;
567	ic->ic_name = device_get_nameunit(dev);
568	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
569	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
570
571	/* Set device capabilities. */
572	ic->ic_caps =
573		  IEEE80211_C_STA		/* station mode supported */
574		| IEEE80211_C_MONITOR		/* monitor mode supported */
575#if 0
576		| IEEE80211_C_BGSCAN		/* background scanning */
577#endif
578		| IEEE80211_C_TXPMGT		/* tx power management */
579		| IEEE80211_C_SHSLOT		/* short slot time supported */
580		| IEEE80211_C_WPA
581		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
582#if 0
583		| IEEE80211_C_IBSS		/* ibss/adhoc mode */
584#endif
585		| IEEE80211_C_WME		/* WME */
586		| IEEE80211_C_PMGT		/* Station-side power mgmt */
587		;
588
589	/* Read MAC address, channels, etc from EEPROM. */
590	if ((error = iwn_read_eeprom(sc, ic->ic_macaddr)) != 0) {
591		device_printf(dev, "could not read EEPROM, error %d\n",
592		    error);
593		goto fail;
594	}
595
596	/* Count the number of available chains. */
597	sc->ntxchains =
598	    ((sc->txchainmask >> 2) & 1) +
599	    ((sc->txchainmask >> 1) & 1) +
600	    ((sc->txchainmask >> 0) & 1);
601	sc->nrxchains =
602	    ((sc->rxchainmask >> 2) & 1) +
603	    ((sc->rxchainmask >> 1) & 1) +
604	    ((sc->rxchainmask >> 0) & 1);
605	if (bootverbose) {
606		device_printf(dev, "MIMO %dT%dR, %.4s, address %6D\n",
607		    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
608		    ic->ic_macaddr, ":");
609	}
610
611	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
612		ic->ic_rxstream = sc->nrxchains;
613		ic->ic_txstream = sc->ntxchains;
614
615		/*
616		 * Some of the 3 antenna devices (ie, the 4965) only supports
617		 * 2x2 operation.  So correct the number of streams if
618		 * it's not a 3-stream device.
619		 */
620		if (! iwn_is_3stream_device(sc)) {
621			if (ic->ic_rxstream > 2)
622				ic->ic_rxstream = 2;
623			if (ic->ic_txstream > 2)
624				ic->ic_txstream = 2;
625		}
626
627		ic->ic_htcaps =
628			  IEEE80211_HTCAP_SMPS_OFF	/* SMPS mode disabled */
629			| IEEE80211_HTCAP_SHORTGI20	/* short GI in 20MHz */
630			| IEEE80211_HTCAP_CHWIDTH40	/* 40MHz channel width*/
631			| IEEE80211_HTCAP_SHORTGI40	/* short GI in 40MHz */
632#ifdef notyet
633			| IEEE80211_HTCAP_GREENFIELD
634#if IWN_RBUF_SIZE == 8192
635			| IEEE80211_HTCAP_MAXAMSDU_7935	/* max A-MSDU length */
636#else
637			| IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
638#endif
639#endif
640			/* s/w capabilities */
641			| IEEE80211_HTC_HT		/* HT operation */
642			| IEEE80211_HTC_AMPDU		/* tx A-MPDU */
643#ifdef notyet
644			| IEEE80211_HTC_AMSDU		/* tx A-MSDU */
645#endif
646			;
647	}
648
649	ieee80211_ifattach(ic);
650	ic->ic_vap_create = iwn_vap_create;
651	ic->ic_ioctl = iwn_ioctl;
652	ic->ic_parent = iwn_parent;
653	ic->ic_vap_delete = iwn_vap_delete;
654	ic->ic_transmit = iwn_transmit;
655	ic->ic_raw_xmit = iwn_raw_xmit;
656	ic->ic_node_alloc = iwn_node_alloc;
657	sc->sc_ampdu_rx_start = ic->ic_ampdu_rx_start;
658	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
659	sc->sc_ampdu_rx_stop = ic->ic_ampdu_rx_stop;
660	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
661	sc->sc_addba_request = ic->ic_addba_request;
662	ic->ic_addba_request = iwn_addba_request;
663	sc->sc_addba_response = ic->ic_addba_response;
664	ic->ic_addba_response = iwn_addba_response;
665	sc->sc_addba_stop = ic->ic_addba_stop;
666	ic->ic_addba_stop = iwn_ampdu_tx_stop;
667	ic->ic_newassoc = iwn_newassoc;
668	ic->ic_wme.wme_update = iwn_updateedca;
669	ic->ic_update_promisc = iwn_update_promisc;
670	ic->ic_update_mcast = iwn_update_mcast;
671	ic->ic_scan_start = iwn_scan_start;
672	ic->ic_scan_end = iwn_scan_end;
673	ic->ic_set_channel = iwn_set_channel;
674	ic->ic_scan_curchan = iwn_scan_curchan;
675	ic->ic_scan_mindwell = iwn_scan_mindwell;
676	ic->ic_getradiocaps = iwn_getradiocaps;
677	ic->ic_setregdomain = iwn_setregdomain;
678
679	iwn_radiotap_attach(sc);
680
681	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
682	callout_init_mtx(&sc->scan_timeout, &sc->sc_mtx, 0);
683	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
684	TASK_INIT(&sc->sc_rftoggle_task, 0, iwn_rftoggle_task, sc);
685	TASK_INIT(&sc->sc_panic_task, 0, iwn_panicked, sc);
686	TASK_INIT(&sc->sc_xmit_task, 0, iwn_xmit_task, sc);
687
688	mbufq_init(&sc->sc_xmit_queue, 1024);
689
690	sc->sc_tq = taskqueue_create("iwn_taskq", M_WAITOK,
691	    taskqueue_thread_enqueue, &sc->sc_tq);
692	error = taskqueue_start_threads(&sc->sc_tq, 1, 0, "iwn_taskq");
693	if (error != 0) {
694		device_printf(dev, "can't start threads, error %d\n", error);
695		goto fail;
696	}
697
698	iwn_sysctlattach(sc);
699
700	/*
701	 * Hook our interrupt after all initialization is complete.
702	 */
703	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
704	    NULL, iwn_intr, sc, &sc->sc_ih);
705	if (error != 0) {
706		device_printf(dev, "can't establish interrupt, error %d\n",
707		    error);
708		goto fail;
709	}
710
711#if 0
712	device_printf(sc->sc_dev, "%s: rx_stats=%d, rx_stats_bt=%d\n",
713	    __func__,
714	    sizeof(struct iwn_stats),
715	    sizeof(struct iwn_stats_bt));
716#endif
717
718	if (bootverbose)
719		ieee80211_announce(ic);
720	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
721
722#ifndef __HAIKU__
723	/* Add debug ioctl right at the end */
724	sc->sc_cdev = make_dev(&iwn_cdevsw, device_get_unit(dev),
725	    UID_ROOT, GID_WHEEL, 0600, "%s", device_get_nameunit(dev));
726	if (sc->sc_cdev == NULL) {
727		device_printf(dev, "failed to create debug character device\n");
728	} else {
729		sc->sc_cdev->si_drv1 = sc;
730	}
731#else
732	sc->sc_cdev = NULL;
733#endif
734	return 0;
735fail:
736	iwn_detach(dev);
737	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
738	return error;
739}
740
741/*
742 * Define specific configuration based on device id and subdevice id
743 * pid : PCI device id
744 */
745static int
746iwn_config_specific(struct iwn_softc *sc, uint16_t pid)
747{
748
749	switch (pid) {
750/* 4965 series */
751	case IWN_DID_4965_1:
752	case IWN_DID_4965_2:
753	case IWN_DID_4965_3:
754	case IWN_DID_4965_4:
755		sc->base_params = &iwn4965_base_params;
756		sc->limits = &iwn4965_sensitivity_limits;
757		sc->fwname = "iwn4965fw";
758		/* Override chains masks, ROM is known to be broken. */
759		sc->txchainmask = IWN_ANT_AB;
760		sc->rxchainmask = IWN_ANT_ABC;
761		/* Enable normal btcoex */
762		sc->sc_flags |= IWN_FLAG_BTCOEX;
763		break;
764/* 1000 Series */
765	case IWN_DID_1000_1:
766	case IWN_DID_1000_2:
767		switch(sc->subdevice_id) {
768			case	IWN_SDID_1000_1:
769			case	IWN_SDID_1000_2:
770			case	IWN_SDID_1000_3:
771			case	IWN_SDID_1000_4:
772			case	IWN_SDID_1000_5:
773			case	IWN_SDID_1000_6:
774			case	IWN_SDID_1000_7:
775			case	IWN_SDID_1000_8:
776			case	IWN_SDID_1000_9:
777			case	IWN_SDID_1000_10:
778			case	IWN_SDID_1000_11:
779			case	IWN_SDID_1000_12:
780				sc->limits = &iwn1000_sensitivity_limits;
781				sc->base_params = &iwn1000_base_params;
782				sc->fwname = "iwn1000fw";
783				break;
784			default:
785				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
786				    "0x%04x rev %d not supported (subdevice)\n", pid,
787				    sc->subdevice_id,sc->hw_type);
788				return ENOTSUP;
789		}
790		break;
791/* 6x00 Series */
792	case IWN_DID_6x00_2:
793	case IWN_DID_6x00_4:
794	case IWN_DID_6x00_1:
795	case IWN_DID_6x00_3:
796		sc->fwname = "iwn6000fw";
797		sc->limits = &iwn6000_sensitivity_limits;
798		switch(sc->subdevice_id) {
799			case IWN_SDID_6x00_1:
800			case IWN_SDID_6x00_2:
801			case IWN_SDID_6x00_8:
802				//iwl6000_3agn_cfg
803				sc->base_params = &iwn_6000_base_params;
804				break;
805			case IWN_SDID_6x00_3:
806			case IWN_SDID_6x00_6:
807			case IWN_SDID_6x00_9:
808				////iwl6000i_2agn
809			case IWN_SDID_6x00_4:
810			case IWN_SDID_6x00_7:
811			case IWN_SDID_6x00_10:
812				//iwl6000i_2abg_cfg
813			case IWN_SDID_6x00_5:
814				//iwl6000i_2bg_cfg
815				sc->base_params = &iwn_6000i_base_params;
816				sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
817				sc->txchainmask = IWN_ANT_BC;
818				sc->rxchainmask = IWN_ANT_BC;
819				break;
820			default:
821				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
822				    "0x%04x rev %d not supported (subdevice)\n", pid,
823				    sc->subdevice_id,sc->hw_type);
824				return ENOTSUP;
825		}
826		break;
827/* 6x05 Series */
828	case IWN_DID_6x05_1:
829	case IWN_DID_6x05_2:
830		switch(sc->subdevice_id) {
831			case IWN_SDID_6x05_1:
832			case IWN_SDID_6x05_4:
833			case IWN_SDID_6x05_6:
834				//iwl6005_2agn_cfg
835			case IWN_SDID_6x05_2:
836			case IWN_SDID_6x05_5:
837			case IWN_SDID_6x05_7:
838				//iwl6005_2abg_cfg
839			case IWN_SDID_6x05_3:
840				//iwl6005_2bg_cfg
841			case IWN_SDID_6x05_8:
842			case IWN_SDID_6x05_9:
843				//iwl6005_2agn_sff_cfg
844			case IWN_SDID_6x05_10:
845				//iwl6005_2agn_d_cfg
846			case IWN_SDID_6x05_11:
847				//iwl6005_2agn_mow1_cfg
848			case IWN_SDID_6x05_12:
849				//iwl6005_2agn_mow2_cfg
850				sc->fwname = "iwn6000g2afw";
851				sc->limits = &iwn6000_sensitivity_limits;
852				sc->base_params = &iwn_6000g2_base_params;
853				break;
854			default:
855				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
856				    "0x%04x rev %d not supported (subdevice)\n", pid,
857				    sc->subdevice_id,sc->hw_type);
858				return ENOTSUP;
859		}
860		break;
861/* 6x35 Series */
862	case IWN_DID_6035_1:
863	case IWN_DID_6035_2:
864		switch(sc->subdevice_id) {
865			case IWN_SDID_6035_1:
866			case IWN_SDID_6035_2:
867			case IWN_SDID_6035_3:
868			case IWN_SDID_6035_4:
869			case IWN_SDID_6035_5:
870				sc->fwname = "iwn6000g2bfw";
871				sc->limits = &iwn6235_sensitivity_limits;
872				sc->base_params = &iwn_6235_base_params;
873				break;
874			default:
875				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
876				    "0x%04x rev %d not supported (subdevice)\n", pid,
877				    sc->subdevice_id,sc->hw_type);
878				return ENOTSUP;
879		}
880		break;
881/* 6x50 WiFi/WiMax Series */
882	case IWN_DID_6050_1:
883	case IWN_DID_6050_2:
884		switch(sc->subdevice_id) {
885			case IWN_SDID_6050_1:
886			case IWN_SDID_6050_3:
887			case IWN_SDID_6050_5:
888				//iwl6050_2agn_cfg
889			case IWN_SDID_6050_2:
890			case IWN_SDID_6050_4:
891			case IWN_SDID_6050_6:
892				//iwl6050_2abg_cfg
893				sc->fwname = "iwn6050fw";
894				sc->txchainmask = IWN_ANT_AB;
895				sc->rxchainmask = IWN_ANT_AB;
896				sc->limits = &iwn6000_sensitivity_limits;
897				sc->base_params = &iwn_6050_base_params;
898				break;
899			default:
900				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
901				    "0x%04x rev %d not supported (subdevice)\n", pid,
902				    sc->subdevice_id,sc->hw_type);
903				return ENOTSUP;
904		}
905		break;
906/* 6150 WiFi/WiMax Series */
907	case IWN_DID_6150_1:
908	case IWN_DID_6150_2:
909		switch(sc->subdevice_id) {
910			case IWN_SDID_6150_1:
911			case IWN_SDID_6150_3:
912			case IWN_SDID_6150_5:
913				// iwl6150_bgn_cfg
914			case IWN_SDID_6150_2:
915			case IWN_SDID_6150_4:
916			case IWN_SDID_6150_6:
917				//iwl6150_bg_cfg
918				sc->fwname = "iwn6050fw";
919				sc->limits = &iwn6000_sensitivity_limits;
920				sc->base_params = &iwn_6150_base_params;
921				break;
922			default:
923				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
924				    "0x%04x rev %d not supported (subdevice)\n", pid,
925				    sc->subdevice_id,sc->hw_type);
926				return ENOTSUP;
927		}
928		break;
929/* 6030 Series and 1030 Series */
930	case IWN_DID_x030_1:
931	case IWN_DID_x030_2:
932	case IWN_DID_x030_3:
933	case IWN_DID_x030_4:
934		switch(sc->subdevice_id) {
935			case IWN_SDID_x030_1:
936			case IWN_SDID_x030_3:
937			case IWN_SDID_x030_5:
938			// iwl1030_bgn_cfg
939			case IWN_SDID_x030_2:
940			case IWN_SDID_x030_4:
941			case IWN_SDID_x030_6:
942			//iwl1030_bg_cfg
943			case IWN_SDID_x030_7:
944			case IWN_SDID_x030_10:
945			case IWN_SDID_x030_14:
946			//iwl6030_2agn_cfg
947			case IWN_SDID_x030_8:
948			case IWN_SDID_x030_11:
949			case IWN_SDID_x030_15:
950			// iwl6030_2bgn_cfg
951			case IWN_SDID_x030_9:
952			case IWN_SDID_x030_12:
953			case IWN_SDID_x030_16:
954			// iwl6030_2abg_cfg
955			case IWN_SDID_x030_13:
956			//iwl6030_2bg_cfg
957				sc->fwname = "iwn6000g2bfw";
958				sc->limits = &iwn6000_sensitivity_limits;
959				sc->base_params = &iwn_6000g2b_base_params;
960				break;
961			default:
962				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
963				    "0x%04x rev %d not supported (subdevice)\n", pid,
964				    sc->subdevice_id,sc->hw_type);
965				return ENOTSUP;
966		}
967		break;
968/* 130 Series WiFi */
969/* XXX: This series will need adjustment for rate.
970 * see rx_with_siso_diversity in linux kernel
971 */
972	case IWN_DID_130_1:
973	case IWN_DID_130_2:
974		switch(sc->subdevice_id) {
975			case IWN_SDID_130_1:
976			case IWN_SDID_130_3:
977			case IWN_SDID_130_5:
978			//iwl130_bgn_cfg
979			case IWN_SDID_130_2:
980			case IWN_SDID_130_4:
981			case IWN_SDID_130_6:
982			//iwl130_bg_cfg
983				sc->fwname = "iwn6000g2bfw";
984				sc->limits = &iwn6000_sensitivity_limits;
985				sc->base_params = &iwn_6000g2b_base_params;
986				break;
987			default:
988				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
989				    "0x%04x rev %d not supported (subdevice)\n", pid,
990				    sc->subdevice_id,sc->hw_type);
991				return ENOTSUP;
992		}
993		break;
994/* 100 Series WiFi */
995	case IWN_DID_100_1:
996	case IWN_DID_100_2:
997		switch(sc->subdevice_id) {
998			case IWN_SDID_100_1:
999			case IWN_SDID_100_2:
1000			case IWN_SDID_100_3:
1001			case IWN_SDID_100_4:
1002			case IWN_SDID_100_5:
1003			case IWN_SDID_100_6:
1004				sc->limits = &iwn1000_sensitivity_limits;
1005				sc->base_params = &iwn1000_base_params;
1006				sc->fwname = "iwn100fw";
1007				break;
1008			default:
1009				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1010				    "0x%04x rev %d not supported (subdevice)\n", pid,
1011				    sc->subdevice_id,sc->hw_type);
1012				return ENOTSUP;
1013		}
1014		break;
1015
1016/* 105 Series */
1017/* XXX: This series will need adjustment for rate.
1018 * see rx_with_siso_diversity in linux kernel
1019 */
1020	case IWN_DID_105_1:
1021	case IWN_DID_105_2:
1022		switch(sc->subdevice_id) {
1023			case IWN_SDID_105_1:
1024			case IWN_SDID_105_2:
1025			case IWN_SDID_105_3:
1026			//iwl105_bgn_cfg
1027			case IWN_SDID_105_4:
1028			//iwl105_bgn_d_cfg
1029				sc->limits = &iwn2030_sensitivity_limits;
1030				sc->base_params = &iwn2000_base_params;
1031				sc->fwname = "iwn105fw";
1032				break;
1033			default:
1034				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1035				    "0x%04x rev %d not supported (subdevice)\n", pid,
1036				    sc->subdevice_id,sc->hw_type);
1037				return ENOTSUP;
1038		}
1039		break;
1040
1041/* 135 Series */
1042/* XXX: This series will need adjustment for rate.
1043 * see rx_with_siso_diversity in linux kernel
1044 */
1045	case IWN_DID_135_1:
1046	case IWN_DID_135_2:
1047		switch(sc->subdevice_id) {
1048			case IWN_SDID_135_1:
1049			case IWN_SDID_135_2:
1050			case IWN_SDID_135_3:
1051				sc->limits = &iwn2030_sensitivity_limits;
1052				sc->base_params = &iwn2030_base_params;
1053				sc->fwname = "iwn135fw";
1054				break;
1055			default:
1056				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1057				    "0x%04x rev %d not supported (subdevice)\n", pid,
1058				    sc->subdevice_id,sc->hw_type);
1059				return ENOTSUP;
1060		}
1061		break;
1062
1063/* 2x00 Series */
1064	case IWN_DID_2x00_1:
1065	case IWN_DID_2x00_2:
1066		switch(sc->subdevice_id) {
1067			case IWN_SDID_2x00_1:
1068			case IWN_SDID_2x00_2:
1069			case IWN_SDID_2x00_3:
1070			//iwl2000_2bgn_cfg
1071			case IWN_SDID_2x00_4:
1072			//iwl2000_2bgn_d_cfg
1073				sc->limits = &iwn2030_sensitivity_limits;
1074				sc->base_params = &iwn2000_base_params;
1075				sc->fwname = "iwn2000fw";
1076				break;
1077			default:
1078				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1079				    "0x%04x rev %d not supported (subdevice) \n",
1080				    pid, sc->subdevice_id, sc->hw_type);
1081				return ENOTSUP;
1082		}
1083		break;
1084/* 2x30 Series */
1085	case IWN_DID_2x30_1:
1086	case IWN_DID_2x30_2:
1087		switch(sc->subdevice_id) {
1088			case IWN_SDID_2x30_1:
1089			case IWN_SDID_2x30_3:
1090			case IWN_SDID_2x30_5:
1091			//iwl100_bgn_cfg
1092			case IWN_SDID_2x30_2:
1093			case IWN_SDID_2x30_4:
1094			case IWN_SDID_2x30_6:
1095			//iwl100_bg_cfg
1096				sc->limits = &iwn2030_sensitivity_limits;
1097				sc->base_params = &iwn2030_base_params;
1098				sc->fwname = "iwn2030fw";
1099				break;
1100			default:
1101				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1102				    "0x%04x rev %d not supported (subdevice)\n", pid,
1103				    sc->subdevice_id,sc->hw_type);
1104				return ENOTSUP;
1105		}
1106		break;
1107/* 5x00 Series */
1108	case IWN_DID_5x00_1:
1109	case IWN_DID_5x00_2:
1110	case IWN_DID_5x00_3:
1111	case IWN_DID_5x00_4:
1112		sc->limits = &iwn5000_sensitivity_limits;
1113		sc->base_params = &iwn5000_base_params;
1114		sc->fwname = "iwn5000fw";
1115		switch(sc->subdevice_id) {
1116			case IWN_SDID_5x00_1:
1117			case IWN_SDID_5x00_2:
1118			case IWN_SDID_5x00_3:
1119			case IWN_SDID_5x00_4:
1120			case IWN_SDID_5x00_9:
1121			case IWN_SDID_5x00_10:
1122			case IWN_SDID_5x00_11:
1123			case IWN_SDID_5x00_12:
1124			case IWN_SDID_5x00_17:
1125			case IWN_SDID_5x00_18:
1126			case IWN_SDID_5x00_19:
1127			case IWN_SDID_5x00_20:
1128			//iwl5100_agn_cfg
1129				sc->txchainmask = IWN_ANT_B;
1130				sc->rxchainmask = IWN_ANT_AB;
1131				break;
1132			case IWN_SDID_5x00_5:
1133			case IWN_SDID_5x00_6:
1134			case IWN_SDID_5x00_13:
1135			case IWN_SDID_5x00_14:
1136			case IWN_SDID_5x00_21:
1137			case IWN_SDID_5x00_22:
1138			//iwl5100_bgn_cfg
1139				sc->txchainmask = IWN_ANT_B;
1140				sc->rxchainmask = IWN_ANT_AB;
1141				break;
1142			case IWN_SDID_5x00_7:
1143			case IWN_SDID_5x00_8:
1144			case IWN_SDID_5x00_15:
1145			case IWN_SDID_5x00_16:
1146			case IWN_SDID_5x00_23:
1147			case IWN_SDID_5x00_24:
1148			//iwl5100_abg_cfg
1149				sc->txchainmask = IWN_ANT_B;
1150				sc->rxchainmask = IWN_ANT_AB;
1151				break;
1152			case IWN_SDID_5x00_25:
1153			case IWN_SDID_5x00_26:
1154			case IWN_SDID_5x00_27:
1155			case IWN_SDID_5x00_28:
1156			case IWN_SDID_5x00_29:
1157			case IWN_SDID_5x00_30:
1158			case IWN_SDID_5x00_31:
1159			case IWN_SDID_5x00_32:
1160			case IWN_SDID_5x00_33:
1161			case IWN_SDID_5x00_34:
1162			case IWN_SDID_5x00_35:
1163			case IWN_SDID_5x00_36:
1164			//iwl5300_agn_cfg
1165				sc->txchainmask = IWN_ANT_ABC;
1166				sc->rxchainmask = IWN_ANT_ABC;
1167				break;
1168			default:
1169				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1170				    "0x%04x rev %d not supported (subdevice)\n", pid,
1171				    sc->subdevice_id,sc->hw_type);
1172				return ENOTSUP;
1173		}
1174		break;
1175/* 5x50 Series */
1176	case IWN_DID_5x50_1:
1177	case IWN_DID_5x50_2:
1178	case IWN_DID_5x50_3:
1179	case IWN_DID_5x50_4:
1180		sc->limits = &iwn5000_sensitivity_limits;
1181		sc->base_params = &iwn5000_base_params;
1182		sc->fwname = "iwn5000fw";
1183		switch(sc->subdevice_id) {
1184			case IWN_SDID_5x50_1:
1185			case IWN_SDID_5x50_2:
1186			case IWN_SDID_5x50_3:
1187			//iwl5350_agn_cfg
1188				sc->limits = &iwn5000_sensitivity_limits;
1189				sc->base_params = &iwn5000_base_params;
1190				sc->fwname = "iwn5000fw";
1191				break;
1192			case IWN_SDID_5x50_4:
1193			case IWN_SDID_5x50_5:
1194			case IWN_SDID_5x50_8:
1195			case IWN_SDID_5x50_9:
1196			case IWN_SDID_5x50_10:
1197			case IWN_SDID_5x50_11:
1198			//iwl5150_agn_cfg
1199			case IWN_SDID_5x50_6:
1200			case IWN_SDID_5x50_7:
1201			case IWN_SDID_5x50_12:
1202			case IWN_SDID_5x50_13:
1203			//iwl5150_abg_cfg
1204				sc->limits = &iwn5000_sensitivity_limits;
1205				sc->fwname = "iwn5150fw";
1206				sc->base_params = &iwn_5x50_base_params;
1207				break;
1208			default:
1209				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1210				    "0x%04x rev %d not supported (subdevice)\n", pid,
1211				    sc->subdevice_id,sc->hw_type);
1212				return ENOTSUP;
1213		}
1214		break;
1215	default:
1216		device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id : 0x%04x"
1217		    "rev 0x%08x not supported (device)\n", pid, sc->subdevice_id,
1218		     sc->hw_type);
1219		return ENOTSUP;
1220	}
1221	return 0;
1222}
1223
1224static void
1225iwn4965_attach(struct iwn_softc *sc, uint16_t pid)
1226{
1227	struct iwn_ops *ops = &sc->ops;
1228
1229	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1230
1231	ops->load_firmware = iwn4965_load_firmware;
1232	ops->read_eeprom = iwn4965_read_eeprom;
1233	ops->post_alive = iwn4965_post_alive;
1234	ops->nic_config = iwn4965_nic_config;
1235	ops->update_sched = iwn4965_update_sched;
1236	ops->get_temperature = iwn4965_get_temperature;
1237	ops->get_rssi = iwn4965_get_rssi;
1238	ops->set_txpower = iwn4965_set_txpower;
1239	ops->init_gains = iwn4965_init_gains;
1240	ops->set_gains = iwn4965_set_gains;
1241	ops->rxon_assoc = iwn4965_rxon_assoc;
1242	ops->add_node = iwn4965_add_node;
1243	ops->tx_done = iwn4965_tx_done;
1244	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
1245	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
1246	sc->ntxqs = IWN4965_NTXQUEUES;
1247	sc->firstaggqueue = IWN4965_FIRSTAGGQUEUE;
1248	sc->ndmachnls = IWN4965_NDMACHNLS;
1249	sc->broadcast_id = IWN4965_ID_BROADCAST;
1250	sc->rxonsz = IWN4965_RXONSZ;
1251	sc->schedsz = IWN4965_SCHEDSZ;
1252	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
1253	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
1254	sc->fwsz = IWN4965_FWSZ;
1255	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
1256	sc->limits = &iwn4965_sensitivity_limits;
1257	sc->fwname = "iwn4965fw";
1258	/* Override chains masks, ROM is known to be broken. */
1259	sc->txchainmask = IWN_ANT_AB;
1260	sc->rxchainmask = IWN_ANT_ABC;
1261	/* Enable normal btcoex */
1262	sc->sc_flags |= IWN_FLAG_BTCOEX;
1263
1264	DPRINTF(sc, IWN_DEBUG_TRACE, "%s: end\n",__func__);
1265}
1266
1267static void
1268iwn5000_attach(struct iwn_softc *sc, uint16_t pid)
1269{
1270	struct iwn_ops *ops = &sc->ops;
1271
1272	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1273
1274	ops->load_firmware = iwn5000_load_firmware;
1275	ops->read_eeprom = iwn5000_read_eeprom;
1276	ops->post_alive = iwn5000_post_alive;
1277	ops->nic_config = iwn5000_nic_config;
1278	ops->update_sched = iwn5000_update_sched;
1279	ops->get_temperature = iwn5000_get_temperature;
1280	ops->get_rssi = iwn5000_get_rssi;
1281	ops->set_txpower = iwn5000_set_txpower;
1282	ops->init_gains = iwn5000_init_gains;
1283	ops->set_gains = iwn5000_set_gains;
1284	ops->rxon_assoc = iwn5000_rxon_assoc;
1285	ops->add_node = iwn5000_add_node;
1286	ops->tx_done = iwn5000_tx_done;
1287	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
1288	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
1289	sc->ntxqs = IWN5000_NTXQUEUES;
1290	sc->firstaggqueue = IWN5000_FIRSTAGGQUEUE;
1291	sc->ndmachnls = IWN5000_NDMACHNLS;
1292	sc->broadcast_id = IWN5000_ID_BROADCAST;
1293	sc->rxonsz = IWN5000_RXONSZ;
1294	sc->schedsz = IWN5000_SCHEDSZ;
1295	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
1296	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
1297	sc->fwsz = IWN5000_FWSZ;
1298	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
1299	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
1300	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
1301
1302	DPRINTF(sc, IWN_DEBUG_TRACE, "%s: end\n",__func__);
1303}
1304
1305/*
1306 * Attach the interface to 802.11 radiotap.
1307 */
1308static void
1309iwn_radiotap_attach(struct iwn_softc *sc)
1310{
1311
1312	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1313	ieee80211_radiotap_attach(&sc->sc_ic,
1314	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
1315		IWN_TX_RADIOTAP_PRESENT,
1316	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
1317		IWN_RX_RADIOTAP_PRESENT);
1318	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1319}
1320
1321static void
1322iwn_sysctlattach(struct iwn_softc *sc)
1323{
1324#ifdef	IWN_DEBUG
1325	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
1326	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
1327
1328	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1329	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
1330		"control debugging printfs");
1331#endif
1332}
1333
1334static struct ieee80211vap *
1335iwn_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1336    enum ieee80211_opmode opmode, int flags,
1337    const uint8_t bssid[IEEE80211_ADDR_LEN],
1338    const uint8_t mac[IEEE80211_ADDR_LEN])
1339{
1340	struct iwn_softc *sc = ic->ic_softc;
1341	struct iwn_vap *ivp;
1342	struct ieee80211vap *vap;
1343
1344	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
1345		return NULL;
1346
1347	ivp = malloc(sizeof(struct iwn_vap), M_80211_VAP, M_WAITOK | M_ZERO);
1348	vap = &ivp->iv_vap;
1349	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
1350	ivp->ctx = IWN_RXON_BSS_CTX;
1351	vap->iv_bmissthreshold = 10;		/* override default */
1352	/* Override with driver methods. */
1353	ivp->iv_newstate = vap->iv_newstate;
1354	vap->iv_newstate = iwn_newstate;
1355	sc->ivap[IWN_RXON_BSS_CTX] = vap;
1356	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1357	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_4; /* 4uS */
1358
1359	ieee80211_ratectl_init(vap);
1360	/* Complete setup. */
1361	ieee80211_vap_attach(vap, ieee80211_media_change,
1362	    ieee80211_media_status, mac);
1363	ic->ic_opmode = opmode;
1364	return vap;
1365}
1366
1367static void
1368iwn_vap_delete(struct ieee80211vap *vap)
1369{
1370	struct iwn_vap *ivp = IWN_VAP(vap);
1371
1372	ieee80211_ratectl_deinit(vap);
1373	ieee80211_vap_detach(vap);
1374	free(ivp, M_80211_VAP);
1375}
1376
1377static void
1378iwn_xmit_queue_drain(struct iwn_softc *sc)
1379{
1380	struct mbuf *m;
1381	struct ieee80211_node *ni;
1382
1383	IWN_LOCK_ASSERT(sc);
1384	while ((m = mbufq_dequeue(&sc->sc_xmit_queue)) != NULL) {
1385		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
1386		ieee80211_free_node(ni);
1387		m_freem(m);
1388	}
1389}
1390
1391static int
1392iwn_xmit_queue_enqueue(struct iwn_softc *sc, struct mbuf *m)
1393{
1394
1395	IWN_LOCK_ASSERT(sc);
1396	return (mbufq_enqueue(&sc->sc_xmit_queue, m));
1397}
1398
1399static int
1400iwn_detach(device_t dev)
1401{
1402	struct iwn_softc *sc = device_get_softc(dev);
1403	int qid;
1404
1405	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1406
1407	if (sc->sc_ic.ic_softc != NULL) {
1408		/* Free the mbuf queue and node references */
1409		IWN_LOCK(sc);
1410		iwn_xmit_queue_drain(sc);
1411		IWN_UNLOCK(sc);
1412
1413		iwn_stop(sc);
1414
1415		taskqueue_drain_all(sc->sc_tq);
1416		taskqueue_free(sc->sc_tq);
1417
1418		callout_drain(&sc->watchdog_to);
1419		callout_drain(&sc->scan_timeout);
1420		callout_drain(&sc->calib_to);
1421		ieee80211_ifdetach(&sc->sc_ic);
1422	}
1423
1424	/* Uninstall interrupt handler. */
1425	if (sc->irq != NULL) {
1426		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
1427		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
1428		    sc->irq);
1429		pci_release_msi(dev);
1430	}
1431
1432	/* Free DMA resources. */
1433	iwn_free_rx_ring(sc, &sc->rxq);
1434	for (qid = 0; qid < sc->ntxqs; qid++)
1435		iwn_free_tx_ring(sc, &sc->txq[qid]);
1436	iwn_free_sched(sc);
1437	iwn_free_kw(sc);
1438	if (sc->ict != NULL)
1439		iwn_free_ict(sc);
1440	iwn_free_fwmem(sc);
1441
1442	if (sc->mem != NULL)
1443		bus_release_resource(dev, SYS_RES_MEMORY,
1444		    rman_get_rid(sc->mem), sc->mem);
1445
1446#ifndef __HAIKU__
1447	if (sc->sc_cdev) {
1448		destroy_dev(sc->sc_cdev);
1449		sc->sc_cdev = NULL;
1450	}
1451#endif
1452
1453	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n", __func__);
1454	IWN_LOCK_DESTROY(sc);
1455	return 0;
1456}
1457
1458static int
1459iwn_shutdown(device_t dev)
1460{
1461	struct iwn_softc *sc = device_get_softc(dev);
1462
1463	iwn_stop(sc);
1464	return 0;
1465}
1466
1467static int
1468iwn_suspend(device_t dev)
1469{
1470	struct iwn_softc *sc = device_get_softc(dev);
1471
1472	ieee80211_suspend_all(&sc->sc_ic);
1473	return 0;
1474}
1475
1476static int
1477iwn_resume(device_t dev)
1478{
1479	struct iwn_softc *sc = device_get_softc(dev);
1480
1481	/* Clear device-specific "PCI retry timeout" register (41h). */
1482	pci_write_config(dev, 0x41, 0, 1);
1483
1484	ieee80211_resume_all(&sc->sc_ic);
1485	return 0;
1486}
1487
1488static int
1489iwn_nic_lock(struct iwn_softc *sc)
1490{
1491	int ntries;
1492
1493	/* Request exclusive access to NIC. */
1494	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1495
1496	/* Spin until we actually get the lock. */
1497	for (ntries = 0; ntries < 1000; ntries++) {
1498		if ((IWN_READ(sc, IWN_GP_CNTRL) &
1499		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
1500		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
1501			return 0;
1502		DELAY(10);
1503	}
1504	return ETIMEDOUT;
1505}
1506
1507static __inline void
1508iwn_nic_unlock(struct iwn_softc *sc)
1509{
1510	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1511}
1512
1513static __inline uint32_t
1514iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
1515{
1516	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
1517	IWN_BARRIER_READ_WRITE(sc);
1518	return IWN_READ(sc, IWN_PRPH_RDATA);
1519}
1520
1521static __inline void
1522iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1523{
1524	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
1525	IWN_BARRIER_WRITE(sc);
1526	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
1527}
1528
1529static __inline void
1530iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1531{
1532	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
1533}
1534
1535static __inline void
1536iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1537{
1538	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
1539}
1540
1541static __inline void
1542iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
1543    const uint32_t *data, int count)
1544{
1545	for (; count > 0; count--, data++, addr += 4)
1546		iwn_prph_write(sc, addr, *data);
1547}
1548
1549static __inline uint32_t
1550iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
1551{
1552	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
1553	IWN_BARRIER_READ_WRITE(sc);
1554	return IWN_READ(sc, IWN_MEM_RDATA);
1555}
1556
1557static __inline void
1558iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1559{
1560	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
1561	IWN_BARRIER_WRITE(sc);
1562	IWN_WRITE(sc, IWN_MEM_WDATA, data);
1563}
1564
1565static __inline void
1566iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
1567{
1568	uint32_t tmp;
1569
1570	tmp = iwn_mem_read(sc, addr & ~3);
1571	if (addr & 3)
1572		tmp = (tmp & 0x0000ffff) | data << 16;
1573	else
1574		tmp = (tmp & 0xffff0000) | data;
1575	iwn_mem_write(sc, addr & ~3, tmp);
1576}
1577
1578static __inline void
1579iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
1580    int count)
1581{
1582	for (; count > 0; count--, addr += 4)
1583		*data++ = iwn_mem_read(sc, addr);
1584}
1585
1586static __inline void
1587iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1588    int count)
1589{
1590	for (; count > 0; count--, addr += 4)
1591		iwn_mem_write(sc, addr, val);
1592}
1593
1594static int
1595iwn_eeprom_lock(struct iwn_softc *sc)
1596{
1597	int i, ntries;
1598
1599	for (i = 0; i < 100; i++) {
1600		/* Request exclusive access to EEPROM. */
1601		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1602		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1603
1604		/* Spin until we actually get the lock. */
1605		for (ntries = 0; ntries < 100; ntries++) {
1606			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1607			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1608				return 0;
1609			DELAY(10);
1610		}
1611	}
1612	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end timeout\n", __func__);
1613	return ETIMEDOUT;
1614}
1615
1616static __inline void
1617iwn_eeprom_unlock(struct iwn_softc *sc)
1618{
1619	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1620}
1621
1622/*
1623 * Initialize access by host to One Time Programmable ROM.
