1/*-
2 * SPDX-License-Identifier: ISC
3 *
4 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5 * Copyright (c) 2002-2008 Atheros Communications, Inc.
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 *
19 * $FreeBSD: releng/12.0/sys/dev/ath/ath_hal/ar5212/ar5212_reset.c 326695 2017-12-08 15:57:29Z pfg $
20 */
21#include "opt_ah.h"
22
23#include "ah.h"
24#include "ah_internal.h"
25#include "ah_devid.h"
26
27#include "ar5212/ar5212.h"
28#include "ar5212/ar5212reg.h"
29#include "ar5212/ar5212phy.h"
30
31#include "ah_eeprom_v3.h"
32
33/* Additional Time delay to wait after activiting the Base band */
34#define BASE_ACTIVATE_DELAY	100	/* 100 usec */
35#define PLL_SETTLE_DELAY	300	/* 300 usec */
36
37static HAL_BOOL ar5212SetResetReg(struct ath_hal *, uint32_t resetMask);
38/* NB: public for 5312 use */
39HAL_BOOL	ar5212IsSpurChannel(struct ath_hal *,
40		    const struct ieee80211_channel *);
41HAL_BOOL	ar5212ChannelChange(struct ath_hal *,
42		    const struct ieee80211_channel *);
43int16_t		ar5212GetNf(struct ath_hal *, struct ieee80211_channel *);
44HAL_BOOL	ar5212SetBoardValues(struct ath_hal *,
45		    const struct ieee80211_channel *);
46void		ar5212SetDeltaSlope(struct ath_hal *,
47		    const struct ieee80211_channel *);
48HAL_BOOL	ar5212SetTransmitPower(struct ath_hal *ah,
49		   const struct ieee80211_channel *chan, uint16_t *rfXpdGain);
50static HAL_BOOL ar5212SetRateTable(struct ath_hal *,
51		   const struct ieee80211_channel *, int16_t tpcScaleReduction,
52		   int16_t powerLimit,
53		   HAL_BOOL commit, int16_t *minPower, int16_t *maxPower);
54static void ar5212CorrectGainDelta(struct ath_hal *, int twiceOfdmCckDelta);
55static void ar5212GetTargetPowers(struct ath_hal *,
56		   const struct ieee80211_channel *,
57		   const TRGT_POWER_INFO *pPowerInfo, uint16_t numChannels,
58		   TRGT_POWER_INFO *pNewPower);
59static uint16_t ar5212GetMaxEdgePower(uint16_t channel,
60		   const RD_EDGES_POWER  *pRdEdgesPower);
61void		ar5212SetRateDurationTable(struct ath_hal *,
62		    const struct ieee80211_channel *);
63void		ar5212SetIFSTiming(struct ath_hal *,
64		    const struct ieee80211_channel *);
65
66/* NB: public for RF backend use */
67void		ar5212GetLowerUpperValues(uint16_t value,
68		   uint16_t *pList, uint16_t listSize,
69		   uint16_t *pLowerValue, uint16_t *pUpperValue);
70void		ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
71		   uint32_t numBits, uint32_t firstBit, uint32_t column);
72
73static int
74write_common(struct ath_hal *ah, const HAL_INI_ARRAY *ia,
75	HAL_BOOL bChannelChange, int writes)
76{
77#define IS_NO_RESET_TIMER_ADDR(x)                      \
78    ( (((x) >= AR_BEACON) && ((x) <= AR_CFP_DUR)) || \
79      (((x) >= AR_SLEEP1) && ((x) <= AR_SLEEP3)))
80#define	V(r, c)	(ia)->data[((r)*(ia)->cols) + (c)]
81	int r;
82
83	/* Write Common Array Parameters */
84	for (r = 0; r < ia->rows; r++) {
85		uint32_t reg = V(r, 0);
86		/* XXX timer/beacon setup registers? */
87		/* On channel change, don't reset the PCU registers */
88		if (!(bChannelChange && IS_NO_RESET_TIMER_ADDR(reg))) {
89			OS_REG_WRITE(ah, reg, V(r, 1));
90			DMA_YIELD(writes);
91		}
92	}
93	return writes;
94#undef IS_NO_RESET_TIMER_ADDR
95#undef V
96}
97
98#define IS_DISABLE_FAST_ADC_CHAN(x) (((x) == 2462) || ((x) == 2467))
99
100/*
101 * XXX NDIS 5.x code had MAX_RESET_WAIT set to 2000 for AP code
102 * and 10 for Client code
103 */
104#define	MAX_RESET_WAIT			10
105
106#define	TX_QUEUEPEND_CHECK		1
107#define	TX_ENABLE_CHECK			2
108#define	RX_ENABLE_CHECK			4
109
110/*
111 * Places the device in and out of reset and then places sane
112 * values in the registers based on EEPROM config, initialization
113 * vectors (as determined by the mode), and station configuration
114 *
115 * bChannelChange is used to preserve DMA/PCU registers across
116 * a HW Reset during channel change.
117 */
118HAL_BOOL
119ar5212Reset(struct ath_hal *ah, HAL_OPMODE opmode,
120	struct ieee80211_channel *chan,
121	HAL_BOOL bChannelChange,
122	HAL_RESET_TYPE resetType,
123	HAL_STATUS *status)
124{
125#define	N(a)	(sizeof (a) / sizeof (a[0]))
126#define	FAIL(_code)	do { ecode = _code; goto bad; } while (0)
127	struct ath_hal_5212 *ahp = AH5212(ah);
128	HAL_CHANNEL_INTERNAL *ichan = AH_NULL;
129	const HAL_EEPROM *ee;
130	uint32_t softLedCfg, softLedState;
131	uint32_t saveFrameSeqCount, saveDefAntenna, saveLedState;
132	uint32_t macStaId1, synthDelay, txFrm2TxDStart;
133	uint16_t rfXpdGain[MAX_NUM_PDGAINS_PER_CHANNEL];
134	int16_t cckOfdmPwrDelta = 0;
135	u_int modesIndex, freqIndex;
136	HAL_STATUS ecode;
137	int i, regWrites;
138	uint32_t testReg, powerVal;
139	int8_t twiceAntennaGain, twiceAntennaReduction;
140	uint32_t ackTpcPow, ctsTpcPow, chirpTpcPow;
141	HAL_BOOL isBmode = AH_FALSE;
142
143	HALASSERT(ah->ah_magic == AR5212_MAGIC);
144	ee = AH_PRIVATE(ah)->ah_eeprom;
145
146	OS_MARK(ah, AH_MARK_RESET, bChannelChange);
147
148	/* Bring out of sleep mode */
149	if (!ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) {
150		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip did not wakeup\n",
151		    __func__);
152		FAIL(HAL_EIO);
153	}
154
155	/*
156	 * Map public channel to private.
157	 */
158	ichan = ath_hal_checkchannel(ah, chan);
159	if (ichan == AH_NULL)
160		FAIL(HAL_EINVAL);
161	switch (opmode) {
162	case HAL_M_STA:
163	case HAL_M_IBSS:
164	case HAL_M_HOSTAP:
165	case HAL_M_MONITOR:
166		break;
167	default:
168		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n",
169		    __func__, opmode);
170		FAIL(HAL_EINVAL);
171		break;
172	}
173	HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3);
174
175	SAVE_CCK(ah, chan, isBmode);
176
177	/* Preserve certain DMA hardware registers on a channel change */
178	if (bChannelChange) {
179		/*
180		 * On Venice, the TSF is almost preserved across a reset;
181		 * it requires doubling writes to the RESET_TSF
182		 * bit in the AR_BEACON register; it also has the quirk
183		 * of the TSF going back in time on the station (station
184		 * latches onto the last beacon's tsf during a reset 50%
185		 * of the times); the latter is not a problem for adhoc
186		 * stations since as long as the TSF is behind, it will
187		 * get resynchronized on receiving the next beacon; the
188		 * TSF going backwards in time could be a problem for the
189		 * sleep operation (supported on infrastructure stations
190		 * only) - the best and most general fix for this situation
191		 * is to resynchronize the various sleep/beacon timers on
192		 * the receipt of the next beacon i.e. when the TSF itself
193		 * gets resynchronized to the AP's TSF - power save is
194		 * needed to be temporarily disabled until that time
195		 *
196		 * Need to save the sequence number to restore it after
197		 * the reset!
198		 */
199		saveFrameSeqCount = OS_REG_READ(ah, AR_D_SEQNUM);
200	} else
201		saveFrameSeqCount = 0;		/* NB: silence compiler */
202
203	/* Blank the channel survey statistics */
204	ath_hal_survey_clear(ah);
205
206#if 0
207	/*
208	 * XXX disable for now; this appears to sometimes cause OFDM
209	 * XXX timing error floods when ani is enabled and bg scanning
210	 * XXX kicks in
211	 */
212	/* If the channel change is across the same mode - perform a fast channel change */
213	if (IS_2413(ah) || IS_5413(ah)) {
214		/*
215		 * Fast channel change can only be used when:
216		 *  -channel change requested - so it's not the initial reset.
217		 *  -it's not a change to the current channel -
218		 *	often called when switching modes on a channel
219		 *  -the modes of the previous and requested channel are the
220		 *	same
221		 * XXX opmode shouldn't change either?
222		 */
223		if (bChannelChange &&
224		    (AH_PRIVATE(ah)->ah_curchan != AH_NULL) &&
225		    (chan->ic_freq != AH_PRIVATE(ah)->ah_curchan->ic_freq) &&
226		    ((chan->ic_flags & IEEE80211_CHAN_ALLTURBO) ==
227		     (AH_PRIVATE(ah)->ah_curchan->ic_flags & IEEE80211_CHAN_ALLTURBO))) {
228			if (ar5212ChannelChange(ah, chan)) {
229				/* If ChannelChange completed - skip the rest of reset */
230				/* XXX ani? */
231				goto done;
232			}
233		}
234	}
235#endif
236	/*
237	 * Preserve the antenna on a channel change
238	 */
239	saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA);
240	if (saveDefAntenna == 0)		/* XXX magic constants */
241		saveDefAntenna = 1;
242
243	/* Save hardware flag before chip reset clears the register */
244	macStaId1 = OS_REG_READ(ah, AR_STA_ID1) &
245		(AR_STA_ID1_BASE_RATE_11B | AR_STA_ID1_USE_DEFANT);
246
247	/* Save led state from pci config register */
248	saveLedState = OS_REG_READ(ah, AR_PCICFG) &
249		(AR_PCICFG_LEDCTL | AR_PCICFG_LEDMODE | AR_PCICFG_LEDBLINK |
250		 AR_PCICFG_LEDSLOW);
251	softLedCfg = OS_REG_READ(ah, AR_GPIOCR);
252	softLedState = OS_REG_READ(ah, AR_GPIODO);
253
254	ar5212RestoreClock(ah, opmode);		/* move to refclk operation */
255
256	/*
257	 * Adjust gain parameters before reset if
258	 * there's an outstanding gain updated.