1624 * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1625 */
1626static int
1627iwn_init_otprom(struct iwn_softc *sc)
1628{
1629	uint16_t prev, base, next;
1630	int count, error;
1631
1632	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1633
1634	/* Wait for clock stabilization before accessing prph. */
1635	if ((error = iwn_clock_wait(sc)) != 0)
1636		return error;
1637
1638	if ((error = iwn_nic_lock(sc)) != 0)
1639		return error;
1640	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1641	DELAY(5);
1642	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1643	iwn_nic_unlock(sc);
1644
1645	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1646	if (sc->base_params->shadow_ram_support) {
1647		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1648		    IWN_RESET_LINK_PWR_MGMT_DIS);
1649	}
1650	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1651	/* Clear ECC status. */
1652	IWN_SETBITS(sc, IWN_OTP_GP,
1653	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1654
1655	/*
1656	 * Find the block before last block (contains the EEPROM image)
1657	 * for HW without OTP shadow RAM.
1658	 */
1659	if (! sc->base_params->shadow_ram_support) {
1660		/* Switch to absolute addressing mode. */
1661		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1662		base = prev = 0;
1663		for (count = 0; count < sc->base_params->max_ll_items;
1664		    count++) {
1665			error = iwn_read_prom_data(sc, base, &next, 2);
1666			if (error != 0)
1667				return error;
1668			if (next == 0)	/* End of linked-list. */
1669				break;
1670			prev = base;
1671			base = le16toh(next);
1672		}
1673		if (count == 0 || count == sc->base_params->max_ll_items)
1674			return EIO;
1675		/* Skip "next" word. */
1676		sc->prom_base = prev + 1;
1677	}
1678
1679	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1680
1681	return 0;
1682}
1683
1684static int
1685iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1686{
1687	uint8_t *out = data;
1688	uint32_t val, tmp;
1689	int ntries;
1690
1691	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1692
1693	addr += sc->prom_base;
1694	for (; count > 0; count -= 2, addr++) {
1695		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1696		for (ntries = 0; ntries < 20; ntries++) {
1697			val = IWN_READ(sc, IWN_EEPROM);
1698			if (val & IWN_EEPROM_READ_VALID)
1699				break;
1700			DELAY(5);
1701		}
1702		if (ntries == 20) {
1703			device_printf(sc->sc_dev,
1704			    "timeout reading ROM at 0x%x\n", addr);
1705			return ETIMEDOUT;
1706		}
1707		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1708			/* OTPROM, check for ECC errors. */
1709			tmp = IWN_READ(sc, IWN_OTP_GP);
1710			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1711				device_printf(sc->sc_dev,
1712				    "OTPROM ECC error at 0x%x\n", addr);
1713				return EIO;
1714			}
1715			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1716				/* Correctable ECC error, clear bit. */
1717				IWN_SETBITS(sc, IWN_OTP_GP,
1718				    IWN_OTP_GP_ECC_CORR_STTS);
1719			}
1720		}
1721		*out++ = val >> 16;
1722		if (count > 1)
1723			*out++ = val >> 24;
1724	}
1725
1726	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1727
1728	return 0;
1729}
1730
1731static void
1732iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1733{
1734	if (error != 0)
1735		return;
1736	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
1737	*(bus_addr_t *)arg = segs[0].ds_addr;
1738}
1739
1740static int
1741iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma,
1742    void **kvap, bus_size_t size, bus_size_t alignment)
1743{
1744	int error;
1745
1746	dma->tag = NULL;
1747	dma->size = size;
1748
1749	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
1750	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
1751	    1, size, 0, NULL, NULL, &dma->tag);
1752	if (error != 0)
1753		goto fail;
1754
1755	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
1756	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
1757	if (error != 0)
1758		goto fail;
1759
1760	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
1761	    iwn_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
1762	if (error != 0)
1763		goto fail;
1764
1765	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
1766
1767	if (kvap != NULL)
1768		*kvap = dma->vaddr;
1769
1770	return 0;
1771
1772fail:	iwn_dma_contig_free(dma);
1773	return error;
1774}
1775
1776static void
1777iwn_dma_contig_free(struct iwn_dma_info *dma)
1778{
1779	if (dma->vaddr != NULL) {
1780		bus_dmamap_sync(dma->tag, dma->map,
1781		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1782		bus_dmamap_unload(dma->tag, dma->map);
1783		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
1784		dma->vaddr = NULL;
1785	}
1786	if (dma->tag != NULL) {
1787		bus_dma_tag_destroy(dma->tag);
1788		dma->tag = NULL;
1789	}
1790}
1791
1792static int
1793iwn_alloc_sched(struct iwn_softc *sc)
1794{
1795	/* TX scheduler rings must be aligned on a 1KB boundary. */
1796	return iwn_dma_contig_alloc(sc, &sc->sched_dma, (void **)&sc->sched,
1797	    sc->schedsz, 1024);
1798}
1799
1800static void
1801iwn_free_sched(struct iwn_softc *sc)
1802{
1803	iwn_dma_contig_free(&sc->sched_dma);
1804}
1805
1806static int
1807iwn_alloc_kw(struct iwn_softc *sc)
1808{
1809	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1810	return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096);
1811}
1812
1813static void
1814iwn_free_kw(struct iwn_softc *sc)
1815{
1816	iwn_dma_contig_free(&sc->kw_dma);
1817}
1818
1819static int
1820iwn_alloc_ict(struct iwn_softc *sc)
1821{
1822	/* ICT table must be aligned on a 4KB boundary. */
1823	return iwn_dma_contig_alloc(sc, &sc->ict_dma, (void **)&sc->ict,
1824	    IWN_ICT_SIZE, 4096);
1825}
1826
1827static void
1828iwn_free_ict(struct iwn_softc *sc)
1829{
1830	iwn_dma_contig_free(&sc->ict_dma);
1831}
1832
1833static int
1834iwn_alloc_fwmem(struct iwn_softc *sc)
1835{
1836	/* Must be aligned on a 16-byte boundary. */
1837	return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL, sc->fwsz, 16);
1838}
1839
1840static void
1841iwn_free_fwmem(struct iwn_softc *sc)
1842{
1843	iwn_dma_contig_free(&sc->fw_dma);
1844}
1845
1846static int
1847iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1848{
1849	bus_size_t size;
1850	int i, error;
1851
1852	ring->cur = 0;
1853
1854	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1855
1856	/* Allocate RX descriptors (256-byte aligned). */
1857	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1858	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1859	    size, 256);
1860	if (error != 0) {
1861		device_printf(sc->sc_dev,
1862		    "%s: could not allocate RX ring DMA memory, error %d\n",
1863		    __func__, error);
1864		goto fail;
1865	}
1866
1867	/* Allocate RX status area (16-byte aligned). */
1868	error = iwn_dma_contig_alloc(sc, &ring->stat_dma, (void **)&ring->stat,
1869	    sizeof (struct iwn_rx_status), 16);
1870	if (error != 0) {
1871		device_printf(sc->sc_dev,
1872		    "%s: could not allocate RX status DMA memory, error %d\n",
1873		    __func__, error);
1874		goto fail;
1875	}
1876
1877	/* Create RX buffer DMA tag. */
1878	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1879	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1880	    IWN_RBUF_SIZE, 1, IWN_RBUF_SIZE, 0, NULL, NULL, &ring->data_dmat);
1881	if (error != 0) {
1882		device_printf(sc->sc_dev,
1883		    "%s: could not create RX buf DMA tag, error %d\n",
1884		    __func__, error);
1885		goto fail;
1886	}
1887
1888	/*
1889	 * Allocate and map RX buffers.
1890	 */
1891	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1892		struct iwn_rx_data *data = &ring->data[i];
1893		bus_addr_t paddr;
1894
1895		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1896		if (error != 0) {
1897			device_printf(sc->sc_dev,
1898			    "%s: could not create RX buf DMA map, error %d\n",
1899			    __func__, error);
1900			goto fail;
1901		}
1902
1903		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
1904		    IWN_RBUF_SIZE);
1905		if (data->m == NULL) {
1906			device_printf(sc->sc_dev,
1907			    "%s: could not allocate RX mbuf\n", __func__);
1908			error = ENOBUFS;
1909			goto fail;
1910		}
1911
1912		error = bus_dmamap_load(ring->data_dmat, data->map,
1913		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
1914		    &paddr, BUS_DMA_NOWAIT);
1915		if (error != 0 && error != EFBIG) {
1916			device_printf(sc->sc_dev,
1917			    "%s: can't map mbuf, error %d\n", __func__,
1918			    error);
1919			goto fail;
1920		}
1921
1922		bus_dmamap_sync(ring->data_dmat, data->map,
1923		    BUS_DMASYNC_PREREAD);
1924
1925		/* Set physical address of RX buffer (256-byte aligned). */
1926		ring->desc[i] = htole32(paddr >> 8);
1927	}
1928
1929	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1930	    BUS_DMASYNC_PREWRITE);
1931
1932	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
1933
1934	return 0;
1935
1936fail:	iwn_free_rx_ring(sc, ring);
1937
1938	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
1939
1940	return error;
1941}
1942
1943static void
1944iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1945{
1946	int ntries;
1947
1948	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
1949
1950	if (iwn_nic_lock(sc) == 0) {
1951		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1952		for (ntries = 0; ntries < 1000; ntries++) {
1953			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1954			    IWN_FH_RX_STATUS_IDLE)
1955				break;
1956			DELAY(10);
1957		}
1958		iwn_nic_unlock(sc);
1959	}
1960	ring->cur = 0;
1961	sc->last_rx_valid = 0;
1962}
1963
1964static void
1965iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1966{
1967	int i;
1968
1969	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
1970
1971	iwn_dma_contig_free(&ring->desc_dma);
1972	iwn_dma_contig_free(&ring->stat_dma);
1973
1974	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1975		struct iwn_rx_data *data = &ring->data[i];
1976
1977		if (data->m != NULL) {
1978			bus_dmamap_sync(ring->data_dmat, data->map,
1979			    BUS_DMASYNC_POSTREAD);
1980			bus_dmamap_unload(ring->data_dmat, data->map);
1981			m_freem(data->m);
1982			data->m = NULL;
1983		}
1984		if (data->map != NULL)
1985			bus_dmamap_destroy(ring->data_dmat, data->map);
1986	}
1987	if (ring->data_dmat != NULL) {
1988		bus_dma_tag_destroy(ring->data_dmat);
1989		ring->data_dmat = NULL;
1990	}
1991}
1992
1993static int
1994iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1995{
1996	bus_addr_t paddr;
1997	bus_size_t size;
1998	int i, error;
1999
2000	ring->qid = qid;
2001	ring->queued = 0;
2002	ring->cur = 0;
2003
2004	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2005
2006	/* Allocate TX descriptors (256-byte aligned). */
2007	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
2008	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
2009	    size, 256);
2010	if (error != 0) {
2011		device_printf(sc->sc_dev,
2012		    "%s: could not allocate TX ring DMA memory, error %d\n",
2013		    __func__, error);
2014		goto fail;
2015	}
2016
2017	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
2018	error = iwn_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
2019	    size, 4);
2020	if (error != 0) {
2021		device_printf(sc->sc_dev,
2022		    "%s: could not allocate TX cmd DMA memory, error %d\n",
2023		    __func__, error);
2024		goto fail;
2025	}
2026
2027	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
2028	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
2029	    IWN_MAX_SCATTER - 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
2030	if (error != 0) {
2031		device_printf(sc->sc_dev,
2032		    "%s: could not create TX buf DMA tag, error %d\n",
2033		    __func__, error);
2034		goto fail;
2035	}
2036
2037	paddr = ring->cmd_dma.paddr;
2038	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2039		struct iwn_tx_data *data = &ring->data[i];
2040
2041		data->cmd_paddr = paddr;
2042		data->scratch_paddr = paddr + 12;
2043		paddr += sizeof (struct iwn_tx_cmd);
2044
2045		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
2046		if (error != 0) {
2047			device_printf(sc->sc_dev,
2048			    "%s: could not create TX buf DMA map, error %d\n",
2049			    __func__, error);
2050			goto fail;
2051		}
2052	}
2053
2054	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2055
2056	return 0;
2057
2058fail:	iwn_free_tx_ring(sc, ring);
2059	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2060	return error;
2061}
2062
2063static void
2064iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2065{
2066	int i;
2067
2068	DPRINTF(sc, IWN_DEBUG_TRACE, "->doing %s \n", __func__);
2069
2070	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2071		struct iwn_tx_data *data = &ring->data[i];
2072
2073		if (data->m != NULL) {
2074			bus_dmamap_sync(ring->data_dmat, data->map,
2075			    BUS_DMASYNC_POSTWRITE);
2076			bus_dmamap_unload(ring->data_dmat, data->map);
2077			m_freem(data->m);
2078			data->m = NULL;
2079		}
2080		if (data->ni != NULL) {
2081			ieee80211_free_node(data->ni);
2082			data->ni = NULL;
2083		}
2084		data->remapped = 0;
2085		data->long_retries = 0;
2086	}
2087	/* Clear TX descriptors. */
2088	memset(ring->desc, 0, ring->desc_dma.size);
2089	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2090	    BUS_DMASYNC_PREWRITE);
2091	sc->qfullmsk &= ~(1 << ring->qid);
2092	ring->queued = 0;
2093	ring->cur = 0;
2094}
2095
2096static void
2097iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2098{
2099	int i;
2100
2101	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
2102
2103	iwn_dma_contig_free(&ring->desc_dma);
2104	iwn_dma_contig_free(&ring->cmd_dma);
2105
2106	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2107		struct iwn_tx_data *data = &ring->data[i];
2108
2109		if (data->m != NULL) {
2110			bus_dmamap_sync(ring->data_dmat, data->map,
2111			    BUS_DMASYNC_POSTWRITE);
2112			bus_dmamap_unload(ring->data_dmat, data->map);
2113			m_freem(data->m);
2114		}
2115		if (data->map != NULL)
2116			bus_dmamap_destroy(ring->data_dmat, data->map);
2117	}
2118	if (ring->data_dmat != NULL) {
2119		bus_dma_tag_destroy(ring->data_dmat);
2120		ring->data_dmat = NULL;
2121	}
2122}
2123
2124static void
2125iwn_check_tx_ring(struct iwn_softc *sc, int qid)
2126{
2127	struct iwn_tx_ring *ring = &sc->txq[qid];
2128
2129	KASSERT(ring->queued >= 0, ("%s: ring->queued (%d) for queue %d < 0!",
2130	    __func__, ring->queued, qid));
2131
2132	if (qid >= sc->firstaggqueue) {
2133		struct iwn_ops *ops = &sc->ops;
2134		struct ieee80211_tx_ampdu *tap = sc->qid2tap[qid];
2135
2136		if (ring->queued == 0 && !IEEE80211_AMPDU_RUNNING(tap)) {
2137			uint16_t ssn = tap->txa_start & 0xfff;
2138			uint8_t tid = tap->txa_tid;
2139			int *res = tap->txa_private;
2140
2141			iwn_nic_lock(sc);
2142			ops->ampdu_tx_stop(sc, qid, tid, ssn);
2143			iwn_nic_unlock(sc);
2144
2145			sc->qid2tap[qid] = NULL;
2146			free(res, M_DEVBUF);
2147		}
2148	}
2149
2150	if (ring->queued < IWN_TX_RING_LOMARK) {
2151		sc->qfullmsk &= ~(1 << qid);
2152
2153		if (ring->queued == 0)
2154			sc->sc_tx_timer = 0;
2155		else
2156			sc->sc_tx_timer = 5;
2157	}
2158}
2159
2160static void
2161iwn5000_ict_reset(struct iwn_softc *sc)
2162{
2163	/* Disable interrupts. */
2164	IWN_WRITE(sc, IWN_INT_MASK, 0);
2165
2166	/* Reset ICT table. */
2167	memset(sc->ict, 0, IWN_ICT_SIZE);
2168	sc->ict_cur = 0;
2169
2170	bus_dmamap_sync(sc->ict_dma.tag, sc->ict_dma.map,
2171	    BUS_DMASYNC_PREWRITE);
2172
2173	/* Set physical address of ICT table (4KB aligned). */
2174	DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__);
2175	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
2176	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
2177
2178	/* Enable periodic RX interrupt. */
2179	sc->int_mask |= IWN_INT_RX_PERIODIC;
2180	/* Switch to ICT interrupt mode in driver. */
2181	sc->sc_flags |= IWN_FLAG_USE_ICT;
2182
2183	/* Re-enable interrupts. */
2184	IWN_WRITE(sc, IWN_INT, 0xffffffff);
2185	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2186}
2187
2188static int
2189iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2190{
2191	struct iwn_ops *ops = &sc->ops;
2192	uint16_t val;
2193	int error;
2194
2195	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2196
2197	/* Check whether adapter has an EEPROM or an OTPROM. */
2198	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
2199	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
2200		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
2201	DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n",
2202	    (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM");
2203
2204	/* Adapter has to be powered on for EEPROM access to work. */
2205	if ((error = iwn_apm_init(sc)) != 0) {
2206		device_printf(sc->sc_dev,
2207		    "%s: could not power ON adapter, error %d\n", __func__,
2208		    error);
2209		return error;
2210	}
2211
2212	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
2213		device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__);
2214		return EIO;
2215	}
2216	if ((error = iwn_eeprom_lock(sc)) != 0) {
2217		device_printf(sc->sc_dev, "%s: could not lock ROM, error %d\n",
2218		    __func__, error);
2219		return error;
2220	}
2221	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
2222		if ((error = iwn_init_otprom(sc)) != 0) {
2223			device_printf(sc->sc_dev,
2224			    "%s: could not initialize OTPROM, error %d\n",
2225			    __func__, error);
2226			return error;
2227		}
2228	}
2229
2230	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
2231	DPRINTF(sc, IWN_DEBUG_RESET, "SKU capabilities=0x%04x\n", le16toh(val));
2232	/* Check if HT support is bonded out. */
2233	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
2234		sc->sc_flags |= IWN_FLAG_HAS_11N;
2235
2236	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
2237	sc->rfcfg = le16toh(val);
2238	DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg);
2239	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
2240	if (sc->txchainmask == 0)
2241		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
2242	if (sc->rxchainmask == 0)
2243		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
2244
2245	/* Read MAC address. */
2246	iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6);
2247
2248	/* Read adapter-specific information from EEPROM. */
2249	ops->read_eeprom(sc);
2250
2251	iwn_apm_stop(sc);	/* Power OFF adapter. */
2252
2253	iwn_eeprom_unlock(sc);
2254
2255	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2256
2257	return 0;
2258}
2259
2260static void
2261iwn4965_read_eeprom(struct iwn_softc *sc)
2262{
2263	uint32_t addr;
2264	uint16_t val;
2265	int i;
2266
2267	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2268
2269	/* Read regulatory domain (4 ASCII characters). */
2270	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
2271
2272	/* Read the list of authorized channels (20MHz & 40MHz). */
2273	for (i = 0; i < IWN_NBANDS - 1; i++) {
2274		addr = iwn4965_regulatory_bands[i];
2275		iwn_read_eeprom_channels(sc, i, addr);
2276	}
2277
2278	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
2279	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
2280	sc->maxpwr2GHz = val & 0xff;
2281	sc->maxpwr5GHz = val >> 8;
2282	/* Check that EEPROM values are within valid range. */
2283	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
2284		sc->maxpwr5GHz = 38;
2285	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
2286		sc->maxpwr2GHz = 38;
2287	DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n",
2288	    sc->maxpwr2GHz, sc->maxpwr5GHz);
2289
2290	/* Read samples for each TX power group. */
2291	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
2292	    sizeof sc->bands);
2293
2294	/* Read voltage at which samples were taken. */
2295	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
2296	sc->eeprom_voltage = (int16_t)le16toh(val);
2297	DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n",
2298	    sc->eeprom_voltage);
2299
2300#ifdef IWN_DEBUG
2301	/* Print samples. */
2302	if (sc->sc_debug & IWN_DEBUG_ANY) {
2303		for (i = 0; i < IWN_NBANDS - 1; i++)
2304			iwn4965_print_power_group(sc, i);
2305	}
2306#endif
2307
2308	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2309}
2310
2311#ifdef IWN_DEBUG
2312static void
2313iwn4965_print_power_group(struct iwn_softc *sc, int i)
2314{
2315	struct iwn4965_eeprom_band *band = &sc->bands[i];
2316	struct iwn4965_eeprom_chan_samples *chans = band->chans;
2317	int j, c;
2318
2319	printf("===band %d===\n", i);
2320	printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
2321	printf("chan1 num=%d\n", chans[0].num);
2322	for (c = 0; c < 2; c++) {
2323		for (j = 0; j < IWN_NSAMPLES; j++) {
2324			printf("chain %d, sample %d: temp=%d gain=%d "
2325			    "power=%d pa_det=%d\n", c, j,
2326			    chans[0].samples[c][j].temp,
2327			    chans[0].samples[c][j].gain,
2328			    chans[0].samples[c][j].power,
2329			    chans[0].samples[c][j].pa_det);
2330		}
2331	}
2332	printf("chan2 num=%d\n", chans[1].num);
2333	for (c = 0; c < 2; c++) {
2334		for (j = 0; j < IWN_NSAMPLES; j++) {
2335			printf("chain %d, sample %d: temp=%d gain=%d "
2336			    "power=%d pa_det=%d\n", c, j,
2337			    chans[1].samples[c][j].temp,
2338			    chans[1].samples[c][j].gain,
2339			    chans[1].samples[c][j].power,
2340			    chans[1].samples[c][j].pa_det);
2341		}
2342	}
2343}
2344#endif
2345
2346static void
2347iwn5000_read_eeprom(struct iwn_softc *sc)
2348{
2349	struct iwn5000_eeprom_calib_hdr hdr;
2350	int32_t volt;
2351	uint32_t base, addr;
2352	uint16_t val;
2353	int i;
2354
2355	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2356
2357	/* Read regulatory domain (4 ASCII characters). */
2358	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2359	base = le16toh(val);
2360	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
2361	    sc->eeprom_domain, 4);
2362
2363	/* Read the list of authorized channels (20MHz & 40MHz). */
2364	for (i = 0; i < IWN_NBANDS - 1; i++) {
2365		addr =  base + sc->base_params->regulatory_bands[i];
2366		iwn_read_eeprom_channels(sc, i, addr);
2367	}
2368
2369	/* Read enhanced TX power information for 6000 Series. */
2370	if (sc->base_params->enhanced_TX_power)
2371		iwn_read_eeprom_enhinfo(sc);
2372
2373	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
2374	base = le16toh(val);
2375	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
2376	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2377	    "%s: calib version=%u pa type=%u voltage=%u\n", __func__,
2378	    hdr.version, hdr.pa_type, le16toh(hdr.volt));
2379	sc->calib_ver = hdr.version;
2380
2381	if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
2382		sc->eeprom_voltage = le16toh(hdr.volt);
2383		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2384		sc->eeprom_temp_high=le16toh(val);
2385		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2386		sc->eeprom_temp = le16toh(val);
2387	}
2388
2389	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
2390		/* Compute temperature offset. */
2391		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2392		sc->eeprom_temp = le16toh(val);
2393		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2394		volt = le16toh(val);
2395		sc->temp_off = sc->eeprom_temp - (volt / -5);
2396		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n",
2397		    sc->eeprom_temp, volt, sc->temp_off);
2398	} else {
2399		/* Read crystal calibration. */
2400		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
2401		    &sc->eeprom_crystal, sizeof (uint32_t));
2402		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n",
2403		    le32toh(sc->eeprom_crystal));
2404	}
2405
2406	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2407
2408}
2409
2410/*
2411 * Translate EEPROM flags to net80211.
2412 */
2413static uint32_t
2414iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel)
2415{
2416	uint32_t nflags;
2417
2418	nflags = 0;
2419	if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0)
2420		nflags |= IEEE80211_CHAN_PASSIVE;
2421	if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0)
2422		nflags |= IEEE80211_CHAN_NOADHOC;
2423	if (channel->flags & IWN_EEPROM_CHAN_RADAR) {
2424		nflags |= IEEE80211_CHAN_DFS;
2425		/* XXX apparently IBSS may still be marked */
2426		nflags |= IEEE80211_CHAN_NOADHOC;
2427	}
2428
2429	return nflags;
2430}
2431
2432static void
2433iwn_read_eeprom_band(struct iwn_softc *sc, int n, int maxchans, int *nchans,
2434    struct ieee80211_channel chans[])
2435{
2436	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2437	const struct iwn_chan_band *band = &iwn_bands[n];
2438	uint8_t bands[IEEE80211_MODE_BYTES];
2439	uint8_t chan;
2440	int i, error, nflags;
2441
2442	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2443
2444	memset(bands, 0, sizeof(bands));
2445	if (n == 0) {
2446		setbit(bands, IEEE80211_MODE_11B);
2447		setbit(bands, IEEE80211_MODE_11G);
2448		if (sc->sc_flags & IWN_FLAG_HAS_11N)
2449			setbit(bands, IEEE80211_MODE_11NG);
2450	} else {
2451		setbit(bands, IEEE80211_MODE_11A);
2452		if (sc->sc_flags & IWN_FLAG_HAS_11N)
2453			setbit(bands, IEEE80211_MODE_11NA);
2454	}
2455
2456	for (i = 0; i < band->nchan; i++) {
2457		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2458			DPRINTF(sc, IWN_DEBUG_RESET,
2459			    "skip chan %d flags 0x%x maxpwr %d\n",
2460			    band->chan[i], channels[i].flags,
2461			    channels[i].maxpwr);
2462			continue;
2463		}
2464
2465		chan = band->chan[i];
2466		nflags = iwn_eeprom_channel_flags(&channels[i]);
2467		error = ieee80211_add_channel(chans, maxchans, nchans,
2468		    chan, 0, channels[i].maxpwr, nflags, bands);
2469		if (error != 0)
2470			break;
2471
2472		/* Save maximum allowed TX power for this channel. */
2473		/* XXX wrong */
2474		sc->maxpwr[chan] = channels[i].maxpwr;
2475
2476		DPRINTF(sc, IWN_DEBUG_RESET,
2477		    "add chan %d flags 0x%x maxpwr %d\n", chan,
2478		    channels[i].flags, channels[i].maxpwr);
2479	}
2480
2481	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2482
2483}
2484
2485static void
2486iwn_read_eeprom_ht40(struct iwn_softc *sc, int n, int maxchans, int *nchans,
2487    struct ieee80211_channel chans[])
2488{
2489	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2490	const struct iwn_chan_band *band = &iwn_bands[n];
2491	uint8_t chan;
2492	int i, error, nflags;
2493
2494	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s start\n", __func__);
2495
2496	if (!(sc->sc_flags & IWN_FLAG_HAS_11N)) {
2497		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end no 11n\n", __func__);
2498		return;
2499	}
2500
2501	for (i = 0; i < band->nchan; i++) {
2502		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2503			DPRINTF(sc, IWN_DEBUG_RESET,
2504			    "skip chan %d flags 0x%x maxpwr %d\n",
2505			    band->chan[i], channels[i].flags,
2506			    channels[i].maxpwr);
2507			continue;
2508		}
2509
2510		chan = band->chan[i];
2511		nflags = iwn_eeprom_channel_flags(&channels[i]);
2512		nflags |= (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A);
2513		error = ieee80211_add_channel_ht40(chans, maxchans, nchans,
2514		    chan, channels[i].maxpwr, nflags);
2515		switch (error) {
2516		case EINVAL:
2517			device_printf(sc->sc_dev,
2518			    "%s: no entry for channel %d\n", __func__, chan);
2519			continue;
2520		case ENOENT:
2521			DPRINTF(sc, IWN_DEBUG_RESET,
2522			    "%s: skip chan %d, extension channel not found\n",
2523			    __func__, chan);
2524			continue;
2525		case ENOBUFS:
2526			device_printf(sc->sc_dev,
2527			    "%s: channel table is full!\n", __func__);
2528			break;
2529		case 0:
2530			DPRINTF(sc, IWN_DEBUG_RESET,
2531			    "add ht40 chan %d flags 0x%x maxpwr %d\n",
2532			    chan, channels[i].flags, channels[i].maxpwr);
2533			/* FALLTHROUGH */
2534		default:
2535			break;
2536		}
2537	}
2538
2539	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2540
2541}
2542
2543static void
2544iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
2545{
2546	struct ieee80211com *ic = &sc->sc_ic;
2547
2548	iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n],
2549	    iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan));
2550
2551	if (n < 5) {
2552		iwn_read_eeprom_band(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans,
2553		    ic->ic_channels);
2554	} else {
2555		iwn_read_eeprom_ht40(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans,
2556		    ic->ic_channels);
2557	}
2558	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
2559}
2560
2561static struct iwn_eeprom_chan *
2562iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c)
2563{
2564	int band, chan, i, j;
2565
2566	if (IEEE80211_IS_CHAN_HT40(c)) {
2567		band = IEEE80211_IS_CHAN_5GHZ(c) ? 6 : 5;
2568		if (IEEE80211_IS_CHAN_HT40D(c))
2569			chan = c->ic_extieee;
2570		else
2571			chan = c->ic_ieee;
2572		for (i = 0; i < iwn_bands[band].nchan; i++) {
2573			if (iwn_bands[band].chan[i] == chan)
2574				return &sc->eeprom_channels[band][i];
2575		}
2576	} else {
2577		for (j = 0; j < 5; j++) {
2578			for (i = 0; i < iwn_bands[j].nchan; i++) {
2579				if (iwn_bands[j].chan[i] == c->ic_ieee &&
2580				    ((j == 0) ^ IEEE80211_IS_CHAN_A(c)) == 1)
2581					return &sc->eeprom_channels[j][i];
2582			}
2583		}
2584	}
2585	return NULL;
2586}
2587
2588static void
2589iwn_getradiocaps(struct ieee80211com *ic,
2590    int maxchans, int *nchans, struct ieee80211_channel chans[])
2591{
2592	struct iwn_softc *sc = ic->ic_softc;
2593	int i;
2594
2595	/* Parse the list of authorized channels. */
2596	for (i = 0; i < 5 && *nchans < maxchans; i++)
2597		iwn_read_eeprom_band(sc, i, maxchans, nchans, chans);
2598	for (i = 5; i < IWN_NBANDS - 1 && *nchans < maxchans; i++)
2599		iwn_read_eeprom_ht40(sc, i, maxchans, nchans, chans);
2600}
2601
2602/*
2603 * Enforce flags read from EEPROM.
2604 */
2605static int
2606iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
2607    int nchan, struct ieee80211_channel chans[])
2608{
2609	struct iwn_softc *sc = ic->ic_softc;
2610	int i;
2611
2612	for (i = 0; i < nchan; i++) {
2613		struct ieee80211_channel *c = &chans[i];
2614		struct iwn_eeprom_chan *channel;
2615
2616		channel = iwn_find_eeprom_channel(sc, c);
2617		if (channel == NULL) {
2618			ic_printf(ic, "%s: invalid channel %u freq %u/0x%x\n",
2619			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
2620			return EINVAL;
2621		}
2622		c->ic_flags |= iwn_eeprom_channel_flags(channel);
2623	}
2624
2625	return 0;
2626}
2627
2628static void
2629iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
2630{
2631	struct iwn_eeprom_enhinfo enhinfo[35];
2632	struct ieee80211com *ic = &sc->sc_ic;
2633	struct ieee80211_channel *c;
2634	uint16_t val, base;
2635	int8_t maxpwr;
2636	uint8_t flags;
2637	int i, j;
2638
2639	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2640
2641	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2642	base = le16toh(val);
2643	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
2644	    enhinfo, sizeof enhinfo);
2645
2646	for (i = 0; i < nitems(enhinfo); i++) {
2647		flags = enhinfo[i].flags;
2648		if (!(flags & IWN_ENHINFO_VALID))
2649			continue;	/* Skip invalid entries. */
2650
2651		maxpwr = 0;
2652		if (sc->txchainmask & IWN_ANT_A)
2653			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
2654		if (sc->txchainmask & IWN_ANT_B)
2655			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
2656		if (sc->txchainmask & IWN_ANT_C)
2657			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
2658		if (sc->ntxchains == 2)
2659			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
2660		else if (sc->ntxchains == 3)
2661			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
2662
2663		for (j = 0; j < ic->ic_nchans; j++) {
2664			c = &ic->ic_channels[j];
2665			if ((flags & IWN_ENHINFO_5GHZ)) {
2666				if (!IEEE80211_IS_CHAN_A(c))
2667					continue;
2668			} else if ((flags & IWN_ENHINFO_OFDM)) {
2669				if (!IEEE80211_IS_CHAN_G(c))
2670					continue;
2671			} else if (!IEEE80211_IS_CHAN_B(c))
2672				continue;
2673			if ((flags & IWN_ENHINFO_HT40)) {
2674				if (!IEEE80211_IS_CHAN_HT40(c))
2675					continue;
2676			} else {
2677				if (IEEE80211_IS_CHAN_HT40(c))
2678					continue;
2679			}
2680			if (enhinfo[i].chan != 0 &&
2681			    enhinfo[i].chan != c->ic_ieee)
2682				continue;
2683
2684			DPRINTF(sc, IWN_DEBUG_RESET,
2685			    "channel %d(%x), maxpwr %d\n", c->ic_ieee,
2686			    c->ic_flags, maxpwr / 2);
2687			c->ic_maxregpower = maxpwr / 2;
2688			c->ic_maxpower = maxpwr;
2689		}
2690	}
2691
2692	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2693
2694}
2695
2696static struct ieee80211_node *
2697iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
2698{
2699	struct iwn_node *wn;
2700
2701	wn = malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
2702	if (wn == NULL)
2703		return (NULL);
2704
2705	wn->id = IWN_ID_UNDEFINED;
2706
2707	return (&wn->ni);
2708}
2709
2710static __inline int
2711rate2plcp(int rate)
2712{
2713	switch (rate & 0xff) {
2714	case 12:	return 0xd;
2715	case 18:	return 0xf;
2716	case 24:	return 0x5;
2717	case 36:	return 0x7;
2718	case 48:	return 0x9;
2719	case 72:	return 0xb;
2720	case 96:	return 0x1;
2721	case 108:	return 0x3;
2722	case 2:		return 10;
2723	case 4:		return 20;
2724	case 11:	return 55;
2725	case 22:	return 110;
2726	}
2727	return 0;
2728}
2729
2730static __inline uint8_t
2731plcp2rate(const uint8_t rate_plcp)
2732{
2733	switch (rate_plcp) {
2734	case 0xd:	return 12;
2735	case 0xf:	return 18;
2736	case 0x5:	return 24;
2737	case 0x7:	return 36;
2738	case 0x9:	return 48;
2739	case 0xb:	return 72;
2740	case 0x1:	return 96;
2741	case 0x3:	return 108;
2742	case 10:	return 2;
2743	case 20:	return 4;
2744	case 55:	return 11;
2745	case 110:	return 22;
2746	default:	return 0;
2747	}
2748}
2749
2750static int
2751iwn_get_1stream_tx_antmask(struct iwn_softc *sc)
2752{
2753
2754	return IWN_LSB(sc->txchainmask);
2755}
2756
2757static int
2758iwn_get_2stream_tx_antmask(struct iwn_softc *sc)
2759{
2760	int tx;
2761
2762	/*
2763	 * The '2 stream' setup is a bit .. odd.