259	 */
260	(void) ar5212GetRfgain(ah);
261
262	if (!ar5212ChipReset(ah, chan)) {
263		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
264		FAIL(HAL_EIO);
265	}
266
267	/* Setup the indices for the next set of register array writes */
268	if (IEEE80211_IS_CHAN_2GHZ(chan)) {
269		freqIndex  = 2;
270		if (IEEE80211_IS_CHAN_108G(chan))
271			modesIndex = 5;
272		else if (IEEE80211_IS_CHAN_G(chan))
273			modesIndex = 4;
274		else if (IEEE80211_IS_CHAN_B(chan))
275			modesIndex = 3;
276		else {
277			HALDEBUG(ah, HAL_DEBUG_ANY,
278			    "%s: invalid channel %u/0x%x\n",
279			    __func__, chan->ic_freq, chan->ic_flags);
280			FAIL(HAL_EINVAL);
281		}
282	} else {
283		freqIndex  = 1;
284		if (IEEE80211_IS_CHAN_TURBO(chan))
285			modesIndex = 2;
286		else if (IEEE80211_IS_CHAN_A(chan))
287			modesIndex = 1;
288		else {
289			HALDEBUG(ah, HAL_DEBUG_ANY,
290			    "%s: invalid channel %u/0x%x\n",
291			    __func__, chan->ic_freq, chan->ic_flags);
292			FAIL(HAL_EINVAL);
293		}
294	}
295
296	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
297
298	/* Set correct Baseband to analog shift setting to access analog chips. */
299	OS_REG_WRITE(ah, AR_PHY(0), 0x00000007);
300
301	regWrites = ath_hal_ini_write(ah, &ahp->ah_ini_modes, modesIndex, 0);
302	regWrites = write_common(ah, &ahp->ah_ini_common, bChannelChange,
303		regWrites);
304#ifdef AH_RXCFG_SDMAMW_4BYTES
305	/*
306	 * Nala doesn't work with 128 byte bursts on pb42(hydra) (ar71xx),
307	 * use 4 instead.  Enabling it on all platforms would hurt performance,
308	 * so we only enable it on the ones that are affected by it.
309	 */
310	OS_REG_WRITE(ah, AR_RXCFG, 0);
311#endif
312	ahp->ah_rfHal->writeRegs(ah, modesIndex, freqIndex, regWrites);
313
314	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
315
316	if (IEEE80211_IS_CHAN_HALF(chan) || IEEE80211_IS_CHAN_QUARTER(chan)) {
317		ar5212SetIFSTiming(ah, chan);
318		if (IS_5413(ah)) {
319			/*
320			 * Force window_length for 1/2 and 1/4 rate channels,
321			 * the ini file sets this to zero otherwise.
322			 */
323			OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
324				AR_PHY_FRAME_CTL_WINLEN, 3);
325		}
326	}
327
328	/* Overwrite INI values for revised chipsets */
329	if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_2) {
330		/* ADC_CTL */
331		OS_REG_WRITE(ah, AR_PHY_ADC_CTL,
332			SM(2, AR_PHY_ADC_CTL_OFF_INBUFGAIN) |
333			SM(2, AR_PHY_ADC_CTL_ON_INBUFGAIN) |
334			AR_PHY_ADC_CTL_OFF_PWDDAC |
335			AR_PHY_ADC_CTL_OFF_PWDADC);
336
337		/* TX_PWR_ADJ */
338		if (ichan->channel == 2484) {
339			cckOfdmPwrDelta = SCALE_OC_DELTA(
340			    ee->ee_cckOfdmPwrDelta -
341			    ee->ee_scaledCh14FilterCckDelta);
342		} else {
343			cckOfdmPwrDelta = SCALE_OC_DELTA(
344			    ee->ee_cckOfdmPwrDelta);
345		}
346
347		if (IEEE80211_IS_CHAN_G(chan)) {
348		    OS_REG_WRITE(ah, AR_PHY_TXPWRADJ,
349			SM((ee->ee_cckOfdmPwrDelta*-1),
350			    AR_PHY_TXPWRADJ_CCK_GAIN_DELTA) |
351			SM((cckOfdmPwrDelta*-1),
352			    AR_PHY_TXPWRADJ_CCK_PCDAC_INDEX));
353		} else {
354			OS_REG_WRITE(ah, AR_PHY_TXPWRADJ, 0);
355		}
356
357		/* Add barker RSSI thresh enable as disabled */
358		OS_REG_CLR_BIT(ah, AR_PHY_DAG_CTRLCCK,
359			AR_PHY_DAG_CTRLCCK_EN_RSSI_THR);
360		OS_REG_RMW_FIELD(ah, AR_PHY_DAG_CTRLCCK,
361			AR_PHY_DAG_CTRLCCK_RSSI_THR, 2);
362
363		/* Set the mute mask to the correct default */
364		OS_REG_WRITE(ah, AR_SEQ_MASK, 0x0000000F);
365	}
366
367	if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_3) {
368		/* Clear reg to alllow RX_CLEAR line debug */
369		OS_REG_WRITE(ah, AR_PHY_BLUETOOTH,  0);
370	}
371	if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_4) {
372#ifdef notyet
373		/* Enable burst prefetch for the data queues */
374		OS_REG_RMW_FIELD(ah, AR_D_FPCTL, ... );
375		/* Enable double-buffering */
376		OS_REG_CLR_BIT(ah, AR_TXCFG, AR_TXCFG_DBL_BUF_DIS);
377#endif
378	}
379
380	/* Set ADC/DAC select values */
381	OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0e);
382
383	if (IS_5413(ah) || IS_2417(ah)) {
384		uint32_t newReg = 1;
385		if (IS_DISABLE_FAST_ADC_CHAN(ichan->channel))
386			newReg = 0;
387		/* As it's a clock changing register, only write when the value needs to be changed */
388		if (OS_REG_READ(ah, AR_PHY_FAST_ADC) != newReg)
389			OS_REG_WRITE(ah, AR_PHY_FAST_ADC, newReg);
390	}
391
392	/* Setup the transmit power values. */
393	if (!ar5212SetTransmitPower(ah, chan, rfXpdGain)) {
394		HALDEBUG(ah, HAL_DEBUG_ANY,
395		    "%s: error init'ing transmit power\n", __func__);
396		FAIL(HAL_EIO);
397	}
398
399	/* Write the analog registers */
400	if (!ahp->ah_rfHal->setRfRegs(ah, chan, modesIndex, rfXpdGain)) {
401		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: ar5212SetRfRegs failed\n",
402		    __func__);
403		FAIL(HAL_EIO);
404	}
405
406	/* Write delta slope for OFDM enabled modes (A, G, Turbo) */
407	if (IEEE80211_IS_CHAN_OFDM(chan)) {
408		if (IS_5413(ah) ||
409		    AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER5_3)
410			ar5212SetSpurMitigation(ah, chan);
411		ar5212SetDeltaSlope(ah, chan);
412	}
413
414	/* Setup board specific options for EEPROM version 3 */
415	if (!ar5212SetBoardValues(ah, chan)) {
416		HALDEBUG(ah, HAL_DEBUG_ANY,
417		    "%s: error setting board options\n", __func__);
418		FAIL(HAL_EIO);
419	}
420
421	/* Restore certain DMA hardware registers on a channel change */
422	if (bChannelChange)
423		OS_REG_WRITE(ah, AR_D_SEQNUM, saveFrameSeqCount);
424
425	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
426
427	OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
428	OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)
429		| macStaId1
430		| AR_STA_ID1_RTS_USE_DEF
431		| ahp->ah_staId1Defaults
432	);
433	ar5212SetOperatingMode(ah, opmode);
434
435	/* Set Venice BSSID mask according to current state */
436	OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssidmask));
437	OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssidmask + 4));
438
439	/* Restore previous led state */
440	OS_REG_WRITE(ah, AR_PCICFG, OS_REG_READ(ah, AR_PCICFG) | saveLedState);
441
442	/* Restore soft Led state to GPIO */
443	OS_REG_WRITE(ah, AR_GPIOCR, softLedCfg);
444	OS_REG_WRITE(ah, AR_GPIODO, softLedState);
445
446	/* Restore previous antenna */
447	OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
448
449	/* then our BSSID and associate id */
450	OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
451	OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4) |
452	    (ahp->ah_assocId & 0x3fff) << AR_BSS_ID1_AID_S);
453
454	/* Restore bmiss rssi & count thresholds */
455	OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
456
457	OS_REG_WRITE(ah, AR_ISR, ~0);		/* cleared on write */
458
459	if (!ar5212SetChannel(ah, chan))
460		FAIL(HAL_EIO);
461
462	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
463
464	ar5212SetCoverageClass(ah, AH_PRIVATE(ah)->ah_coverageClass, 1);
465
466	ar5212SetRateDurationTable(ah, chan);
467
468	/* Set Tx frame start to tx data start delay */
469	if (IS_RAD5112_ANY(ah) &&
470	    (IEEE80211_IS_CHAN_HALF(chan) || IEEE80211_IS_CHAN_QUARTER(chan))) {
471		txFrm2TxDStart =
472			IEEE80211_IS_CHAN_HALF(chan) ?
473					TX_FRAME_D_START_HALF_RATE:
474					TX_FRAME_D_START_QUARTER_RATE;
475		OS_REG_RMW_FIELD(ah, AR_PHY_TX_CTL,
476			AR_PHY_TX_FRAME_TO_TX_DATA_START, txFrm2TxDStart);
477	}
478
479	/*
480	 * Setup fast diversity.
481	 * Fast diversity can be enabled or disabled via regadd.txt.
482	 * Default is enabled.
483	 * For reference,
484	 *    Disable: reg        val
485	 *             0x00009860 0x00009d18 (if 11a / 11g, else no change)
486	 *             0x00009970 0x192bb514
487	 *             0x0000a208 0xd03e4648
488	 *
489	 *    Enable:  0x00009860 0x00009d10 (if 11a / 11g, else no change)
490	 *             0x00009970 0x192fb514
491	 *             0x0000a208 0xd03e6788
492	 */
493
494	/* XXX Setup pre PHY ENABLE EAR additions */
495	/*
496	 * Wait for the frequency synth to settle (synth goes on
497	 * via AR_PHY_ACTIVE_EN).  Read the phy active delay register.
498	 * Value is in 100ns increments.
499	 */
500	synthDelay = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
501	if (IEEE80211_IS_CHAN_B(chan)) {
502		synthDelay = (4 * synthDelay) / 22;
503	} else {
504		synthDelay /= 10;
505	}
506
507	/* Activate the PHY (includes baseband activate and synthesizer on) */
508	OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
509
510	/*
511	 * There is an issue if the AP starts the calibration before
512	 * the base band timeout completes.  This could result in the
513	 * rx_clear false triggering.  As a workaround we add delay an
514	 * extra BASE_ACTIVATE_DELAY usecs to ensure this condition
515	 * does not happen.
516	 */
517	if (IEEE80211_IS_CHAN_HALF(chan)) {
518		OS_DELAY((synthDelay << 1) + BASE_ACTIVATE_DELAY);
519	} else if (IEEE80211_IS_CHAN_QUARTER(chan)) {
520		OS_DELAY((synthDelay << 2) + BASE_ACTIVATE_DELAY);
521	} else {
522		OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
523	}
524
525	/*
526	 * The udelay method is not reliable with notebooks.
527	 * Need to check to see if the baseband is ready
528	 */
529	testReg = OS_REG_READ(ah, AR_PHY_TESTCTRL);
530	/* Selects the Tx hold */
531	OS_REG_WRITE(ah, AR_PHY_TESTCTRL, AR_PHY_TESTCTRL_TXHOLD);
532	i = 0;
533	while ((i++ < 20) &&
534	       (OS_REG_READ(ah, 0x9c24) & 0x10)) /* test if baseband not ready */		OS_DELAY(200);
535	OS_REG_WRITE(ah, AR_PHY_TESTCTRL, testReg);
536
537	/* Calibrate the AGC and start a NF calculation */
538	OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
539		  OS_REG_READ(ah, AR_PHY_AGC_CONTROL)
540		| AR_PHY_AGC_CONTROL_CAL
541		| AR_PHY_AGC_CONTROL_NF);
542
543	if (!IEEE80211_IS_CHAN_B(chan) && ahp->ah_bIQCalibration != IQ_CAL_DONE) {
544		/* Start IQ calibration w/ 2^(INIT_IQCAL_LOG_COUNT_MAX+1) samples */
545		OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
546			AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX,
547			INIT_IQCAL_LOG_COUNT_MAX);
548		OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
549			AR_PHY_TIMING_CTRL4_DO_IQCAL);
550		ahp->ah_bIQCalibration = IQ_CAL_RUNNING;
551	} else
552		ahp->ah_bIQCalibration = IQ_CAL_INACTIVE;
553
554	/* Setup compression registers */
555	ar5212SetCompRegs(ah);
556
557	/* Set 1:1 QCU to DCU mapping for all queues */
558	for (i = 0; i < AR_NUM_DCU; i++)
559		OS_REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
560
561	ahp->ah_intrTxqs = 0;
562	for (i = 0; i < AH_PRIVATE(ah)->ah_caps.halTotalQueues; i++)
563		ar5212ResetTxQueue(ah, i);
564
565	/*
566	 * Setup interrupt handling.  Note that ar5212ResetTxQueue
567	 * manipulates the secondary IMR's as queues are enabled
568	 * and disabled.  This is done with RMW ops to insure the
569	 * settings we make here are preserved.
570	 */
571	ahp->ah_maskReg = AR_IMR_TXOK | AR_IMR_TXERR | AR_IMR_TXURN
572			| AR_IMR_RXOK | AR_IMR_RXERR | AR_IMR_RXORN
573			| AR_IMR_HIUERR
574			;
575	if (opmode == HAL_M_HOSTAP)
576		ahp->ah_maskReg |= AR_IMR_MIB;
577	OS_REG_WRITE(ah, AR_IMR, ahp->ah_maskReg);
578	/* Enable bus errors that are OR'd to set the HIUERR bit */
579	OS_REG_WRITE(ah, AR_IMR_S2,
580		OS_REG_READ(ah, AR_IMR_S2)
581		| AR_IMR_S2_MCABT | AR_IMR_S2_SSERR | AR_IMR_S2_DPERR);
582
583	if (AH_PRIVATE(ah)->ah_rfkillEnabled)
584		ar5212EnableRfKill(ah);
585
586	if (!ath_hal_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL, 0)) {
587		HALDEBUG(ah, HAL_DEBUG_ANY,
588		    "%s: offset calibration failed to complete in 1ms;"
589		    " noisy environment?\n", __func__);
590	}
591
592	/*
593	 * Set clocks back to 32kHz if they had been using refClk, then
594	 * use an external 32kHz crystal when sleeping, if one exists.
595	 */
596	ar5212SetupClock(ah, opmode);
597
598	/*
599	 * Writing to AR_BEACON will start timers. Hence it should
600	 * be the last register to be written. Do not reset tsf, do
601	 * not enable beacons at this point, but preserve other values
602	 * like beaconInterval.
603	 */
604	OS_REG_WRITE(ah, AR_BEACON,
605		(OS_REG_READ(ah, AR_BEACON) &~ (AR_BEACON_EN | AR_BEACON_RESET_TSF)));
606
607	/* XXX Setup post reset EAR additions */
608
609	/* QoS support */
610	if (AH_PRIVATE(ah)->ah_macVersion > AR_SREV_VERSION_VENICE ||
611	    (AH_PRIVATE(ah)->ah_macVersion == AR_SREV_VERSION_VENICE &&
612	     AH_PRIVATE(ah)->ah_macRev >= AR_SREV_GRIFFIN_LITE)) {
613		OS_REG_WRITE(ah, AR_QOS_CONTROL, 0x100aa);	/* XXX magic */
614		OS_REG_WRITE(ah, AR_QOS_SELECT, 0x3210);	/* XXX magic */
615	}
616
617	/* Turn on NOACK Support for QoS packets */
618	OS_REG_WRITE(ah, AR_NOACK,
619		SM(2, AR_NOACK_2BIT_VALUE) |
620		SM(5, AR_NOACK_BIT_OFFSET) |
621		SM(0, AR_NOACK_BYTE_OFFSET));
622
623	/* Get Antenna Gain reduction */
624	if (IEEE80211_IS_CHAN_5GHZ(chan)) {
625		ath_hal_eepromGet(ah, AR_EEP_ANTGAINMAX_5, &twiceAntennaGain);
626	} else {
627		ath_hal_eepromGet(ah, AR_EEP_ANTGAINMAX_2, &twiceAntennaGain);
628	}
629	twiceAntennaReduction =
630		ath_hal_getantennareduction(ah, chan, twiceAntennaGain);
631
632	/* TPC for self-generated frames */
633
634	ackTpcPow = MS(ahp->ah_macTPC, AR_TPC_ACK);
635	if ((ackTpcPow-ahp->ah_txPowerIndexOffset) > chan->ic_maxpower)
636		ackTpcPow = chan->ic_maxpower+ahp->ah_txPowerIndexOffset;
637
638	if (ackTpcPow > (2*chan->ic_maxregpower - twiceAntennaReduction))
639		ackTpcPow = (2*chan->ic_maxregpower - twiceAntennaReduction)
640			+ ahp->ah_txPowerIndexOffset;
641
642	ctsTpcPow = MS(ahp->ah_macTPC, AR_TPC_CTS);
643	if ((ctsTpcPow-ahp->ah_txPowerIndexOffset) > chan->ic_maxpower)
644		ctsTpcPow = chan->ic_maxpower+ahp->ah_txPowerIndexOffset;
645
646	if (ctsTpcPow > (2*chan->ic_maxregpower - twiceAntennaReduction))
647		ctsTpcPow = (2*chan->ic_maxregpower - twiceAntennaReduction)
648			+ ahp->ah_txPowerIndexOffset;
649
650	chirpTpcPow = MS(ahp->ah_macTPC, AR_TPC_CHIRP);
651	if ((chirpTpcPow-ahp->ah_txPowerIndexOffset) > chan->ic_maxpower)
652		chirpTpcPow = chan->ic_maxpower+ahp->ah_txPowerIndexOffset;
653
654	if (chirpTpcPow > (2*chan->ic_maxregpower - twiceAntennaReduction))
655		chirpTpcPow = (2*chan->ic_maxregpower - twiceAntennaReduction)
656			+ ahp->ah_txPowerIndexOffset;
657
658	if (ackTpcPow > 63)
659		ackTpcPow = 63;
660	if (ctsTpcPow > 63)
661		ctsTpcPow = 63;
662	if (chirpTpcPow > 63)
663		chirpTpcPow = 63;
664
665	powerVal = SM(ackTpcPow, AR_TPC_ACK) |
666		SM(ctsTpcPow, AR_TPC_CTS) |
667		SM(chirpTpcPow, AR_TPC_CHIRP);
668
669	OS_REG_WRITE(ah, AR_TPC, powerVal);
670
671	/* Restore user-specified settings */
672	if (ahp->ah_miscMode != 0)
673		OS_REG_WRITE(ah, AR_MISC_MODE, ahp->ah_miscMode);
674	if (ahp->ah_sifstime != (u_int) -1)
675		ar5212SetSifsTime(ah, ahp->ah_sifstime);
676	if (ahp->ah_slottime != (u_int) -1)
677		ar5212SetSlotTime(ah, ahp->ah_slottime);
678	if (ahp->ah_acktimeout != (u_int) -1)
679		ar5212SetAckTimeout(ah, ahp->ah_acktimeout);
680	if (ahp->ah_ctstimeout != (u_int) -1)
681		ar5212SetCTSTimeout(ah, ahp->ah_ctstimeout);
682	if (AH_PRIVATE(ah)->ah_diagreg != 0)
683		OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
684
685	AH_PRIVATE(ah)->ah_opmode = opmode;	/* record operating mode */
686#if 0
687done:
688#endif
689	if (bChannelChange && !IEEE80211_IS_CHAN_DFS(chan))
690		chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
691
692	HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
693
694	RESTORE_CCK(ah, chan, isBmode);
695
696	OS_MARK(ah, AH_MARK_RESET_DONE, 0);
697
698	return AH_TRUE;
699bad:
700	RESTORE_CCK(ah, chan, isBmode);
701
702	OS_MARK(ah, AH_MARK_RESET_DONE, ecode);
703	if (status != AH_NULL)
704		*status = ecode;
705	return AH_FALSE;
706#undef FAIL
707#undef N
708}
709
710/*
711 * Call the rf backend to change the channel.
712 */
713HAL_BOOL
714ar5212SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
715{
716	struct ath_hal_5212 *ahp = AH5212(ah);
717
718	/* Change the synth */
719	if (!ahp->ah_rfHal->setChannel(ah, chan))
720		return AH_FALSE;
721	return AH_TRUE;
722}
723
724/*
725 * This channel change evaluates whether the selected hardware can
726 * perform a synthesizer-only channel change (no reset).  If the
727 * TX is not stopped, or the RFBus cannot be granted in the given
728 * time, the function returns false as a reset is necessary
729 */
730HAL_BOOL
731ar5212ChannelChange(struct ath_hal *ah, const struct ieee80211_channel *chan)
732{
733	uint32_t       ulCount;
734	uint32_t   data, synthDelay, qnum;
735	uint16_t   rfXpdGain[MAX_NUM_PDGAINS_PER_CHANNEL];
736	HAL_BOOL    txStopped = AH_TRUE;
737	HAL_CHANNEL_INTERNAL *ichan;
738
739	/*
740	 * Map public channel to private.
741	 */
742	ichan = ath_hal_checkchannel(ah, chan);
743
744	/* TX must be stopped or RF Bus grant will not work */
745	for (qnum = 0; qnum < AH_PRIVATE(ah)->ah_caps.halTotalQueues; qnum++) {
746		if (ar5212NumTxPending(ah, qnum)) {
747			txStopped = AH_FALSE;
748			break;
749		}
750	}
751	if (!txStopped)
752		return AH_FALSE;
753
754	/* Kill last Baseband Rx Frame */
755	OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_REQUEST); /* Request analog bus grant */
756	for (ulCount = 0; ulCount < 100; ulCount++) {
757		if (OS_REG_READ(ah, AR_PHY_RFBUS_GNT))
758			break;
759		OS_DELAY(5);
760	}
761	if (ulCount >= 100)
762		return AH_FALSE;
763
764	/* Change the synth */
765	if (!ar5212SetChannel(ah, chan))
766		return AH_FALSE;
767
768	/*
769	 * Wait for the frequency synth to settle (synth goes on via PHY_ACTIVE_EN).
770	 * Read the phy active delay register. Value is in 100ns increments.