2764	 *
2765	 * For NICs that support only 1 antenna, default to IWN_ANT_AB or
2766	 * the firmware panics (eg Intel 5100.)
2767	 *
2768	 * For NICs that support two antennas, we use ANT_AB.
2769	 *
2770	 * For NICs that support three antennas, we use the two that
2771	 * wasn't the default one.
2772	 *
2773	 * XXX TODO: if bluetooth (full concurrent) is enabled, restrict
2774	 * this to only one antenna.
2775	 */
2776
2777	/* Default - transmit on the other antennas */
2778	tx = (sc->txchainmask & ~IWN_LSB(sc->txchainmask));
2779
2780	/* Now, if it's zero, set it to IWN_ANT_AB, so to not panic firmware */
2781	if (tx == 0)
2782		tx = IWN_ANT_AB;
2783
2784	/*
2785	 * If the NIC is a two-stream TX NIC, configure the TX mask to
2786	 * the default chainmask
2787	 */
2788	else if (sc->ntxchains == 2)
2789		tx = sc->txchainmask;
2790
2791	return (tx);
2792}
2793
2794
2795
2796/*
2797 * Calculate the required PLCP value from the given rate,
2798 * to the given node.
2799 *
2800 * This will take the node configuration (eg 11n, rate table
2801 * setup, etc) into consideration.
2802 */
2803static uint32_t
2804iwn_rate_to_plcp(struct iwn_softc *sc, struct ieee80211_node *ni,
2805    uint8_t rate)
2806{
2807	struct ieee80211com *ic = ni->ni_ic;
2808	uint32_t plcp = 0;
2809	int ridx;
2810
2811	/*
2812	 * If it's an MCS rate, let's set the plcp correctly
2813	 * and set the relevant flags based on the node config.
2814	 */
2815	if (rate & IEEE80211_RATE_MCS) {
2816		/*
2817		 * Set the initial PLCP value to be between 0->31 for
2818		 * MCS 0 -> MCS 31, then set the "I'm an MCS rate!"
2819		 * flag.
2820		 */
2821		plcp = IEEE80211_RV(rate) | IWN_RFLAG_MCS;
2822
2823		/*
2824		 * XXX the following should only occur if both
2825		 * the local configuration _and_ the remote node
2826		 * advertise these capabilities.  Thus this code
2827		 * may need fixing!
2828		 */
2829
2830		/*
2831		 * Set the channel width and guard interval.
2832		 */
2833		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
2834			plcp |= IWN_RFLAG_HT40;
2835			if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40)
2836				plcp |= IWN_RFLAG_SGI;
2837		} else if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) {
2838			plcp |= IWN_RFLAG_SGI;
2839		}
2840
2841		/*
2842		 * Ensure the selected rate matches the link quality
2843		 * table entries being used.
2844		 */
2845		if (rate > 0x8f)
2846			plcp |= IWN_RFLAG_ANT(sc->txchainmask);
2847		else if (rate > 0x87)
2848			plcp |= IWN_RFLAG_ANT(iwn_get_2stream_tx_antmask(sc));
2849		else
2850			plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc));
2851	} else {
2852		/*
2853		 * Set the initial PLCP - fine for both
2854		 * OFDM and CCK rates.
2855		 */
2856		plcp = rate2plcp(rate);
2857
2858		/* Set CCK flag if it's CCK */
2859
2860		/* XXX It would be nice to have a method
2861		 * to map the ridx -> phy table entry
2862		 * so we could just query that, rather than
2863		 * this hack to check against IWN_RIDX_OFDM6.
2864		 */
2865		ridx = ieee80211_legacy_rate_lookup(ic->ic_rt,
2866		    rate & IEEE80211_RATE_VAL);
2867		if (ridx < IWN_RIDX_OFDM6 &&
2868		    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
2869			plcp |= IWN_RFLAG_CCK;
2870
2871		/* Set antenna configuration */
2872		/* XXX TODO: is this the right antenna to use for legacy? */
2873		plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc));
2874	}
2875
2876	DPRINTF(sc, IWN_DEBUG_TXRATE, "%s: rate=0x%02x, plcp=0x%08x\n",
2877	    __func__,
2878	    rate,
2879	    plcp);
2880
2881	return (htole32(plcp));
2882}
2883
2884static void
2885iwn_newassoc(struct ieee80211_node *ni, int isnew)
2886{
2887	/* Doesn't do anything at the moment */
2888}
2889
2890static int
2891iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
2892{
2893	struct iwn_vap *ivp = IWN_VAP(vap);
2894	struct ieee80211com *ic = vap->iv_ic;
2895	struct iwn_softc *sc = ic->ic_softc;
2896	int error = 0;
2897
2898	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2899
2900	DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__,
2901	    ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]);
2902
2903	IEEE80211_UNLOCK(ic);
2904	IWN_LOCK(sc);
2905	callout_stop(&sc->calib_to);
2906
2907	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
2908
2909	switch (nstate) {
2910	case IEEE80211_S_ASSOC:
2911		if (vap->iv_state != IEEE80211_S_RUN)
2912			break;
2913		/* FALLTHROUGH */
2914	case IEEE80211_S_AUTH:
2915		if (vap->iv_state == IEEE80211_S_AUTH)
2916			break;
2917
2918		/*
2919		 * !AUTH -> AUTH transition requires state reset to handle
2920		 * reassociations correctly.
2921		 */
2922		sc->rxon->associd = 0;
2923		sc->rxon->filter &= ~htole32(IWN_FILTER_BSS);
2924		sc->calib.state = IWN_CALIB_STATE_INIT;
2925
2926		/* Wait until we hear a beacon before we transmit */
2927		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
2928			sc->sc_beacon_wait = 1;
2929
2930		if ((error = iwn_auth(sc, vap)) != 0) {
2931			device_printf(sc->sc_dev,
2932			    "%s: could not move to auth state\n", __func__);
2933		}
2934		break;
2935
2936	case IEEE80211_S_RUN:
2937		/*
2938		 * RUN -> RUN transition; Just restart the timers.
2939		 */
2940		if (vap->iv_state == IEEE80211_S_RUN) {
2941			sc->calib_cnt = 0;
2942			break;
2943		}
2944
2945		/* Wait until we hear a beacon before we transmit */
2946		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
2947			sc->sc_beacon_wait = 1;
2948
2949		/*
2950		 * !RUN -> RUN requires setting the association id
2951		 * which is done with a firmware cmd.  We also defer
2952		 * starting the timers until that work is done.
2953		 */
2954		if ((error = iwn_run(sc, vap)) != 0) {
2955			device_printf(sc->sc_dev,
2956			    "%s: could not move to run state\n", __func__);
2957		}
2958		break;
2959
2960	case IEEE80211_S_INIT:
2961		sc->calib.state = IWN_CALIB_STATE_INIT;
2962		/*
2963		 * Purge the xmit queue so we don't have old frames
2964		 * during a new association attempt.
2965		 */
2966		sc->sc_beacon_wait = 0;
2967		iwn_xmit_queue_drain(sc);
2968		break;
2969
2970	default:
2971		break;
2972	}
2973	IWN_UNLOCK(sc);
2974	IEEE80211_LOCK(ic);
2975	if (error != 0){
2976		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2977		return error;
2978	}
2979
2980	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
2981
2982	return ivp->iv_newstate(vap, nstate, arg);
2983}
2984
2985static void
2986iwn_calib_timeout(void *arg)
2987{
2988	struct iwn_softc *sc = arg;
2989
2990	IWN_LOCK_ASSERT(sc);
2991
2992	/* Force automatic TX power calibration every 60 secs. */
2993	if (++sc->calib_cnt >= 120) {
2994		uint32_t flags = 0;
2995
2996		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n",
2997		    "sending request for statistics");
2998		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
2999		    sizeof flags, 1);
3000		sc->calib_cnt = 0;
3001	}
3002	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
3003	    sc);
3004}
3005
3006/*
3007 * Process an RX_PHY firmware notification.  This is usually immediately
3008 * followed by an MPDU_RX_DONE notification.
3009 */
3010static void
3011iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3012{
3013	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
3014
3015	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__);
3016
3017	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
3018	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
3019	sc->last_rx_valid = 1;
3020}
3021
3022/*
3023 * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
3024 * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
3025 */
3026static void
3027iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3028    struct iwn_rx_data *data)
3029{
3030	struct iwn_ops *ops = &sc->ops;
3031	struct ieee80211com *ic = &sc->sc_ic;
3032	struct iwn_rx_ring *ring = &sc->rxq;
3033	struct ieee80211_frame_min *wh;
3034	struct ieee80211_node *ni;
3035	struct mbuf *m, *m1;
3036	struct iwn_rx_stat *stat;
3037	caddr_t head;
3038	bus_addr_t paddr;
3039	uint32_t flags;
3040	int error, len, rssi, nf;
3041
3042	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3043
3044	if (desc->type == IWN_MPDU_RX_DONE) {
3045		/* Check for prior RX_PHY notification. */
3046		if (!sc->last_rx_valid) {
3047			DPRINTF(sc, IWN_DEBUG_ANY,
3048			    "%s: missing RX_PHY\n", __func__);
3049			return;
3050		}
3051		stat = &sc->last_rx_stat;
3052	} else
3053		stat = (struct iwn_rx_stat *)(desc + 1);
3054
3055	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
3056		device_printf(sc->sc_dev,
3057		    "%s: invalid RX statistic header, len %d\n", __func__,
3058		    stat->cfg_phy_len);
3059		return;
3060	}
3061	if (desc->type == IWN_MPDU_RX_DONE) {
3062		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
3063		head = (caddr_t)(mpdu + 1);
3064		len = le16toh(mpdu->len);
3065	} else {
3066		head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
3067		len = le16toh(stat->len);
3068	}
3069
3070	flags = le32toh(*(uint32_t *)(head + len));
3071
3072	/* Discard frames with a bad FCS early. */
3073	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
3074		DPRINTF(sc, IWN_DEBUG_RECV, "%s: RX flags error %x\n",
3075		    __func__, flags);
3076		counter_u64_add(ic->ic_ierrors, 1);
3077		return;
3078	}
3079	/* Discard frames that are too short. */
3080	if (len < sizeof (struct ieee80211_frame_ack)) {
3081		DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n",
3082		    __func__, len);
3083		counter_u64_add(ic->ic_ierrors, 1);
3084		return;
3085	}
3086
3087	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWN_RBUF_SIZE);
3088	if (m1 == NULL) {
3089		DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n",
3090		    __func__);
3091		counter_u64_add(ic->ic_ierrors, 1);
3092		return;
3093	}
3094	bus_dmamap_unload(ring->data_dmat, data->map);
3095
3096	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
3097	    IWN_RBUF_SIZE, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3098	if (error != 0 && error != EFBIG) {
3099		device_printf(sc->sc_dev,
3100		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
3101		m_freem(m1);
3102
3103		/* Try to reload the old mbuf. */
3104		error = bus_dmamap_load(ring->data_dmat, data->map,
3105		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
3106		    &paddr, BUS_DMA_NOWAIT);
3107		if (error != 0 && error != EFBIG) {
3108			panic("%s: could not load old RX mbuf", __func__);
3109		}
3110		bus_dmamap_sync(ring->data_dmat, data->map,
3111		    BUS_DMASYNC_PREREAD);
3112		/* Physical address may have changed. */
3113		ring->desc[ring->cur] = htole32(paddr >> 8);
3114		bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3115		    BUS_DMASYNC_PREWRITE);
3116		counter_u64_add(ic->ic_ierrors, 1);
3117		return;
3118	}
3119
3120	bus_dmamap_sync(ring->data_dmat, data->map,
3121	    BUS_DMASYNC_PREREAD);
3122
3123	m = data->m;
3124	data->m = m1;
3125	/* Update RX descriptor. */
3126	ring->desc[ring->cur] = htole32(paddr >> 8);
3127	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3128	    BUS_DMASYNC_PREWRITE);
3129
3130	/* Finalize mbuf. */
3131	m->m_data = head;
3132	m->m_pkthdr.len = m->m_len = len;
3133
3134	/* Grab a reference to the source node. */
3135	wh = mtod(m, struct ieee80211_frame_min *);
3136	if (len >= sizeof(struct ieee80211_frame_min))
3137		ni = ieee80211_find_rxnode(ic, wh);
3138	else
3139		ni = NULL;
3140	nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN &&
3141	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95;
3142
3143	rssi = ops->get_rssi(sc, stat);
3144
3145	if (ieee80211_radiotap_active(ic)) {
3146		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
3147		uint32_t rate = le32toh(stat->rate);
3148
3149		tap->wr_flags = 0;
3150		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
3151			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3152		tap->wr_dbm_antsignal = (int8_t)rssi;
3153		tap->wr_dbm_antnoise = (int8_t)nf;
3154		tap->wr_tsft = stat->tstamp;
3155		if (rate & IWN_RFLAG_MCS) {
3156			tap->wr_rate = rate & IWN_RFLAG_RATE_MCS;
3157			tap->wr_rate |= IEEE80211_RATE_MCS;
3158		} else
3159			tap->wr_rate = plcp2rate(rate & IWN_RFLAG_RATE);
3160	}
3161
3162	/*
3163	 * If it's a beacon and we're waiting, then do the
3164	 * wakeup.  This should unblock raw_xmit/start.
3165	 */
3166	if (sc->sc_beacon_wait) {
3167		uint8_t type, subtype;
3168		/* NB: Re-assign wh */
3169		wh = mtod(m, struct ieee80211_frame_min *);
3170		type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3171		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3172		/*
3173		 * This assumes at this point we've received our own
3174		 * beacon.
3175		 */
3176		DPRINTF(sc, IWN_DEBUG_TRACE,
3177		    "%s: beacon_wait, type=%d, subtype=%d\n",
3178		    __func__, type, subtype);
3179		if (type == IEEE80211_FC0_TYPE_MGT &&
3180		    subtype == IEEE80211_FC0_SUBTYPE_BEACON) {
3181			DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT,
3182			    "%s: waking things up\n", __func__);
3183			/* queue taskqueue to transmit! */
3184			taskqueue_enqueue(sc->sc_tq, &sc->sc_xmit_task);
3185		}
3186	}
3187
3188	IWN_UNLOCK(sc);
3189
3190	/* Send the frame to the 802.11 layer. */
3191	if (ni != NULL) {
3192		if (ni->ni_flags & IEEE80211_NODE_HT)
3193			m->m_flags |= M_AMPDU;
3194		(void)ieee80211_input(ni, m, rssi - nf, nf);
3195		/* Node is no longer needed. */
3196		ieee80211_free_node(ni);
3197	} else
3198		(void)ieee80211_input_all(ic, m, rssi - nf, nf);
3199
3200	IWN_LOCK(sc);
3201
3202	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3203
3204}
3205
3206static void
3207iwn_agg_tx_complete(struct iwn_softc *sc, struct iwn_tx_ring *ring, int tid,
3208    int idx, int success)
3209{
3210	struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs;
3211	struct iwn_tx_data *data = &ring->data[idx];
3212	struct iwn_node *wn;
3213	struct mbuf *m;
3214	struct ieee80211_node *ni;
3215
3216	KASSERT(data->ni != NULL, ("idx %d: no node", idx));
3217	KASSERT(data->m != NULL, ("idx %d: no mbuf", idx));
3218
3219	/* Unmap and free mbuf. */
3220	bus_dmamap_sync(ring->data_dmat, data->map,
3221	    BUS_DMASYNC_POSTWRITE);
3222	bus_dmamap_unload(ring->data_dmat, data->map);
3223	m = data->m, data->m = NULL;
3224	ni = data->ni, data->ni = NULL;
3225	wn = (void *)ni;
3226
3227#if 0
3228	/* XXX causes significant performance degradation. */
3229	txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY |
3230		     IEEE80211_RATECTL_STATUS_LONG_RETRY;
3231	txs->long_retries = data->long_retries - 1;
3232#else
3233	txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY;
3234#endif
3235	txs->short_retries = wn->agg[tid].short_retries;
3236	if (success)
3237		txs->status = IEEE80211_RATECTL_TX_SUCCESS;
3238	else
3239		txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED;
3240
3241	wn->agg[tid].short_retries = 0;
3242	data->long_retries = 0;
3243
3244	DPRINTF(sc, IWN_DEBUG_AMPDU, "%s: freeing m %p ni %p idx %d qid %d\n",
3245	    __func__, m, ni, idx, ring->qid);
3246	ieee80211_ratectl_tx_complete(ni, txs);
3247	ieee80211_tx_complete(ni, m, !success);
3248}
3249
3250/* Process an incoming Compressed BlockAck. */
3251static void
3252iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3253{
3254	struct iwn_tx_ring *ring;
3255	struct iwn_tx_data *data;
3256	struct iwn_node *wn;
3257	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
3258	struct ieee80211_tx_ampdu *tap;
3259	uint64_t bitmap;
3260	uint8_t tid;
3261	int i, qid, shift;
3262	int tx_ok = 0;
3263
3264	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3265
3266	qid = le16toh(ba->qid);
3267	tap = sc->qid2tap[qid];
3268	ring = &sc->txq[qid];
3269	tid = tap->txa_tid;
3270	wn = (void *)tap->txa_ni;
3271
3272	DPRINTF(sc, IWN_DEBUG_AMPDU, "%s: qid %d tid %d seq %04X ssn %04X\n"
3273	    "bitmap: ba %016jX wn %016jX, start %d\n",
3274	    __func__, qid, tid, le16toh(ba->seq), le16toh(ba->ssn),
3275	    (uintmax_t)le64toh(ba->bitmap), (uintmax_t)wn->agg[tid].bitmap,
3276	    wn->agg[tid].startidx);
3277
3278	if (wn->agg[tid].bitmap == 0)
3279		return;
3280
3281	shift = wn->agg[tid].startidx - ((le16toh(ba->seq) >> 4) & 0xff);
3282	if (shift <= -64)
3283		shift += 0x100;
3284
3285	/*
3286	 * Walk the bitmap and calculate how many successful attempts
3287	 * are made.
3288	 *
3289	 * Yes, the rate control code doesn't know these are A-MPDU
3290	 * subframes; due to that long_retries stats are not used here.
3291	 */
3292	bitmap = le64toh(ba->bitmap);
3293	if (shift >= 0)
3294		bitmap >>= shift;
3295	else
3296		bitmap <<= -shift;
3297	bitmap &= wn->agg[tid].bitmap;
3298	wn->agg[tid].bitmap = 0;
3299
3300	for (i = wn->agg[tid].startidx;
3301	     bitmap;
3302	     bitmap >>= 1, i = (i + 1) % IWN_TX_RING_COUNT) {
3303		if ((bitmap & 1) == 0)
3304			continue;
3305
3306		data = &ring->data[i];
3307		if (__predict_false(data->m == NULL)) {
3308			/*
3309			 * There is no frame; skip this entry.
3310			 *
3311			 * NB: it is "ok" to have both
3312			 * 'tx done' + 'compressed BA' replies for frame
3313			 * with STATE_SCD_QUERY status.
3314			 */
3315			DPRINTF(sc, IWN_DEBUG_AMPDU,
3316			    "%s: ring %d: no entry %d\n", __func__, qid, i);
3317			continue;
3318		}
3319
3320		tx_ok++;
3321		iwn_agg_tx_complete(sc, ring, tid, i, 1);
3322	}
3323
3324	ring->queued -= tx_ok;
3325	iwn_check_tx_ring(sc, qid);
3326
3327	DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_AMPDU,
3328	    "->%s: end; %d ok\n",__func__, tx_ok);
3329}
3330
3331/*
3332 * Process a CALIBRATION_RESULT notification sent by the initialization
3333 * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
3334 */
3335static void
3336iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3337{
3338	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
3339	int len, idx = -1;
3340
3341	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3342
3343	/* Runtime firmware should not send such a notification. */
3344	if (sc->sc_flags & IWN_FLAG_CALIB_DONE){
3345		DPRINTF(sc, IWN_DEBUG_TRACE,
3346		    "->%s received after calib done\n", __func__);
3347		return;
3348	}
3349	len = (le32toh(desc->len) & 0x3fff) - 4;
3350
3351	switch (calib->code) {
3352	case IWN5000_PHY_CALIB_DC:
3353		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_DC)
3354			idx = 0;
3355		break;
3356	case IWN5000_PHY_CALIB_LO:
3357		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_LO)
3358			idx = 1;
3359		break;
3360	case IWN5000_PHY_CALIB_TX_IQ:
3361		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ)
3362			idx = 2;
3363		break;
3364	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
3365		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ_PERIODIC)
3366			idx = 3;
3367		break;
3368	case IWN5000_PHY_CALIB_BASE_BAND:
3369		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_BASE_BAND)
3370			idx = 4;
3371		break;
3372	}
3373	if (idx == -1)	/* Ignore other results. */
3374		return;
3375
3376	/* Save calibration result. */
3377	if (sc->calibcmd[idx].buf != NULL)
3378		free(sc->calibcmd[idx].buf, M_DEVBUF);
3379	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
3380	if (sc->calibcmd[idx].buf == NULL) {
3381		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3382		    "not enough memory for calibration result %d\n",
3383		    calib->code);
3384		return;
3385	}
3386	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3387	    "saving calibration result idx=%d, code=%d len=%d\n", idx, calib->code, len);
3388	sc->calibcmd[idx].len = len;
3389	memcpy(sc->calibcmd[idx].buf, calib, len);
3390}
3391
3392static void
3393iwn_stats_update(struct iwn_softc *sc, struct iwn_calib_state *calib,
3394    struct iwn_stats *stats, int len)
3395{
3396	struct iwn_stats_bt *stats_bt;
3397	struct iwn_stats *lstats;
3398
3399	/*
3400	 * First - check whether the length is the bluetooth or normal.
3401	 *
3402	 * If it's normal - just copy it and bump out.
3403	 * Otherwise we have to convert things.
3404	 */
3405
3406	if (len == sizeof(struct iwn_stats) + 4) {
3407		memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats));
3408		sc->last_stat_valid = 1;
3409		return;
3410	}
3411
3412	/*
3413	 * If it's not the bluetooth size - log, then just copy.
3414	 */
3415	if (len != sizeof(struct iwn_stats_bt) + 4) {
3416		DPRINTF(sc, IWN_DEBUG_STATS,
3417		    "%s: size of rx statistics (%d) not an expected size!\n",
3418		    __func__,
3419		    len);
3420		memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats));
3421		sc->last_stat_valid = 1;
3422		return;
3423	}
3424
3425	/*
3426	 * Ok. Time to copy.
3427	 */
3428	stats_bt = (struct iwn_stats_bt *) stats;
3429	lstats = &sc->last_stat;
3430
3431	/* flags */
3432	lstats->flags = stats_bt->flags;
3433	/* rx_bt */
3434	memcpy(&lstats->rx.ofdm, &stats_bt->rx_bt.ofdm,
3435	    sizeof(struct iwn_rx_phy_stats));
3436	memcpy(&lstats->rx.cck, &stats_bt->rx_bt.cck,
3437	    sizeof(struct iwn_rx_phy_stats));
3438	memcpy(&lstats->rx.general, &stats_bt->rx_bt.general_bt.common,
3439	    sizeof(struct iwn_rx_general_stats));
3440	memcpy(&lstats->rx.ht, &stats_bt->rx_bt.ht,
3441	    sizeof(struct iwn_rx_ht_phy_stats));
3442	/* tx */
3443	memcpy(&lstats->tx, &stats_bt->tx,
3444	    sizeof(struct iwn_tx_stats));
3445	/* general */
3446	memcpy(&lstats->general, &stats_bt->general,
3447	    sizeof(struct iwn_general_stats));
3448
3449	/* XXX TODO: Squirrel away the extra bluetooth stats somewhere */
3450	sc->last_stat_valid = 1;
3451}
3452
3453/*
3454 * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
3455 * The latter is sent by the firmware after each received beacon.
3456 */
3457static void
3458iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3459{
3460	struct iwn_ops *ops = &sc->ops;
3461	struct ieee80211com *ic = &sc->sc_ic;
3462	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3463	struct iwn_calib_state *calib = &sc->calib;
3464	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
3465	struct iwn_stats *lstats;
3466	int temp;
3467
3468	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3469
3470	/* Ignore statistics received during a scan. */
3471	if (vap->iv_state != IEEE80211_S_RUN ||
3472	    (ic->ic_flags & IEEE80211_F_SCAN)){
3473		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received during calib\n",
3474	    __func__);
3475		return;
3476	}
3477
3478	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_STATS,
3479	    "%s: received statistics, cmd %d, len %d\n",
3480	    __func__, desc->type, le16toh(desc->len));
3481	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
3482
3483	/*
3484	 * Collect/track general statistics for reporting.
3485	 *
3486	 * This takes care of ensuring that the bluetooth sized message
3487	 * will be correctly converted to the legacy sized message.
3488	 */
3489	iwn_stats_update(sc, calib, stats, le16toh(desc->len));
3490
3491	/*
3492	 * And now, let's take a reference of it to use!
3493	 */
3494	lstats = &sc->last_stat;
3495
3496	/* Test if temperature has changed. */
3497	if (lstats->general.temp != sc->rawtemp) {
3498		/* Convert "raw" temperature to degC. */
3499		sc->rawtemp = stats->general.temp;
3500		temp = ops->get_temperature(sc);
3501		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n",
3502		    __func__, temp);
3503
3504		/* Update TX power if need be (4965AGN only). */
3505		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3506			iwn4965_power_calibration(sc, temp);
3507	}
3508
3509	if (desc->type != IWN_BEACON_STATISTICS)
3510		return;	/* Reply to a statistics request. */
3511
3512	sc->noise = iwn_get_noise(&lstats->rx.general);
3513	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise);
3514
3515	/* Test that RSSI and noise are present in stats report. */
3516	if (le32toh(lstats->rx.general.flags) != 1) {
3517		DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
3518		    "received statistics without RSSI");
3519		return;
3520	}
3521
3522	if (calib->state == IWN_CALIB_STATE_ASSOC)
3523		iwn_collect_noise(sc, &lstats->rx.general);
3524	else if (calib->state == IWN_CALIB_STATE_RUN) {
3525		iwn_tune_sensitivity(sc, &lstats->rx);
3526		/*
3527		 * XXX TODO: Only run the RX recovery if we're associated!
3528		 */
3529		iwn_check_rx_recovery(sc, lstats);
3530		iwn_save_stats_counters(sc, lstats);
3531	}
3532
3533	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3534}
3535
3536/*
3537 * Save the relevant statistic counters for the next calibration
3538 * pass.
3539 */
3540static void
3541iwn_save_stats_counters(struct iwn_softc *sc, const struct iwn_stats *rs)
3542{
3543	struct iwn_calib_state *calib = &sc->calib;
3544
3545	/* Save counters values for next call. */
3546	calib->bad_plcp_cck = le32toh(rs->rx.cck.bad_plcp);
3547	calib->fa_cck = le32toh(rs->rx.cck.fa);
3548	calib->bad_plcp_ht = le32toh(rs->rx.ht.bad_plcp);
3549	calib->bad_plcp_ofdm = le32toh(rs->rx.ofdm.bad_plcp);
3550	calib->fa_ofdm = le32toh(rs->rx.ofdm.fa);
3551
3552	/* Last time we received these tick values */
3553	sc->last_calib_ticks = ticks;
3554}
3555
3556/*
3557 * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
3558 * and 5000 adapters have different incompatible TX status formats.
3559 */
3560static void
3561iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3562    struct iwn_rx_data *data)
3563{
3564	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
3565	int qid = desc->qid & IWN_RX_DESC_QID_MSK;
3566
3567	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3568	    "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n",
3569	    __func__, desc->qid, desc->idx,
3570	    stat->rtsfailcnt,
3571	    stat->ackfailcnt,
3572	    stat->btkillcnt,
3573	    stat->rate, le16toh(stat->duration),
3574	    le32toh(stat->status));
3575
3576	if (qid >= sc->firstaggqueue && stat->nframes != 1) {
3577		iwn_ampdu_tx_done(sc, qid, stat->nframes, stat->rtsfailcnt,
3578		    &stat->status);
3579	} else {
3580		iwn_tx_done(sc, desc, stat->rtsfailcnt, stat->ackfailcnt,
3581		    le32toh(stat->status) & 0xff);
3582	}
3583}
3584
3585static void
3586iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3587    struct iwn_rx_data *data)
3588{
3589	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
3590	int qid = desc->qid & IWN_RX_DESC_QID_MSK;
3591
3592	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3593	    "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n",
3594	    __func__, desc->qid, desc->idx,
3595	    stat->rtsfailcnt,
3596	    stat->ackfailcnt,
3597	    stat->btkillcnt,
3598	    stat->rate, le16toh(stat->duration),
3599	    le32toh(stat->status));
3600
3601#ifdef notyet
3602	/* Reset TX scheduler slot. */
3603	iwn5000_reset_sched(sc, qid, desc->idx);
3604#endif
3605
3606	if (qid >= sc->firstaggqueue && stat->nframes != 1) {
3607		iwn_ampdu_tx_done(sc, qid, stat->nframes, stat->rtsfailcnt,
3608		    &stat->status);
3609	} else {
3610		iwn_tx_done(sc, desc, stat->rtsfailcnt, stat->ackfailcnt,
3611		    le16toh(stat->status) & 0xff);
3612	}
3613}
3614
3615static void
3616iwn_adj_ampdu_ptr(struct iwn_softc *sc, struct iwn_tx_ring *ring)
3617{
3618	int i;
3619
3620	for (i = ring->read; i != ring->cur; i = (i + 1) % IWN_TX_RING_COUNT) {
3621		struct iwn_tx_data *data = &ring->data[i];
3622
3623		if (data->m != NULL)
3624			break;
3625
3626		data->remapped = 0;
3627	}
3628
3629	ring->read = i;
3630}
3631
3632/*
3633 * Adapter-independent backend for TX_DONE firmware notifications.
3634 */
3635static void
3636iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int rtsfailcnt,
3637    int ackfailcnt, uint8_t status)
3638{
3639	struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs;
3640	struct iwn_tx_ring *ring = &sc->txq[desc->qid & IWN_RX_DESC_QID_MSK];
3641	struct iwn_tx_data *data = &ring->data[desc->idx];
3642	struct mbuf *m;
3643	struct ieee80211_node *ni;
3644
3645	if (__predict_false(data->m == NULL &&
3646	    ring->qid >= sc->firstaggqueue)) {
3647		/*
3648		 * There is no frame; skip this entry.
3649		 */
3650		DPRINTF(sc, IWN_DEBUG_AMPDU, "%s: ring %d: no entry %d\n",
3651		    __func__, ring->qid, desc->idx);
3652		return;
3653	}
3654
3655	KASSERT(data->ni != NULL, ("no node"));
3656	KASSERT(data->m != NULL, ("no mbuf"));
3657
3658	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3659
3660	/* Unmap and free mbuf. */
3661	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
3662	bus_dmamap_unload(ring->data_dmat, data->map);
3663	m = data->m, data->m = NULL;
3664	ni = data->ni, data->ni = NULL;
3665
3666	data->long_retries = 0;
3667
3668	if (ring->qid >= sc->firstaggqueue)
3669		iwn_adj_ampdu_ptr(sc, ring);
3670
3671	/*
3672	 * XXX f/w may hang (device timeout) when desc->idx - ring->read == 64
3673	 * (aggregation queues only).
3674	 */
3675
3676	ring->queued--;
3677	iwn_check_tx_ring(sc, ring->qid);
3678
3679	/*
3680	 * Update rate control statistics for the node.
3681	 */
3682	txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY |
3683		     IEEE80211_RATECTL_STATUS_LONG_RETRY;
3684	txs->short_retries = rtsfailcnt;
3685	txs->long_retries = ackfailcnt;
3686	if (!(status & IWN_TX_FAIL))
3687		txs->status = IEEE80211_RATECTL_TX_SUCCESS;
3688	else {
3689		switch (status) {
3690		case IWN_TX_FAIL_SHORT_LIMIT:
3691			txs->status = IEEE80211_RATECTL_TX_FAIL_SHORT;
3692			break;
3693		case IWN_TX_FAIL_LONG_LIMIT:
3694			txs->status = IEEE80211_RATECTL_TX_FAIL_LONG;
3695			break;
3696		case IWN_TX_STATUS_FAIL_LIFE_EXPIRE:
3697			txs->status = IEEE80211_RATECTL_TX_FAIL_EXPIRED;
3698			break;
3699		default:
3700			txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED;
3701			break;
3702		}
3703	}
3704	ieee80211_ratectl_tx_complete(ni, txs);
3705
3706	/*
3707	 * Channels marked for "radar" require traffic to be received
3708	 * to unlock before we can transmit.  Until traffic is seen
3709	 * any attempt to transmit is returned immediately with status
3710	 * set to IWN_TX_FAIL_TX_LOCKED.  Unfortunately this can easily
3711	 * happen on first authenticate after scanning.  To workaround
3712	 * this we ignore a failure of this sort in AUTH state so the
3713	 * 802.11 layer will fall back to using a timeout to wait for
3714	 * the AUTH reply.  This allows the firmware time to see
3715	 * traffic so a subsequent retry of AUTH succeeds.  It's
3716	 * unclear why the firmware does not maintain state for
3717	 * channels recently visited as this would allow immediate
3718	 * use of the channel after a scan (where we see traffic).
3719	 */
3720	if (status == IWN_TX_FAIL_TX_LOCKED &&
3721	    ni->ni_vap->iv_state == IEEE80211_S_AUTH)
3722		ieee80211_tx_complete(ni, m, 0);
3723	else
3724		ieee80211_tx_complete(ni, m,
3725		    (status & IWN_TX_FAIL) != 0);
3726
3727	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3728}
3729
3730/*
3731 * Process a "command done" firmware notification.  This is where we wakeup
3732 * processes waiting for a synchronous command completion.