771	 */
772	data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
773	if (IEEE80211_IS_CHAN_B(chan)) {
774		synthDelay = (4 * data) / 22;
775	} else {
776		synthDelay = data / 10;
777	}
778	OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
779
780	/* Setup the transmit power values. */
781	if (!ar5212SetTransmitPower(ah, chan, rfXpdGain)) {
782		HALDEBUG(ah, HAL_DEBUG_ANY,
783		    "%s: error init'ing transmit power\n", __func__);
784		return AH_FALSE;
785	}
786
787	/* Write delta slope for OFDM enabled modes (A, G, Turbo) */
788	if (IEEE80211_IS_CHAN_OFDM(chan)) {
789		if (IS_5413(ah) ||
790		    AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER5_3)
791			ar5212SetSpurMitigation(ah, chan);
792		ar5212SetDeltaSlope(ah, chan);
793	}
794
795	/* Release the RFBus Grant */
796	OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
797
798	/* Start Noise Floor Cal */
799	OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
800	return AH_TRUE;
801}
802
803void
804ar5212SetOperatingMode(struct ath_hal *ah, int opmode)
805{
806	uint32_t val;
807
808	val = OS_REG_READ(ah, AR_STA_ID1);
809	val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
810	switch (opmode) {
811	case HAL_M_HOSTAP:
812		OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
813					| AR_STA_ID1_KSRCH_MODE);
814		OS_REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
815		break;
816	case HAL_M_IBSS:
817		OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
818					| AR_STA_ID1_KSRCH_MODE);
819		OS_REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
820		break;
821	case HAL_M_STA:
822	case HAL_M_MONITOR:
823		OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
824		break;
825	}
826}
827
828/*
829 * Places the PHY and Radio chips into reset.  A full reset
830 * must be called to leave this state.  The PCI/MAC/PCU are
831 * not placed into reset as we must receive interrupt to
832 * re-enable the hardware.
833 */
834HAL_BOOL
835ar5212PhyDisable(struct ath_hal *ah)
836{
837	return ar5212SetResetReg(ah, AR_RC_BB);
838}
839
840/*
841 * Places all of hardware into reset
842 */
843HAL_BOOL
844ar5212Disable(struct ath_hal *ah)
845{
846	if (!ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
847		return AH_FALSE;
848	/*
849	 * Reset the HW - PCI must be reset after the rest of the
850	 * device has been reset.
851	 */
852	return ar5212SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI);
853}
854
855/*
856 * Places the hardware into reset and then pulls it out of reset
857 *
858 * TODO: Only write the PLL if we're changing to or from CCK mode
859 *
860 * WARNING: The order of the PLL and mode registers must be correct.
861 */
862HAL_BOOL
863ar5212ChipReset(struct ath_hal *ah, const struct ieee80211_channel *chan)
864{
865
866	OS_MARK(ah, AH_MARK_CHIPRESET, chan ? chan->ic_freq : 0);
867
868	/*
869	 * Reset the HW - PCI must be reset after the rest of the
870	 * device has been reset
871	 */
872	if (!ar5212SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI))
873		return AH_FALSE;
874
875	/* Bring out of sleep mode (AGAIN) */
876	if (!ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
877		return AH_FALSE;
878
879	/* Clear warm reset register */
880	if (!ar5212SetResetReg(ah, 0))
881		return AH_FALSE;
882
883	/*
884	 * Perform warm reset before the mode/PLL/turbo registers
885	 * are changed in order to deactivate the radio.  Mode changes
886	 * with an active radio can result in corrupted shifts to the
887	 * radio device.
888	 */
889
890	/*
891	 * Set CCK and Turbo modes correctly.
892	 */
893	if (chan != AH_NULL) {		/* NB: can be null during attach */
894		uint32_t rfMode, phyPLL = 0, curPhyPLL, turbo;
895
896		if (IS_5413(ah)) {	/* NB: =>'s 5424 also */
897			rfMode = AR_PHY_MODE_AR5112;
898			if (IEEE80211_IS_CHAN_HALF(chan))
899				rfMode |= AR_PHY_MODE_HALF;
900			else if (IEEE80211_IS_CHAN_QUARTER(chan))
901				rfMode |= AR_PHY_MODE_QUARTER;
902
903			if (IEEE80211_IS_CHAN_CCK(chan))
904				phyPLL = AR_PHY_PLL_CTL_44_5112;
905			else
906				phyPLL = AR_PHY_PLL_CTL_40_5413;
907		} else if (IS_RAD5111(ah)) {
908			rfMode = AR_PHY_MODE_AR5111;
909			if (IEEE80211_IS_CHAN_CCK(chan))
910				phyPLL = AR_PHY_PLL_CTL_44;
911			else
912				phyPLL = AR_PHY_PLL_CTL_40;
913			if (IEEE80211_IS_CHAN_HALF(chan))
914				phyPLL = AR_PHY_PLL_CTL_HALF;
915			else if (IEEE80211_IS_CHAN_QUARTER(chan))
916				phyPLL = AR_PHY_PLL_CTL_QUARTER;
917		} else {		/* 5112, 2413, 2316, 2317 */
918			rfMode = AR_PHY_MODE_AR5112;
919			if (IEEE80211_IS_CHAN_CCK(chan))
920				phyPLL = AR_PHY_PLL_CTL_44_5112;
921			else
922				phyPLL = AR_PHY_PLL_CTL_40_5112;
923			if (IEEE80211_IS_CHAN_HALF(chan))
924				phyPLL |= AR_PHY_PLL_CTL_HALF;
925			else if (IEEE80211_IS_CHAN_QUARTER(chan))
926				phyPLL |= AR_PHY_PLL_CTL_QUARTER;
927		}
928		if (IEEE80211_IS_CHAN_G(chan))
929			rfMode |= AR_PHY_MODE_DYNAMIC;
930		else if (IEEE80211_IS_CHAN_OFDM(chan))
931			rfMode |= AR_PHY_MODE_OFDM;
932		else
933			rfMode |= AR_PHY_MODE_CCK;
934		if (IEEE80211_IS_CHAN_5GHZ(chan))
935			rfMode |= AR_PHY_MODE_RF5GHZ;
936		else
937			rfMode |= AR_PHY_MODE_RF2GHZ;
938		turbo = IEEE80211_IS_CHAN_TURBO(chan) ?
939			(AR_PHY_FC_TURBO_MODE | AR_PHY_FC_TURBO_SHORT) : 0;
940		curPhyPLL = OS_REG_READ(ah, AR_PHY_PLL_CTL);
941		/*
942		 * PLL, Mode, and Turbo values must be written in the correct
943		 * order to ensure:
944		 * - The PLL cannot be set to 44 unless the CCK or DYNAMIC
945		 *   mode bit is set
946		 * - Turbo cannot be set at the same time as CCK or DYNAMIC
947		 */
948		if (IEEE80211_IS_CHAN_CCK(chan)) {
949			OS_REG_WRITE(ah, AR_PHY_TURBO, turbo);
950			OS_REG_WRITE(ah, AR_PHY_MODE, rfMode);
951			if (curPhyPLL != phyPLL) {
952				OS_REG_WRITE(ah,  AR_PHY_PLL_CTL,  phyPLL);
953				/* Wait for the PLL to settle */
954				OS_DELAY(PLL_SETTLE_DELAY);
955			}
956		} else {
957			if (curPhyPLL != phyPLL) {
958				OS_REG_WRITE(ah,  AR_PHY_PLL_CTL,  phyPLL);
959				/* Wait for the PLL to settle */
960				OS_DELAY(PLL_SETTLE_DELAY);
961			}
962			OS_REG_WRITE(ah, AR_PHY_TURBO, turbo);
963			OS_REG_WRITE(ah, AR_PHY_MODE, rfMode);
964		}
965	}
966	return AH_TRUE;
967}
968
969/*
970 * Recalibrate the lower PHY chips to account for temperature/environment
971 * changes.
972 */
973HAL_BOOL
974ar5212PerCalibrationN(struct ath_hal *ah,
975	struct ieee80211_channel *chan,
976	u_int chainMask, HAL_BOOL longCal, HAL_BOOL *isCalDone)
977{
978#define IQ_CAL_TRIES    10
979	struct ath_hal_5212 *ahp = AH5212(ah);
980	HAL_CHANNEL_INTERNAL *ichan;
981	int32_t qCoff, qCoffDenom;
982	int32_t iqCorrMeas, iCoff, iCoffDenom;
983	uint32_t powerMeasQ, powerMeasI;
984	HAL_BOOL isBmode = AH_FALSE;
985
986	OS_MARK(ah, AH_MARK_PERCAL, chan->ic_freq);
987	*isCalDone = AH_FALSE;
988	ichan = ath_hal_checkchannel(ah, chan);
989	if (ichan == AH_NULL) {
990		HALDEBUG(ah, HAL_DEBUG_ANY,
991		    "%s: invalid channel %u/0x%x; no mapping\n",
992		    __func__, chan->ic_freq, chan->ic_flags);
993		return AH_FALSE;
994	}
995	SAVE_CCK(ah, chan, isBmode);
996
997	if (ahp->ah_bIQCalibration == IQ_CAL_DONE ||
998	    ahp->ah_bIQCalibration == IQ_CAL_INACTIVE)
999		*isCalDone = AH_TRUE;
1000
1001	/* IQ calibration in progress. Check to see if it has finished. */
1002	if (ahp->ah_bIQCalibration == IQ_CAL_RUNNING &&
1003	    !(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) & AR_PHY_TIMING_CTRL4_DO_IQCAL)) {
1004		int i;
1005
1006		/* IQ Calibration has finished. */
1007		ahp->ah_bIQCalibration = IQ_CAL_INACTIVE;
1008		*isCalDone = AH_TRUE;
1009
1010		/* workaround for misgated IQ Cal results */
1011		i = 0;
1012		do {
1013			/* Read calibration results. */
1014			powerMeasI = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_I);
1015			powerMeasQ = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_Q);
1016			iqCorrMeas = OS_REG_READ(ah, AR_PHY_IQCAL_RES_IQ_CORR_MEAS);
1017			if (powerMeasI && powerMeasQ)
1018				break;
1019			/* Do we really need this??? */
1020			OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
1021			    AR_PHY_TIMING_CTRL4_DO_IQCAL);
1022		} while (++i < IQ_CAL_TRIES);
1023
1024		HALDEBUG(ah, HAL_DEBUG_PERCAL,
1025		    "%s: IQ cal finished: %d tries\n", __func__, i);
1026		HALDEBUG(ah, HAL_DEBUG_PERCAL,
1027		    "%s: powerMeasI %u powerMeasQ %u iqCorrMeas %d\n",
1028		    __func__, powerMeasI, powerMeasQ, iqCorrMeas);
1029
1030		/*
1031		 * Prescale these values to remove 64-bit operation
1032		 * requirement at the loss of a little precision.
1033		 */
1034		iCoffDenom = (powerMeasI / 2 + powerMeasQ / 2) / 128;
1035		qCoffDenom = powerMeasQ / 128;
1036
1037		/* Protect against divide-by-0 and loss of sign bits. */
1038		if (iCoffDenom != 0 && qCoffDenom >= 2) {
1039			iCoff = (int8_t)(-iqCorrMeas) / iCoffDenom;
1040			/* IQCORR_Q_I_COFF is a signed 6 bit number */
1041			if (iCoff < -32) {
1042				iCoff = -32;
1043			} else if (iCoff > 31) {
1044				iCoff = 31;
1045			}
1046
1047			/* IQCORR_Q_Q_COFF is a signed 5 bit number */
1048			qCoff = (powerMeasI / qCoffDenom) - 128;
1049			if (qCoff < -16) {
1050				qCoff = -16;
1051			} else if (qCoff > 15) {
1052				qCoff = 15;
1053			}
1054
1055			HALDEBUG(ah, HAL_DEBUG_PERCAL,
1056			    "%s: iCoff %d qCoff %d\n", __func__, iCoff, qCoff);
1057
1058			/* Write values and enable correction */
1059			OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
1060				AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, iCoff);
1061			OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
1062				AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, qCoff);
1063			OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
1064				AR_PHY_TIMING_CTRL4_IQCORR_ENABLE);
1065
1066			ahp->ah_bIQCalibration = IQ_CAL_DONE;
1067			ichan->privFlags |= CHANNEL_IQVALID;
1068			ichan->iCoff = iCoff;
1069			ichan->qCoff = qCoff;
1070		}
1071	} else if (!IEEE80211_IS_CHAN_B(chan) &&
1072	    ahp->ah_bIQCalibration == IQ_CAL_DONE &&
1073	    (ichan->privFlags & CHANNEL_IQVALID) == 0) {
1074		/*
1075		 * Start IQ calibration if configured channel has changed.
1076		 * Use a magic number of 15 based on default value.
1077		 */
1078		OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
1079			AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX,
1080			INIT_IQCAL_LOG_COUNT_MAX);
1081		OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
1082			AR_PHY_TIMING_CTRL4_DO_IQCAL);
1083		ahp->ah_bIQCalibration = IQ_CAL_RUNNING;
1084	}
1085	/* XXX EAR */
1086
1087	if (longCal) {
1088		/* Check noise floor results */
1089		ar5212GetNf(ah, chan);
1090		if (!IEEE80211_IS_CHAN_CWINT(chan)) {
1091			/* Perform cal for 5Ghz channels and any OFDM on 5112 */
1092			if (IEEE80211_IS_CHAN_5GHZ(chan) ||
1093			    (IS_RAD5112(ah) && IEEE80211_IS_CHAN_OFDM(chan)))
1094				ar5212RequestRfgain(ah);
1095		}
1096	}
1097	RESTORE_CCK(ah, chan, isBmode);
1098
1099	return AH_TRUE;
1100#undef IQ_CAL_TRIES
1101}
1102
1103HAL_BOOL
1104ar5212PerCalibration(struct ath_hal *ah,  struct ieee80211_channel *chan,
1105	HAL_BOOL *isIQdone)
1106{
1107	return ar5212PerCalibrationN(ah, chan, 0x1, AH_TRUE, isIQdone);
1108}
1109
1110HAL_BOOL
1111ar5212ResetCalValid(struct ath_hal *ah, const struct ieee80211_channel *chan)
1112{
1113	HAL_CHANNEL_INTERNAL *ichan;
1114
1115	ichan = ath_hal_checkchannel(ah, chan);
1116	if (ichan == AH_NULL) {
1117		HALDEBUG(ah, HAL_DEBUG_ANY,
1118		    "%s: invalid channel %u/0x%x; no mapping\n",
1119		    __func__, chan->ic_freq, chan->ic_flags);
1120		return AH_FALSE;
1121	}
1122	ichan->privFlags &= ~CHANNEL_IQVALID;
1123	return AH_TRUE;
1124}
1125
1126/**************************************************************
1127 * ar5212MacStop
1128 *
1129 * Disables all active QCUs and ensure that the mac is in a
1130 * quiessence state.
1131 */
1132static HAL_BOOL
1133ar5212MacStop(struct ath_hal *ah)
1134{
1135	HAL_BOOL     status;
1136	uint32_t    count;
1137	uint32_t    pendFrameCount;
1138	uint32_t    macStateFlag;
1139	uint32_t    queue;
1140
1141	status = AH_FALSE;
1142
1143	/* Disable Rx Operation ***********************************/
1144	OS_REG_SET_BIT(ah, AR_CR, AR_CR_RXD);
1145
1146	/* Disable TX Operation ***********************************/
1147#ifdef NOT_YET
1148	ar5212SetTxdpInvalid(ah);
1149#endif
1150	OS_REG_SET_BIT(ah, AR_Q_TXD, AR_Q_TXD_M);
1151
1152	/* Polling operation for completion of disable ************/
1153	macStateFlag = TX_ENABLE_CHECK | RX_ENABLE_CHECK;
1154
1155	for (count = 0; count < MAX_RESET_WAIT; count++) {
1156		if (macStateFlag & RX_ENABLE_CHECK) {
1157			if (!OS_REG_IS_BIT_SET(ah, AR_CR, AR_CR_RXE)) {
1158				macStateFlag &= ~RX_ENABLE_CHECK;
1159			}
1160		}
1161
1162		if (macStateFlag & TX_ENABLE_CHECK) {
1163			if (!OS_REG_IS_BIT_SET(ah, AR_Q_TXE, AR_Q_TXE_M)) {
1164				macStateFlag &= ~TX_ENABLE_CHECK;
1165				macStateFlag |= TX_QUEUEPEND_CHECK;
1166			}
1167		}
1168		if (macStateFlag & TX_QUEUEPEND_CHECK) {
1169			pendFrameCount = 0;
1170			for (queue = 0; queue < AR_NUM_DCU; queue++) {
1171				pendFrameCount += OS_REG_READ(ah,
1172				    AR_Q0_STS + (queue * 4)) &
1173				    AR_Q_STS_PEND_FR_CNT;
1174			}
1175			if (pendFrameCount == 0) {
1176				macStateFlag &= ~TX_QUEUEPEND_CHECK;
1177			}
1178		}
1179		if (macStateFlag == 0) {
1180			status = AH_TRUE;
1181			break;
1182		}
1183		OS_DELAY(50);
1184	}
1185
1186	if (status != AH_TRUE) {
1187		HALDEBUG(ah, HAL_DEBUG_RESET,
1188		    "%s:Failed to stop the MAC state 0x%x\n",
1189		    __func__, macStateFlag);
1190	}
1191
1192	return status;
1193}
1194
1195/*
1196 * Write the given reset bit mask into the reset register
1197 */
1198static HAL_BOOL
1199ar5212SetResetReg(struct ath_hal *ah, uint32_t resetMask)
1200{
1201	uint32_t mask = resetMask ? resetMask : ~0;
1202	HAL_BOOL rt;
1203
1204	/* Never reset the PCIE core */
1205	if (AH_PRIVATE(ah)->ah_ispcie) {
1206		resetMask &= ~AR_RC_PCI;
1207	}
1208
1209	if (resetMask & (AR_RC_MAC | AR_RC_PCI)) {
1210		/*
1211		 * To ensure that the driver can reset the
1212		 * MAC, wake up the chip
1213		 */
1214		rt = ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE);
1215
1216		if (rt != AH_TRUE) {
1217			return rt;
1218		}
1219
1220		/*
1221		 * Disable interrupts
1222		 */
1223		OS_REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
1224		OS_REG_READ(ah, AR_IER);
1225
1226		if (ar5212MacStop(ah) != AH_TRUE) {
1227			/*
1228			 * Failed to stop the MAC gracefully; let's be more forceful then
1229			 */
1230
1231			/* need some delay before flush any pending MMR writes */
1232			OS_DELAY(15);
1233			OS_REG_READ(ah, AR_RXDP);
1234
1235			resetMask |= AR_RC_MAC | AR_RC_BB;
1236			/* _Never_ reset PCI Express core */
1237			if (! AH_PRIVATE(ah)->ah_ispcie) {
1238				resetMask |= AR_RC_PCI;
1239			}
1240#if 0
1241			/*
1242			 * Flush the park address of the PCI controller
1243			*/
1244			/* Read PCI slot information less than Hainan revision */
1245			if (AH_PRIVATE(ah)->ah_bustype == HAL_BUS_TYPE_PCI) {
1246				if (!IS_5112_REV5_UP(ah)) {
1247#define PCI_COMMON_CONFIG_STATUS    0x06
1248					u_int32_t    i;
1249					u_int16_t    reg16;
1250
1251					for (i = 0; i < 32; i++) {
1252						ath_hal_read_pci_config_space(ah,
1253						    PCI_COMMON_CONFIG_STATUS,
1254						    &reg16, sizeof(reg16));
1255					}
1256				}
1257#undef PCI_COMMON_CONFIG_STATUS
1258			}
1259#endif
1260		} else {
1261			/*
1262			 * MAC stopped gracefully; no need to warm-reset the PCI bus
1263			 */
1264
1265			resetMask &= ~AR_RC_PCI;
1266
1267			/* need some delay before flush any pending MMR writes */
1268			OS_DELAY(15);
1269			OS_REG_READ(ah, AR_RXDP);
1270		}
1271	}
1272
1273	(void) OS_REG_READ(ah, AR_RXDP);/* flush any pending MMR writes */
1274	OS_REG_WRITE(ah, AR_RC, resetMask);
1275	OS_DELAY(15);			/* need to wait at least 128 clocks
1276					   when reseting PCI before read */
1277	mask &= (AR_RC_MAC | AR_RC_BB);
1278	resetMask &= (AR_RC_MAC | AR_RC_BB);
1279	rt = ath_hal_wait(ah, AR_RC, mask, resetMask);
1280        if ((resetMask & AR_RC_MAC) == 0) {
1281		if (isBigEndian()) {
1282			/*
1283			 * Set CFG, little-endian for descriptor accesses.
1284			 */
1285			mask = INIT_CONFIG_STATUS | AR_CFG_SWRD;
1286#ifndef AH_NEED_DESC_SWAP
1287			mask |= AR_CFG_SWTD;
1288#endif
1289			OS_REG_WRITE(ah, AR_CFG, mask);
1290		} else
1291			OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS);
1292		if (ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
1293			(void) OS_REG_READ(ah, AR_ISR_RAC);
1294	}
1295
1296	/* track PHY power state so we don't try to r/w BB registers */
1297	AH5212(ah)->ah_phyPowerOn = ((resetMask & AR_RC_BB) == 0);
1298	return rt;
1299}
1300
1301int16_t
1302ar5212GetNoiseFloor(struct ath_hal *ah)
1303{
1304	int16_t nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
1305	if (nf & 0x100)
1306		nf = 0 - ((nf ^ 0x1ff) + 1);
1307	return nf;
1308}
1309
1310static HAL_BOOL
1311getNoiseFloorThresh(struct ath_hal *ah, const struct ieee80211_channel *chan,
1312	int16_t *nft)
1313{
1314	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1315
1316	HALASSERT(ah->ah_magic == AR5212_MAGIC);
1317
1318	switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
1319	case IEEE80211_CHAN_A:
1320		*nft = ee->ee_noiseFloorThresh[headerInfo11A];
1321		break;
1322	case IEEE80211_CHAN_B:
1323		*nft = ee->ee_noiseFloorThresh[headerInfo11B];
1324		break;
1325	case IEEE80211_CHAN_G:
1326	case IEEE80211_CHAN_PUREG:	/* NB: really 108G */
1327		*nft = ee->ee_noiseFloorThresh[headerInfo11G];
1328		break;
1329	default:
1330		HALDEBUG(ah, HAL_DEBUG_ANY,
1331		    "%s: invalid channel flags %u/0x%x\n",
1332		    __func__, chan->ic_freq, chan->ic_flags);
1333		return AH_FALSE;
1334	}
1335	return AH_TRUE;
1336}
1337
1338/*
1339 * Setup the noise floor cal history buffer.
1340 */
1341void
1342ar5212InitNfCalHistBuffer(struct ath_hal *ah)
1343{
1344	struct ath_hal_5212 *ahp = AH5212(ah);
1345	int i;
1346
1347	ahp->ah_nfCalHist.first_run = 1;
1348	ahp->ah_nfCalHist.currIndex = 0;
1349	ahp->ah_nfCalHist.privNF = AR5212_CCA_MAX_GOOD_VALUE;
1350	ahp->ah_nfCalHist.invalidNFcount = AR512_NF_CAL_HIST_MAX;
1351	for (i = 0; i < AR512_NF_CAL_HIST_MAX; i ++)
1352		ahp->ah_nfCalHist.nfCalBuffer[i] = AR5212_CCA_MAX_GOOD_VALUE;
1353}
1354
1355/*
1356 * Add a noise floor value to the ring buffer.