3733 */
3734static void
3735iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3736{
3737	struct iwn_tx_ring *ring;
3738	struct iwn_tx_data *data;
3739	int cmd_queue_num;
3740
3741	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
3742		cmd_queue_num = IWN_PAN_CMD_QUEUE;
3743	else
3744		cmd_queue_num = IWN_CMD_QUEUE_NUM;
3745
3746	if ((desc->qid & IWN_RX_DESC_QID_MSK) != cmd_queue_num)
3747		return;	/* Not a command ack. */
3748
3749	ring = &sc->txq[cmd_queue_num];
3750	data = &ring->data[desc->idx];
3751
3752	/* If the command was mapped in an mbuf, free it. */
3753	if (data->m != NULL) {
3754		bus_dmamap_sync(ring->data_dmat, data->map,
3755		    BUS_DMASYNC_POSTWRITE);
3756		bus_dmamap_unload(ring->data_dmat, data->map);
3757		m_freem(data->m);
3758		data->m = NULL;
3759	}
3760	wakeup(&ring->desc[desc->idx]);
3761}
3762
3763static int
3764iwn_ampdu_check_bitmap(uint64_t bitmap, int start, int idx)
3765{
3766	int bit, shift;
3767
3768	bit = idx - start;
3769	shift = 0;
3770	if (bit >= 64) {
3771		shift = 0x100 - bit;
3772		bit = 0;
3773	} else if (bit <= -64)
3774		bit = 0x100 + bit;
3775	else if (bit < 0) {
3776		shift = -bit;
3777		bit = 0;
3778	}
3779
3780	if (bit - shift >= 64)
3781		return (0);
3782
3783	return ((bitmap & (1ULL << (bit - shift))) != 0);
3784}
3785
3786/*
3787 * Firmware bug workaround: in case if 'retries' counter
3788 * overflows 'seqno' field will be incremented:
3789 *    status|sequence|status|sequence|status|sequence
3790 *     0000    0A48    0001    0A49    0000    0A6A
3791 *     1000    0A48    1000    0A49    1000    0A6A
3792 *     2000    0A48    2000    0A49    2000    0A6A
3793 * ...
3794 *     E000    0A48    E000    0A49    E000    0A6A
3795 *     F000    0A48    F000    0A49    F000    0A6A
3796 *     0000    0A49    0000    0A49    0000    0A6B
3797 *     1000    0A49    1000    0A49    1000    0A6B
3798 * ...
3799 *     D000    0A49    D000    0A49    D000    0A6B
3800 *     E000    0A49    E001    0A49    E000    0A6B
3801 *     F000    0A49    F001    0A49    F000    0A6B
3802 *     0000    0A4A    0000    0A4B    0000    0A6A
3803 *     1000    0A4A    1000    0A4B    1000    0A6A
3804 * ...
3805 *
3806 * Odd 'seqno' numbers are incremened by 2 every 2 overflows.
3807 * For even 'seqno' % 4 != 0 overflow is cyclic (0 -> +1 -> 0).
3808 * Not checked with nretries >= 64.
3809 *
3810 */
3811static int
3812iwn_ampdu_index_check(struct iwn_softc *sc, struct iwn_tx_ring *ring,
3813    uint64_t bitmap, int start, int idx)
3814{
3815	struct ieee80211com *ic = &sc->sc_ic;
3816	struct iwn_tx_data *data;
3817	int diff, min_retries, max_retries, new_idx, loop_end;
3818
3819	new_idx = idx - IWN_LONG_RETRY_LIMIT_LOG;
3820	if (new_idx < 0)
3821		new_idx += IWN_TX_RING_COUNT;
3822
3823	/*
3824	 * Corner case: check if retry count is not too big;
3825	 * reset device otherwise.
3826	 */
3827	if (!iwn_ampdu_check_bitmap(bitmap, start, new_idx)) {
3828		data = &ring->data[new_idx];
3829		if (data->long_retries > IWN_LONG_RETRY_LIMIT) {
3830			device_printf(sc->sc_dev,
3831			    "%s: retry count (%d) for idx %d/%d overflow, "
3832			    "resetting...\n", __func__, data->long_retries,
3833			    ring->qid, new_idx);
3834			ieee80211_restart_all(ic);
3835			return (-1);
3836		}
3837	}
3838
3839	/* Correct index if needed. */
3840	loop_end = idx;
3841	do {
3842		data = &ring->data[new_idx];
3843		diff = idx - new_idx;
3844		if (diff < 0)
3845			diff += IWN_TX_RING_COUNT;
3846
3847		min_retries = IWN_LONG_RETRY_FW_OVERFLOW * diff;
3848		if ((new_idx % 2) == 0)
3849			max_retries = IWN_LONG_RETRY_FW_OVERFLOW * (diff + 1);
3850		else
3851			max_retries = IWN_LONG_RETRY_FW_OVERFLOW * (diff + 2);
3852
3853		if (!iwn_ampdu_check_bitmap(bitmap, start, new_idx) &&
3854		    ((data->long_retries >= min_retries &&
3855		      data->long_retries < max_retries) ||
3856		     (diff == 1 &&
3857		      (new_idx & 0x03) == 0x02 &&
3858		      data->long_retries >= IWN_LONG_RETRY_FW_OVERFLOW))) {
3859			DPRINTF(sc, IWN_DEBUG_AMPDU,
3860			    "%s: correcting index %d -> %d in queue %d"
3861			    " (retries %d)\n", __func__, idx, new_idx,
3862			    ring->qid, data->long_retries);
3863			return (new_idx);
3864		}
3865
3866		new_idx = (new_idx + 1) % IWN_TX_RING_COUNT;
3867	} while (new_idx != loop_end);
3868
3869	return (idx);
3870}
3871
3872static void
3873iwn_ampdu_tx_done(struct iwn_softc *sc, int qid, int nframes, int rtsfailcnt,
3874    void *stat)
3875{
3876	struct iwn_tx_ring *ring = &sc->txq[qid];
3877	struct ieee80211_tx_ampdu *tap = sc->qid2tap[qid];
3878	struct iwn_node *wn = (void *)tap->txa_ni;
3879	struct iwn_tx_data *data;
3880	uint64_t bitmap = 0;
3881	uint16_t *aggstatus = stat;
3882	uint8_t tid = tap->txa_tid;
3883	int bit, i, idx, shift, start, tx_err;
3884
3885	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3886
3887	start = le16toh(*(aggstatus + nframes * 2)) & 0xff;
3888
3889	for (i = 0; i < nframes; i++) {
3890		uint16_t status = le16toh(aggstatus[i * 2]);
3891
3892		if (status & IWN_AGG_TX_STATE_IGNORE_MASK)
3893			continue;
3894
3895		idx = le16toh(aggstatus[i * 2 + 1]) & 0xff;
3896		data = &ring->data[idx];
3897		if (data->remapped) {
3898			idx = iwn_ampdu_index_check(sc, ring, bitmap, start, idx);
3899			if (idx == -1) {
3900				/* skip error (device will be restarted anyway). */
3901				continue;
3902			}
3903
3904			/* Index may have changed. */
3905			data = &ring->data[idx];
3906		}
3907
3908		/*
3909		 * XXX Sometimes (rarely) some frames are excluded from events.
3910		 * XXX Due to that long_retries counter may be wrong.
3911		 */
3912		data->long_retries &= ~0x0f;
3913		data->long_retries += IWN_AGG_TX_TRY_COUNT(status) + 1;
3914
3915		if (data->long_retries >= IWN_LONG_RETRY_FW_OVERFLOW) {
3916			int diff, wrong_idx;
3917
3918			diff = data->long_retries / IWN_LONG_RETRY_FW_OVERFLOW;
3919			wrong_idx = (idx + diff) % IWN_TX_RING_COUNT;
3920
3921			/*
3922			 * Mark the entry so the above code will check it
3923			 * next time.
3924			 */
3925			ring->data[wrong_idx].remapped = 1;
3926		}
3927
3928		if (status & IWN_AGG_TX_STATE_UNDERRUN_MSK) {
3929			/*
3930			 * NB: count retries but postpone - it was not
3931			 * transmitted.
3932			 */
3933			continue;
3934		}
3935
3936		bit = idx - start;
3937		shift = 0;
3938		if (bit >= 64) {
3939			shift = 0x100 - bit;
3940			bit = 0;
3941		} else if (bit <= -64)
3942			bit = 0x100 + bit;
3943		else if (bit < 0) {
3944			shift = -bit;
3945			bit = 0;
3946		}
3947		bitmap = bitmap << shift;
3948		bitmap |= 1ULL << bit;
3949	}
3950	wn->agg[tid].startidx = start;
3951	wn->agg[tid].bitmap = bitmap;
3952	wn->agg[tid].short_retries = rtsfailcnt;
3953
3954	DPRINTF(sc, IWN_DEBUG_AMPDU, "%s: nframes %d start %d bitmap %016jX\n",
3955	    __func__, nframes, start, (uintmax_t)bitmap);
3956
3957	i = ring->read;
3958
3959	for (tx_err = 0;
3960	     i != wn->agg[tid].startidx;
3961	     i = (i + 1) % IWN_TX_RING_COUNT) {
3962		data = &ring->data[i];
3963		data->remapped = 0;
3964		if (data->m == NULL)
3965			continue;
3966
3967		tx_err++;
3968		iwn_agg_tx_complete(sc, ring, tid, i, 0);
3969	}
3970
3971	ring->read = wn->agg[tid].startidx;
3972	ring->queued -= tx_err;
3973
3974	iwn_check_tx_ring(sc, qid);
3975
3976	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3977}
3978
3979/*
3980 * Process an INT_FH_RX or INT_SW_RX interrupt.
3981 */
3982static void
3983iwn_notif_intr(struct iwn_softc *sc)
3984{
3985	struct iwn_ops *ops = &sc->ops;
3986	struct ieee80211com *ic = &sc->sc_ic;
3987	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3988	uint16_t hw;
3989	int is_stopped;
3990
3991	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
3992	    BUS_DMASYNC_POSTREAD);
3993
3994	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
3995	while (sc->rxq.cur != hw) {
3996		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
3997		struct iwn_rx_desc *desc;
3998
3999		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
4000		    BUS_DMASYNC_POSTREAD);
4001		desc = mtod(data->m, struct iwn_rx_desc *);
4002
4003		DPRINTF(sc, IWN_DEBUG_RECV,
4004		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
4005		    __func__, sc->rxq.cur, desc->qid & IWN_RX_DESC_QID_MSK,
4006		    desc->idx, desc->flags, desc->type,
4007		    iwn_intr_str(desc->type), le16toh(desc->len));
4008
4009		if (!(desc->qid & IWN_UNSOLICITED_RX_NOTIF))	/* Reply to a command. */
4010			iwn_cmd_done(sc, desc);
4011
4012		switch (desc->type) {
4013		case IWN_RX_PHY:
4014			iwn_rx_phy(sc, desc);
4015			break;
4016
4017		case IWN_RX_DONE:		/* 4965AGN only. */
4018		case IWN_MPDU_RX_DONE:
4019			/* An 802.11 frame has been received. */
4020			iwn_rx_done(sc, desc, data);
4021
4022			is_stopped = (sc->sc_flags & IWN_FLAG_RUNNING) == 0;
4023			if (__predict_false(is_stopped))
4024				return;
4025
4026			break;
4027
4028		case IWN_RX_COMPRESSED_BA:
4029			/* A Compressed BlockAck has been received. */
4030			iwn_rx_compressed_ba(sc, desc);
4031			break;
4032
4033		case IWN_TX_DONE:
4034			/* An 802.11 frame has been transmitted. */
4035			ops->tx_done(sc, desc, data);
4036			break;
4037
4038		case IWN_RX_STATISTICS:
4039		case IWN_BEACON_STATISTICS:
4040			iwn_rx_statistics(sc, desc);
4041			break;
4042
4043		case IWN_BEACON_MISSED:
4044		{
4045			struct iwn_beacon_missed *miss =
4046			    (struct iwn_beacon_missed *)(desc + 1);
4047			int misses;
4048
4049			misses = le32toh(miss->consecutive);
4050
4051			DPRINTF(sc, IWN_DEBUG_STATE,
4052			    "%s: beacons missed %d/%d\n", __func__,
4053			    misses, le32toh(miss->total));
4054			/*
4055			 * If more than 5 consecutive beacons are missed,
4056			 * reinitialize the sensitivity state machine.
4057			 */
4058			if (vap->iv_state == IEEE80211_S_RUN &&
4059			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
4060				if (misses > 5)
4061					(void)iwn_init_sensitivity(sc);
4062				if (misses >= vap->iv_bmissthreshold) {
4063					IWN_UNLOCK(sc);
4064					ieee80211_beacon_miss(ic);
4065					IWN_LOCK(sc);
4066
4067					is_stopped = (sc->sc_flags &
4068					    IWN_FLAG_RUNNING) == 0;
4069					if (__predict_false(is_stopped))
4070						return;
4071				}
4072			}
4073			break;
4074		}
4075		case IWN_UC_READY:
4076		{
4077			struct iwn_ucode_info *uc =
4078			    (struct iwn_ucode_info *)(desc + 1);
4079
4080			/* The microcontroller is ready. */
4081			DPRINTF(sc, IWN_DEBUG_RESET,
4082			    "microcode alive notification version=%d.%d "
4083			    "subtype=%x alive=%x\n", uc->major, uc->minor,
4084			    uc->subtype, le32toh(uc->valid));
4085
4086			if (le32toh(uc->valid) != 1) {
4087				device_printf(sc->sc_dev,
4088				    "microcontroller initialization failed");
4089				break;
4090			}
4091			if (uc->subtype == IWN_UCODE_INIT) {
4092				/* Save microcontroller report. */
4093				memcpy(&sc->ucode_info, uc, sizeof (*uc));
4094			}
4095			/* Save the address of the error log in SRAM. */
4096			sc->errptr = le32toh(uc->errptr);
4097			break;
4098		}
4099#ifdef IWN_DEBUG
4100		case IWN_STATE_CHANGED:
4101		{
4102			/*
4103			 * State change allows hardware switch change to be
4104			 * noted. However, we handle this in iwn_intr as we
4105			 * get both the enable/disble intr.
4106			 */
4107			uint32_t *status = (uint32_t *)(desc + 1);
4108			DPRINTF(sc, IWN_DEBUG_INTR | IWN_DEBUG_STATE,
4109			    "state changed to %x\n",
4110			    le32toh(*status));
4111			break;
4112		}
4113		case IWN_START_SCAN:
4114		{
4115			struct iwn_start_scan *scan =
4116			    (struct iwn_start_scan *)(desc + 1);
4117			DPRINTF(sc, IWN_DEBUG_ANY,
4118			    "%s: scanning channel %d status %x\n",
4119			    __func__, scan->chan, le32toh(scan->status));
4120			break;
4121		}
4122#endif
4123		case IWN_STOP_SCAN:
4124		{
4125#ifdef	IWN_DEBUG
4126			struct iwn_stop_scan *scan =
4127			    (struct iwn_stop_scan *)(desc + 1);
4128			DPRINTF(sc, IWN_DEBUG_STATE | IWN_DEBUG_SCAN,
4129			    "scan finished nchan=%d status=%d chan=%d\n",
4130			    scan->nchan, scan->status, scan->chan);
4131#endif
4132			sc->sc_is_scanning = 0;
4133			callout_stop(&sc->scan_timeout);
4134			IWN_UNLOCK(sc);
4135			ieee80211_scan_next(vap);
4136			IWN_LOCK(sc);
4137
4138			is_stopped = (sc->sc_flags & IWN_FLAG_RUNNING) == 0;
4139			if (__predict_false(is_stopped))
4140				return;
4141
4142			break;
4143		}
4144		case IWN5000_CALIBRATION_RESULT:
4145			iwn5000_rx_calib_results(sc, desc);
4146			break;
4147
4148		case IWN5000_CALIBRATION_DONE:
4149			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
4150			wakeup(sc);
4151			break;
4152		}
4153
4154		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
4155	}
4156
4157	/* Tell the firmware what we have processed. */
4158	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
4159	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
4160}
4161
4162/*
4163 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
4164 * from power-down sleep mode.
4165 */
4166static void
4167iwn_wakeup_intr(struct iwn_softc *sc)
4168{
4169	int qid;
4170
4171	DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n",
4172	    __func__);
4173
4174	/* Wakeup RX and TX rings. */
4175	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
4176	for (qid = 0; qid < sc->ntxqs; qid++) {
4177		struct iwn_tx_ring *ring = &sc->txq[qid];
4178		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
4179	}
4180}
4181
4182static void
4183iwn_rftoggle_task(void *arg, int npending)
4184{
4185	struct iwn_softc *sc = arg;
4186	struct ieee80211com *ic = &sc->sc_ic;
4187	uint32_t tmp;
4188
4189	IWN_LOCK(sc);
4190	tmp = IWN_READ(sc, IWN_GP_CNTRL);
4191	IWN_UNLOCK(sc);
4192
4193	device_printf(sc->sc_dev, "RF switch: radio %s\n",
4194	    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
4195	if (!(tmp & IWN_GP_CNTRL_RFKILL)) {
4196		ieee80211_suspend_all(ic);
4197
4198		/* Enable interrupts to get RF toggle notification. */
4199		IWN_LOCK(sc);
4200		IWN_WRITE(sc, IWN_INT, 0xffffffff);
4201		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
4202		IWN_UNLOCK(sc);
4203	} else
4204		ieee80211_resume_all(ic);
4205}
4206
4207/*
4208 * Dump the error log of the firmware when a firmware panic occurs.  Although
4209 * we can't debug the firmware because it is neither open source nor free, it
4210 * can help us to identify certain classes of problems.
4211 */
4212static void
4213iwn_fatal_intr(struct iwn_softc *sc)
4214{
4215	struct iwn_fw_dump dump;
4216	int i;
4217
4218	IWN_LOCK_ASSERT(sc);
4219
4220	/* Force a complete recalibration on next init. */
4221	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
4222
4223	/* Check that the error log address is valid. */
4224	if (sc->errptr < IWN_FW_DATA_BASE ||
4225	    sc->errptr + sizeof (dump) >
4226	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
4227		printf("%s: bad firmware error log address 0x%08x\n", __func__,
4228		    sc->errptr);
4229		return;
4230	}
4231	if (iwn_nic_lock(sc) != 0) {
4232		printf("%s: could not read firmware error log\n", __func__);
4233		return;
4234	}
4235	/* Read firmware error log from SRAM. */
4236	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
4237	    sizeof (dump) / sizeof (uint32_t));
4238	iwn_nic_unlock(sc);
4239
4240	if (dump.valid == 0) {
4241		printf("%s: firmware error log is empty\n", __func__);
4242		return;
4243	}
4244	printf("firmware error log:\n");
4245	printf("  error type      = \"%s\" (0x%08X)\n",
4246	    (dump.id < nitems(iwn_fw_errmsg)) ?
4247		iwn_fw_errmsg[dump.id] : "UNKNOWN",
4248	    dump.id);
4249	printf("  program counter = 0x%08X\n", dump.pc);
4250	printf("  source line     = 0x%08X\n", dump.src_line);
4251	printf("  error data      = 0x%08X%08X\n",
4252	    dump.error_data[0], dump.error_data[1]);
4253	printf("  branch link     = 0x%08X%08X\n",
4254	    dump.branch_link[0], dump.branch_link[1]);
4255	printf("  interrupt link  = 0x%08X%08X\n",
4256	    dump.interrupt_link[0], dump.interrupt_link[1]);
4257	printf("  time            = %u\n", dump.time[0]);
4258
4259	/* Dump driver status (TX and RX rings) while we're here. */
4260	printf("driver status:\n");
4261	for (i = 0; i < sc->ntxqs; i++) {
4262		struct iwn_tx_ring *ring = &sc->txq[i];
4263		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
4264		    i, ring->qid, ring->cur, ring->queued);
4265	}
4266	printf("  rx ring: cur=%d\n", sc->rxq.cur);
4267}
4268
4269static void
4270iwn_intr(void *arg)
4271{
4272	struct iwn_softc *sc = arg;
4273	uint32_t r1, r2, tmp;
4274
4275	IWN_LOCK(sc);
4276
4277#ifndef __HAIKU__
4278	/* Disable interrupts. */
4279	IWN_WRITE(sc, IWN_INT_MASK, 0);
4280
4281	/* Read interrupts from ICT (fast) or from registers (slow). */
4282	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
4283		bus_dmamap_sync(sc->ict_dma.tag, sc->ict_dma.map,
4284		    BUS_DMASYNC_POSTREAD);
4285		tmp = 0;
4286		while (sc->ict[sc->ict_cur] != 0) {
4287			tmp |= sc->ict[sc->ict_cur];
4288			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
4289			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
4290		}
4291		tmp = le32toh(tmp);
4292		if (tmp == 0xffffffff)	/* Shouldn't happen. */
4293			tmp = 0;
4294		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
4295			tmp |= 0x8000;
4296		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
4297		r2 = 0;	/* Unused. */
4298	} else {
4299		r1 = IWN_READ(sc, IWN_INT);
4300		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) {
4301			IWN_UNLOCK(sc);
4302			return;	/* Hardware gone! */
4303		}
4304		r2 = IWN_READ(sc, IWN_FH_INT);
4305	}
4306#else
4307	r1 = atomic_get((int32 *)&sc->sc_intr_status_1);
4308	r2 = atomic_get((int32 *)&sc->sc_intr_status_2);
4309#endif
4310
4311	DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=0x%08x reg2=0x%08x\n"
4312    , r1, r2);
4313
4314	if (r1 == 0 && r2 == 0)
4315		goto done;	/* Interrupt not for us. */
4316
4317	/* Acknowledge interrupts. */
4318	IWN_WRITE(sc, IWN_INT, r1);
4319	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
4320		IWN_WRITE(sc, IWN_FH_INT, r2);
4321
4322	if (r1 & IWN_INT_RF_TOGGLED) {
4323		taskqueue_enqueue(sc->sc_tq, &sc->sc_rftoggle_task);
4324		goto done;
4325	}
4326	if (r1 & IWN_INT_CT_REACHED) {
4327		device_printf(sc->sc_dev, "%s: critical temperature reached!\n",
4328		    __func__);
4329	}
4330	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
4331		device_printf(sc->sc_dev, "%s: fatal firmware error\n",
4332		    __func__);
4333#ifdef	IWN_DEBUG
4334		iwn_debug_register(sc);
4335#endif
4336		/* Dump firmware error log and stop. */
4337		iwn_fatal_intr(sc);
4338
4339		taskqueue_enqueue(sc->sc_tq, &sc->sc_panic_task);
4340		goto done;
4341	}
4342	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
4343	    (r2 & IWN_FH_INT_RX)) {
4344		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
4345			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
4346				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
4347			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
4348			    IWN_INT_PERIODIC_DIS);
4349			iwn_notif_intr(sc);
4350			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
4351				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
4352				    IWN_INT_PERIODIC_ENA);
4353			}
4354		} else
4355			iwn_notif_intr(sc);
4356	}
4357
4358	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
4359		if (sc->sc_flags & IWN_FLAG_USE_ICT)
4360			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
4361		wakeup(sc);	/* FH DMA transfer completed. */
4362	}
4363
4364	if (r1 & IWN_INT_ALIVE)
4365		wakeup(sc);	/* Firmware is alive. */
4366
4367	if (r1 & IWN_INT_WAKEUP)
4368		iwn_wakeup_intr(sc);
4369
4370done:
4371	/* Re-enable interrupts. */
4372	if (sc->sc_flags & IWN_FLAG_RUNNING)
4373		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
4374
4375	IWN_UNLOCK(sc);
4376}
4377
4378/*
4379 * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
4380 * 5000 adapters use a slightly different format).
4381 */
4382static void
4383iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
4384    uint16_t len)
4385{
4386	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
4387
4388	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4389
4390	*w = htole16(len + 8);
4391	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4392	    BUS_DMASYNC_PREWRITE);
4393	if (idx < IWN_SCHED_WINSZ) {
4394		*(w + IWN_TX_RING_COUNT) = *w;
4395		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4396		    BUS_DMASYNC_PREWRITE);
4397	}
4398}
4399
4400static void
4401iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
4402    uint16_t len)
4403{
4404	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
4405
4406	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4407
4408	*w = htole16(id << 12 | (len + 8));
4409	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4410	    BUS_DMASYNC_PREWRITE);
4411	if (idx < IWN_SCHED_WINSZ) {
4412		*(w + IWN_TX_RING_COUNT) = *w;
4413		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4414		    BUS_DMASYNC_PREWRITE);
4415	}
4416}
4417
4418#ifdef notyet
4419static void
4420iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
4421{
4422	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
4423
4424	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4425
4426	*w = (*w & htole16(0xf000)) | htole16(1);
4427	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4428	    BUS_DMASYNC_PREWRITE);
4429	if (idx < IWN_SCHED_WINSZ) {
4430		*(w + IWN_TX_RING_COUNT) = *w;
4431		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4432		    BUS_DMASYNC_PREWRITE);
4433	}
4434}
4435#endif
4436
4437/*
4438 * Check whether OFDM 11g protection will be enabled for the given rate.
4439 *
4440 * The original driver code only enabled protection for OFDM rates.
4441 * It didn't check to see whether it was operating in 11a or 11bg mode.
4442 */
4443static int
4444iwn_check_rate_needs_protection(struct iwn_softc *sc,
4445    struct ieee80211vap *vap, uint8_t rate)
4446{
4447	struct ieee80211com *ic = vap->iv_ic;
4448
4449	/*
4450	 * Not in 2GHz mode? Then there's no need to enable OFDM
4451	 * 11bg protection.
4452	 */
4453	if (! IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
4454		return (0);
4455	}
4456
4457	/*
4458	 * 11bg protection not enabled? Then don't use it.
4459	 */
4460	if ((ic->ic_flags & IEEE80211_F_USEPROT) == 0)
4461		return (0);
4462
4463	/*
4464	 * If it's an 11n rate - no protection.
4465	 * We'll do it via a specific 11n check.
4466	 */
4467	if (rate & IEEE80211_RATE_MCS) {
4468		return (0);
4469	}
4470
4471	/*
4472	 * Do a rate table lookup.  If the PHY is CCK,
4473	 * don't do protection.
4474	 */
4475	if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_CCK)
4476		return (0);
4477
4478	/*
4479	 * Yup, enable protection.
4480	 */
4481	return (1);
4482}
4483
4484/*
4485 * return a value between 0 and IWN_MAX_TX_RETRIES-1 as an index into
4486 * the link quality table that reflects this particular entry.
4487 */
4488static int
4489iwn_tx_rate_to_linkq_offset(struct iwn_softc *sc, struct ieee80211_node *ni,
4490    uint8_t rate)
4491{
4492	struct ieee80211_rateset *rs;
4493	int is_11n;
4494	int nr;
4495	int i;
4496	uint8_t cmp_rate;
4497
4498	/*
4499	 * Figure out if we're using 11n or not here.
4500	 */
4501	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0)
4502		is_11n = 1;
4503	else
4504		is_11n = 0;
4505
4506	/*
4507	 * Use the correct rate table.
4508	 */
4509	if (is_11n) {
4510		rs = (struct ieee80211_rateset *) &ni->ni_htrates;
4511		nr = ni->ni_htrates.rs_nrates;
4512	} else {
4513		rs = &ni->ni_rates;
4514		nr = rs->rs_nrates;
4515	}
4516
4517	/*
4518	 * Find the relevant link quality entry in the table.
4519	 */
4520	for (i = 0; i < nr && i < IWN_MAX_TX_RETRIES - 1 ; i++) {
4521		/*
4522		 * The link quality table index starts at 0 == highest
4523		 * rate, so we walk the rate table backwards.
4524		 */
4525		cmp_rate = rs->rs_rates[(nr - 1) - i];
4526		if (rate & IEEE80211_RATE_MCS)
4527			cmp_rate |= IEEE80211_RATE_MCS;
4528
4529#if 0
4530		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: idx %d: nr=%d, rate=0x%02x, rateentry=0x%02x\n",
4531		    __func__,
4532		    i,
4533		    nr,
4534		    rate,
4535		    cmp_rate);
4536#endif
4537
4538		if (cmp_rate == rate)
4539			return (i);
4540	}
4541
4542	/* Failed? Start at the end */
4543	return (IWN_MAX_TX_RETRIES - 1);
4544}
4545
4546static int
4547iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
4548{
4549	const struct ieee80211_txparam *tp = ni->ni_txparms;
4550	struct ieee80211vap *vap = ni->ni_vap;
4551	struct ieee80211com *ic = ni->ni_ic;
4552	struct iwn_node *wn = (void *)ni;
4553	struct iwn_tx_ring *ring;
4554	struct iwn_tx_cmd *cmd;
4555	struct iwn_cmd_data *tx;
4556	struct ieee80211_frame *wh;
4557	struct ieee80211_key *k = NULL;
4558	uint32_t flags;
4559	uint16_t qos;
4560	uint8_t tid, type;
4561	int ac, totlen, rate;
4562
4563	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4564
4565	IWN_LOCK_ASSERT(sc);
4566
4567	wh = mtod(m, struct ieee80211_frame *);
4568	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4569
4570	/* Select EDCA Access Category and TX ring for this frame. */
4571	if (IEEE80211_QOS_HAS_SEQ(wh)) {
4572		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
4573		tid = qos & IEEE80211_QOS_TID;
4574	} else {
4575		qos = 0;
4576		tid = 0;
4577	}
4578
4579	/* Choose a TX rate index. */
4580	if (type == IEEE80211_FC0_TYPE_MGT ||
4581	    type == IEEE80211_FC0_TYPE_CTL ||
4582	    (m->m_flags & M_EAPOL) != 0)
4583		rate = tp->mgmtrate;
4584	else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
4585		rate = tp->mcastrate;
4586	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
4587		rate = tp->ucastrate;
4588	else {
4589		/* XXX pass pktlen */
4590		(void) ieee80211_ratectl_rate(ni, NULL, 0);
4591		rate = ni->ni_txrate;
4592	}
4593
4594	/*
4595	 * XXX TODO: Group addressed frames aren't aggregated and must
4596	 * go to the normal non-aggregation queue, and have a NONQOS TID
4597	 * assigned from net80211.
4598	 */
4599
4600	ac = M_WME_GETAC(m);
4601	if (m->m_flags & M_AMPDU_MPDU) {
4602		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac];
4603
4604		if (!IEEE80211_AMPDU_RUNNING(tap))
4605			return (EINVAL);
4606
4607		ac = *(int *)tap->txa_private;
4608	}
4609
4610	/* Encrypt the frame if need be. */
4611	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
4612		/* Retrieve key for TX. */
4613		k = ieee80211_crypto_encap(ni, m);
4614		if (k == NULL) {
4615			return ENOBUFS;
4616		}
4617		/* 802.11 header may have moved. */
4618		wh = mtod(m, struct ieee80211_frame *);
4619	}
4620	totlen = m->m_pkthdr.len;
4621
4622	if (ieee80211_radiotap_active_vap(vap)) {
4623		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4624
4625		tap->wt_flags = 0;
4626		tap->wt_rate = rate;
4627		if (k != NULL)
4628			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
4629
4630		ieee80211_radiotap_tx(vap, m);
4631	}
4632
4633	flags = 0;
4634	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4635		/* Unicast frame, check if an ACK is expected. */
4636		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
4637		    IEEE80211_QOS_ACKPOLICY_NOACK)
4638			flags |= IWN_TX_NEED_ACK;
4639	}
4640	if ((wh->i_fc[0] &
4641	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
4642	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
4643		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
4644
4645	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
4646		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
4647
4648	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
4649	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4650		/* NB: Group frames are sent using CCK in 802.11b/g. */
4651		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
4652			flags |= IWN_TX_NEED_RTS;
4653		} else if (iwn_check_rate_needs_protection(sc, vap, rate)) {
4654			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
4655				flags |= IWN_TX_NEED_CTS;
4656			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
4657				flags |= IWN_TX_NEED_RTS;
4658		} else if ((rate & IEEE80211_RATE_MCS) &&
4659			(ic->ic_htprotmode == IEEE80211_PROT_RTSCTS)) {
4660			flags |= IWN_TX_NEED_RTS;
4661		}
4662
4663		/* XXX HT protection? */
4664
4665		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
4666			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4667				/* 5000 autoselects RTS/CTS or CTS-to-self. */
4668				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
4669				flags |= IWN_TX_NEED_PROTECTION;
4670			} else
4671				flags |= IWN_TX_FULL_TXOP;
4672		}
4673	}
4674
4675	ring = &sc->txq[ac];
4676	if (m->m_flags & M_AMPDU_MPDU) {
4677		uint16_t seqno = ni->ni_txseqs[tid];
4678
4679		if (ring->queued > IWN_TX_RING_COUNT / 2 &&
4680		    (ring->cur + 1) % IWN_TX_RING_COUNT == ring->read) {
4681			DPRINTF(sc, IWN_DEBUG_AMPDU, "%s: no more space "
4682			    "(queued %d) left in %d queue!\n",
4683			    __func__, ring->queued, ac);
4684			return (ENOBUFS);
4685		}
4686
4687		/*
4688		 * Queue this frame to the hardware ring that we've
4689		 * negotiated AMPDU TX on.
4690		 *
4691		 * Note that the sequence number must match the TX slot
4692		 * being used!
4693		 */
4694		if ((seqno % 256) != ring->cur) {
4695			device_printf(sc->sc_dev,
4696			    "%s: m=%p: seqno (%d) (%d) != ring index (%d) !\n",
4697			    __func__,
4698			    m,
4699			    seqno,
4700			    seqno % 256,
4701			    ring->cur);
4702
4703			/* XXX until D9195 will not be committed */
4704			ni->ni_txseqs[tid] &= ~0xff;
4705			ni->ni_txseqs[tid] += ring->cur;
4706			seqno = ni->ni_txseqs[tid];
4707		}
4708
4709		*(uint16_t *)wh->i_seq =
4710		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
4711		ni->ni_txseqs[tid]++;
4712	}
4713
4714	/* Prepare TX firmware command. */
4715	cmd = &ring->cmd[ring->cur];
4716	tx = (struct iwn_cmd_data *)cmd->data;
4717
4718	/* NB: No need to clear tx, all fields are reinitialized here. */
4719	tx->scratch = 0;	/* clear "scratch" area */
4720
4721	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
4722	    type != IEEE80211_FC0_TYPE_DATA)
4723		tx->id = sc->broadcast_id;
4724	else
4725		tx->id = wn->id;
4726
4727	if (type == IEEE80211_FC0_TYPE_MGT) {
4728		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4729
4730		/* Tell HW to set timestamp in probe responses. */
4731		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4732			flags |= IWN_TX_INSERT_TSTAMP;
4733		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4734		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4735			tx->timeout = htole16(3);
4736		else
4737			tx->timeout = htole16(2);
4738	} else
4739		tx->timeout = htole16(0);
4740
4741	if (tx->id == sc->broadcast_id) {
4742		/* Group or management frame. */
4743		tx->linkq = 0;
4744	} else {
4745		tx->linkq = iwn_tx_rate_to_linkq_offset(sc, ni, rate);
4746		flags |= IWN_TX_LINKQ;	/* enable MRR */
4747	}
4748
4749	tx->tid = tid;
4750	tx->rts_ntries = 60;
4751	tx->data_ntries = 15;
4752	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4753	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4754	tx->security = 0;
4755	tx->flags = htole32(flags);
4756
4757	return (iwn_tx_cmd(sc, m, ni, ring));
4758}
4759
4760static int
4761iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m,
4762    struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
4763{
4764	struct ieee80211vap *vap = ni->ni_vap;
4765	struct iwn_tx_cmd *cmd;
4766	struct iwn_cmd_data *tx;
4767	struct ieee80211_frame *wh;
4768	struct iwn_tx_ring *ring;
4769	uint32_t flags;
4770	int ac, rate;
4771	uint8_t type;
4772
4773	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4774
4775	IWN_LOCK_ASSERT(sc);
4776
4777	wh = mtod(m, struct ieee80211_frame *);
4778	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4779
4780	ac = params->ibp_pri & 3;
4781
4782	/* Choose a TX rate. */
4783	rate = params->ibp_rate0;
4784
4785	flags = 0;
4786	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
4787		flags |= IWN_TX_NEED_ACK;
4788	if (params->ibp_flags & IEEE80211_BPF_RTS) {
4789		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4790			/* 5000 autoselects RTS/CTS or CTS-to-self. */
4791			flags &= ~IWN_TX_NEED_RTS;
4792			flags |= IWN_TX_NEED_PROTECTION;
4793		} else
4794			flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
4795	}
4796	if (params->ibp_flags & IEEE80211_BPF_CTS) {
4797		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4798			/* 5000 autoselects RTS/CTS or CTS-to-self. */
4799			flags &= ~IWN_TX_NEED_CTS;
4800			flags |= IWN_TX_NEED_PROTECTION;
4801		} else
4802			flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
4803	}
4804
4805	if (ieee80211_radiotap_active_vap(vap)) {
4806		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4807
4808		tap->wt_flags = 0;
4809		tap->wt_rate = rate;
4810
4811		ieee80211_radiotap_tx(vap, m);
4812	}
4813
4814	ring = &sc->txq[ac];
4815	cmd = &ring->cmd[ring->cur];
4816
4817	tx = (struct iwn_cmd_data *)cmd->data;
4818	/* NB: No need to clear tx, all fields are reinitialized here. */
4819	tx->scratch = 0;	/* clear "scratch" area */
4820
4821	if (type == IEEE80211_FC0_TYPE_MGT) {
4822		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4823
4824		/* Tell HW to set timestamp in probe responses. */
4825		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4826			flags |= IWN_TX_INSERT_TSTAMP;
4827
4828		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4829		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4830			tx->timeout = htole16(3);
4831		else
4832			tx->timeout = htole16(2);
4833	} else
4834		tx->timeout = htole16(0);
4835
4836	tx->tid = 0;
4837	tx->id = sc->broadcast_id;
4838	tx->rts_ntries = params->ibp_try1;
4839	tx->data_ntries = params->ibp_try0;
4840	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4841	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4842	tx->security = 0;
4843	tx->flags = htole32(flags);
4844
4845	/* Group or management frame. */
4846	tx->linkq = 0;
4847
4848	return (iwn_tx_cmd(sc, m, ni, ring));
4849}
4850
4851static int
4852iwn_tx_cmd(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
4853    struct iwn_tx_ring *ring)
4854{
4855	struct iwn_ops *ops = &sc->ops;
4856	struct iwn_tx_cmd *cmd;
4857	struct iwn_cmd_data *tx;
4858	struct ieee80211_frame *wh;
4859	struct iwn_tx_desc *desc;
4860	struct iwn_tx_data *data;
4861	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
4862	struct mbuf *m1;
4863	u_int hdrlen;
4864	int totlen, error, pad, nsegs = 0, i;
4865
4866	wh = mtod(m, struct ieee80211_frame *);
4867	hdrlen = ieee80211_anyhdrsize(wh);
4868	totlen = m->m_pkthdr.len;
4869
4870	desc = &ring->desc[ring->cur];
4871	data = &ring->data[ring->cur];
4872
4873	if (__predict_false(data->m != NULL || data->ni != NULL)) {
4874		device_printf(sc->sc_dev, "%s: ni (%p) or m (%p) for idx %d "
4875		    "in queue %d is not NULL!\n", __func__, data->ni, data->m,
4876		    ring->cur, ring->qid);
4877		return EIO;
4878	}
4879
4880	/* Prepare TX firmware command. */
4881	cmd = &ring->cmd[ring->cur];
4882	cmd->code = IWN_CMD_TX_DATA;
4883	cmd->flags = 0;
4884	cmd->qid = ring->qid;
4885	cmd->idx = ring->cur;
4886
4887	tx = (struct iwn_cmd_data *)cmd->data;
4888	tx->len = htole16(totlen);
4889
4890	/* Set physical address of "scratch area". */
4891	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
4892	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
4893	if (hdrlen & 3) {
4894		/* First segment length must be a multiple of 4. */
4895		tx->flags |= htole32(IWN_TX_NEED_PADDING);
4896		pad = 4 - (hdrlen & 3);
4897	} else
4898		pad = 0;
4899
4900	/* Copy 802.11 header in TX command. */
4901	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
4902
4903	/* Trim 802.11 header. */
4904	m_adj(m, hdrlen);
4905
4906	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs,
4907	    &nsegs, BUS_DMA_NOWAIT);
4908	if (error != 0) {
4909		if (error != EFBIG) {
4910			device_printf(sc->sc_dev,
4911			    "%s: can't map mbuf (error %d)\n", __func__, error);
4912			return error;
4913		}
4914		/* Too many DMA segments, linearize mbuf. */
4915		m1 = m_collapse(m, M_NOWAIT, IWN_MAX_SCATTER - 1);
4916		if (m1 == NULL) {
4917			device_printf(sc->sc_dev,
4918			    "%s: could not defrag mbuf\n", __func__);
4919			return ENOBUFS;
4920		}
4921		m = m1;
4922
4923		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
4924		    segs, &nsegs, BUS_DMA_NOWAIT);
4925		if (error != 0) {
4926			/* XXX fix this */
4927			/*
4928			 * NB: Do not return error;
4929			 * original mbuf does not exist anymore.
4930			 */
4931			device_printf(sc->sc_dev,
4932			    "%s: can't map mbuf (error %d)\n",
4933			    __func__, error);
4934			if_inc_counter(ni->ni_vap->iv_ifp,
4935			    IFCOUNTER_OERRORS, 1);
4936			ieee80211_free_node(ni);
4937			m_freem(m);
4938			return 0;
4939		}
4940	}
4941
4942	data->m = m;
4943	data->ni = ni;
4944
4945	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d "
4946	    "plcp %d\n",
4947	    __func__, ring->qid, ring->cur, totlen, nsegs, tx->rate);
4948
4949	/* Fill TX descriptor. */
4950	desc->nsegs = 1;
4951	if (m->m_len != 0)
4952		desc->nsegs += nsegs;
4953	/* First DMA segment is used by the TX command. */
4954	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
4955	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
4956	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
4957	/* Other DMA segments are for data payload. */
4958	seg = &segs[0];
4959	for (i = 1; i <= nsegs; i++) {
4960		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
4961		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
4962		    seg->ds_len << 4);
4963		seg++;
4964	}
4965
4966	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
4967	bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map,
4968	    BUS_DMASYNC_PREWRITE);
4969	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4970	    BUS_DMASYNC_PREWRITE);
4971
4972	/* Update TX scheduler. */
4973	if (ring->qid >= sc->firstaggqueue)
4974		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
4975
4976	/* Kick TX ring. */
4977	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4978	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4979
4980	/* Mark TX ring as full if we reach a certain threshold. */
4981	if (++ring->queued > IWN_TX_RING_HIMARK)
4982		sc->qfullmsk |= 1 << ring->qid;
4983
4984	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4985
4986	return 0;
4987}
4988
4989static void
4990iwn_xmit_task(void *arg0, int pending)
4991{
4992	struct iwn_softc *sc = arg0;
4993	struct ieee80211_node *ni;
4994	struct mbuf *m;
4995	int error;
4996	struct ieee80211_bpf_params p;
4997	int have_p;
4998
4999	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: called\n", __func__);
5000
5001	IWN_LOCK(sc);
5002	/*
5003	 * Dequeue frames, attempt to transmit,
5004	 * then disable beaconwait when we're done.
5005	 */
5006	while ((m = mbufq_dequeue(&sc->sc_xmit_queue)) != NULL) {
5007		have_p = 0;
5008		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
5009
5010		/* Get xmit params if appropriate */
5011		if (ieee80211_get_xmit_params(m, &p) == 0)
5012			have_p = 1;
5013
5014		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: m=%p, have_p=%d\n",
5015		    __func__, m, have_p);
5016
5017		/* If we have xmit params, use them */
5018		if (have_p)
5019			error = iwn_tx_data_raw(sc, m, ni, &p);
5020		else
5021			error = iwn_tx_data(sc, m, ni);
5022
5023		if (error != 0) {
5024			if_inc_counter(ni->ni_vap->iv_ifp,
5025			    IFCOUNTER_OERRORS, 1);
5026			ieee80211_free_node(ni);
5027			m_freem(m);
5028		}
5029	}
5030
5031	sc->sc_beacon_wait = 0;
5032	IWN_UNLOCK(sc);
5033}
5034
5035/*
5036 * raw frame xmit - free node/reference if failed.
5037 */
5038static int
5039iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
5040    const struct ieee80211_bpf_params *params)
5041{
5042	struct ieee80211com *ic = ni->ni_ic;
5043	struct iwn_softc *sc = ic->ic_softc;
5044	int error = 0;
5045
5046	DPRINTF(sc, IWN_DEBUG_XMIT | IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5047
5048	IWN_LOCK(sc);
5049	if ((sc->sc_flags & IWN_FLAG_RUNNING) == 0) {
5050		m_freem(m);
5051		IWN_UNLOCK(sc);
5052		return (ENETDOWN);
5053	}
5054
5055	/* queue frame if we have to */
5056	if (sc->sc_beacon_wait) {
5057		if (iwn_xmit_queue_enqueue(sc, m) != 0) {
5058			m_freem(m);
5059			IWN_UNLOCK(sc);
5060			return (ENOBUFS);
5061		}
5062		/* Queued, so just return OK */
5063		IWN_UNLOCK(sc);
5064		return (0);
5065	}
5066
5067	if (params == NULL) {
5068		/*
5069		 * Legacy path; interpret frame contents to decide
5070		 * precisely how to send the frame.
5071		 */
5072		error = iwn_tx_data(sc, m, ni);
5073	} else {
5074		/*
5075		 * Caller supplied explicit parameters to use in
5076		 * sending the frame.
5077		 */
5078		error = iwn_tx_data_raw(sc, m, ni, params);
5079	}
5080	if (error == 0)
5081		sc->sc_tx_timer = 5;
5082	else
5083		m_freem(m);
5084
5085	IWN_UNLOCK(sc);
5086
5087	DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, "->%s: end\n",__func__);
5088
5089	return (error);
5090}
5091
5092/*
5093 * transmit - don't free mbuf if failed; don't free node ref if failed.
5094 */
5095static int
5096iwn_transmit(struct ieee80211com *ic, struct mbuf *m)
5097{
5098	struct iwn_softc *sc = ic->ic_softc;
5099	struct ieee80211_node *ni;
5100	int error;
5101
5102	ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
5103
5104	IWN_LOCK(sc);
5105	if ((sc->sc_flags & IWN_FLAG_RUNNING) == 0 || sc->sc_beacon_wait) {
5106		IWN_UNLOCK(sc);
5107		return (ENXIO);
5108	}
5109
5110	if (sc->qfullmsk) {
5111		IWN_UNLOCK(sc);
5112		return (ENOBUFS);
5113	}
5114
5115	error = iwn_tx_data(sc, m, ni);
5116	if (!error)
5117		sc->sc_tx_timer = 5;
5118	IWN_UNLOCK(sc);
5119	return (error);
5120}
5121
5122static void
5123iwn_scan_timeout(void *arg)
5124{
5125	struct iwn_softc *sc = arg;
5126	struct ieee80211com *ic = &sc->sc_ic;
5127
5128	ic_printf(ic, "scan timeout\n");
5129	ieee80211_restart_all(ic);
5130}
5131
5132static void
5133iwn_watchdog(void *arg)
5134{
5135	struct iwn_softc *sc = arg;
5136	struct ieee80211com *ic = &sc->sc_ic;
5137
5138	IWN_LOCK_ASSERT(sc);
5139
5140	KASSERT(sc->sc_flags & IWN_FLAG_RUNNING, ("not running"));
5141
5142	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5143
5144	if (sc->sc_tx_timer > 0) {
5145		if (--sc->sc_tx_timer == 0) {
5146			ic_printf(ic, "device timeout\n");
5147			ieee80211_restart_all(ic);
5148			return;
5149		}
5150	}
5151	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
5152}
5153
5154static int
5155iwn_cdev_open(struct cdev *dev, int flags, int type, struct thread *td)
5156{
5157
5158	return (0);
5159}
5160
5161static int
5162iwn_cdev_close(struct cdev *dev, int flags, int type, struct thread *td)
5163{
5164
5165	return (0);
5166}
5167
5168#ifndef __HAIKU__
5169static int
5170iwn_cdev_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag,
5171    struct thread *td)
5172{
5173	int rc;
5174	struct iwn_softc *sc = dev->si_drv1;
5175	struct iwn_ioctl_data *d;
5176
5177	rc = priv_check(td, PRIV_DRIVER);
5178	if (rc != 0)
5179		return (0);
5180
5181	switch (cmd) {
5182	case SIOCGIWNSTATS:
5183		d = (struct iwn_ioctl_data *) data;
5184		IWN_LOCK(sc);
5185		/* XXX validate permissions/memory/etc? */
5186		rc = copyout(&sc->last_stat, d->dst_addr, sizeof(struct iwn_stats));
5187		IWN_UNLOCK(sc);
5188		break;
5189	case SIOCZIWNSTATS:
5190		IWN_LOCK(sc);
5191		memset(&sc->last_stat, 0, sizeof(struct iwn_stats));
5192		IWN_UNLOCK(sc);
5193		break;
5194	default:
5195		rc = EINVAL;
5196		break;
5197	}
5198	return (rc);
5199}
5200#endif
5201
5202static int
5203iwn_ioctl(struct ieee80211com *ic, u_long cmd, void *data)
5204{
5205
5206	return (ENOTTY);
5207}
5208
5209static void
5210iwn_parent(struct ieee80211com *ic)
5211{
5212	struct iwn_softc *sc = ic->ic_softc;
5213	struct ieee80211vap *vap;
5214	int error;
5215
5216	if (ic->ic_nrunning > 0) {
5217		error = iwn_init(sc);
5218
5219		switch (error) {
5220		case 0:
5221			ieee80211_start_all(ic);
5222			break;
5223		case 1:
5224			/* radio is disabled via RFkill switch */
5225			taskqueue_enqueue(sc->sc_tq, &sc->sc_rftoggle_task);
5226			break;
5227		default:
5228			vap = TAILQ_FIRST(&ic->ic_vaps);
5229			if (vap != NULL)
5230				ieee80211_stop(vap);
5231			break;
5232		}
5233	} else
5234		iwn_stop(sc);
5235}
5236
5237/*
5238 * Send a command to the firmware.
5239 */
5240static int
5241iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
5242{
5243	struct iwn_tx_ring *ring;
5244	struct iwn_tx_desc *desc;
5245	struct iwn_tx_data *data;
5246	struct iwn_tx_cmd *cmd;
5247	struct mbuf *m;
5248	bus_addr_t paddr;
5249	int totlen, error;
5250	int cmd_queue_num;
5251
5252	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5253
5254	if (async == 0)
5255		IWN_LOCK_ASSERT(sc);
5256
5257	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
5258		cmd_queue_num = IWN_PAN_CMD_QUEUE;
5259	else
5260		cmd_queue_num = IWN_CMD_QUEUE_NUM;
5261
5262	ring = &sc->txq[cmd_queue_num];
5263	desc = &ring->desc[ring->cur];
5264	data = &ring->data[ring->cur];
5265	totlen = 4 + size;
5266
5267	if (size > sizeof cmd->data) {
5268		/* Command is too large to fit in a descriptor. */
5269		if (totlen > MCLBYTES)
5270			return EINVAL;
5271		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
5272		if (m == NULL)
5273			return ENOMEM;
5274		cmd = mtod(m, struct iwn_tx_cmd *);
5275		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
5276		    totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
5277		if (error != 0) {
5278			m_freem(m);
5279			return error;
5280		}
5281		data->m = m;
5282	} else {
5283		cmd = &ring->cmd[ring->cur];
5284		paddr = data->cmd_paddr;
5285	}
5286
5287	cmd->code = code;
5288	cmd->flags = 0;
5289	cmd->qid = ring->qid;
5290	cmd->idx = ring->cur;
5291	memcpy(cmd->data, buf, size);
5292
5293	desc->nsegs = 1;
5294	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
5295	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
5296
5297	DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n",
5298	    __func__, iwn_intr_str(cmd->code), cmd->code,
5299	    cmd->flags, cmd->qid, cmd->idx);
5300
5301	if (size > sizeof cmd->data) {
5302		bus_dmamap_sync(ring->data_dmat, data->map,
5303		    BUS_DMASYNC_PREWRITE);
5304	} else {
5305		bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map,
5306		    BUS_DMASYNC_PREWRITE);
5307	}
5308	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
5309	    BUS_DMASYNC_PREWRITE);
5310
5311	/* Kick command ring. */
5312	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
5313	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
5314
5315	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5316
5317	return async ? 0 : msleep(desc, &sc->sc_mtx, PCATCH, "iwncmd", hz);
5318}
5319
5320static int
5321iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
5322{
5323	struct iwn4965_node_info hnode;
5324	caddr_t src, dst;
5325
5326	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5327
5328	/*
5329	 * We use the node structure for 5000 Series internally (it is
5330	 * a superset of the one for 4965AGN). We thus copy the common
5331	 * fields before sending the command.
5332	 */
5333	src = (caddr_t)node;
5334	dst = (caddr_t)&hnode;
5335	memcpy(dst, src, 48);
5336	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
5337	memcpy(dst + 48, src + 72, 20);
5338	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
5339}
5340
5341static int
5342iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
5343{
5344
5345	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5346
5347	/* Direct mapping. */
5348	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
5349}
5350
5351static int
5352iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
5353{
5354	struct iwn_node *wn = (void *)ni;
5355	struct ieee80211_rateset *rs;
5356	struct iwn_cmd_link_quality linkq;
5357	int i, rate, txrate;
5358	int is_11n;
5359
5360	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5361
5362	memset(&linkq, 0, sizeof linkq);
5363	linkq.id = wn->id;
5364	linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc);
5365	linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc);
5366
5367	linkq.ampdu_max = 32;		/* XXX negotiated? */
5368	linkq.ampdu_threshold = 3;
5369	linkq.ampdu_limit = htole16(4000);	/* 4ms */
5370
5371	DPRINTF(sc, IWN_DEBUG_XMIT,
5372	    "%s: 1stream antenna=0x%02x, 2stream antenna=0x%02x, ntxstreams=%d\n",
5373	    __func__,
5374	    linkq.antmsk_1stream,
5375	    linkq.antmsk_2stream,
5376	    sc->ntxchains);
5377
5378	/*
5379	 * Are we using 11n rates? Ensure the channel is
5380	 * 11n _and_ we have some 11n rates, or don't
5381	 * try.
5382	 */
5383	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0) {
5384		rs = (struct ieee80211_rateset *) &ni->ni_htrates;
5385		is_11n = 1;
5386	} else {
5387		rs = &ni->ni_rates;
5388		is_11n = 0;
5389	}
5390
5391	/* Start at highest available bit-rate. */
5392	/*
5393	 * XXX this is all very dirty!
5394	 */
5395	if (is_11n)
5396		txrate = ni->ni_htrates.rs_nrates - 1;
5397	else
5398		txrate = rs->rs_nrates - 1;
5399	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
5400		uint32_t plcp;
5401
5402		/*
5403		 * XXX TODO: ensure the last two slots are the two lowest
5404		 * rate entries, just for now.
5405		 */
5406		if (i == 14 || i == 15)
5407			txrate = 0;
5408
5409		if (is_11n)
5410			rate = IEEE80211_RATE_MCS | rs->rs_rates[txrate];
5411		else
5412			rate = IEEE80211_RV(rs->rs_rates[txrate]);
5413
5414		/* Do rate -> PLCP config mapping */
5415		plcp = iwn_rate_to_plcp(sc, ni, rate);
5416		linkq.retry[i] = plcp;
5417		DPRINTF(sc, IWN_DEBUG_XMIT,
5418		    "%s: i=%d, txrate=%d, rate=0x%02x, plcp=0x%08x\n",
5419		    __func__,
5420		    i,
5421		    txrate,
5422		    rate,
5423		    le32toh(plcp));
5424
5425		/*
5426		 * The mimo field is an index into the table which
5427		 * indicates the first index where it and subsequent entries
5428		 * will not be using MIMO.
5429		 *
5430		 * Since we're filling linkq from 0..15 and we're filling
5431		 * from the highest MCS rates to the lowest rates, if we
5432		 * _are_ doing a dual-stream rate, set mimo to idx+1 (ie,
5433		 * the next entry.)  That way if the next entry is a non-MIMO
5434		 * entry, we're already pointing at it.
5435		 */
5436		if ((le32toh(plcp) & IWN_RFLAG_MCS) &&
5437		    IEEE80211_RV(le32toh(plcp)) > 7)
5438			linkq.mimo = i + 1;
5439
5440		/* Next retry at immediate lower bit-rate. */
5441		if (txrate > 0)
5442			txrate--;
5443	}
5444	/*
5445	 * If we reached the end of the list and indeed we hit
5446	 * all MIMO rates (eg 5300 doing MCS23-15) then yes,
5447	 * set mimo to 15.  Setting it to 16 panics the firmware.
5448	 */
5449	if (linkq.mimo > 15)
5450		linkq.mimo = 15;
5451
5452	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: mimo = %d\n", __func__, linkq.mimo);
5453
5454	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5455
5456	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
5457}
5458
5459/*
5460 * Broadcast node is used to send group-addressed and management frames.
5461 */
5462static int
5463iwn_add_broadcast_node(struct iwn_softc *sc, int async)
5464{
5465	struct iwn_ops *ops = &sc->ops;
5466	struct ieee80211com *ic = &sc->sc_ic;
5467	struct iwn_node_info node;
5468	struct iwn_cmd_link_quality linkq;
5469	uint8_t txant;
5470	int i, error;
5471
5472	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5473
5474	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5475
5476	memset(&node, 0, sizeof node);
5477	IEEE80211_ADDR_COPY(node.macaddr, ieee80211broadcastaddr);
5478	node.id = sc->broadcast_id;
5479	DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__);
5480	if ((error = ops->add_node(sc, &node, async)) != 0)
5481		return error;
5482
5483	/* Use the first valid TX antenna. */
5484	txant = IWN_LSB(sc->txchainmask);
5485
5486	memset(&linkq, 0, sizeof linkq);
5487	linkq.id = sc->broadcast_id;
5488	linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc);
5489	linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc);
5490	linkq.ampdu_max = 64;
5491	linkq.ampdu_threshold = 3;
5492	linkq.ampdu_limit = htole16(4000);	/* 4ms */
5493
5494	/* Use lowest mandatory bit-rate. */
5495	/* XXX rate table lookup? */
5496	if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
5497		linkq.retry[0] = htole32(0xd);
5498	else
5499		linkq.retry[0] = htole32(10 | IWN_RFLAG_CCK);
5500	linkq.retry[0] |= htole32(IWN_RFLAG_ANT(txant));
5501	/* Use same bit-rate for all TX retries. */
5502	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
5503		linkq.retry[i] = linkq.retry[0];
5504	}
5505
5506	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5507
5508	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
5509}
5510
5511static int
5512iwn_updateedca(struct ieee80211com *ic)
5513{
5514#define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
5515	struct iwn_softc *sc = ic->ic_softc;
5516	struct iwn_edca_params cmd;
5517	struct chanAccParams chp;
5518	int aci;
5519
5520	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5521
5522	ieee80211_wme_ic_getparams(ic, &chp);
5523
5524	memset(&cmd, 0, sizeof cmd);
5525	cmd.flags = htole32(IWN_EDCA_UPDATE);
5526
5527	IEEE80211_LOCK(ic);
5528	for (aci = 0; aci < WME_NUM_AC; aci++) {
5529		const struct wmeParams *ac = &chp.cap_wmeParams[aci];
5530		cmd.ac[aci].aifsn = ac->wmep_aifsn;
5531		cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->wmep_logcwmin));
5532		cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->wmep_logcwmax));
5533		cmd.ac[aci].txoplimit =
5534		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
5535	}
5536	IEEE80211_UNLOCK(ic);
5537
5538	IWN_LOCK(sc);
5539	(void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
5540	IWN_UNLOCK(sc);
5541
5542	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5543
5544	return 0;
5545#undef IWN_EXP2
5546}
5547
5548static void
5549iwn_set_promisc(struct iwn_softc *sc)
5550{
5551	struct ieee80211com *ic = &sc->sc_ic;
5552	uint32_t promisc_filter;
5553
5554	promisc_filter = IWN_FILTER_CTL | IWN_FILTER_PROMISC;
5555	if (ic->ic_promisc > 0 || ic->ic_opmode == IEEE80211_M_MONITOR)
5556		sc->rxon->filter |= htole32(promisc_filter);
5557	else
5558		sc->rxon->filter &= ~htole32(promisc_filter);
5559}
5560
5561static void
5562iwn_update_promisc(struct ieee80211com *ic)
5563{
5564	struct iwn_softc *sc = ic->ic_softc;
5565	int error;
5566
5567	if (ic->ic_opmode == IEEE80211_M_MONITOR)
5568		return;		/* nothing to do */
5569
5570	IWN_LOCK(sc);
5571	if (!(sc->sc_flags & IWN_FLAG_RUNNING)) {
5572		IWN_UNLOCK(sc);
5573		return;
5574	}
5575
5576	iwn_set_promisc(sc);
5577	if ((error = iwn_send_rxon(sc, 1, 1)) != 0) {
5578		device_printf(sc->sc_dev,
5579		    "%s: could not send RXON, error %d\n",
5580		    __func__, error);
5581	}
5582	IWN_UNLOCK(sc);
5583}
5584
5585static void
5586iwn_update_mcast(struct ieee80211com *ic)
5587{
5588	/* Ignore */
5589}
5590
5591static void
5592iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
5593{
5594	struct iwn_cmd_led led;
5595
5596	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5597
5598#if 0
5599	/* XXX don't set LEDs during scan? */
5600	if (sc->sc_is_scanning)
5601		return;
5602#endif
5603
5604	/* Clear microcode LED ownership. */
5605	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
5606
5607	led.which = which;
5608	led.unit = htole32(10000);	/* on/off in unit of 100ms */
5609	led.off = off;
5610	led.on = on;
5611	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
5612}
5613
5614/*
5615 * Set the critical temperature at which the firmware will stop the radio
5616 * and notify us.
5617 */
5618static int
5619iwn_set_critical_temp(struct iwn_softc *sc)
5620{
5621	struct iwn_critical_temp crit;
5622	int32_t temp;
5623
5624	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5625
5626	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
5627
5628	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
5629		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
5630	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
5631		temp = IWN_CTOK(110);
5632	else
5633		temp = 110;
5634	memset(&crit, 0, sizeof crit);
5635	crit.tempR = htole32(temp);
5636	DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n", temp);
5637	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
5638}
5639
5640static int
5641iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
5642{
5643	struct iwn_cmd_timing cmd;
5644	uint64_t val, mod;
5645
5646	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5647
5648	memset(&cmd, 0, sizeof cmd);
5649	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
5650	cmd.bintval = htole16(ni->ni_intval);
5651	cmd.lintval = htole16(10);
5652
5653	/* Compute remaining time until next beacon. */
5654	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
5655	mod = le64toh(cmd.tstamp) % val;
5656	cmd.binitval = htole32((uint32_t)(val - mod));
5657
5658	DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
5659	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
5660
5661	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
5662}
5663
5664static void
5665iwn4965_power_calibration(struct iwn_softc *sc, int temp)
5666{
5667
5668	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5669
5670	/* Adjust TX power if need be (delta >= 3 degC). */
5671	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n",
5672	    __func__, sc->temp, temp);
5673	if (abs(temp - sc->temp) >= 3) {
5674		/* Record temperature of last calibration. */
5675		sc->temp = temp;
5676		(void)iwn4965_set_txpower(sc, 1);
5677	}
5678}
5679
5680/*
5681 * Set TX power for current channel (each rate has its own power settings).
5682 * This function takes into account the regulatory information from EEPROM,
5683 * the current temperature and the current voltage.
5684 */
5685static int
5686iwn4965_set_txpower(struct iwn_softc *sc, int async)
5687{
5688/* Fixed-point arithmetic division using a n-bit fractional part. */
5689#define fdivround(a, b, n)	\
5690	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
5691/* Linear interpolation. */
5692#define interpolate(x, x1, y1, x2, y2, n)	\
5693	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
5694
5695	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
5696	struct iwn_ucode_info *uc = &sc->ucode_info;
5697	struct iwn4965_cmd_txpower cmd;
5698	struct iwn4965_eeprom_chan_samples *chans;
5699	const uint8_t *rf_gain, *dsp_gain;
5700	int32_t vdiff, tdiff;
5701	int i, is_chan_5ghz, c, grp, maxpwr;
5702	uint8_t chan;
5703
5704	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5705	/* Retrieve current channel from last RXON. */
5706	chan = sc->rxon->chan;
5707	is_chan_5ghz = (sc->rxon->flags & htole32(IWN_RXON_24GHZ)) == 0;
5708	DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n",
5709	    chan);
5710
5711	memset(&cmd, 0, sizeof cmd);
5712	cmd.band = is_chan_5ghz ? 0 : 1;
5713	cmd.chan = chan;
5714
5715	if (is_chan_5ghz) {
5716		maxpwr   = sc->maxpwr5GHz;
5717		rf_gain  = iwn4965_rf_gain_5ghz;
5718		dsp_gain = iwn4965_dsp_gain_5ghz;
5719	} else {
5720		maxpwr   = sc->maxpwr2GHz;
5721		rf_gain  = iwn4965_rf_gain_2ghz;
5722		dsp_gain = iwn4965_dsp_gain_2ghz;
5723	}
5724
5725	/* Compute voltage compensation. */
5726	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
5727	if (vdiff > 0)
5728		vdiff *= 2;
5729	if (abs(vdiff) > 2)
5730		vdiff = 0;
5731	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5732	    "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
5733	    __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage);
5734
5735	/* Get channel attenuation group. */
5736	if (chan <= 20)		/* 1-20 */
5737		grp = 4;
5738	else if (chan <= 43)	/* 34-43 */
5739		grp = 0;
5740	else if (chan <= 70)	/* 44-70 */
5741		grp = 1;
5742	else if (chan <= 124)	/* 71-124 */
5743		grp = 2;
5744	else			/* 125-200 */
5745		grp = 3;
5746	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5747	    "%s: chan %d, attenuation group=%d\n", __func__, chan, grp);
5748
5749	/* Get channel sub-band. */
5750	for (i = 0; i < IWN_NBANDS; i++)
5751		if (sc->bands[i].lo != 0 &&
5752		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
5753			break;
5754	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
5755		return EINVAL;
5756	chans = sc->bands[i].chans;
5757	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5758	    "%s: chan %d sub-band=%d\n", __func__, chan, i);
5759
5760	for (c = 0; c < 2; c++) {
5761		uint8_t power, gain, temp;
5762		int maxchpwr, pwr, ridx, idx;
5763
5764		power = interpolate(chan,
5765		    chans[0].num, chans[0].samples[c][1].power,
5766		    chans[1].num, chans[1].samples[c][1].power, 1);
5767		gain  = interpolate(chan,
5768		    chans[0].num, chans[0].samples[c][1].gain,
5769		    chans[1].num, chans[1].samples[c][1].gain, 1);
5770		temp  = interpolate(chan,
5771		    chans[0].num, chans[0].samples[c][1].temp,
5772		    chans[1].num, chans[1].samples[c][1].temp, 1);
5773		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5774		    "%s: Tx chain %d: power=%d gain=%d temp=%d\n",
5775		    __func__, c, power, gain, temp);
5776
5777		/* Compute temperature compensation. */
5778		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
5779		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5780		    "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n",
5781		    __func__, tdiff, sc->temp, temp);
5782
5783		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
5784			/* Convert dBm to half-dBm. */
5785			maxchpwr = sc->maxpwr[chan] * 2;
5786			if ((ridx / 8) & 1)
5787				maxchpwr -= 6;	/* MIMO 2T: -3dB */
5788
5789			pwr = maxpwr;
5790
5791			/* Adjust TX power based on rate. */
5792			if ((ridx % 8) == 5)
5793				pwr -= 15;	/* OFDM48: -7.5dB */
5794			else if ((ridx % 8) == 6)
5795				pwr -= 17;	/* OFDM54: -8.5dB */
5796			else if ((ridx % 8) == 7)
5797				pwr -= 20;	/* OFDM60: -10dB */
5798			else
5799				pwr -= 10;	/* Others: -5dB */
5800
5801			/* Do not exceed channel max TX power. */
5802			if (pwr > maxchpwr)
5803				pwr = maxchpwr;
5804
5805			idx = gain - (pwr - power) - tdiff - vdiff;
5806			if ((ridx / 8) & 1)	/* MIMO */
5807				idx += (int32_t)le32toh(uc->atten[grp][c]);
5808
5809			if (cmd.band == 0)
5810				idx += 9;	/* 5GHz */
5811			if (ridx == IWN_RIDX_MAX)
5812				idx += 5;	/* CCK */
5813
5814			/* Make sure idx stays in a valid range. */
5815			if (idx < 0)
5816				idx = 0;
5817			else if (idx > IWN4965_MAX_PWR_INDEX)
5818				idx = IWN4965_MAX_PWR_INDEX;
5819
5820			DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5821			    "%s: Tx chain %d, rate idx %d: power=%d\n",
5822			    __func__, c, ridx, idx);
5823			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
5824			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
5825		}
5826	}
5827
5828	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5829	    "%s: set tx power for chan %d\n", __func__, chan);
5830	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
5831
5832#undef interpolate
5833#undef fdivround
5834}
5835
5836static int
5837iwn5000_set_txpower(struct iwn_softc *sc, int async)
5838{
5839	struct iwn5000_cmd_txpower cmd;
5840	int cmdid;
5841
5842	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5843
5844	/*
5845	 * TX power calibration is handled automatically by the firmware
5846	 * for 5000 Series.
5847	 */
5848	memset(&cmd, 0, sizeof cmd);
5849	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
5850	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
5851	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
5852	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
5853	    "%s: setting TX power; rev=%d\n",
5854	    __func__,
5855	    IWN_UCODE_API(sc->ucode_rev));
5856	if (IWN_UCODE_API(sc->ucode_rev) == 1)
5857		cmdid = IWN_CMD_TXPOWER_DBM_V1;
5858	else
5859		cmdid = IWN_CMD_TXPOWER_DBM;
5860	return iwn_cmd(sc, cmdid, &cmd, sizeof cmd, async);
5861}
5862
5863/*
5864 * Retrieve the maximum RSSI (in dBm) among receivers.
5865 */
5866static int
5867iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5868{
5869	struct iwn4965_rx_phystat *phy = (void *)stat->phybuf;
5870	uint8_t mask, agc;
5871	int rssi;
5872
5873	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5874
5875	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
5876	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
5877
5878	rssi = 0;
5879	if (mask & IWN_ANT_A)
5880		rssi = MAX(rssi, phy->rssi[0]);
5881	if (mask & IWN_ANT_B)
5882		rssi = MAX(rssi, phy->rssi[2]);
5883	if (mask & IWN_ANT_C)
5884		rssi = MAX(rssi, phy->rssi[4]);
5885
5886	DPRINTF(sc, IWN_DEBUG_RECV,
5887	    "%s: agc %d mask 0x%x rssi %d %d %d result %d\n", __func__, agc,
5888	    mask, phy->rssi[0], phy->rssi[2], phy->rssi[4],
5889	    rssi - agc - IWN_RSSI_TO_DBM);
5890	return rssi - agc - IWN_RSSI_TO_DBM;
5891}
5892
5893static int
5894iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5895{
5896	struct iwn5000_rx_phystat *phy = (void *)stat->phybuf;
5897	uint8_t agc;
5898	int rssi;
5899
5900	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5901
5902	agc = (le32toh(phy->agc) >> 9) & 0x7f;
5903
5904	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
5905		   le16toh(phy->rssi[1]) & 0xff);
5906	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
5907
5908	DPRINTF(sc, IWN_DEBUG_RECV,
5909	    "%s: agc %d rssi %d %d %d result %d\n", __func__, agc,
5910	    phy->rssi[0], phy->rssi[1], phy->rssi[2],
5911	    rssi - agc - IWN_RSSI_TO_DBM);
5912	return rssi - agc - IWN_RSSI_TO_DBM;
5913}
5914
5915/*
5916 * Retrieve the average noise (in dBm) among receivers.
5917 */
5918static int
5919iwn_get_noise(const struct iwn_rx_general_stats *stats)
5920{
5921	int i, total, nbant, noise;
5922
5923	total = nbant = 0;
5924	for (i = 0; i < 3; i++) {
5925		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
5926			continue;
5927		total += noise;
5928		nbant++;
5929	}
5930	/* There should be at least one antenna but check anyway. */
5931	return (nbant == 0) ? -127 : (total / nbant) - 107;
5932}
5933
5934/*
5935 * Compute temperature (in degC) from last received statistics.