1357 */
1358static __inline void
1359updateNFHistBuff(struct ar5212NfCalHist *h, int16_t nf)
1360{
1361 	h->nfCalBuffer[h->currIndex] = nf;
1362     	if (++h->currIndex >= AR512_NF_CAL_HIST_MAX)
1363		h->currIndex = 0;
1364}
1365
1366/*
1367 * Return the median noise floor value in the ring buffer.
1368 */
1369int16_t
1370ar5212GetNfHistMid(const int16_t calData[AR512_NF_CAL_HIST_MAX])
1371{
1372	int16_t sort[AR512_NF_CAL_HIST_MAX];
1373	int i, j;
1374
1375	OS_MEMCPY(sort, calData, AR512_NF_CAL_HIST_MAX*sizeof(int16_t));
1376	for (i = 0; i < AR512_NF_CAL_HIST_MAX-1; i ++) {
1377		for (j = 1; j < AR512_NF_CAL_HIST_MAX-i; j ++) {
1378			if (sort[j] > sort[j-1]) {
1379				int16_t nf = sort[j];
1380				sort[j] = sort[j-1];
1381				sort[j-1] = nf;
1382			}
1383		}
1384	}
1385	return sort[(AR512_NF_CAL_HIST_MAX-1)>>1];
1386}
1387
1388/*
1389 * Read the NF and check it against the noise floor threshold
1390 */
1391int16_t
1392ar5212GetNf(struct ath_hal *ah, struct ieee80211_channel *chan)
1393{
1394	struct ath_hal_5212 *ahp = AH5212(ah);
1395	struct ar5212NfCalHist *h = &ahp->ah_nfCalHist;
1396	HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
1397	int16_t nf, nfThresh;
1398 	int32_t val;
1399
1400	if (OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) {
1401		HALDEBUG(ah, HAL_DEBUG_ANY,
1402		    "%s: NF did not complete in calibration window\n", __func__);
1403		ichan->rawNoiseFloor = h->privNF;	/* most recent value */
1404		return ichan->rawNoiseFloor;
1405	}
1406
1407	/*
1408	 * Finished NF cal, check against threshold.
1409	 */
1410	nf = ar5212GetNoiseFloor(ah);
1411	if (getNoiseFloorThresh(ah, chan, &nfThresh)) {
1412		if (nf > nfThresh) {
1413			HALDEBUG(ah, HAL_DEBUG_ANY,
1414			    "%s: noise floor failed detected; detected %u, "
1415			    "threshold %u\n", __func__, nf, nfThresh);
1416			/*
1417			 * NB: Don't discriminate 2.4 vs 5Ghz, if this
1418			 *     happens it indicates a problem regardless
1419			 *     of the band.
1420			 */
1421			chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
1422			nf = 0;
1423		}
1424	} else
1425		nf = 0;
1426
1427	/*
1428	 * Pass through histogram and write median value as
1429	 * calculated from the accrued window.  We require a
1430	 * full window of in-range values to be seen before we
1431	 * start using the history.
1432	 */
1433	updateNFHistBuff(h, nf);
1434	if (h->first_run) {
1435		if (nf < AR5212_CCA_MIN_BAD_VALUE ||
1436		    nf > AR5212_CCA_MAX_HIGH_VALUE) {
1437			nf = AR5212_CCA_MAX_GOOD_VALUE;
1438			h->invalidNFcount = AR512_NF_CAL_HIST_MAX;
1439		} else if (--(h->invalidNFcount) == 0) {
1440			h->first_run = 0;
1441			h->privNF = nf = ar5212GetNfHistMid(h->nfCalBuffer);
1442		} else {
1443			nf = AR5212_CCA_MAX_GOOD_VALUE;
1444		}
1445	} else {
1446		h->privNF = nf = ar5212GetNfHistMid(h->nfCalBuffer);
1447	}
1448
1449	val = OS_REG_READ(ah, AR_PHY(25));
1450	val &= 0xFFFFFE00;
1451	val |= (((uint32_t)nf << 1) & 0x1FF);
1452	OS_REG_WRITE(ah, AR_PHY(25), val);
1453	OS_REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
1454	OS_REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
1455	OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
1456
1457	if (!ath_hal_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF, 0)) {
1458#ifdef AH_DEBUG
1459		ath_hal_printf(ah, "%s: AGC not ready AGC_CONTROL 0x%x\n",
1460		    __func__, OS_REG_READ(ah, AR_PHY_AGC_CONTROL));
1461#endif
1462	}
1463
1464	/*
1465	 * Now load a high maxCCAPower value again so that we're
1466	 * not capped by the median we just loaded
1467	 */
1468	val &= 0xFFFFFE00;
1469	val |= (((uint32_t)(-50) << 1) & 0x1FF);
1470	OS_REG_WRITE(ah, AR_PHY(25), val);
1471	OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
1472	OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
1473	OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
1474
1475	return (ichan->rawNoiseFloor = nf);
1476}
1477
1478/*
1479 * Set up compression configuration registers
1480 */
1481void
1482ar5212SetCompRegs(struct ath_hal *ah)
1483{
1484	struct ath_hal_5212 *ahp = AH5212(ah);
1485	int i;
1486
1487        /* Check if h/w supports compression */
1488	if (!AH_PRIVATE(ah)->ah_caps.halCompressSupport)
1489		return;
1490
1491	OS_REG_WRITE(ah, AR_DCCFG, 1);
1492
1493	OS_REG_WRITE(ah, AR_CCFG,
1494		(AR_COMPRESSION_WINDOW_SIZE >> 8) & AR_CCFG_WIN_M);
1495
1496	OS_REG_WRITE(ah, AR_CCFG,
1497		OS_REG_READ(ah, AR_CCFG) | AR_CCFG_MIB_INT_EN);
1498	OS_REG_WRITE(ah, AR_CCUCFG,
1499		AR_CCUCFG_RESET_VAL | AR_CCUCFG_CATCHUP_EN);
1500
1501	OS_REG_WRITE(ah, AR_CPCOVF, 0);
1502
1503	/* reset decompression mask */
1504	for (i = 0; i < HAL_DECOMP_MASK_SIZE; i++) {
1505		OS_REG_WRITE(ah, AR_DCM_A, i);
1506		OS_REG_WRITE(ah, AR_DCM_D, ahp->ah_decompMask[i]);
1507	}
1508}
1509
1510HAL_BOOL
1511ar5212SetAntennaSwitchInternal(struct ath_hal *ah, HAL_ANT_SETTING settings,
1512	const struct ieee80211_channel *chan)
1513{
1514#define	ANT_SWITCH_TABLE1	AR_PHY(88)
1515#define	ANT_SWITCH_TABLE2	AR_PHY(89)
1516	struct ath_hal_5212 *ahp = AH5212(ah);
1517	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1518	uint32_t antSwitchA, antSwitchB;
1519	int ix;
1520
1521	HALASSERT(ah->ah_magic == AR5212_MAGIC);
1522	HALASSERT(ahp->ah_phyPowerOn);
1523
1524	switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
1525	case IEEE80211_CHAN_A:
1526		ix = 0;
1527		break;
1528	case IEEE80211_CHAN_G:
1529	case IEEE80211_CHAN_PUREG:		/* NB: 108G */
1530		ix = 2;
1531		break;
1532	case IEEE80211_CHAN_B:
1533		if (IS_2425(ah) || IS_2417(ah)) {
1534			/* NB: Nala/Swan: 11b is handled using 11g */
1535			ix = 2;
1536		} else
1537			ix = 1;
1538		break;
1539	default:
1540		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1541		    __func__, chan->ic_flags);
1542		return AH_FALSE;
1543	}
1544
1545	antSwitchA =  ee->ee_antennaControl[1][ix]
1546		   | (ee->ee_antennaControl[2][ix] << 6)
1547		   | (ee->ee_antennaControl[3][ix] << 12)
1548		   | (ee->ee_antennaControl[4][ix] << 18)
1549		   | (ee->ee_antennaControl[5][ix] << 24)
1550		   ;
1551	antSwitchB =  ee->ee_antennaControl[6][ix]
1552		   | (ee->ee_antennaControl[7][ix] << 6)
1553		   | (ee->ee_antennaControl[8][ix] << 12)
1554		   | (ee->ee_antennaControl[9][ix] << 18)
1555		   | (ee->ee_antennaControl[10][ix] << 24)
1556		   ;
1557	/*
1558	 * For fixed antenna, give the same setting for both switch banks
1559	 */
1560	switch (settings) {
1561	case HAL_ANT_FIXED_A:
1562		antSwitchB = antSwitchA;
1563		break;
1564	case HAL_ANT_FIXED_B:
1565		antSwitchA = antSwitchB;
1566		break;
1567	case HAL_ANT_VARIABLE:
1568		break;
1569	default:
1570		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad antenna setting %u\n",
1571		    __func__, settings);
1572		return AH_FALSE;
1573	}
1574	if (antSwitchB == antSwitchA) {
1575		HALDEBUG(ah, HAL_DEBUG_RFPARAM,
1576		    "%s: Setting fast diversity off.\n", __func__);
1577		OS_REG_CLR_BIT(ah,AR_PHY_CCK_DETECT,
1578			       AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
1579		ahp->ah_diversity = AH_FALSE;
1580	} else {
1581		HALDEBUG(ah, HAL_DEBUG_RFPARAM,
1582		    "%s: Setting fast diversity on.\n", __func__);
1583		OS_REG_SET_BIT(ah,AR_PHY_CCK_DETECT,
1584			       AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
1585		ahp->ah_diversity = AH_TRUE;
1586	}
1587	ahp->ah_antControl = settings;
1588
1589	OS_REG_WRITE(ah, ANT_SWITCH_TABLE1, antSwitchA);
1590	OS_REG_WRITE(ah, ANT_SWITCH_TABLE2, antSwitchB);
1591
1592	return AH_TRUE;
1593#undef ANT_SWITCH_TABLE2
1594#undef ANT_SWITCH_TABLE1
1595}
1596
1597HAL_BOOL
1598ar5212IsSpurChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
1599{
1600	uint16_t freq = ath_hal_gethwchannel(ah, chan);
1601	uint32_t clockFreq =
1602	    ((IS_5413(ah) || IS_RAD5112_ANY(ah) || IS_2417(ah)) ? 40 : 32);
1603	return ( ((freq % clockFreq) != 0)
1604              && (((freq % clockFreq) < 10)
1605             || (((freq) % clockFreq) > 22)) );
1606}
1607
1608/*
1609 * Read EEPROM header info and program the device for correct operation
1610 * given the channel value.
1611 */
1612HAL_BOOL
1613ar5212SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
1614{
1615#define NO_FALSE_DETECT_BACKOFF   2
1616#define CB22_FALSE_DETECT_BACKOFF 6
1617#define	AR_PHY_BIS(_ah, _reg, _mask, _val) \
1618	OS_REG_WRITE(_ah, AR_PHY(_reg), \
1619		(OS_REG_READ(_ah, AR_PHY(_reg)) & _mask) | (_val));
1620	struct ath_hal_5212 *ahp = AH5212(ah);
1621	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1622	int arrayMode, falseDectectBackoff;
1623	int is2GHz = IEEE80211_IS_CHAN_2GHZ(chan);
1624	HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
1625	int8_t adcDesiredSize, pgaDesiredSize;
1626	uint16_t switchSettling, txrxAtten, rxtxMargin;
1627	int iCoff, qCoff;
1628
1629	HALASSERT(ah->ah_magic == AR5212_MAGIC);
1630
1631	switch (chan->ic_flags & IEEE80211_CHAN_ALLTURBOFULL) {
1632	case IEEE80211_CHAN_A:
1633	case IEEE80211_CHAN_ST:
1634		arrayMode = headerInfo11A;
1635		if (!IS_RAD5112_ANY(ah) && !IS_2413(ah) && !IS_5413(ah))
1636			OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
1637				AR_PHY_FRAME_CTL_TX_CLIP,
1638				ahp->ah_gainValues.currStep->paramVal[GP_TXCLIP]);
1639		break;
1640	case IEEE80211_CHAN_B:
1641		arrayMode = headerInfo11B;
1642		break;
1643	case IEEE80211_CHAN_G:
1644	case IEEE80211_CHAN_108G:
1645		arrayMode = headerInfo11G;
1646		break;
1647	default:
1648		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1649		    __func__, chan->ic_flags);
1650		return AH_FALSE;
1651	}
1652
1653	/* Set the antenna register(s) correctly for the chip revision */
1654	AR_PHY_BIS(ah, 68, 0xFFFFFC06,
1655		(ee->ee_antennaControl[0][arrayMode] << 4) | 0x1);
1656
1657	ar5212SetAntennaSwitchInternal(ah, ahp->ah_antControl, chan);
1658
1659	/* Set the Noise Floor Thresh on ar5211 devices */
1660	OS_REG_WRITE(ah, AR_PHY(90),
1661		(ee->ee_noiseFloorThresh[arrayMode] & 0x1FF)
1662		| (1 << 9));
1663
1664	if (ee->ee_version >= AR_EEPROM_VER5_0 && IEEE80211_IS_CHAN_TURBO(chan)) {
1665		switchSettling = ee->ee_switchSettlingTurbo[is2GHz];
1666		adcDesiredSize = ee->ee_adcDesiredSizeTurbo[is2GHz];
1667		pgaDesiredSize = ee->ee_pgaDesiredSizeTurbo[is2GHz];
1668		txrxAtten = ee->ee_txrxAttenTurbo[is2GHz];
1669		rxtxMargin = ee->ee_rxtxMarginTurbo[is2GHz];
1670	} else {
1671		switchSettling = ee->ee_switchSettling[arrayMode];
1672		adcDesiredSize = ee->ee_adcDesiredSize[arrayMode];
1673		pgaDesiredSize = ee->ee_pgaDesiredSize[is2GHz];
1674		txrxAtten = ee->ee_txrxAtten[is2GHz];
1675		rxtxMargin = ee->ee_rxtxMargin[is2GHz];
1676	}
1677
1678	OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING,
1679			 AR_PHY_SETTLING_SWITCH, switchSettling);
1680	OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
1681			 AR_PHY_DESIRED_SZ_ADC, adcDesiredSize);
1682	OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
1683			 AR_PHY_DESIRED_SZ_PGA, pgaDesiredSize);
1684	OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
1685			 AR_PHY_RXGAIN_TXRX_ATTEN, txrxAtten);
1686	OS_REG_WRITE(ah, AR_PHY(13),
1687		(ee->ee_txEndToXPAOff[arrayMode] << 24)
1688		| (ee->ee_txEndToXPAOff[arrayMode] << 16)
1689		| (ee->ee_txFrameToXPAOn[arrayMode] << 8)
1690		| ee->ee_txFrameToXPAOn[arrayMode]);
1691	AR_PHY_BIS(ah, 10, 0xFFFF00FF,
1692		ee->ee_txEndToXLNAOn[arrayMode] << 8);
1693	AR_PHY_BIS(ah, 25, 0xFFF80FFF,
1694		(ee->ee_thresh62[arrayMode] << 12) & 0x7F000);
1695
1696	/*
1697	 * False detect backoff - suspected 32 MHz spur causes false
1698	 * detects in OFDM, causing Tx Hangs.  Decrease weak signal
1699	 * sensitivity for this card.
1700	 */
1701	falseDectectBackoff = NO_FALSE_DETECT_BACKOFF;
1702	if (ee->ee_version < AR_EEPROM_VER3_3) {
1703		/* XXX magic number */
1704		if (AH_PRIVATE(ah)->ah_subvendorid == 0x1022 &&
1705		    IEEE80211_IS_CHAN_OFDM(chan))
1706			falseDectectBackoff += CB22_FALSE_DETECT_BACKOFF;
1707	} else {
1708		if (ar5212IsSpurChannel(ah, chan))
1709			falseDectectBackoff += ee->ee_falseDetectBackoff[arrayMode];
1710	}
1711	AR_PHY_BIS(ah, 73, 0xFFFFFF01, (falseDectectBackoff << 1) & 0xFE);
1712
1713	if (ichan->privFlags & CHANNEL_IQVALID) {
1714		iCoff = ichan->iCoff;
1715		qCoff = ichan->qCoff;
1716	} else {
1717		iCoff = ee->ee_iqCalI[is2GHz];
1718		qCoff = ee->ee_iqCalQ[is2GHz];
1719	}
1720
1721	/* write previous IQ results */
1722	OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
1723		AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, iCoff);
1724	OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
1725		AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, qCoff);
1726	OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
1727		AR_PHY_TIMING_CTRL4_IQCORR_ENABLE);
1728
1729	if (ee->ee_version >= AR_EEPROM_VER4_1) {
1730		if (!IEEE80211_IS_CHAN_108G(chan) || ee->ee_version >= AR_EEPROM_VER5_0)
1731			OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
1732				AR_PHY_GAIN_2GHZ_RXTX_MARGIN, rxtxMargin);
1733	}
1734	if (ee->ee_version >= AR_EEPROM_VER5_1) {
1735		/* for now always disabled */
1736		OS_REG_WRITE(ah,  AR_PHY_HEAVY_CLIP_ENABLE,  0);
1737	}
1738
1739	return AH_TRUE;
1740#undef AR_PHY_BIS
1741#undef NO_FALSE_DETECT_BACKOFF
1742#undef CB22_FALSE_DETECT_BACKOFF
1743}
1744
1745/*
1746 * Apply Spur Immunity to Boards that require it.
1747 * Applies only to OFDM RX operation.
1748 */
1749
1750void
1751ar5212SetSpurMitigation(struct ath_hal *ah,
1752	const struct ieee80211_channel *chan)
1753{
1754	uint32_t pilotMask[2] = {0, 0}, binMagMask[4] = {0, 0, 0 , 0};
1755	uint16_t i, finalSpur, curChanAsSpur, binWidth = 0, spurDetectWidth, spurChan;
1756	int32_t spurDeltaPhase = 0, spurFreqSd = 0, spurOffset, binOffsetNumT16, curBinOffset;
1757	int16_t numBinOffsets;
1758	static const uint16_t magMapFor4[4] = {1, 2, 2, 1};
1759	static const uint16_t magMapFor3[3] = {1, 2, 1};
1760	const uint16_t *pMagMap;
1761	HAL_BOOL is2GHz = IEEE80211_IS_CHAN_2GHZ(chan);
1762	HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
1763	uint32_t val;
1764
1765#define CHAN_TO_SPUR(_f, _freq)   ( ((_freq) - ((_f) ? 2300 : 4900)) * 10 )
1766	if (IS_2417(ah)) {
1767		HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: no spur mitigation\n",
1768		    __func__);
1769		return;
1770	}
1771
1772	curChanAsSpur = CHAN_TO_SPUR(is2GHz, ichan->channel);
1773
1774	if (ichan->mainSpur) {
1775		/* Pull out the saved spur value */
1776		finalSpur = ichan->mainSpur;
1777	} else {
1778		/*
1779		 * Check if spur immunity should be performed for this channel
1780		 * Should only be performed once per channel and then saved
1781		 */
1782		finalSpur = AR_NO_SPUR;
1783		spurDetectWidth = HAL_SPUR_CHAN_WIDTH;
1784		if (IEEE80211_IS_CHAN_TURBO(chan))
1785			spurDetectWidth *= 2;
1786
1787		/* Decide if any spur affects the current channel */
1788		for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
1789			spurChan = ath_hal_getSpurChan(ah, i, is2GHz);
1790			if (spurChan == AR_NO_SPUR) {
1791				break;
1792			}
1793			if ((curChanAsSpur - spurDetectWidth <= (spurChan & HAL_SPUR_VAL_MASK)) &&
1794			    (curChanAsSpur + spurDetectWidth >= (spurChan & HAL_SPUR_VAL_MASK))) {
1795				finalSpur = spurChan & HAL_SPUR_VAL_MASK;
1796				break;
1797			}
1798		}
1799		/* Save detected spur (or no spur) for this channel */
1800		ichan->mainSpur = finalSpur;
1801	}
1802
1803	/* Write spur immunity data */
1804	if (finalSpur == AR_NO_SPUR) {
1805		/* Disable Spur Immunity Regs if they appear set */
1806		if (OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) & AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER) {
1807			/* Clear Spur Delta Phase, Spur Freq, and enable bits */
1808			OS_REG_RMW_FIELD(ah, AR_PHY_MASK_CTL, AR_PHY_MASK_CTL_RATE, 0);
1809			val = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4);
1810			val &= ~(AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
1811				 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
1812				 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
1813			OS_REG_WRITE(ah, AR_PHY_MASK_CTL, val);
1814			OS_REG_WRITE(ah, AR_PHY_TIMING11, 0);
1815
1816			/* Clear pilot masks */
1817			OS_REG_WRITE(ah, AR_PHY_TIMING7, 0);
1818			OS_REG_RMW_FIELD(ah, AR_PHY_TIMING8, AR_PHY_TIMING8_PILOT_MASK_2, 0);
1819			OS_REG_WRITE(ah, AR_PHY_TIMING9, 0);
1820			OS_REG_RMW_FIELD(ah, AR_PHY_TIMING10, AR_PHY_TIMING10_PILOT_MASK_2, 0);
1821
1822			/* Clear magnitude masks */
1823			OS_REG_WRITE(ah, AR_PHY_BIN_MASK_1, 0);
1824			OS_REG_WRITE(ah, AR_PHY_BIN_MASK_2, 0);
1825			OS_REG_WRITE(ah, AR_PHY_BIN_MASK_3, 0);
1826			OS_REG_RMW_FIELD(ah, AR_PHY_MASK_CTL, AR_PHY_MASK_CTL_MASK_4, 0);
1827			OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_1, 0);
1828			OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_2, 0);
1829			OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_3, 0);
1830			OS_REG_RMW_FIELD(ah, AR_PHY_BIN_MASK2_4, AR_PHY_BIN_MASK2_4_MASK_4, 0);
1831		}
1832	} else {
1833		spurOffset = finalSpur - curChanAsSpur;
1834		/*
1835		 * Spur calculations:
1836		 * spurDeltaPhase is (spurOffsetIn100KHz / chipFrequencyIn100KHz) << 21
1837		 * spurFreqSd is (spurOffsetIn100KHz / sampleFrequencyIn100KHz) << 11
1838		 */
1839		if (IEEE80211_IS_CHAN_TURBO(chan)) {
1840			/* Chip Frequency & sampleFrequency are 80 MHz */
1841			spurDeltaPhase = (spurOffset << 16) / 25;
1842			spurFreqSd = spurDeltaPhase >> 10;
1843			binWidth = HAL_BIN_WIDTH_TURBO_100HZ;
1844		} else if (IEEE80211_IS_CHAN_G(chan)) {