5936 */
5937static int
5938iwn4965_get_temperature(struct iwn_softc *sc)
5939{
5940	struct iwn_ucode_info *uc = &sc->ucode_info;
5941	int32_t r1, r2, r3, r4, temp;
5942
5943	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5944
5945	r1 = le32toh(uc->temp[0].chan20MHz);
5946	r2 = le32toh(uc->temp[1].chan20MHz);
5947	r3 = le32toh(uc->temp[2].chan20MHz);
5948	r4 = le32toh(sc->rawtemp);
5949
5950	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
5951		return 0;
5952
5953	/* Sign-extend 23-bit R4 value to 32-bit. */
5954	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
5955	/* Compute temperature in Kelvin. */
5956	temp = (259 * (r4 - r2)) / (r3 - r1);
5957	temp = (temp * 97) / 100 + 8;
5958
5959	DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp,
5960	    IWN_KTOC(temp));
5961	return IWN_KTOC(temp);
5962}
5963
5964static int
5965iwn5000_get_temperature(struct iwn_softc *sc)
5966{
5967	int32_t temp;
5968
5969	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5970
5971	/*
5972	 * Temperature is not used by the driver for 5000 Series because
5973	 * TX power calibration is handled by firmware.
5974	 */
5975	temp = le32toh(sc->rawtemp);
5976	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
5977		temp = (temp / -5) + sc->temp_off;
5978		temp = IWN_KTOC(temp);
5979	}
5980	return temp;
5981}
5982
5983/*
5984 * Initialize sensitivity calibration state machine.
5985 */
5986static int
5987iwn_init_sensitivity(struct iwn_softc *sc)
5988{
5989	struct iwn_ops *ops = &sc->ops;
5990	struct iwn_calib_state *calib = &sc->calib;
5991	uint32_t flags;
5992	int error;
5993
5994	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5995
5996	/* Reset calibration state machine. */
5997	memset(calib, 0, sizeof (*calib));
5998	calib->state = IWN_CALIB_STATE_INIT;
5999	calib->cck_state = IWN_CCK_STATE_HIFA;
6000	/* Set initial correlation values. */
6001	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
6002	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
6003	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
6004	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
6005	calib->cck_x4      = 125;
6006	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
6007	calib->energy_cck  = sc->limits->energy_cck;
6008
6009	/* Write initial sensitivity. */
6010	if ((error = iwn_send_sensitivity(sc)) != 0)
6011		return error;
6012
6013	/* Write initial gains. */
6014	if ((error = ops->init_gains(sc)) != 0)
6015		return error;
6016
6017	/* Request statistics at each beacon interval. */
6018	flags = 0;
6019	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending request for statistics\n",
6020	    __func__);
6021	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
6022}
6023
6024/*
6025 * Collect noise and RSSI statistics for the first 20 beacons received
6026 * after association and use them to determine connected antennas and
6027 * to set differential gains.
6028 */
6029static void
6030iwn_collect_noise(struct iwn_softc *sc,
6031    const struct iwn_rx_general_stats *stats)
6032{
6033	struct iwn_ops *ops = &sc->ops;
6034	struct iwn_calib_state *calib = &sc->calib;
6035	struct ieee80211com *ic = &sc->sc_ic;
6036	uint32_t val;
6037	int i;
6038
6039	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6040
6041	/* Accumulate RSSI and noise for all 3 antennas. */
6042	for (i = 0; i < 3; i++) {
6043		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
6044		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
6045	}
6046	/* NB: We update differential gains only once after 20 beacons. */
6047	if (++calib->nbeacons < 20)
6048		return;
6049
6050	/* Determine highest average RSSI. */
6051	val = MAX(calib->rssi[0], calib->rssi[1]);
6052	val = MAX(calib->rssi[2], val);
6053
6054	/* Determine which antennas are connected. */
6055	sc->chainmask = sc->rxchainmask;
6056	for (i = 0; i < 3; i++)
6057		if (val - calib->rssi[i] > 15 * 20)
6058			sc->chainmask &= ~(1 << i);
6059	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
6060	    "%s: RX chains mask: theoretical=0x%x, actual=0x%x\n",
6061	    __func__, sc->rxchainmask, sc->chainmask);
6062
6063	/* If none of the TX antennas are connected, keep at least one. */
6064	if ((sc->chainmask & sc->txchainmask) == 0)
6065		sc->chainmask |= IWN_LSB(sc->txchainmask);
6066
6067	(void)ops->set_gains(sc);
6068	calib->state = IWN_CALIB_STATE_RUN;
6069
6070#ifdef notyet
6071	/* XXX Disable RX chains with no antennas connected. */
6072	sc->rxon->rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
6073	if (sc->sc_is_scanning)
6074		device_printf(sc->sc_dev,
6075		    "%s: is_scanning set, before RXON\n",
6076		    __func__);
6077	(void)iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
6078#endif
6079
6080	/* Enable power-saving mode if requested by user. */
6081	if (ic->ic_flags & IEEE80211_F_PMGTON)
6082		(void)iwn_set_pslevel(sc, 0, 3, 1);
6083
6084	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6085
6086}
6087
6088static int
6089iwn4965_init_gains(struct iwn_softc *sc)
6090{
6091	struct iwn_phy_calib_gain cmd;
6092
6093	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6094
6095	memset(&cmd, 0, sizeof cmd);
6096	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
6097	/* Differential gains initially set to 0 for all 3 antennas. */
6098	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6099	    "%s: setting initial differential gains\n", __func__);
6100	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
6101}
6102
6103static int
6104iwn5000_init_gains(struct iwn_softc *sc)
6105{
6106	struct iwn_phy_calib cmd;
6107
6108	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6109
6110	memset(&cmd, 0, sizeof cmd);
6111	cmd.code = sc->reset_noise_gain;
6112	cmd.ngroups = 1;
6113	cmd.isvalid = 1;
6114	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6115	    "%s: setting initial differential gains\n", __func__);
6116	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
6117}
6118
6119static int
6120iwn4965_set_gains(struct iwn_softc *sc)
6121{
6122	struct iwn_calib_state *calib = &sc->calib;
6123	struct iwn_phy_calib_gain cmd;
6124	int i, delta, noise;
6125
6126	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6127
6128	/* Get minimal noise among connected antennas. */
6129	noise = INT_MAX;	/* NB: There's at least one antenna. */
6130	for (i = 0; i < 3; i++)
6131		if (sc->chainmask & (1 << i))
6132			noise = MIN(calib->noise[i], noise);
6133
6134	memset(&cmd, 0, sizeof cmd);
6135	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
6136	/* Set differential gains for connected antennas. */
6137	for (i = 0; i < 3; i++) {
6138		if (sc->chainmask & (1 << i)) {
6139			/* Compute attenuation (in unit of 1.5dB). */
6140			delta = (noise - (int32_t)calib->noise[i]) / 30;
6141			/* NB: delta <= 0 */
6142			/* Limit to [-4.5dB,0]. */
6143			cmd.gain[i] = MIN(abs(delta), 3);
6144			if (delta < 0)
6145				cmd.gain[i] |= 1 << 2;	/* sign bit */
6146		}
6147	}
6148	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6149	    "setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
6150	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask);
6151	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
6152}
6153
6154static int
6155iwn5000_set_gains(struct iwn_softc *sc)
6156{
6157	struct iwn_calib_state *calib = &sc->calib;
6158	struct iwn_phy_calib_gain cmd;
6159	int i, ant, div, delta;
6160
6161	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6162
6163	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
6164	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
6165
6166	memset(&cmd, 0, sizeof cmd);
6167	cmd.code = sc->noise_gain;
6168	cmd.ngroups = 1;
6169	cmd.isvalid = 1;
6170	/* Get first available RX antenna as referential. */
6171	ant = IWN_LSB(sc->rxchainmask);
6172	/* Set differential gains for other antennas. */
6173	for (i = ant + 1; i < 3; i++) {
6174		if (sc->chainmask & (1 << i)) {
6175			/* The delta is relative to antenna "ant". */
6176			delta = ((int32_t)calib->noise[ant] -
6177			    (int32_t)calib->noise[i]) / div;
6178			/* Limit to [-4.5dB,+4.5dB]. */
6179			cmd.gain[i - 1] = MIN(abs(delta), 3);
6180			if (delta < 0)
6181				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
6182		}
6183	}
6184	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
6185	    "setting differential gains Ant B/C: %x/%x (%x)\n",
6186	    cmd.gain[0], cmd.gain[1], sc->chainmask);
6187	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
6188}
6189
6190/*
6191 * Tune RF RX sensitivity based on the number of false alarms detected
6192 * during the last beacon period.
6193 */
6194static void
6195iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
6196{
6197#define inc(val, inc, max)			\
6198	if ((val) < (max)) {			\
6199		if ((val) < (max) - (inc))	\
6200			(val) += (inc);		\
6201		else				\
6202			(val) = (max);		\
6203		needs_update = 1;		\
6204	}
6205#define dec(val, dec, min)			\
6206	if ((val) > (min)) {			\
6207		if ((val) > (min) + (dec))	\
6208			(val) -= (dec);		\
6209		else				\
6210			(val) = (min);		\
6211		needs_update = 1;		\
6212	}
6213
6214	const struct iwn_sensitivity_limits *limits = sc->limits;
6215	struct iwn_calib_state *calib = &sc->calib;
6216	uint32_t val, rxena, fa;
6217	uint32_t energy[3], energy_min;
6218	uint8_t noise[3], noise_ref;
6219	int i, needs_update = 0;
6220
6221	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6222
6223	/* Check that we've been enabled long enough. */
6224	if ((rxena = le32toh(stats->general.load)) == 0){
6225		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end not so long\n", __func__);
6226		return;
6227	}
6228
6229	/* Compute number of false alarms since last call for OFDM. */
6230	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
6231	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
6232	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
6233
6234	if (fa > 50 * rxena) {
6235		/* High false alarm count, decrease sensitivity. */
6236		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6237		    "%s: OFDM high false alarm count: %u\n", __func__, fa);
6238		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
6239		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
6240		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
6241		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
6242
6243	} else if (fa < 5 * rxena) {
6244		/* Low false alarm count, increase sensitivity. */
6245		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6246		    "%s: OFDM low false alarm count: %u\n", __func__, fa);
6247		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
6248		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
6249		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
6250		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
6251	}
6252
6253	/* Compute maximum noise among 3 receivers. */
6254	for (i = 0; i < 3; i++)
6255		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
6256	val = MAX(noise[0], noise[1]);
6257	val = MAX(noise[2], val);
6258	/* Insert it into our samples table. */
6259	calib->noise_samples[calib->cur_noise_sample] = val;
6260	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
6261
6262	/* Compute maximum noise among last 20 samples. */
6263	noise_ref = calib->noise_samples[0];
6264	for (i = 1; i < 20; i++)
6265		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
6266
6267	/* Compute maximum energy among 3 receivers. */
6268	for (i = 0; i < 3; i++)
6269		energy[i] = le32toh(stats->general.energy[i]);
6270	val = MIN(energy[0], energy[1]);
6271	val = MIN(energy[2], val);
6272	/* Insert it into our samples table. */
6273	calib->energy_samples[calib->cur_energy_sample] = val;
6274	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
6275
6276	/* Compute minimum energy among last 10 samples. */
6277	energy_min = calib->energy_samples[0];
6278	for (i = 1; i < 10; i++)
6279		energy_min = MAX(energy_min, calib->energy_samples[i]);
6280	energy_min += 6;
6281
6282	/* Compute number of false alarms since last call for CCK. */
6283	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
6284	fa += le32toh(stats->cck.fa) - calib->fa_cck;
6285	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
6286
6287	if (fa > 50 * rxena) {
6288		/* High false alarm count, decrease sensitivity. */
6289		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6290		    "%s: CCK high false alarm count: %u\n", __func__, fa);
6291		calib->cck_state = IWN_CCK_STATE_HIFA;
6292		calib->low_fa = 0;
6293
6294		if (calib->cck_x4 > 160) {
6295			calib->noise_ref = noise_ref;
6296			if (calib->energy_cck > 2)
6297				dec(calib->energy_cck, 2, energy_min);
6298		}
6299		if (calib->cck_x4 < 160) {
6300			calib->cck_x4 = 161;
6301			needs_update = 1;
6302		} else
6303			inc(calib->cck_x4, 3, limits->max_cck_x4);
6304
6305		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
6306
6307	} else if (fa < 5 * rxena) {
6308		/* Low false alarm count, increase sensitivity. */
6309		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6310		    "%s: CCK low false alarm count: %u\n", __func__, fa);
6311		calib->cck_state = IWN_CCK_STATE_LOFA;
6312		calib->low_fa++;
6313
6314		if (calib->cck_state != IWN_CCK_STATE_INIT &&
6315		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
6316		     calib->low_fa > 100)) {
6317			inc(calib->energy_cck, 2, limits->min_energy_cck);
6318			dec(calib->cck_x4,     3, limits->min_cck_x4);
6319			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
6320		}
6321	} else {
6322		/* Not worth to increase or decrease sensitivity. */
6323		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6324		    "%s: CCK normal false alarm count: %u\n", __func__, fa);
6325		calib->low_fa = 0;
6326		calib->noise_ref = noise_ref;
6327
6328		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
6329			/* Previous interval had many false alarms. */
6330			dec(calib->energy_cck, 8, energy_min);
6331		}
6332		calib->cck_state = IWN_CCK_STATE_INIT;
6333	}
6334
6335	if (needs_update)
6336		(void)iwn_send_sensitivity(sc);
6337
6338	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6339
6340#undef dec
6341#undef inc
6342}
6343
6344static int
6345iwn_send_sensitivity(struct iwn_softc *sc)
6346{
6347	struct iwn_calib_state *calib = &sc->calib;
6348	struct iwn_enhanced_sensitivity_cmd cmd;
6349	int len;
6350
6351	memset(&cmd, 0, sizeof cmd);
6352	len = sizeof (struct iwn_sensitivity_cmd);
6353	cmd.which = IWN_SENSITIVITY_WORKTBL;
6354	/* OFDM modulation. */
6355	cmd.corr_ofdm_x1       = htole16(calib->ofdm_x1);
6356	cmd.corr_ofdm_mrc_x1   = htole16(calib->ofdm_mrc_x1);
6357	cmd.corr_ofdm_x4       = htole16(calib->ofdm_x4);
6358	cmd.corr_ofdm_mrc_x4   = htole16(calib->ofdm_mrc_x4);
6359	cmd.energy_ofdm        = htole16(sc->limits->energy_ofdm);
6360	cmd.energy_ofdm_th     = htole16(62);
6361	/* CCK modulation. */
6362	cmd.corr_cck_x4        = htole16(calib->cck_x4);
6363	cmd.corr_cck_mrc_x4    = htole16(calib->cck_mrc_x4);
6364	cmd.energy_cck         = htole16(calib->energy_cck);
6365	/* Barker modulation: use default values. */
6366	cmd.corr_barker        = htole16(190);
6367	cmd.corr_barker_mrc    = htole16(sc->limits->barker_mrc);
6368
6369	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6370	    "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__,
6371	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
6372	    calib->ofdm_mrc_x4, calib->cck_x4,
6373	    calib->cck_mrc_x4, calib->energy_cck);
6374
6375	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
6376		goto send;
6377	/* Enhanced sensitivity settings. */
6378	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
6379	cmd.ofdm_det_slope_mrc = htole16(668);
6380	cmd.ofdm_det_icept_mrc = htole16(4);
6381	cmd.ofdm_det_slope     = htole16(486);
6382	cmd.ofdm_det_icept     = htole16(37);
6383	cmd.cck_det_slope_mrc  = htole16(853);
6384	cmd.cck_det_icept_mrc  = htole16(4);
6385	cmd.cck_det_slope      = htole16(476);
6386	cmd.cck_det_icept      = htole16(99);
6387send:
6388	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
6389}
6390
6391/*
6392 * Look at the increase of PLCP errors over time; if it exceeds
6393 * a programmed threshold then trigger an RF retune.
6394 */
6395static void
6396iwn_check_rx_recovery(struct iwn_softc *sc, struct iwn_stats *rs)
6397{
6398	int32_t delta_ofdm, delta_ht, delta_cck;
6399	struct iwn_calib_state *calib = &sc->calib;
6400	int delta_ticks, cur_ticks;
6401	int delta_msec;
6402	int thresh;
6403
6404	/*
6405	 * Calculate the difference between the current and
6406	 * previous statistics.
6407	 */
6408	delta_cck = le32toh(rs->rx.cck.bad_plcp) - calib->bad_plcp_cck;
6409	delta_ofdm = le32toh(rs->rx.ofdm.bad_plcp) - calib->bad_plcp_ofdm;
6410	delta_ht = le32toh(rs->rx.ht.bad_plcp) - calib->bad_plcp_ht;
6411
6412	/*
6413	 * Calculate the delta in time between successive statistics
6414	 * messages.  Yes, it can roll over; so we make sure that
6415	 * this doesn't happen.
6416	 *
6417	 * XXX go figure out what to do about rollover
6418	 * XXX go figure out what to do if ticks rolls over to -ve instead!
6419	 * XXX go stab signed integer overflow undefined-ness in the face.
6420	 */
6421	cur_ticks = ticks;
6422	delta_ticks = cur_ticks - sc->last_calib_ticks;
6423
6424	/*
6425	 * If any are negative, then the firmware likely reset; so just
6426	 * bail.  We'll pick this up next time.
6427	 */
6428	if (delta_cck < 0 || delta_ofdm < 0 || delta_ht < 0 || delta_ticks < 0)
6429		return;
6430
6431	/*
6432	 * delta_ticks is in ticks; we need to convert it up to milliseconds
6433	 * so we can do some useful math with it.
6434	 */
6435	delta_msec = ticks_to_msecs(delta_ticks);
6436
6437	/*
6438	 * Calculate what our threshold is given the current delta_msec.
6439	 */
6440	thresh = sc->base_params->plcp_err_threshold * delta_msec;
6441
6442	DPRINTF(sc, IWN_DEBUG_STATE,
6443	    "%s: time delta: %d; cck=%d, ofdm=%d, ht=%d, total=%d, thresh=%d\n",
6444	    __func__,
6445	    delta_msec,
6446	    delta_cck,
6447	    delta_ofdm,
6448	    delta_ht,
6449	    (delta_msec + delta_cck + delta_ofdm + delta_ht),
6450	    thresh);
6451
6452	/*
6453	 * If we need a retune, then schedule a single channel scan
6454	 * to a channel that isn't the currently active one!
6455	 *
6456	 * The math from linux iwlwifi:
6457	 *
6458	 * if ((delta * 100 / msecs) > threshold)
6459	 */
6460	if (thresh > 0 && (delta_cck + delta_ofdm + delta_ht) * 100 > thresh) {
6461		DPRINTF(sc, IWN_DEBUG_ANY,
6462		    "%s: PLCP error threshold raw (%d) comparison (%d) "
6463		    "over limit (%d); retune!\n",
6464		    __func__,
6465		    (delta_cck + delta_ofdm + delta_ht),
6466		    (delta_cck + delta_ofdm + delta_ht) * 100,
6467		    thresh);
6468	}
6469}
6470
6471/*
6472 * Set STA mode power saving level (between 0 and 5).
6473 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
6474 */
6475static int
6476iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
6477{
6478	struct iwn_pmgt_cmd cmd;
6479	const struct iwn_pmgt *pmgt;
6480	uint32_t max, skip_dtim;
6481	uint32_t reg;
6482	int i;
6483
6484	DPRINTF(sc, IWN_DEBUG_PWRSAVE,
6485	    "%s: dtim=%d, level=%d, async=%d\n",
6486	    __func__,
6487	    dtim,
6488	    level,
6489	    async);
6490
6491	/* Select which PS parameters to use. */
6492	if (dtim <= 2)
6493		pmgt = &iwn_pmgt[0][level];
6494	else if (dtim <= 10)
6495		pmgt = &iwn_pmgt[1][level];
6496	else
6497		pmgt = &iwn_pmgt[2][level];
6498
6499	memset(&cmd, 0, sizeof cmd);
6500	if (level != 0)	/* not CAM */
6501		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
6502	if (level == 5)
6503		cmd.flags |= htole16(IWN_PS_FAST_PD);
6504	/* Retrieve PCIe Active State Power Management (ASPM). */
6505	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 4);
6506	if (!(reg & PCIEM_LINK_CTL_ASPMC_L0S))	/* L0s Entry disabled. */
6507		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
6508	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
6509	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
6510
6511	if (dtim == 0) {
6512		dtim = 1;
6513		skip_dtim = 0;
6514	} else
6515		skip_dtim = pmgt->skip_dtim;
6516	if (skip_dtim != 0) {
6517		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
6518		max = pmgt->intval[4];
6519		if (max == (uint32_t)-1)
6520			max = dtim * (skip_dtim + 1);
6521		else if (max > dtim)
6522			max = rounddown(max, dtim);
6523	} else
6524		max = dtim;
6525	for (i = 0; i < 5; i++)
6526		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
6527
6528	DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n",
6529	    level);
6530	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
6531}
6532
6533static int
6534iwn_send_btcoex(struct iwn_softc *sc)
6535{
6536	struct iwn_bluetooth cmd;
6537
6538	memset(&cmd, 0, sizeof cmd);
6539	cmd.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
6540	cmd.lead_time = IWN_BT_LEAD_TIME_DEF;
6541	cmd.max_kill = IWN_BT_MAX_KILL_DEF;
6542	DPRINTF(sc, IWN_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
6543	    __func__);
6544	return iwn_cmd(sc, IWN_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
6545}
6546
6547static int
6548iwn_send_advanced_btcoex(struct iwn_softc *sc)
6549{
6550	static const uint32_t btcoex_3wire[12] = {
6551		0xaaaaaaaa, 0xaaaaaaaa, 0xaeaaaaaa, 0xaaaaaaaa,
6552		0xcc00ff28, 0x0000aaaa, 0xcc00aaaa, 0x0000aaaa,
6553		0xc0004000, 0x00004000, 0xf0005000, 0xf0005000,
6554	};
6555	struct iwn6000_btcoex_config btconfig;
6556	struct iwn2000_btcoex_config btconfig2k;
6557	struct iwn_btcoex_priotable btprio;
6558	struct iwn_btcoex_prot btprot;
6559	int error, i;
6560	uint8_t flags;
6561
6562	memset(&btconfig, 0, sizeof btconfig);
6563	memset(&btconfig2k, 0, sizeof btconfig2k);
6564
6565	flags = IWN_BT_FLAG_COEX6000_MODE_3W <<
6566	    IWN_BT_FLAG_COEX6000_MODE_SHIFT; // Done as is in linux kernel 3.2
6567
6568	if (sc->base_params->bt_sco_disable)
6569		flags &= ~IWN_BT_FLAG_SYNC_2_BT_DISABLE;
6570	else
6571		flags |= IWN_BT_FLAG_SYNC_2_BT_DISABLE;
6572
6573	flags |= IWN_BT_FLAG_COEX6000_CHAN_INHIBITION;
6574
6575	/* Default flags result is 145 as old value */
6576
6577	/*
6578	 * Flags value has to be review. Values must change if we
6579	 * which to disable it
6580	 */
6581	if (sc->base_params->bt_session_2) {
6582		btconfig2k.flags = flags;
6583		btconfig2k.max_kill = 5;
6584		btconfig2k.bt3_t7_timer = 1;
6585		btconfig2k.kill_ack = htole32(0xffff0000);
6586		btconfig2k.kill_cts = htole32(0xffff0000);
6587		btconfig2k.sample_time = 2;
6588		btconfig2k.bt3_t2_timer = 0xc;
6589
6590		for (i = 0; i < 12; i++)
6591			btconfig2k.lookup_table[i] = htole32(btcoex_3wire[i]);
6592		btconfig2k.valid = htole16(0xff);
6593		btconfig2k.prio_boost = htole32(0xf0);
6594		DPRINTF(sc, IWN_DEBUG_RESET,
6595		    "%s: configuring advanced bluetooth coexistence"
6596		    " session 2, flags : 0x%x\n",
6597		    __func__,
6598		    flags);
6599		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig2k,
6600		    sizeof(btconfig2k), 1);
6601	} else {
6602		btconfig.flags = flags;
6603		btconfig.max_kill = 5;
6604		btconfig.bt3_t7_timer = 1;
6605		btconfig.kill_ack = htole32(0xffff0000);
6606		btconfig.kill_cts = htole32(0xffff0000);
6607		btconfig.sample_time = 2;
6608		btconfig.bt3_t2_timer = 0xc;
6609
6610		for (i = 0; i < 12; i++)
6611			btconfig.lookup_table[i] = htole32(btcoex_3wire[i]);
6612		btconfig.valid = htole16(0xff);
6613		btconfig.prio_boost = 0xf0;
6614		DPRINTF(sc, IWN_DEBUG_RESET,
6615		    "%s: configuring advanced bluetooth coexistence,"
6616		    " flags : 0x%x\n",
6617		    __func__,
6618		    flags);
6619		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig,
6620		    sizeof(btconfig), 1);
6621	}
6622
6623	if (error != 0)
6624		return error;
6625
6626	memset(&btprio, 0, sizeof btprio);
6627	btprio.calib_init1 = 0x6;
6628	btprio.calib_init2 = 0x7;
6629	btprio.calib_periodic_low1 = 0x2;
6630	btprio.calib_periodic_low2 = 0x3;
6631	btprio.calib_periodic_high1 = 0x4;
6632	btprio.calib_periodic_high2 = 0x5;
6633	btprio.dtim = 0x6;
6634	btprio.scan52 = 0x8;
6635	btprio.scan24 = 0xa;
6636	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PRIOTABLE, &btprio, sizeof(btprio),
6637	    1);
6638	if (error != 0)
6639		return error;
6640
6641	/* Force BT state machine change. */
6642	memset(&btprot, 0, sizeof btprot);
6643	btprot.open = 1;
6644	btprot.type = 1;
6645	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6646	if (error != 0)
6647		return error;
6648	btprot.open = 0;
6649	return iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6650}
6651
6652static int
6653iwn5000_runtime_calib(struct iwn_softc *sc)
6654{
6655	struct iwn5000_calib_config cmd;
6656
6657	memset(&cmd, 0, sizeof cmd);
6658	cmd.ucode.once.enable = 0xffffffff;
6659	cmd.ucode.once.start = IWN5000_CALIB_DC;
6660	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6661	    "%s: configuring runtime calibration\n", __func__);
6662	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
6663}
6664
6665static uint32_t
6666iwn_get_rxon_ht_flags(struct iwn_softc *sc, struct ieee80211_channel *c)
6667{
6668	struct ieee80211com *ic = &sc->sc_ic;
6669	uint32_t htflags = 0;
6670
6671	if (! IEEE80211_IS_CHAN_HT(c))
6672		return (0);
6673
6674	htflags |= IWN_RXON_HT_PROTMODE(ic->ic_curhtprotmode);
6675
6676	if (IEEE80211_IS_CHAN_HT40(c)) {
6677		switch (ic->ic_curhtprotmode) {
6678		case IEEE80211_HTINFO_OPMODE_HT20PR:
6679			htflags |= IWN_RXON_HT_MODEPURE40;
6680			break;
6681		default:
6682			htflags |= IWN_RXON_HT_MODEMIXED;
6683			break;
6684		}
6685	}
6686	if (IEEE80211_IS_CHAN_HT40D(c))
6687		htflags |= IWN_RXON_HT_HT40MINUS;
6688
6689	return (htflags);
6690}
6691
6692static int
6693iwn_check_bss_filter(struct iwn_softc *sc)
6694{
6695	return ((sc->rxon->filter & htole32(IWN_FILTER_BSS)) != 0);
6696}
6697
6698static int
6699iwn4965_rxon_assoc(struct iwn_softc *sc, int async)
6700{
6701	struct iwn4965_rxon_assoc cmd;
6702	struct iwn_rxon *rxon = sc->rxon;
6703
6704	cmd.flags = rxon->flags;
6705	cmd.filter = rxon->filter;
6706	cmd.ofdm_mask = rxon->ofdm_mask;
6707	cmd.cck_mask = rxon->cck_mask;
6708	cmd.ht_single_mask = rxon->ht_single_mask;
6709	cmd.ht_dual_mask = rxon->ht_dual_mask;
6710	cmd.rxchain = rxon->rxchain;
6711	cmd.reserved = 0;
6712
6713	return (iwn_cmd(sc, IWN_CMD_RXON_ASSOC, &cmd, sizeof(cmd), async));
6714}
6715
6716static int
6717iwn5000_rxon_assoc(struct iwn_softc *sc, int async)
6718{
6719	struct iwn5000_rxon_assoc cmd;
6720	struct iwn_rxon *rxon = sc->rxon;
6721
6722	cmd.flags = rxon->flags;
6723	cmd.filter = rxon->filter;
6724	cmd.ofdm_mask = rxon->ofdm_mask;
6725	cmd.cck_mask = rxon->cck_mask;
6726	cmd.reserved1 = 0;
6727	cmd.ht_single_mask = rxon->ht_single_mask;
6728	cmd.ht_dual_mask = rxon->ht_dual_mask;
6729	cmd.ht_triple_mask = rxon->ht_triple_mask;
6730	cmd.reserved2 = 0;
6731	cmd.rxchain = rxon->rxchain;
6732	cmd.acquisition = rxon->acquisition;
6733	cmd.reserved3 = 0;
6734
6735	return (iwn_cmd(sc, IWN_CMD_RXON_ASSOC, &cmd, sizeof(cmd), async));
6736}
6737
6738static int
6739iwn_send_rxon(struct iwn_softc *sc, int assoc, int async)
6740{
6741	struct iwn_ops *ops = &sc->ops;
6742	int error;
6743
6744	IWN_LOCK_ASSERT(sc);
6745
6746	if (assoc && iwn_check_bss_filter(sc) != 0) {
6747		error = ops->rxon_assoc(sc, async);
6748		if (error != 0) {
6749			device_printf(sc->sc_dev,
6750			    "%s: RXON_ASSOC command failed, error %d\n",
6751			    __func__, error);
6752			return (error);
6753		}
6754	} else {
6755		if (sc->sc_is_scanning)
6756			device_printf(sc->sc_dev,
6757			    "%s: is_scanning set, before RXON\n",
6758			    __func__);
6759
6760		error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, async);
6761		if (error != 0) {
6762			device_printf(sc->sc_dev,
6763			    "%s: RXON command failed, error %d\n",
6764			    __func__, error);
6765			return (error);
6766		}
6767
6768		/*
6769		 * Reconfiguring RXON clears the firmware nodes table so
6770		 * we must add the broadcast node again.
6771		 */
6772		if (iwn_check_bss_filter(sc) == 0 &&
6773		    (error = iwn_add_broadcast_node(sc, async)) != 0) {
6774			device_printf(sc->sc_dev,
6775			    "%s: could not add broadcast node, error %d\n",
6776			    __func__, error);
6777			return (error);
6778		}
6779	}
6780
6781	/* Configuration has changed, set TX power accordingly. */
6782	if ((error = ops->set_txpower(sc, async)) != 0) {
6783		device_printf(sc->sc_dev,
6784		    "%s: could not set TX power, error %d\n",
6785		    __func__, error);
6786		return (error);
6787	}
6788
6789	return (0);
6790}
6791
6792static int
6793iwn_config(struct iwn_softc *sc)
6794{
6795	struct ieee80211com *ic = &sc->sc_ic;
6796	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6797	const uint8_t *macaddr;
6798	uint32_t txmask;
6799	uint16_t rxchain;
6800	int error;
6801
6802	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6803
6804	if ((sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET)
6805	    && (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2)) {
6806		device_printf(sc->sc_dev,"%s: temp_offset and temp_offsetv2 are"
6807		    " exclusive each together. Review NIC config file. Conf"
6808		    " :  0x%08x Flags :  0x%08x  \n", __func__,
6809		    sc->base_params->calib_need,
6810		    (IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET |
6811		    IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2));
6812		return (EINVAL);
6813	}
6814
6815	/* Compute temperature calib if needed. Will be send by send calib */
6816	if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET) {
6817		error = iwn5000_temp_offset_calib(sc);
6818		if (error != 0) {
6819			device_printf(sc->sc_dev,
6820			    "%s: could not set temperature offset\n", __func__);
6821			return (error);
6822		}
6823	} else if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
6824		error = iwn5000_temp_offset_calibv2(sc);
6825		if (error != 0) {
6826			device_printf(sc->sc_dev,
6827			    "%s: could not compute temperature offset v2\n",
6828			    __func__);
6829			return (error);
6830		}
6831	}
6832
6833	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
6834		/* Configure runtime DC calibration. */
6835		error = iwn5000_runtime_calib(sc);
6836		if (error != 0) {
6837			device_printf(sc->sc_dev,
6838			    "%s: could not configure runtime calibration\n",
6839			    __func__);
6840			return error;
6841		}
6842	}
6843
6844	/* Configure valid TX chains for >=5000 Series. */
6845	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
6846	    IWN_UCODE_API(sc->ucode_rev) > 1) {
6847		txmask = htole32(sc->txchainmask);
6848		DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT,
6849		    "%s: configuring valid TX chains 0x%x\n", __func__, txmask);
6850		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
6851		    sizeof txmask, 0);
6852		if (error != 0) {
6853			device_printf(sc->sc_dev,
6854			    "%s: could not configure valid TX chains, "
6855			    "error %d\n", __func__, error);
6856			return error;
6857		}
6858	}
6859
6860	/* Configure bluetooth coexistence. */
6861	error = 0;
6862
6863	/* Configure bluetooth coexistence if needed. */
6864	if (sc->base_params->bt_mode == IWN_BT_ADVANCED)
6865		error = iwn_send_advanced_btcoex(sc);
6866	if (sc->base_params->bt_mode == IWN_BT_SIMPLE)
6867		error = iwn_send_btcoex(sc);
6868
6869	if (error != 0) {
6870		device_printf(sc->sc_dev,
6871		    "%s: could not configure bluetooth coexistence, error %d\n",
6872		    __func__, error);
6873		return error;
6874	}
6875
6876	/* Set mode, channel, RX filter and enable RX. */
6877	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6878	memset(sc->rxon, 0, sizeof (struct iwn_rxon));
6879	macaddr = vap ? vap->iv_myaddr : ic->ic_macaddr;
6880	IEEE80211_ADDR_COPY(sc->rxon->myaddr, macaddr);
6881	IEEE80211_ADDR_COPY(sc->rxon->wlap, macaddr);
6882	sc->rxon->chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
6883	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
6884	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
6885		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
6886
6887	sc->rxon->filter = htole32(IWN_FILTER_MULTICAST);
6888	switch (ic->ic_opmode) {
6889	case IEEE80211_M_STA:
6890		sc->rxon->mode = IWN_MODE_STA;
6891		break;
6892	case IEEE80211_M_MONITOR:
6893		sc->rxon->mode = IWN_MODE_MONITOR;
6894		break;
6895	default:
6896		/* Should not get there. */
6897		break;
6898	}
6899	iwn_set_promisc(sc);
6900	sc->rxon->cck_mask  = 0x0f;	/* not yet negotiated */
6901	sc->rxon->ofdm_mask = 0xff;	/* not yet negotiated */
6902	sc->rxon->ht_single_mask = 0xff;
6903	sc->rxon->ht_dual_mask = 0xff;
6904	sc->rxon->ht_triple_mask = 0xff;
6905	/*
6906	 * In active association mode, ensure that
6907	 * all the receive chains are enabled.
6908	 *
6909	 * Since we're not yet doing SMPS, don't allow the
6910	 * number of idle RX chains to be less than the active
6911	 * number.
6912	 */
6913	rxchain =
6914	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
6915	    IWN_RXCHAIN_MIMO_COUNT(sc->nrxchains) |
6916	    IWN_RXCHAIN_IDLE_COUNT(sc->nrxchains);
6917	sc->rxon->rxchain = htole16(rxchain);
6918	DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT,
6919	    "%s: rxchainmask=0x%x, nrxchains=%d\n",
6920	    __func__,
6921	    sc->rxchainmask,
6922	    sc->nrxchains);
6923
6924	sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ic->ic_curchan));
6925
6926	DPRINTF(sc, IWN_DEBUG_RESET,
6927	    "%s: setting configuration; flags=0x%08x\n",
6928	    __func__, le32toh(sc->rxon->flags));
6929	if ((error = iwn_send_rxon(sc, 0, 0)) != 0) {
6930		device_printf(sc->sc_dev, "%s: could not send RXON\n",
6931		    __func__);
6932		return error;
6933	}
6934
6935	if ((error = iwn_set_critical_temp(sc)) != 0) {
6936		device_printf(sc->sc_dev,
6937		    "%s: could not set critical temperature\n", __func__);
6938		return error;
6939	}
6940
6941	/* Set power saving level to CAM during initialization. */
6942	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
6943		device_printf(sc->sc_dev,
6944		    "%s: could not set power saving level\n", __func__);
6945		return error;
6946	}
6947
6948	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6949
6950	return 0;
6951}
6952
6953static uint16_t
6954iwn_get_active_dwell_time(struct iwn_softc *sc,
6955    struct ieee80211_channel *c, uint8_t n_probes)
6956{
6957	/* No channel? Default to 2GHz settings */
6958	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
6959		return (IWN_ACTIVE_DWELL_TIME_2GHZ +
6960		IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
6961	}
6962
6963	/* 5GHz dwell time */
6964	return (IWN_ACTIVE_DWELL_TIME_5GHZ +
6965	    IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
6966}
6967
6968/*
6969 * Limit the total dwell time to 85% of the beacon interval.
6970 *
6971 * Returns the dwell time in milliseconds.
6972 */
6973static uint16_t
6974iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
6975{
6976	struct ieee80211com *ic = &sc->sc_ic;
6977	struct ieee80211vap *vap = NULL;
6978	int bintval = 0;
6979
6980	/* bintval is in TU (1.024mS) */
6981	if (! TAILQ_EMPTY(&ic->ic_vaps)) {
6982		vap = TAILQ_FIRST(&ic->ic_vaps);
6983		bintval = vap->iv_bss->ni_intval;
6984	}
6985
6986	/*
6987	 * If it's non-zero, we should calculate the minimum of
6988	 * it and the DWELL_BASE.
6989	 *
6990	 * XXX Yes, the math should take into account that bintval
6991	 * is 1.024mS, not 1mS..
6992	 */
6993	if (bintval > 0) {
6994		DPRINTF(sc, IWN_DEBUG_SCAN,
6995		    "%s: bintval=%d\n",
6996		    __func__,
6997		    bintval);
6998		return (MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100)));
6999	}
7000
7001	/* No association context? Default */
7002	return (IWN_PASSIVE_DWELL_BASE);
7003}
7004
7005static uint16_t
7006iwn_get_passive_dwell_time(struct iwn_softc *sc, struct ieee80211_channel *c)
7007{
7008	uint16_t passive;
7009
7010	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
7011		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
7012	} else {
7013		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
7014	}
7015
7016	/* Clamp to the beacon interval if we're associated */
7017	return (iwn_limit_dwell(sc, passive));
7018}
7019
7020static int
7021iwn_scan(struct iwn_softc *sc, struct ieee80211vap *vap,
7022    struct ieee80211_scan_state *ss, struct ieee80211_channel *c)
7023{
7024	struct ieee80211com *ic = &sc->sc_ic;
7025	struct ieee80211_node *ni = vap->iv_bss;
7026	struct iwn_scan_hdr *hdr;
7027	struct iwn_cmd_data *tx;
7028	struct iwn_scan_essid *essid;
7029	struct iwn_scan_chan *chan;
7030	struct ieee80211_frame *wh;
7031	struct ieee80211_rateset *rs;
7032	uint8_t *buf, *frm;
7033	uint16_t rxchain;
7034	uint8_t txant;
7035	int buflen, error;
7036	int is_active;
7037	uint16_t dwell_active, dwell_passive;
7038	uint32_t extra, scan_service_time;
7039
7040	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7041
7042	/*
7043	 * We are absolutely not allowed to send a scan command when another
7044	 * scan command is pending.
7045	 */
7046	if (sc->sc_is_scanning) {
7047		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
7048		    __func__);
7049		return (EAGAIN);
7050	}
7051
7052	/* Assign the scan channel */
7053	c = ic->ic_curchan;
7054
7055	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
7056	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
7057	if (buf == NULL) {
7058		device_printf(sc->sc_dev,
7059		    "%s: could not allocate buffer for scan command\n",
7060		    __func__);
7061		return ENOMEM;
7062	}
7063	hdr = (struct iwn_scan_hdr *)buf;
7064	/*
7065	 * Move to the next channel if no frames are received within 10ms
7066	 * after sending the probe request.
7067	 */
7068	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
7069	hdr->quiet_threshold = htole16(1);	/* min # of packets */
7070	/*
7071	 * Max needs to be greater than active and passive and quiet!
7072	 * It's also in microseconds!
7073	 */
7074	hdr->max_svc = htole32(250 * 1024);
7075
7076	/*
7077	 * Reset scan: interval=100
7078	 * Normal scan: interval=becaon interval
7079	 * suspend_time: 100 (TU)
7080	 *
7081	 */
7082	extra = (100 /* suspend_time */ / 100 /* beacon interval */) << 22;
7083	//scan_service_time = extra | ((100 /* susp */ % 100 /* int */) * 1024);
7084	scan_service_time = (4 << 22) | (100 * 1024);	/* Hardcode for now! */
7085	hdr->pause_svc = htole32(scan_service_time);
7086
7087	/* Select antennas for scanning. */
7088	rxchain =
7089	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
7090	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
7091	    IWN_RXCHAIN_DRIVER_FORCE;
7092	if (IEEE80211_IS_CHAN_A(c) &&
7093	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
7094		/* Ant A must be avoided in 5GHz because of an HW bug. */
7095		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_B);
7096	} else	/* Use all available RX antennas. */
7097		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
7098	hdr->rxchain = htole16(rxchain);
7099	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
7100
7101	tx = (struct iwn_cmd_data *)(hdr + 1);
7102	tx->flags = htole32(IWN_TX_AUTO_SEQ);
7103	tx->id = sc->broadcast_id;
7104	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
7105
7106	if (IEEE80211_IS_CHAN_5GHZ(c)) {
7107		/* Send probe requests at 6Mbps. */
7108		tx->rate = htole32(0xd);
7109		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
7110	} else {
7111		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
7112		if (sc->hw_type == IWN_HW_REV_TYPE_4965 &&
7113		    sc->rxon->associd && sc->rxon->chan > 14)
7114			tx->rate = htole32(0xd);
7115		else {
7116			/* Send probe requests at 1Mbps. */
7117			tx->rate = htole32(10 | IWN_RFLAG_CCK);
7118		}
7119		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
7120	}
7121	/* Use the first valid TX antenna. */
7122	txant = IWN_LSB(sc->txchainmask);
7123	tx->rate |= htole32(IWN_RFLAG_ANT(txant));
7124
7125	/*
7126	 * Only do active scanning if we're announcing a probe request
7127	 * for a given SSID (or more, if we ever add it to the driver.)
7128	 */
7129	is_active = 0;
7130
7131	/*
7132	 * If we're scanning for a specific SSID, add it to the command.
7133	 *
7134	 * XXX maybe look at adding support for scanning multiple SSIDs?
7135	 */
7136	essid = (struct iwn_scan_essid *)(tx + 1);
7137	if (ss != NULL) {
7138		if (ss->ss_ssid[0].len != 0) {
7139			essid[0].id = IEEE80211_ELEMID_SSID;
7140			essid[0].len = ss->ss_ssid[0].len;
7141			memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
7142		}
7143
7144		DPRINTF(sc, IWN_DEBUG_SCAN, "%s: ssid_len=%d, ssid=%*s\n",
7145		    __func__,
7146		    ss->ss_ssid[0].len,
7147		    ss->ss_ssid[0].len,
7148		    ss->ss_ssid[0].ssid);
7149
7150		if (ss->ss_nssid > 0)
7151			is_active = 1;
7152	}
7153
7154	/*
7155	 * Build a probe request frame.  Most of the following code is a
7156	 * copy & paste of what is done in net80211.
7157	 */
7158	wh = (struct ieee80211_frame *)(essid + 20);
7159	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
7160	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
7161	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
7162	IEEE80211_ADDR_COPY(wh->i_addr1, vap->iv_ifp->if_broadcastaddr);
7163	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(vap->iv_ifp));
7164	IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_ifp->if_broadcastaddr);
7165	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
7166	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
7167
7168	frm = (uint8_t *)(wh + 1);
7169	frm = ieee80211_add_ssid(frm, NULL, 0);
7170	frm = ieee80211_add_rates(frm, rs);
7171	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
7172		frm = ieee80211_add_xrates(frm, rs);
7173	if (ic->ic_htcaps & IEEE80211_HTC_HT)
7174		frm = ieee80211_add_htcap(frm, ni);
7175
7176	/* Set length of probe request. */
7177	tx->len = htole16(frm - (uint8_t *)wh);
7178
7179	/*
7180	 * If active scanning is requested but a certain channel is
7181	 * marked passive, we can do active scanning if we detect
7182	 * transmissions.
7183	 *
7184	 * There is an issue with some firmware versions that triggers
7185	 * a sysassert on a "good CRC threshold" of zero (== disabled),
7186	 * on a radar channel even though this means that we should NOT
7187	 * send probes.
7188	 *
7189	 * The "good CRC threshold" is the number of frames that we
7190	 * need to receive during our dwell time on a channel before
7191	 * sending out probes -- setting this to a huge value will
7192	 * mean we never reach it, but at the same time work around
7193	 * the aforementioned issue. Thus use IWL_GOOD_CRC_TH_NEVER
7194	 * here instead of IWL_GOOD_CRC_TH_DISABLED.
7195	 *
7196	 * This was fixed in later versions along with some other
7197	 * scan changes, and the threshold behaves as a flag in those
7198	 * versions.
7199	 */
7200
7201	/*
7202	 * If we're doing active scanning, set the crc_threshold
7203	 * to a suitable value.  This is different to active veruss
7204	 * passive scanning depending upon the channel flags; the
7205	 * firmware will obey that particular check for us.
7206	 */
7207	if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
7208		hdr->crc_threshold = is_active ?
7209		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
7210	else
7211		hdr->crc_threshold = is_active ?
7212		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
7213
7214	chan = (struct iwn_scan_chan *)frm;
7215	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
7216	chan->flags = 0;
7217	if (ss->ss_nssid > 0)
7218		chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
7219	chan->dsp_gain = 0x6e;
7220
7221	/*
7222	 * Set the passive/active flag depending upon the channel mode.
7223	 * XXX TODO: take the is_active flag into account as well?
7224	 */
7225	if (c->ic_flags & IEEE80211_CHAN_PASSIVE)
7226		chan->flags |= htole32(IWN_CHAN_PASSIVE);
7227	else
7228		chan->flags |= htole32(IWN_CHAN_ACTIVE);
7229
7230	/*
7231	 * Calculate the active/passive dwell times.
7232	 */
7233
7234	dwell_active = iwn_get_active_dwell_time(sc, c, ss->ss_nssid);
7235	dwell_passive = iwn_get_passive_dwell_time(sc, c);
7236
7237	/* Make sure they're valid */
7238	if (dwell_passive <= dwell_active)
7239		dwell_passive = dwell_active + 1;
7240
7241	chan->active = htole16(dwell_active);
7242	chan->passive = htole16(dwell_passive);
7243
7244	if (IEEE80211_IS_CHAN_5GHZ(c))
7245		chan->rf_gain = 0x3b;
7246	else
7247		chan->rf_gain = 0x28;
7248
7249	DPRINTF(sc, IWN_DEBUG_STATE,
7250	    "%s: chan %u flags 0x%x rf_gain 0x%x "
7251	    "dsp_gain 0x%x active %d passive %d scan_svc_time %d crc 0x%x "
7252	    "isactive=%d numssid=%d\n", __func__,
7253	    chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain,
7254	    dwell_active, dwell_passive, scan_service_time,
7255	    hdr->crc_threshold, is_active, ss->ss_nssid);
7256
7257	hdr->nchan++;
7258	chan++;
7259	buflen = (uint8_t *)chan - buf;
7260	hdr->len = htole16(buflen);
7261
7262	if (sc->sc_is_scanning) {
7263		device_printf(sc->sc_dev,
7264		    "%s: called with is_scanning set!\n",
7265		    __func__);
7266	}
7267	sc->sc_is_scanning = 1;
7268
7269	DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n",
7270	    hdr->nchan);
7271	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
7272	free(buf, M_DEVBUF);
7273	if (error == 0)
7274		callout_reset(&sc->scan_timeout, 5*hz, iwn_scan_timeout, sc);
7275
7276	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7277
7278	return error;
7279}
7280
7281static int
7282iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap)
7283{
7284	struct ieee80211com *ic = &sc->sc_ic;
7285	struct ieee80211_node *ni = vap->iv_bss;
7286	int error;
7287
7288	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7289
7290	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
7291	/* Update adapter configuration. */
7292	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
7293	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
7294	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
7295	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
7296		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
7297	if (ic->ic_flags & IEEE80211_F_SHSLOT)
7298		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
7299	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
7300		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
7301	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
7302		sc->rxon->cck_mask  = 0;
7303		sc->rxon->ofdm_mask = 0x15;
7304	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
7305		sc->rxon->cck_mask  = 0x03;
7306		sc->rxon->ofdm_mask = 0;
7307	} else {
7308		/* Assume 802.11b/g. */
7309		sc->rxon->cck_mask  = 0x03;
7310		sc->rxon->ofdm_mask = 0x15;
7311	}
7312
7313	/* try HT */
7314	sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ic->ic_curchan));
7315
7316	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
7317	    sc->rxon->chan, sc->rxon->flags, sc->rxon->cck_mask,
7318	    sc->rxon->ofdm_mask);
7319
7320	if ((error = iwn_send_rxon(sc, 0, 1)) != 0) {
7321		device_printf(sc->sc_dev, "%s: could not send RXON\n",
7322		    __func__);
7323		return (error);
7324	}
7325
7326	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7327
7328	return (0);
7329}
7330
7331static int
7332iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap)
7333{
7334	struct iwn_ops *ops = &sc->ops;
7335	struct ieee80211com *ic = &sc->sc_ic;
7336	struct ieee80211_node *ni = vap->iv_bss;
7337	struct iwn_node_info node;
7338	int error;
7339
7340	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7341
7342	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
7343	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
7344		/* Link LED blinks while monitoring. */
7345		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
7346		return 0;
7347	}
7348	if ((error = iwn_set_timing(sc, ni)) != 0) {
7349		device_printf(sc->sc_dev,
7350		    "%s: could not set timing, error %d\n", __func__, error);
7351		return error;
7352	}
7353
7354	/* Update adapter configuration. */
7355	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
7356	sc->rxon->associd = htole16(IEEE80211_AID(ni->ni_associd));
7357	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
7358	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
7359	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
7360		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
7361	if (ic->ic_flags & IEEE80211_F_SHSLOT)
7362		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
7363	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
7364		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
7365	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
7366		sc->rxon->cck_mask  = 0;
7367		sc->rxon->ofdm_mask = 0x15;
7368	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
7369		sc->rxon->cck_mask  = 0x03;
7370		sc->rxon->ofdm_mask = 0;
7371	} else {
7372		/* Assume 802.11b/g. */
7373		sc->rxon->cck_mask  = 0x0f;
7374		sc->rxon->ofdm_mask = 0x15;
7375	}
7376	/* try HT */
7377	sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ni->ni_chan));
7378	sc->rxon->filter |= htole32(IWN_FILTER_BSS);
7379	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x, curhtprotmode=%d\n",
7380	    sc->rxon->chan, le32toh(sc->rxon->flags), ic->ic_curhtprotmode);
7381
7382	if ((error = iwn_send_rxon(sc, 0, 1)) != 0) {
7383		device_printf(sc->sc_dev, "%s: could not send RXON\n",
7384		    __func__);
7385		return error;
7386	}
7387
7388	/* Fake a join to initialize the TX rate. */
7389	((struct iwn_node *)ni)->id = IWN_ID_BSS;
7390	iwn_newassoc(ni, 1);
7391
7392	/* Add BSS node. */
7393	memset(&node, 0, sizeof node);
7394	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
7395	node.id = IWN_ID_BSS;
7396	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
7397		switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) {
7398		case IEEE80211_HTCAP_SMPS_ENA:
7399			node.htflags |= htole32(IWN_SMPS_MIMO_DIS);
7400			break;
7401		case IEEE80211_HTCAP_SMPS_DYNAMIC:
7402			node.htflags |= htole32(IWN_SMPS_MIMO_PROT);
7403			break;
7404		}
7405		node.htflags |= htole32(IWN_AMDPU_SIZE_FACTOR(3) |
7406		    IWN_AMDPU_DENSITY(5));	/* 4us */
7407		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
7408			node.htflags |= htole32(IWN_NODE_HT40);
7409	}
7410	DPRINTF(sc, IWN_DEBUG_STATE, "%s: adding BSS node\n", __func__);
7411	error = ops->add_node(sc, &node, 1);
7412	if (error != 0) {
7413		device_printf(sc->sc_dev,
7414		    "%s: could not add BSS node, error %d\n", __func__, error);
7415		return error;
7416	}
7417	DPRINTF(sc, IWN_DEBUG_STATE, "%s: setting link quality for node %d\n",
7418	    __func__, node.id);
7419	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
7420		device_printf(sc->sc_dev,
7421		    "%s: could not setup link quality for node %d, error %d\n",
7422		    __func__, node.id, error);
7423		return error;
7424	}
7425
7426	if ((error = iwn_init_sensitivity(sc)) != 0) {
7427		device_printf(sc->sc_dev,
7428		    "%s: could not set sensitivity, error %d\n", __func__,
7429		    error);
7430		return error;
7431	}
7432	/* Start periodic calibration timer. */
7433	sc->calib.state = IWN_CALIB_STATE_ASSOC;
7434	sc->calib_cnt = 0;
7435	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
7436	    sc);
7437
7438	/* Link LED always on while associated. */
7439	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
7440
7441	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7442
7443	return 0;
7444}
7445
7446/*
7447 * This function is called by upper layer when an ADDBA request is received
7448 * from another STA and before the ADDBA response is sent.
7449 */
7450static int
7451iwn_ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap,
7452    int baparamset, int batimeout, int baseqctl)
7453{
7454	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7455	struct iwn_ops *ops = &sc->ops;
7456	struct iwn_node *wn = (void *)ni;
7457	struct iwn_node_info node;
7458	uint16_t ssn;
7459	uint8_t tid;
7460	int error;
7461
7462	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7463
7464	tid = _IEEE80211_MASKSHIFT(le16toh(baparamset), IEEE80211_BAPS_TID);
7465	ssn = _IEEE80211_MASKSHIFT(le16toh(baseqctl), IEEE80211_BASEQ_START);
7466
7467	if (wn->id == IWN_ID_UNDEFINED)
7468		return (ENOENT);
7469
7470	memset(&node, 0, sizeof node);
7471	node.id = wn->id;
7472	node.control = IWN_NODE_UPDATE;
7473	node.flags = IWN_FLAG_SET_ADDBA;
7474	node.addba_tid = tid;
7475	node.addba_ssn = htole16(ssn);
7476	DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n",
7477	    wn->id, tid, ssn);
7478	error = ops->add_node(sc, &node, 1);
7479	if (error != 0)
7480		return error;
7481	return sc->sc_ampdu_rx_start(ni, rap, baparamset, batimeout, baseqctl);
7482}
7483
7484/*
7485 * This function is called by upper layer on teardown of an HT-immediate
7486 * Block Ack agreement (eg. uppon receipt of a DELBA frame).
7487 */
7488static void
7489iwn_ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
7490{
7491	struct ieee80211com *ic = ni->ni_ic;
7492	struct iwn_softc *sc = ic->ic_softc;
7493	struct iwn_ops *ops = &sc->ops;
7494	struct iwn_node *wn = (void *)ni;
7495	struct iwn_node_info node;
7496	uint8_t tid;
7497
7498	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7499
7500	if (wn->id == IWN_ID_UNDEFINED)
7501		goto end;
7502
7503	/* XXX: tid as an argument */
7504	for (tid = 0; tid < WME_NUM_TID; tid++) {
7505		if (&ni->ni_rx_ampdu[tid] == rap)
7506			break;
7507	}
7508
7509	memset(&node, 0, sizeof node);
7510	node.id = wn->id;
7511	node.control = IWN_NODE_UPDATE;
7512	node.flags = IWN_FLAG_SET_DELBA;
7513	node.delba_tid = tid;
7514	DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid);
7515	(void)ops->add_node(sc, &node, 1);
7516end:
7517	sc->sc_ampdu_rx_stop(ni, rap);
7518}
7519
7520static int
7521iwn_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
7522    int dialogtoken, int baparamset, int batimeout)
7523{
7524	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7525	int qid;
7526
7527	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7528
7529	for (qid = sc->firstaggqueue; qid < sc->ntxqs; qid++) {
7530		if (sc->qid2tap[qid] == NULL)
7531			break;
7532	}
7533	if (qid == sc->ntxqs) {
7534		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: not free aggregation queue\n",
7535		    __func__);
7536		return 0;
7537	}
7538	tap->txa_private = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
7539	if (tap->txa_private == NULL) {
7540		device_printf(sc->sc_dev,
7541		    "%s: failed to alloc TX aggregation structure\n", __func__);
7542		return 0;
7543	}
7544	sc->qid2tap[qid] = tap;
7545	*(int *)tap->txa_private = qid;
7546	return sc->sc_addba_request(ni, tap, dialogtoken, baparamset,
7547	    batimeout);
7548}
7549
7550static int
7551iwn_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
7552    int code, int baparamset, int batimeout)
7553{
7554	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7555	int qid = *(int *)tap->txa_private;
7556	uint8_t tid = tap->txa_tid;
7557	int ret;
7558
7559	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7560
7561	if (code == IEEE80211_STATUS_SUCCESS) {
7562		ni->ni_txseqs[tid] = tap->txa_start & 0xfff;
7563		ret = iwn_ampdu_tx_start(ni->ni_ic, ni, tid);
7564		if (ret != 1)
7565			return ret;
7566	} else {
7567		sc->qid2tap[qid] = NULL;
7568		free(tap->txa_private, M_DEVBUF);
7569		tap->txa_private = NULL;
7570	}
7571	return sc->sc_addba_response(ni, tap, code, baparamset, batimeout);
7572}
7573
7574/*
7575 * This function is called by upper layer when an ADDBA response is received
7576 * from another STA.
7577 */
7578static int
7579iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
7580    uint8_t tid)
7581{
7582	struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
7583	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7584	struct iwn_ops *ops = &sc->ops;
7585	struct iwn_node *wn = (void *)ni;
7586	struct iwn_node_info node;
7587	int error, qid;
7588
7589	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7590
7591	if (wn->id == IWN_ID_UNDEFINED)
7592		return (0);
7593
7594	/* Enable TX for the specified RA/TID. */
7595	wn->disable_tid &= ~(1 << tid);
7596	memset(&node, 0, sizeof node);
7597	node.id = wn->id;
7598	node.control = IWN_NODE_UPDATE;
7599	node.flags = IWN_FLAG_SET_DISABLE_TID;
7600	node.disable_tid = htole16(wn->disable_tid);
7601	error = ops->add_node(sc, &node, 1);
7602	if (error != 0)
7603		return 0;
7604
7605	if ((error = iwn_nic_lock(sc)) != 0)
7606		return 0;
7607	qid = *(int *)tap->txa_private;
7608	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: ra=%d tid=%d ssn=%d qid=%d\n",
7609	    __func__, wn->id, tid, tap->txa_start, qid);
7610	ops->ampdu_tx_start(sc, ni, qid, tid, tap->txa_start & 0xfff);
7611	iwn_nic_unlock(sc);
7612
7613	iwn_set_link_quality(sc, ni);
7614	return 1;
7615}
7616
7617static void
7618iwn_ampdu_tx_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
7619{
7620	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7621	struct iwn_ops *ops = &sc->ops;
7622	uint8_t tid = tap->txa_tid;
7623	int qid;
7624
7625	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7626
7627	sc->sc_addba_stop(ni, tap);
7628
7629	if (tap->txa_private == NULL)
7630		return;
7631
7632	qid = *(int *)tap->txa_private;
7633	if (sc->txq[qid].queued != 0)
7634		return;
7635	if (iwn_nic_lock(sc) != 0)
7636		return;
7637	ops->ampdu_tx_stop(sc, qid, tid, tap->txa_start & 0xfff);
7638	iwn_nic_unlock(sc);
7639	sc->qid2tap[qid] = NULL;
7640	free(tap->txa_private, M_DEVBUF);
7641	tap->txa_private = NULL;
7642}
7643
7644static void
7645iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
7646    int qid, uint8_t tid, uint16_t ssn)
7647{
7648	struct iwn_node *wn = (void *)ni;
7649
7650	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7651
7652	/* Stop TX scheduler while we're changing its configuration. */
7653	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7654	    IWN4965_TXQ_STATUS_CHGACT);
7655
7656	/* Assign RA/TID translation to the queue. */
7657	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
7658	    wn->id << 4 | tid);
7659
7660	/* Enable chain-building mode for the queue. */
7661	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
7662
7663	/* Set starting sequence number from the ADDBA request. */
7664	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
7665	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7666	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
7667
7668	/* Set scheduler window size. */
7669	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
7670	    IWN_SCHED_WINSZ);
7671	/* Set scheduler frame limit. */
7672	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
7673	    IWN_SCHED_LIMIT << 16);
7674
7675	/* Enable interrupts for the queue. */
7676	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
7677
7678	/* Mark the queue as active. */
7679	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7680	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
7681	    iwn_tid2fifo[tid] << 1);
7682}
7683
7684static void
7685iwn4965_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
7686{
7687	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7688
7689	/* Stop TX scheduler while we're changing its configuration. */
7690	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7691	    IWN4965_TXQ_STATUS_CHGACT);
7692
7693	/* Set starting sequence number from the ADDBA request. */
7694	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7695	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
7696
7697	/* Disable interrupts for the queue. */
7698	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
7699
7700	/* Mark the queue as inactive. */
7701	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7702	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
7703}
7704
7705static void
7706iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
7707    int qid, uint8_t tid, uint16_t ssn)
7708{
7709	struct iwn_node *wn = (void *)ni;
7710
7711	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7712
7713	/* Stop TX scheduler while we're changing its configuration. */
7714	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7715	    IWN5000_TXQ_STATUS_CHGACT);
7716
7717	/* Assign RA/TID translation to the queue. */
7718	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
7719	    wn->id << 4 | tid);
7720
7721	/* Enable chain-building mode for the queue. */
7722	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
7723
7724	/* Enable aggregation for the queue. */
7725	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7726
7727	/* Set starting sequence number from the ADDBA request. */
7728	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
7729	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7730	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7731
7732	/* Set scheduler window size and frame limit. */
7733	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
7734	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
7735
7736	/* Enable interrupts for the queue. */
7737	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7738
7739	/* Mark the queue as active. */
7740	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7741	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
7742}
7743
7744static void
7745iwn5000_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
7746{
7747	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7748
7749	/* Stop TX scheduler while we're changing its configuration. */
7750	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7751	    IWN5000_TXQ_STATUS_CHGACT);
7752
7753	/* Disable aggregation for the queue. */
7754	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7755
7756	/* Set starting sequence number from the ADDBA request. */
7757	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7758	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7759
7760	/* Disable interrupts for the queue. */
7761	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7762
7763	/* Mark the queue as inactive. */
7764	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7765	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
7766}
7767
7768/*
7769 * Query calibration tables from the initialization firmware.  We do this
7770 * only once at first boot.  Called from a process context.
7771 */
7772static int
7773iwn5000_query_calibration(struct iwn_softc *sc)
7774{
7775	struct iwn5000_calib_config cmd;
7776	int error;
7777
7778	memset(&cmd, 0, sizeof cmd);
7779	cmd.ucode.once.enable = htole32(0xffffffff);
7780	cmd.ucode.once.start  = htole32(0xffffffff);
7781	cmd.ucode.once.send   = htole32(0xffffffff);
7782	cmd.ucode.flags       = htole32(0xffffffff);
7783	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n",
7784	    __func__);
7785	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
7786	if (error != 0)
7787		return error;
7788
7789	/* Wait at most two seconds for calibration to complete. */
7790	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
7791		error = msleep(sc, &sc->sc_mtx, PCATCH, "iwncal", 2 * hz);
7792	return error;
7793}
7794
7795/*
7796 * Send calibration results to the runtime firmware.  These results were
7797 * obtained on first boot from the initialization firmware.
7798 */
7799static int
7800iwn5000_send_calibration(struct iwn_softc *sc)
7801{
7802	int idx, error;
7803
7804	for (idx = 0; idx < IWN5000_PHY_CALIB_MAX_RESULT; idx++) {
7805		if (!(sc->base_params->calib_need & (1<<idx))) {
7806			DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7807			    "No need of calib %d\n",
7808			    idx);
7809			continue; /* no need for this calib */
7810		}
7811		if (sc->calibcmd[idx].buf == NULL) {
7812			DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7813			    "Need calib idx : %d but no available data\n",
7814			    idx);
7815			continue;
7816		}
7817
7818		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7819		    "send calibration result idx=%d len=%d\n", idx,
7820		    sc->calibcmd[idx].len);
7821		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
7822		    sc->calibcmd[idx].len, 0);
7823		if (error != 0) {
7824			device_printf(sc->sc_dev,
7825			    "%s: could not send calibration result, error %d\n",
7826			    __func__, error);
7827			return error;
7828		}
7829	}
7830	return 0;
7831}
7832
7833static int
7834iwn5000_send_wimax_coex(struct iwn_softc *sc)
7835{
7836	struct iwn5000_wimax_coex wimax;
7837
7838#if 0
7839	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
7840		/* Enable WiMAX coexistence for combo adapters. */
7841		wimax.flags =
7842		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
7843		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
7844		    IWN_WIMAX_COEX_STA_TABLE_VALID |
7845		    IWN_WIMAX_COEX_ENABLE;
7846		memcpy(wimax.events, iwn6050_wimax_events,
7847		    sizeof iwn6050_wimax_events);
7848	} else
7849#endif
7850	{
7851		/* Disable WiMAX coexistence. */
7852		wimax.flags = 0;
7853		memset(wimax.events, 0, sizeof wimax.events);
7854	}
7855	DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n",
7856	    __func__);
7857	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
7858}
7859
7860static int
7861iwn5000_crystal_calib(struct iwn_softc *sc)
7862{
7863	struct iwn5000_phy_calib_crystal cmd;
7864
7865	memset(&cmd, 0, sizeof cmd);
7866	cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
7867	cmd.ngroups = 1;
7868	cmd.isvalid = 1;
7869	cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
7870	cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
7871	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "sending crystal calibration %d, %d\n",
7872	    cmd.cap_pin[0], cmd.cap_pin[1]);
7873	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7874}
7875
7876static int
7877iwn5000_temp_offset_calib(struct iwn_softc *sc)
7878{
7879	struct iwn5000_phy_calib_temp_offset cmd;
7880
7881	memset(&cmd, 0, sizeof cmd);
7882	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7883	cmd.ngroups = 1;
7884	cmd.isvalid = 1;
7885	if (sc->eeprom_temp != 0)
7886		cmd.offset = htole16(sc->eeprom_temp);
7887	else
7888		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
7889	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "setting radio sensor offset to %d\n",
7890	    le16toh(cmd.offset));
7891	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7892}
7893
7894static int
7895iwn5000_temp_offset_calibv2(struct iwn_softc *sc)
7896{
7897	struct iwn5000_phy_calib_temp_offsetv2 cmd;
7898
7899	memset(&cmd, 0, sizeof cmd);
7900	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7901	cmd.ngroups = 1;
7902	cmd.isvalid = 1;
7903	if (sc->eeprom_temp != 0) {
7904		cmd.offset_low = htole16(sc->eeprom_temp);
7905		cmd.offset_high = htole16(sc->eeprom_temp_high);
7906	} else {
7907		cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
7908		cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
7909	}
7910	cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
7911
7912	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7913	    "setting radio sensor low offset to %d, high offset to %d, voltage to %d\n",
7914	    le16toh(cmd.offset_low),
7915	    le16toh(cmd.offset_high),
7916	    le16toh(cmd.burnt_voltage_ref));
7917
7918	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7919}
7920
7921/*
7922 * This function is called after the runtime firmware notifies us of its
7923 * readiness (called in a process context).
7924 */
7925static int
7926iwn4965_post_alive(struct iwn_softc *sc)
7927{
7928	int error, qid;
7929
7930	if ((error = iwn_nic_lock(sc)) != 0)
7931		return error;
7932
7933	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7934
7935	/* Clear TX scheduler state in SRAM. */
7936	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
7937	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
7938	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
7939
7940	/* Set physical address of TX scheduler rings (1KB aligned). */
7941	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
7942
7943	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
7944
7945	/* Disable chain mode for all our 16 queues. */
7946	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
7947
7948	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
7949		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
7950		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
7951
7952		/* Set scheduler window size. */
7953		iwn_mem_write(sc, sc->sched_base +
7954		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
7955		/* Set scheduler frame limit. */
7956		iwn_mem_write(sc, sc->sched_base +
7957		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
7958		    IWN_SCHED_LIMIT << 16);
7959	}
7960
7961	/* Enable interrupts for all our 16 queues. */
7962	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
7963	/* Identify TX FIFO rings (0-7). */
7964	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
7965
7966	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7967	for (qid = 0; qid < 7; qid++) {
7968		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
7969		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7970		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
7971	}
7972	iwn_nic_unlock(sc);
7973	return 0;
7974}
7975
7976/*
7977 * This function is called after the initialization or runtime firmware
7978 * notifies us of its readiness (called in a process context).
7979 */
7980static int
7981iwn5000_post_alive(struct iwn_softc *sc)
7982{
7983	int error, qid;
7984
7985	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7986
7987#ifndef __HAIKU__
7988	/* Switch to using ICT interrupt mode. */
7989	iwn5000_ict_reset(sc);
7990#endif
7991
7992	if ((error = iwn_nic_lock(sc)) != 0){
7993		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
7994		return error;
7995	}
7996
7997	/* Clear TX scheduler state in SRAM. */
7998	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
7999	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
8000	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
8001
8002	/* Set physical address of TX scheduler rings (1KB aligned). */
8003	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
8004
8005	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
8006
8007	/* Enable chain mode for all queues, except command queue. */
8008	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
8009		iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffdf);
8010	else
8011		iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
8012	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
8013
8014	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
8015		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
8016		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
8017
8018		iwn_mem_write(sc, sc->sched_base +
8019		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
8020		/* Set scheduler window size and frame limit. */
8021		iwn_mem_write(sc, sc->sched_base +
8022		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
8023		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
8024	}
8025
8026	/* Enable interrupts for all our 20 queues. */
8027	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
8028	/* Identify TX FIFO rings (0-7). */
8029	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
8030
8031	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
8032	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT) {
8033		/* Mark TX rings as active. */
8034		for (qid = 0; qid < 11; qid++) {
8035			static uint8_t qid2fifo[] = { 3, 2, 1, 0, 0, 4, 2, 5, 4, 7, 5 };
8036			iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
8037			    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
8038		}
8039	} else {
8040		/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
8041		for (qid = 0; qid < 7; qid++) {
8042			static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
8043			iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
8044			    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
8045		}
8046	}
8047	iwn_nic_unlock(sc);
8048
8049	/* Configure WiMAX coexistence for combo adapters. */
8050	error = iwn5000_send_wimax_coex(sc);
8051	if (error != 0) {
8052		device_printf(sc->sc_dev,
8053		    "%s: could not configure WiMAX coexistence, error %d\n",
8054		    __func__, error);
8055		return error;
8056	}
8057	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
8058		/* Perform crystal calibration. */
8059		error = iwn5000_crystal_calib(sc);
8060		if (error != 0) {
8061			device_printf(sc->sc_dev,
8062			    "%s: crystal calibration failed, error %d\n",
8063			    __func__, error);
8064			return error;
8065		}
8066	}
8067	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
8068		/* Query calibration from the initialization firmware. */
8069		if ((error = iwn5000_query_calibration(sc)) != 0) {
8070			device_printf(sc->sc_dev,
8071			    "%s: could not query calibration, error %d\n",
8072			    __func__, error);
8073			return error;
8074		}
8075		/*
8076		 * We have the calibration results now, reboot with the
8077		 * runtime firmware (call ourselves recursively!)
8078		 */
8079		iwn_hw_stop(sc);
8080		error = iwn_hw_init(sc);
8081	} else {
8082		/* Send calibration results to runtime firmware. */
8083		error = iwn5000_send_calibration(sc);
8084	}
8085
8086	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8087
8088	return error;
8089}
8090
8091/*
8092 * The firmware boot code is small and is intended to be copied directly into
8093 * the NIC internal memory (no DMA transfer).
8094 */
8095static int
8096iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
8097{
8098	int error, ntries;
8099
8100	size /= sizeof (uint32_t);
8101
8102	if ((error = iwn_nic_lock(sc)) != 0)
8103		return error;
8104
8105	/* Copy microcode image into NIC memory. */
8106	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
8107	    (const uint32_t *)ucode, size);
8108
8109	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
8110	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
8111	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
8112
8113	/* Start boot load now. */
8114	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
8115
8116	/* Wait for transfer to complete. */
8117	for (ntries = 0; ntries < 1000; ntries++) {
8118		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
8119		    IWN_BSM_WR_CTRL_START))
8120			break;
8121		DELAY(10);
8122	}
8123	if (ntries == 1000) {
8124		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
8125		    __func__);
8126		iwn_nic_unlock(sc);
8127		return ETIMEDOUT;
8128	}
8129
8130	/* Enable boot after power up. */
8131	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
8132
8133	iwn_nic_unlock(sc);
8134	return 0;
8135}
8136
8137static int
8138iwn4965_load_firmware(struct iwn_softc *sc)
8139{
8140	struct iwn_fw_info *fw = &sc->fw;
8141	struct iwn_dma_info *dma = &sc->fw_dma;
8142	int error;
8143
8144	/* Copy initialization sections into pre-allocated DMA-safe memory. */
8145	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
8146	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8147	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
8148	    fw->init.text, fw->init.textsz);
8149	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8150
8151	/* Tell adapter where to find initialization sections. */
8152	if ((error = iwn_nic_lock(sc)) != 0)
8153		return error;
8154	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
8155	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
8156	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
8157	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
8158	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
8159	iwn_nic_unlock(sc);
8160
8161	/* Load firmware boot code. */
8162	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
8163	if (error != 0) {
8164		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
8165		    __func__);
8166		return error;
8167	}
8168	/* Now press "execute". */
8169	IWN_WRITE(sc, IWN_RESET, 0);
8170
8171	/* Wait at most one second for first alive notification. */
8172	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
8173		device_printf(sc->sc_dev,
8174		    "%s: timeout waiting for adapter to initialize, error %d\n",
8175		    __func__, error);
8176		return error;
8177	}
8178
8179	/* Retrieve current temperature for initial TX power calibration. */
8180	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
8181	sc->temp = iwn4965_get_temperature(sc);
8182
8183	/* Copy runtime sections into pre-allocated DMA-safe memory. */
8184	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
8185	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8186	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
8187	    fw->main.text, fw->main.textsz);
8188	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8189
8190	/* Tell adapter where to find runtime sections. */
8191	if ((error = iwn_nic_lock(sc)) != 0)
8192		return error;
8193	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
8194	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
8195	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
8196	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
8197	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
8198	    IWN_FW_UPDATED | fw->main.textsz);
8199	iwn_nic_unlock(sc);
8200
8201	return 0;
8202}
8203
8204static int
8205iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
8206    const uint8_t *section, int size)
8207{
8208	struct iwn_dma_info *dma = &sc->fw_dma;
8209	int error;
8210
8211	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8212
8213	/* Copy firmware section into pre-allocated DMA-safe memory. */
8214	memcpy(dma->vaddr, section, size);
8215	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8216
8217	if ((error = iwn_nic_lock(sc)) != 0)
8218		return error;
8219
8220	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
8221	    IWN_FH_TX_CONFIG_DMA_PAUSE);
8222
8223	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
8224	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
8225	    IWN_LOADDR(dma->paddr));
8226	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
8227	    IWN_HIADDR(dma->paddr) << 28 | size);
8228	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
8229	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
8230	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
8231	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
8232
8233	/* Kick Flow Handler to start DMA transfer. */
8234	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
8235	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
8236
8237	iwn_nic_unlock(sc);
8238
8239	/* Wait at most five seconds for FH DMA transfer to complete. */
8240	return msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", 5 * hz);
8241}
8242
8243static int
8244iwn5000_load_firmware(struct iwn_softc *sc)
8245{
8246	struct iwn_fw_part *fw;
8247	int error;
8248
8249	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8250
8251	/* Load the initialization firmware on first boot only. */
8252	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
8253	    &sc->fw.main : &sc->fw.init;
8254
8255	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
8256	    fw->text, fw->textsz);
8257	if (error != 0) {
8258		device_printf(sc->sc_dev,
8259		    "%s: could not load firmware %s section, error %d\n",
8260		    __func__, ".text", error);
8261		return error;
8262	}
8263	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
8264	    fw->data, fw->datasz);
8265	if (error != 0) {
8266		device_printf(sc->sc_dev,
8267		    "%s: could not load firmware %s section, error %d\n",
8268		    __func__, ".data", error);
8269		return error;
8270	}
8271
8272	/* Now press "execute". */
8273	IWN_WRITE(sc, IWN_RESET, 0);
8274	return 0;
8275}
8276
8277/*
8278 * Extract text and data sections from a legacy firmware image.
8279 */
8280static int
8281iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
8282{
8283	const uint32_t *ptr;
8284	size_t hdrlen = 24;
8285	uint32_t rev;
8286
8287	ptr = (const uint32_t *)fw->data;
8288	rev = le32toh(*ptr++);
8289
8290	sc->ucode_rev = rev;
8291
8292	/* Check firmware API version. */
8293	if (IWN_FW_API(rev) <= 1) {
8294		device_printf(sc->sc_dev,
8295		    "%s: bad firmware, need API version >=2\n", __func__);
8296		return EINVAL;
8297	}
8298	if (IWN_FW_API(rev) >= 3) {
8299		/* Skip build number (version 2 header). */
8300		hdrlen += 4;
8301		ptr++;
8302	}
8303	if (fw->size < hdrlen) {
8304		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8305		    __func__, fw->size);
8306		return EINVAL;
8307	}
8308	fw->main.textsz = le32toh(*ptr++);
8309	fw->main.datasz = le32toh(*ptr++);
8310	fw->init.textsz = le32toh(*ptr++);
8311	fw->init.datasz = le32toh(*ptr++);
8312	fw->boot.textsz = le32toh(*ptr++);
8313
8314	/* Check that all firmware sections fit. */
8315	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
8316	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
8317		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8318		    __func__, fw->size);
8319		return EINVAL;
8320	}
8321
8322	/* Get pointers to firmware sections. */
8323	fw->main.text = (const uint8_t *)ptr;
8324	fw->main.data = fw->main.text + fw->main.textsz;
8325	fw->init.text = fw->main.data + fw->main.datasz;
8326	fw->init.data = fw->init.text + fw->init.textsz;
8327	fw->boot.text = fw->init.data + fw->init.datasz;
8328	return 0;
8329}
8330
8331/*
8332 * Extract text and data sections from a TLV firmware image.
8333 */
8334static int
8335iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
8336    uint16_t alt)
8337{
8338	const struct iwn_fw_tlv_hdr *hdr;
8339	const struct iwn_fw_tlv *tlv;
8340	const uint8_t *ptr, *end;
8341	uint64_t altmask;
8342	uint32_t len, tmp;
8343
8344	if (fw->size < sizeof (*hdr)) {
8345		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8346		    __func__, fw->size);
8347		return EINVAL;
8348	}
8349	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
8350	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
8351		device_printf(sc->sc_dev, "%s: bad firmware signature 0x%08x\n",
8352		    __func__, le32toh(hdr->signature));
8353		return EINVAL;
8354	}
8355	DPRINTF(sc, IWN_DEBUG_RESET, "FW: \"%.64s\", build 0x%x\n", hdr->descr,
8356	    le32toh(hdr->build));
8357	sc->ucode_rev = le32toh(hdr->rev);
8358
8359	/*
8360	 * Select the closest supported alternative that is less than
8361	 * or equal to the specified one.
8362	 */
8363	altmask = le64toh(hdr->altmask);
8364	while (alt > 0 && !(altmask & (1ULL << alt)))
8365		alt--;	/* Downgrade. */
8366	DPRINTF(sc, IWN_DEBUG_RESET, "using alternative %d\n", alt);
8367
8368	ptr = (const uint8_t *)(hdr + 1);
8369	end = (const uint8_t *)(fw->data + fw->size);
8370
8371	/* Parse type-length-value fields. */
8372	while (ptr + sizeof (*tlv) <= end) {
8373		tlv = (const struct iwn_fw_tlv *)ptr;
8374		len = le32toh(tlv->len);
8375
8376		ptr += sizeof (*tlv);
8377		if (ptr + len > end) {
8378			device_printf(sc->sc_dev,
8379			    "%s: firmware too short: %zu bytes\n", __func__,
8380			    fw->size);
8381			return EINVAL;
8382		}
8383		/* Skip other alternatives. */
8384		if (tlv->alt != 0 && tlv->alt != htole16(alt))
8385			goto next;
8386
8387		switch (le16toh(tlv->type)) {
8388		case IWN_FW_TLV_MAIN_TEXT:
8389			fw->main.text = ptr;
8390			fw->main.textsz = len;
8391			break;
8392		case IWN_FW_TLV_MAIN_DATA:
8393			fw->main.data = ptr;
8394			fw->main.datasz = len;
8395			break;
8396		case IWN_FW_TLV_INIT_TEXT:
8397			fw->init.text = ptr;
8398			fw->init.textsz = len;
8399			break;
8400		case IWN_FW_TLV_INIT_DATA:
8401			fw->init.data = ptr;
8402			fw->init.datasz = len;
8403			break;
8404		case IWN_FW_TLV_BOOT_TEXT:
8405			fw->boot.text = ptr;
8406			fw->boot.textsz = len;
8407			break;
8408		case IWN_FW_TLV_ENH_SENS:
8409			if (!len)
8410				sc->sc_flags |= IWN_FLAG_ENH_SENS;
8411			break;
8412		case IWN_FW_TLV_PHY_CALIB:
8413			tmp = le32toh(*ptr);
8414			if (tmp < 253) {
8415				sc->reset_noise_gain = tmp;
8416				sc->noise_gain = tmp + 1;
8417			}
8418			break;
8419		case IWN_FW_TLV_PAN:
8420			sc->sc_flags |= IWN_FLAG_PAN_SUPPORT;
8421			DPRINTF(sc, IWN_DEBUG_RESET,
8422			    "PAN Support found: %d\n", 1);
8423			break;
8424		case IWN_FW_TLV_FLAGS:
8425			if (len < sizeof(uint32_t))
8426				break;
8427			if (len % sizeof(uint32_t))
8428				break;
8429			sc->tlv_feature_flags = le32toh(*ptr);
8430			DPRINTF(sc, IWN_DEBUG_RESET,
8431			    "%s: feature: 0x%08x\n",
8432			    __func__,
8433			    sc->tlv_feature_flags);
8434			break;
8435		case IWN_FW_TLV_PBREQ_MAXLEN:
8436		case IWN_FW_TLV_RUNT_EVTLOG_PTR:
8437		case IWN_FW_TLV_RUNT_EVTLOG_SIZE:
8438		case IWN_FW_TLV_RUNT_ERRLOG_PTR:
8439		case IWN_FW_TLV_INIT_EVTLOG_PTR:
8440		case IWN_FW_TLV_INIT_EVTLOG_SIZE:
8441		case IWN_FW_TLV_INIT_ERRLOG_PTR:
8442		case IWN_FW_TLV_WOWLAN_INST:
8443		case IWN_FW_TLV_WOWLAN_DATA:
8444			DPRINTF(sc, IWN_DEBUG_RESET,
8445			    "TLV type %d recognized but not handled\n",
8446			    le16toh(tlv->type));
8447			break;
8448		default:
8449			DPRINTF(sc, IWN_DEBUG_RESET,
8450			    "TLV type %d not handled\n", le16toh(tlv->type));
8451			break;
8452		}
8453 next:		/* TLV fields are 32-bit aligned. */
8454		ptr += (len + 3) & ~3;
8455	}
8456	return 0;
8457}
8458
8459static int
8460iwn_read_firmware(struct iwn_softc *sc)
8461{
8462	struct iwn_fw_info *fw = &sc->fw;
8463	int error;
8464
8465	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8466
8467	IWN_UNLOCK(sc);
8468
8469	memset(fw, 0, sizeof (*fw));
8470
8471	/* Read firmware image from filesystem. */
8472	sc->fw_fp = firmware_get(sc->fwname);
8473	if (sc->fw_fp == NULL) {
8474		device_printf(sc->sc_dev, "%s: could not read firmware %s\n",
8475		    __func__, sc->fwname);
8476		IWN_LOCK(sc);
8477		return EINVAL;
8478	}
8479	IWN_LOCK(sc);
8480
8481	fw->size = sc->fw_fp->datasize;
8482	fw->data = (const uint8_t *)sc->fw_fp->data;
8483	if (fw->size < sizeof (uint32_t)) {
8484		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8485		    __func__, fw->size);
8486		error = EINVAL;
8487		goto fail;
8488	}
8489
8490	/* Retrieve text and data sections. */
8491	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
8492		error = iwn_read_firmware_leg(sc, fw);
8493	else
8494		error = iwn_read_firmware_tlv(sc, fw, 1);
8495	if (error != 0) {
8496		device_printf(sc->sc_dev,
8497		    "%s: could not read firmware sections, error %d\n",
8498		    __func__, error);
8499		goto fail;
8500	}
8501
8502	device_printf(sc->sc_dev, "%s: ucode rev=0x%08x\n", __func__, sc->ucode_rev);
8503
8504	/* Make sure text and data sections fit in hardware memory. */
8505	if (fw->main.textsz > sc->fw_text_maxsz ||
8506	    fw->main.datasz > sc->fw_data_maxsz ||
8507	    fw->init.textsz > sc->fw_text_maxsz ||
8508	    fw->init.datasz > sc->fw_data_maxsz ||
8509	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
8510	    (fw->boot.textsz & 3) != 0) {
8511		device_printf(sc->sc_dev, "%s: firmware sections too large\n",
8512		    __func__);
8513		error = EINVAL;
8514		goto fail;
8515	}
8516
8517	/* We can proceed with loading the firmware. */
8518	return 0;
8519
8520fail:	iwn_unload_firmware(sc);
8521	return error;
8522}
8523
8524static void
8525iwn_unload_firmware(struct iwn_softc *sc)
8526{
8527	firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
8528	sc->fw_fp = NULL;
8529}
8530
8531static int
8532iwn_clock_wait(struct iwn_softc *sc)
8533{
8534	int ntries;
8535
8536	/* Set "initialization complete" bit. */
8537	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
8538
8539	/* Wait for clock stabilization. */
8540	for (ntries = 0; ntries < 2500; ntries++) {
8541		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
8542			return 0;
8543		DELAY(10);
8544	}
8545	device_printf(sc->sc_dev,
8546	    "%s: timeout waiting for clock stabilization\n", __func__);
8547	return ETIMEDOUT;
8548}
8549
8550static int
8551iwn_apm_init(struct iwn_softc *sc)
8552{
8553	uint32_t reg;
8554	int error;
8555
8556	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8557
8558	/* Disable L0s exit timer (NMI bug workaround). */
8559	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
8560	/* Don't wait for ICH L0s (ICH bug workaround). */
8561	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
8562
8563	/* Set FH wait threshold to max (HW bug under stress workaround). */
8564	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
8565
8566	/* Enable HAP INTA to move adapter from L1a to L0s. */
8567	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
8568
8569	/* Retrieve PCIe Active State Power Management (ASPM). */
8570	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 4);
8571	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
8572	if (reg & PCIEM_LINK_CTL_ASPMC_L1)	/* L1 Entry enabled. */
8573		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
8574	else
8575		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
8576
8577	if (sc->base_params->pll_cfg_val)
8578		IWN_SETBITS(sc, IWN_ANA_PLL, sc->base_params->pll_cfg_val);
8579
8580	/* Wait for clock stabilization before accessing prph. */
8581	if ((error = iwn_clock_wait(sc)) != 0)
8582		return error;
8583
8584	if ((error = iwn_nic_lock(sc)) != 0)
8585		return error;
8586	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
8587		/* Enable DMA and BSM (Bootstrap State Machine). */
8588		iwn_prph_write(sc, IWN_APMG_CLK_EN,
8589		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
8590		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
8591	} else {
8592		/* Enable DMA. */
8593		iwn_prph_write(sc, IWN_APMG_CLK_EN,
8594		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
8595	}
8596	DELAY(20);
8597	/* Disable L1-Active. */
8598	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
8599	iwn_nic_unlock(sc);
8600
8601	return 0;
8602}
8603
8604static void
8605iwn_apm_stop_master(struct iwn_softc *sc)
8606{
8607	int ntries;
8608
8609	/* Stop busmaster DMA activity. */
8610	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
8611	for (ntries = 0; ntries < 100; ntries++) {
8612		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
8613			return;
8614		DELAY(10);
8615	}
8616	device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__);
8617}
8618
8619static void
8620iwn_apm_stop(struct iwn_softc *sc)
8621{
8622	iwn_apm_stop_master(sc);
8623
8624	/* Reset the entire device. */
8625	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
8626	DELAY(10);
8627	/* Clear "initialization complete" bit. */
8628	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
8629}
8630
8631static int
8632iwn4965_nic_config(struct iwn_softc *sc)
8633{
8634	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8635
8636	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
8637		/*
8638		 * I don't believe this to be correct but this is what the
8639		 * vendor driver is doing. Probably the bits should not be
8640		 * shifted in IWN_RFCFG_*.
8641		 */
8642		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8643		    IWN_RFCFG_TYPE(sc->rfcfg) |
8644		    IWN_RFCFG_STEP(sc->rfcfg) |
8645		    IWN_RFCFG_DASH(sc->rfcfg));
8646	}
8647	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8648	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
8649	return 0;
8650}
8651
8652static int
8653iwn5000_nic_config(struct iwn_softc *sc)
8654{
8655	uint32_t tmp;
8656	int error;
8657
8658	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8659
8660	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
8661		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8662		    IWN_RFCFG_TYPE(sc->rfcfg) |
8663		    IWN_RFCFG_STEP(sc->rfcfg) |
8664		    IWN_RFCFG_DASH(sc->rfcfg));
8665	}
8666	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8667	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
8668
8669	if ((error = iwn_nic_lock(sc)) != 0)
8670		return error;
8671	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
8672
8673	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
8674		/*
8675		 * Select first Switching Voltage Regulator (1.32V) to
8676		 * solve a stability issue related to noisy DC2DC line
8677		 * in the silicon of 1000 Series.
8678		 */
8679		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
8680		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
8681		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
8682		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
8683	}
8684	iwn_nic_unlock(sc);
8685
8686	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
8687		/* Use internal power amplifier only. */
8688		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
8689	}
8690	if (sc->base_params->additional_nic_config && sc->calib_ver >= 6) {
8691		/* Indicate that ROM calibration version is >=6. */
8692		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
8693	}
8694	if (sc->base_params->additional_gp_drv_bit)
8695		IWN_SETBITS(sc, IWN_GP_DRIVER,
8696		    sc->base_params->additional_gp_drv_bit);
8697	return 0;
8698}
8699
8700/*
8701 * Take NIC ownership over Intel Active Management Technology (AMT).
8702 */
8703static int
8704iwn_hw_prepare(struct iwn_softc *sc)
8705{
8706	int ntries;
8707
8708	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8709
8710	/* Check if hardware is ready. */
8711	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
8712	for (ntries = 0; ntries < 5; ntries++) {
8713		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
8714		    IWN_HW_IF_CONFIG_NIC_READY)
8715			return 0;
8716		DELAY(10);
8717	}
8718
8719	/* Hardware not ready, force into ready state. */
8720	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
8721	for (ntries = 0; ntries < 15000; ntries++) {
8722		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
8723		    IWN_HW_IF_CONFIG_PREPARE_DONE))
8724			break;
8725		DELAY(10);
8726	}
8727	if (ntries == 15000)
8728		return ETIMEDOUT;
8729
8730	/* Hardware should be ready now. */
8731	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
8732	for (ntries = 0; ntries < 5; ntries++) {
8733		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
8734		    IWN_HW_IF_CONFIG_NIC_READY)
8735			return 0;
8736		DELAY(10);
8737	}
8738	return ETIMEDOUT;
8739}
8740
8741static int
8742iwn_hw_init(struct iwn_softc *sc)
8743{
8744	struct iwn_ops *ops = &sc->ops;
8745	int error, chnl, qid;
8746
8747	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8748
8749	/* Clear pending interrupts. */
8750	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8751
8752	if ((error = iwn_apm_init(sc)) != 0) {
8753		device_printf(sc->sc_dev,
8754		    "%s: could not power ON adapter, error %d\n", __func__,
8755		    error);
8756		return error;
8757	}
8758
8759	/* Select VMAIN power source. */
8760	if ((error = iwn_nic_lock(sc)) != 0)
8761		return error;
8762	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
8763	iwn_nic_unlock(sc);
8764
8765	/* Perform adapter-specific initialization. */
8766	if ((error = ops->nic_config(sc)) != 0)
8767		return error;
8768
8769	/* Initialize RX ring. */
8770	if ((error = iwn_nic_lock(sc)) != 0)
8771		return error;
8772	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
8773	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
8774	/* Set physical address of RX ring (256-byte aligned). */
8775	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
8776	/* Set physical address of RX status (16-byte aligned). */
8777	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
8778	/* Enable RX. */
8779	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
8780	    IWN_FH_RX_CONFIG_ENA           |
8781	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
8782	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
8783	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
8784	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
8785	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
8786	iwn_nic_unlock(sc);
8787	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
8788
8789	if ((error = iwn_nic_lock(sc)) != 0)
8790		return error;
8791
8792	/* Initialize TX scheduler. */
8793	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8794
8795	/* Set physical address of "keep warm" page (16-byte aligned). */
8796	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
8797
8798	/* Initialize TX rings. */
8799	for (qid = 0; qid < sc->ntxqs; qid++) {
8800		struct iwn_tx_ring *txq = &sc->txq[qid];
8801
8802		/* Set physical address of TX ring (256-byte aligned). */
8803		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
8804		    txq->desc_dma.paddr >> 8);
8805	}
8806	iwn_nic_unlock(sc);
8807
8808	/* Enable DMA channels. */
8809	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8810		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
8811		    IWN_FH_TX_CONFIG_DMA_ENA |
8812		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
8813	}
8814
8815	/* Clear "radio off" and "commands blocked" bits. */
8816	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8817	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
8818
8819	/* Clear pending interrupts. */
8820	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8821	/* Enable interrupt coalescing. */
8822	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
8823	/* Enable interrupts. */
8824	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8825
8826	/* _Really_ make sure "radio off" bit is cleared! */
8827	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8828	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8829
8830	/* Enable shadow registers. */
8831	if (sc->base_params->shadow_reg_enable)
8832		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
8833
8834	if ((error = ops->load_firmware(sc)) != 0) {
8835		device_printf(sc->sc_dev,
8836		    "%s: could not load firmware, error %d\n", __func__,
8837		    error);
8838		return error;
8839	}
8840	/* Wait at most one second for firmware alive notification. */
8841	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
8842		device_printf(sc->sc_dev,
8843		    "%s: timeout waiting for adapter to initialize, error %d\n",
8844		    __func__, error);
8845		return error;
8846	}
8847	/* Do post-firmware initialization. */
8848
8849	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8850
8851	return ops->post_alive(sc);
8852}
8853
8854static void
8855iwn_hw_stop(struct iwn_softc *sc)
8856{
8857	int chnl, qid, ntries;
8858
8859	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8860
8861	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
8862
8863	/* Disable interrupts. */
8864	IWN_WRITE(sc, IWN_INT_MASK, 0);
8865	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8866	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
8867	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8868
8869	/* Make sure we no longer hold the NIC lock. */
8870	iwn_nic_unlock(sc);
8871
8872	/* Stop TX scheduler. */
8873	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8874
8875	/* Stop all DMA channels. */
8876	if (iwn_nic_lock(sc) == 0) {
8877		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8878			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
8879			for (ntries = 0; ntries < 200; ntries++) {
8880				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
8881				    IWN_FH_TX_STATUS_IDLE(chnl))
8882					break;
8883				DELAY(10);
8884			}
8885		}
8886		iwn_nic_unlock(sc);
8887	}
8888
8889	/* Stop RX ring. */
8890	iwn_reset_rx_ring(sc, &sc->rxq);
8891
8892	/* Reset all TX rings. */
8893	for (qid = 0; qid < sc->ntxqs; qid++)
8894		iwn_reset_tx_ring(sc, &sc->txq[qid]);
8895
8896	if (iwn_nic_lock(sc) == 0) {
8897		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
8898		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
8899		iwn_nic_unlock(sc);
8900	}
8901	DELAY(5);
8902	/* Power OFF adapter. */
8903	iwn_apm_stop(sc);
8904}
8905
8906static void
8907iwn_panicked(void *arg0, int pending)
8908{
8909	struct iwn_softc *sc = arg0;
8910	struct ieee80211com *ic = &sc->sc_ic;
8911	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8912#if 0
8913	int error;
8914#endif
8915
8916	if (vap == NULL) {
8917		printf("%s: null vap\n", __func__);
8918		return;
8919	}
8920
8921	device_printf(sc->sc_dev, "%s: controller panicked, iv_state = %d; "
8922	    "restarting\n", __func__, vap->iv_state);
8923
8924	/*
8925	 * This is not enough work. We need to also reinitialise
8926	 * the correct transmit state for aggregation enabled queues,
8927	 * which has a very specific requirement of
8928	 * ring index = 802.11 seqno % 256.  If we don't do this (which
8929	 * we definitely don't!) then the firmware will just panic again.
8930	 */
8931#if 1
8932	ieee80211_restart_all(ic);
8933#else
8934	IWN_LOCK(sc);
8935
8936	iwn_stop_locked(sc);
8937	if ((error = iwn_init_locked(sc)) != 0) {
8938		device_printf(sc->sc_dev,
8939		    "%s: could not init hardware\n", __func__);
8940		goto unlock;
8941	}
8942	if (vap->iv_state >= IEEE80211_S_AUTH &&
8943	    (error = iwn_auth(sc, vap)) != 0) {
8944		device_printf(sc->sc_dev,
8945		    "%s: could not move to auth state\n", __func__);
8946	}
8947	if (vap->iv_state >= IEEE80211_S_RUN &&
8948	    (error = iwn_run(sc, vap)) != 0) {
8949		device_printf(sc->sc_dev,
8950		    "%s: could not move to run state\n", __func__);
8951	}
8952
8953unlock:
8954	IWN_UNLOCK(sc);
8955#endif
8956}
8957
8958static int
8959iwn_init_locked(struct iwn_softc *sc)
8960{
8961	int error;
8962
8963	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8964
8965	IWN_LOCK_ASSERT(sc);
8966
8967	if (sc->sc_flags & IWN_FLAG_RUNNING)
8968		goto end;
8969
8970	sc->sc_flags |= IWN_FLAG_RUNNING;
8971
8972	if ((error = iwn_hw_prepare(sc)) != 0) {
8973		device_printf(sc->sc_dev, "%s: hardware not ready, error %d\n",
8974		    __func__, error);
8975		goto fail;
8976	}
8977
8978	/* Initialize interrupt mask to default value. */
8979	sc->int_mask = IWN_INT_MASK_DEF;
8980	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8981
8982	/* Check that the radio is not disabled by hardware switch. */
8983	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
8984		iwn_stop_locked(sc);
8985		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8986
8987		return (1);
8988	}
8989
8990	/* Read firmware images from the filesystem. */
8991	if ((error = iwn_read_firmware(sc)) != 0) {
8992		device_printf(sc->sc_dev,
8993		    "%s: could not read firmware, error %d\n", __func__,
8994		    error);
8995		goto fail;
8996	}
8997
8998	/* Initialize hardware and upload firmware. */
8999	error = iwn_hw_init(sc);
9000	iwn_unload_firmware(sc);
9001	if (error != 0) {
9002		device_printf(sc->sc_dev,
9003		    "%s: could not initialize hardware, error %d\n", __func__,
9004		    error);
9005		goto fail;
9006	}
9007
9008	/* Configure adapter now that it is ready. */
9009	if ((error = iwn_config(sc)) != 0) {
9010		device_printf(sc->sc_dev,
9011		    "%s: could not configure device, error %d\n", __func__,
9012		    error);
9013		goto fail;
9014	}
9015
9016	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
9017
9018end:
9019	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
9020
9021	return (0);
9022
9023fail:
9024	iwn_stop_locked(sc);
9025
9026	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
9027
9028	return (-1);
9029}
9030
9031static int
9032iwn_init(struct iwn_softc *sc)
9033{
9034	int error;
9035
9036	IWN_LOCK(sc);
9037	error = iwn_init_locked(sc);
9038	IWN_UNLOCK(sc);
9039
9040	return (error);
9041}
9042
9043static void
9044iwn_stop_locked(struct iwn_softc *sc)
9045{
9046
9047	IWN_LOCK_ASSERT(sc);
9048
9049	if (!(sc->sc_flags & IWN_FLAG_RUNNING))
9050		return;
9051
9052	sc->sc_is_scanning = 0;
9053	sc->sc_tx_timer = 0;
9054	callout_stop(&sc->watchdog_to);
9055	callout_stop(&sc->scan_timeout);
9056	callout_stop(&sc->calib_to);
9057	sc->sc_flags &= ~IWN_FLAG_RUNNING;
9058
9059	/* Power OFF hardware. */
9060	iwn_hw_stop(sc);
9061}
9062
9063static void
9064iwn_stop(struct iwn_softc *sc)
9065{
9066	IWN_LOCK(sc);
9067	iwn_stop_locked(sc);
9068	IWN_UNLOCK(sc);
9069}
9070
9071/*
9072 * Callback from net80211 to start a scan.
9073 */
9074static void
9075iwn_scan_start(struct ieee80211com *ic)
9076{
9077	struct iwn_softc *sc = ic->ic_softc;
9078
9079	IWN_LOCK(sc);
9080	/* make the link LED blink while we're scanning */
9081	iwn_set_led(sc, IWN_LED_LINK, 20, 2);
9082	IWN_UNLOCK(sc);
9083}
9084
9085/*
9086 * Callback from net80211 to terminate a scan.
9087 */
9088static void
9089iwn_scan_end(struct ieee80211com *ic)
9090{
9091	struct iwn_softc *sc = ic->ic_softc;
9092	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
9093
9094	IWN_LOCK(sc);
9095	if (vap->iv_state == IEEE80211_S_RUN) {
9096		/* Set link LED to ON status if we are associated */
9097		iwn_set_led(sc, IWN_LED_LINK, 0, 1);
9098	}
9099	IWN_UNLOCK(sc);
9100}
9101
9102/*
9103 * Callback from net80211 to force a channel change.
9104 */
9105static void
9106iwn_set_channel(struct ieee80211com *ic)
9107{
9108	struct iwn_softc *sc = ic->ic_softc;
9109	int error;
9110
9111	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
9112
9113	IWN_LOCK(sc);
9114	/*
9115	 * Only need to set the channel in Monitor mode. AP scanning and auth
9116	 * are already taken care of by their respective firmware commands.
9117	 */
9118	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
9119		error = iwn_config(sc);
9120		if (error != 0)
9121		device_printf(sc->sc_dev,
9122		    "%s: error %d settting channel\n", __func__, error);
9123	}
9124	IWN_UNLOCK(sc);
9125}
9126
9127/*
9128 * Callback from net80211 to start scanning of the current channel.
9129 */
9130static void
9131iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
9132{
9133	struct ieee80211vap *vap = ss->ss_vap;
9134	struct ieee80211com *ic = vap->iv_ic;
9135	struct iwn_softc *sc = ic->ic_softc;
9136	int error;
9137
9138	IWN_LOCK(sc);
9139	error = iwn_scan(sc, vap, ss, ic->ic_curchan);
9140	IWN_UNLOCK(sc);
9141	if (error != 0)
9142		ieee80211_cancel_scan(vap);
9143}
9144
9145/*
9146 * Callback from net80211 to handle the minimum dwell time being met.
9147 * The intent is to terminate the scan but we just let the firmware
9148 * notify us when it's finished as we have no safe way to abort it.
9149 */
9150static void
9151iwn_scan_mindwell(struct ieee80211_scan_state *ss)
9152{
9153	/* NB: don't try to abort scan; wait for firmware to finish */
9154}
9155#ifdef	IWN_DEBUG
9156#define	IWN_DESC(x) case x:	return #x
9157
9158/*
9159 * Translate CSR code to string
9160 */
9161static char *iwn_get_csr_string(int csr)
9162{
9163	switch (csr) {
9164		IWN_DESC(IWN_HW_IF_CONFIG);
9165		IWN_DESC(IWN_INT_COALESCING);
9166		IWN_DESC(IWN_INT);
9167		IWN_DESC(IWN_INT_MASK);
9168		IWN_DESC(IWN_FH_INT);
9169		IWN_DESC(IWN_GPIO_IN);
9170		IWN_DESC(IWN_RESET);
9171		IWN_DESC(IWN_GP_CNTRL);
9172		IWN_DESC(IWN_HW_REV);
9173		IWN_DESC(IWN_EEPROM);
9174		IWN_DESC(IWN_EEPROM_GP);
9175		IWN_DESC(IWN_OTP_GP);
9176		IWN_DESC(IWN_GIO);
9177		IWN_DESC(IWN_GP_UCODE);
9178		IWN_DESC(IWN_GP_DRIVER);
9179		IWN_DESC(IWN_UCODE_GP1);
9180		IWN_DESC(IWN_UCODE_GP2);
9181		IWN_DESC(IWN_LED);
9182		IWN_DESC(IWN_DRAM_INT_TBL);
9183		IWN_DESC(IWN_GIO_CHICKEN);
9184		IWN_DESC(IWN_ANA_PLL);
9185		IWN_DESC(IWN_HW_REV_WA);
9186		IWN_DESC(IWN_DBG_HPET_MEM);
9187	default:
9188		return "UNKNOWN CSR";
9189	}
9190}
9191
9192/*
9193 * This function print firmware register
9194 */
9195static void
9196iwn_debug_register(struct iwn_softc *sc)
9197{
9198	int i;
9199	static const uint32_t csr_tbl[] = {
9200		IWN_HW_IF_CONFIG,
9201		IWN_INT_COALESCING,
9202		IWN_INT,
9203		IWN_INT_MASK,
9204		IWN_FH_INT,
9205		IWN_GPIO_IN,
9206		IWN_RESET,
9207		IWN_GP_CNTRL,
9208		IWN_HW_REV,
9209		IWN_EEPROM,
9210		IWN_EEPROM_GP,
9211		IWN_OTP_GP,
9212		IWN_GIO,
9213		IWN_GP_UCODE,
9214		IWN_GP_DRIVER,
9215		IWN_UCODE_GP1,
9216		IWN_UCODE_GP2,
9217		IWN_LED,
9218		IWN_DRAM_INT_TBL,
9219		IWN_GIO_CHICKEN,
9220		IWN_ANA_PLL,
9221		IWN_HW_REV_WA,
9222		IWN_DBG_HPET_MEM,
9223	};
9224	DPRINTF(sc, IWN_DEBUG_REGISTER,
9225	    "CSR values: (2nd byte of IWN_INT_COALESCING is IWN_INT_PERIODIC)%s",
9226	    "\n");
9227	for (i = 0; i <  nitems(csr_tbl); i++){
9228		DPRINTF(sc, IWN_DEBUG_REGISTER,"  %10s: 0x%08x ",
9229			iwn_get_csr_string(csr_tbl[i]), IWN_READ(sc, csr_tbl[i]));
9230		if ((i+1) % 3 == 0)
9231			DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
9232	}
9233	DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
9234}
9235#endif
9236
9237
9238