1845			/* Chip Frequency is 44MHz, sampleFrequency is 40 MHz */
1846			spurFreqSd = (spurOffset << 8) / 55;
1847			spurDeltaPhase = (spurOffset << 17) / 25;
1848			binWidth = HAL_BIN_WIDTH_BASE_100HZ;
1849		} else {
1850			HALASSERT(!IEEE80211_IS_CHAN_B(chan));
1851			/* Chip Frequency & sampleFrequency are 40 MHz */
1852			spurDeltaPhase = (spurOffset << 17) / 25;
1853			spurFreqSd = spurDeltaPhase >> 10;
1854			binWidth = HAL_BIN_WIDTH_BASE_100HZ;
1855		}
1856
1857		/* Compute Pilot Mask */
1858		binOffsetNumT16 = ((spurOffset * 1000) << 4) / binWidth;
1859		/* The spur is on a bin if it's remainder at times 16 is 0 */
1860		if (binOffsetNumT16 & 0xF) {
1861			numBinOffsets = 4;
1862			pMagMap = magMapFor4;
1863		} else {
1864			numBinOffsets = 3;
1865			pMagMap = magMapFor3;
1866		}
1867		for (i = 0; i < numBinOffsets; i++) {
1868			if ((binOffsetNumT16 >> 4) > HAL_MAX_BINS_ALLOWED) {
1869				HALDEBUG(ah, HAL_DEBUG_ANY,
1870				    "Too man bins in spur mitigation\n");
1871				return;
1872			}
1873
1874			/* Get Pilot Mask values */
1875			curBinOffset = (binOffsetNumT16 >> 4) + i + 25;
1876			if ((curBinOffset >= 0) && (curBinOffset <= 32)) {
1877				if (curBinOffset <= 25)
1878					pilotMask[0] |= 1 << curBinOffset;
1879				else if (curBinOffset >= 27)
1880					pilotMask[0] |= 1 << (curBinOffset - 1);
1881			} else if ((curBinOffset >= 33) && (curBinOffset <= 52))
1882				pilotMask[1] |= 1 << (curBinOffset - 33);
1883
1884			/* Get viterbi values */
1885			if ((curBinOffset >= -1) && (curBinOffset <= 14))
1886				binMagMask[0] |= pMagMap[i] << (curBinOffset + 1) * 2;
1887			else if ((curBinOffset >= 15) && (curBinOffset <= 30))
1888				binMagMask[1] |= pMagMap[i] << (curBinOffset - 15) * 2;
1889			else if ((curBinOffset >= 31) && (curBinOffset <= 46))
1890				binMagMask[2] |= pMagMap[i] << (curBinOffset -31) * 2;
1891			else if((curBinOffset >= 47) && (curBinOffset <= 53))
1892				binMagMask[3] |= pMagMap[i] << (curBinOffset -47) * 2;
1893		}
1894
1895		/* Write Spur Delta Phase, Spur Freq, and enable bits */
1896		OS_REG_RMW_FIELD(ah, AR_PHY_MASK_CTL, AR_PHY_MASK_CTL_RATE, 0xFF);
1897		val = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4);
1898		val |= (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
1899			AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
1900			AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
1901		OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4, val);
1902		OS_REG_WRITE(ah, AR_PHY_TIMING11, AR_PHY_TIMING11_USE_SPUR_IN_AGC |
1903			     SM(spurFreqSd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
1904			     SM(spurDeltaPhase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
1905
1906		/* Write pilot masks */
1907		OS_REG_WRITE(ah, AR_PHY_TIMING7, pilotMask[0]);
1908		OS_REG_RMW_FIELD(ah, AR_PHY_TIMING8, AR_PHY_TIMING8_PILOT_MASK_2, pilotMask[1]);
1909		OS_REG_WRITE(ah, AR_PHY_TIMING9, pilotMask[0]);
1910		OS_REG_RMW_FIELD(ah, AR_PHY_TIMING10, AR_PHY_TIMING10_PILOT_MASK_2, pilotMask[1]);
1911
1912		/* Write magnitude masks */
1913		OS_REG_WRITE(ah, AR_PHY_BIN_MASK_1, binMagMask[0]);
1914		OS_REG_WRITE(ah, AR_PHY_BIN_MASK_2, binMagMask[1]);
1915		OS_REG_WRITE(ah, AR_PHY_BIN_MASK_3, binMagMask[2]);
1916		OS_REG_RMW_FIELD(ah, AR_PHY_MASK_CTL, AR_PHY_MASK_CTL_MASK_4, binMagMask[3]);
1917		OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_1, binMagMask[0]);
1918		OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_2, binMagMask[1]);
1919		OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_3, binMagMask[2]);
1920		OS_REG_RMW_FIELD(ah, AR_PHY_BIN_MASK2_4, AR_PHY_BIN_MASK2_4_MASK_4, binMagMask[3]);
1921	}
1922#undef CHAN_TO_SPUR
1923}
1924
1925/*
1926 * Delta slope coefficient computation.
1927 * Required for OFDM operation.
1928 */
1929void
1930ar5212SetDeltaSlope(struct ath_hal *ah, const struct ieee80211_channel *chan)
1931{
1932#define COEF_SCALE_S 24
1933#define INIT_CLOCKMHZSCALED	0x64000000
1934	uint16_t freq = ath_hal_gethwchannel(ah, chan);
1935	unsigned long coef_scaled, coef_exp, coef_man, ds_coef_exp, ds_coef_man;
1936	unsigned long clockMhzScaled = INIT_CLOCKMHZSCALED;
1937
1938	if (IEEE80211_IS_CHAN_TURBO(chan))
1939		clockMhzScaled *= 2;
1940	/* half and quarter rate can divide the scaled clock by 2 or 4 respectively */
1941	/* scale for selected channel bandwidth */
1942	if (IEEE80211_IS_CHAN_HALF(chan)) {
1943		clockMhzScaled = clockMhzScaled >> 1;
1944	} else if (IEEE80211_IS_CHAN_QUARTER(chan)) {
1945		clockMhzScaled = clockMhzScaled >> 2;
1946	}
1947
1948	/*
1949	 * ALGO -> coef = 1e8/fcarrier*fclock/40;
1950	 * scaled coef to provide precision for this floating calculation
1951	 */
1952	coef_scaled = clockMhzScaled / freq;
1953
1954	/*
1955	 * ALGO -> coef_exp = 14-floor(log2(coef));
1956	 * floor(log2(x)) is the highest set bit position
1957	 */
1958	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1959		if ((coef_scaled >> coef_exp) & 0x1)
1960			break;
1961	/* A coef_exp of 0 is a legal bit position but an unexpected coef_exp */
1962	HALASSERT(coef_exp);
1963	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1964
1965	/*
1966	 * ALGO -> coef_man = floor(coef* 2^coef_exp+0.5);
1967	 * The coefficient is already shifted up for scaling
1968	 */
1969	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1970	ds_coef_man = coef_man >> (COEF_SCALE_S - coef_exp);
1971	ds_coef_exp = coef_exp - 16;
1972
1973	OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1974		AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
1975	OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1976		AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
1977#undef INIT_CLOCKMHZSCALED
1978#undef COEF_SCALE_S
1979}
1980
1981/*
1982 * Set a limit on the overall output power.  Used for dynamic
1983 * transmit power control and the like.
1984 *
1985 * NB: limit is in units of 0.5 dbM.
1986 */
1987HAL_BOOL
1988ar5212SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
1989{
1990	/* XXX blech, construct local writable copy */
1991	struct ieee80211_channel dummy = *AH_PRIVATE(ah)->ah_curchan;
1992	uint16_t dummyXpdGains[2];
1993	HAL_BOOL isBmode;
1994
1995	SAVE_CCK(ah, &dummy, isBmode);
1996	AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER);
1997	return ar5212SetTransmitPower(ah, &dummy, dummyXpdGains);
1998}
1999
2000/*
2001 * Set the transmit power in the baseband for the given
2002 * operating channel and mode.
2003 */
2004HAL_BOOL
2005ar5212SetTransmitPower(struct ath_hal *ah,
2006	const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
2007{
2008#define	POW_OFDM(_r, _s)	(((0 & 1)<< ((_s)+6)) | (((_r) & 0x3f) << (_s)))
2009#define	POW_CCK(_r, _s)		(((_r) & 0x3f) << (_s))
2010#define	N(a)			(sizeof (a) / sizeof (a[0]))
2011	static const uint16_t tpcScaleReductionTable[5] =
2012		{ 0, 3, 6, 9, MAX_RATE_POWER };
2013	struct ath_hal_5212 *ahp = AH5212(ah);
2014	uint16_t freq = ath_hal_gethwchannel(ah, chan);
2015	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
2016	int16_t minPower, maxPower, tpcInDb, powerLimit;
2017	int i;
2018
2019	HALASSERT(ah->ah_magic == AR5212_MAGIC);
2020
2021	OS_MEMZERO(ahp->ah_pcdacTable, ahp->ah_pcdacTableSize);
2022	OS_MEMZERO(ahp->ah_ratesArray, sizeof(ahp->ah_ratesArray));
2023
2024	powerLimit = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
2025	if (powerLimit >= MAX_RATE_POWER || powerLimit == 0)
2026		tpcInDb = tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale];
2027	else
2028		tpcInDb = 0;
2029	if (!ar5212SetRateTable(ah, chan, tpcInDb, powerLimit,
2030				AH_TRUE, &minPower, &maxPower)) {
2031		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set rate table\n",
2032		    __func__);
2033		return AH_FALSE;
2034	}
2035	if (!ahp->ah_rfHal->setPowerTable(ah,
2036		&minPower, &maxPower, chan, rfXpdGain)) {
2037		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n",
2038		    __func__);
2039		return AH_FALSE;
2040	}
2041
2042	/*
2043	 * Adjust XR power/rate up by 2 dB to account for greater peak
2044	 * to avg ratio - except in newer avg power designs
2045	 */
2046	if (!IS_2413(ah) && !IS_5413(ah))
2047		ahp->ah_ratesArray[15] += 4;
2048	/*
2049	 * txPowerIndexOffset is set by the SetPowerTable() call -
2050	 *  adjust the rate table
2051	 */
2052	for (i = 0; i < N(ahp->ah_ratesArray); i++) {
2053		ahp->ah_ratesArray[i] += ahp->ah_txPowerIndexOffset;
2054		if (ahp->ah_ratesArray[i] > 63)
2055			ahp->ah_ratesArray[i] = 63;
2056	}
2057
2058	if (ee->ee_eepMap < 2) {
2059		/*
2060		 * Correct gain deltas for 5212 G operation -
2061		 * Removed with revised chipset
2062		 */
2063		if (AH_PRIVATE(ah)->ah_phyRev < AR_PHY_CHIP_ID_REV_2 &&
2064		    IEEE80211_IS_CHAN_G(chan)) {
2065			uint16_t cckOfdmPwrDelta;
2066
2067			if (freq == 2484)
2068				cckOfdmPwrDelta = SCALE_OC_DELTA(
2069					ee->ee_cckOfdmPwrDelta -
2070					ee->ee_scaledCh14FilterCckDelta);
2071			else
2072				cckOfdmPwrDelta = SCALE_OC_DELTA(
2073					ee->ee_cckOfdmPwrDelta);
2074			ar5212CorrectGainDelta(ah, cckOfdmPwrDelta);
2075		}
2076		/*
2077		 * Finally, write the power values into the
2078		 * baseband power table
2079		 */
2080		for (i = 0; i < (PWR_TABLE_SIZE/2); i++) {
2081			OS_REG_WRITE(ah, AR_PHY_PCDAC_TX_POWER(i),
2082				 ((((ahp->ah_pcdacTable[2*i + 1] << 8) | 0xff) & 0xffff) << 16)
2083				| (((ahp->ah_pcdacTable[2*i]     << 8) | 0xff) & 0xffff)
2084			);
2085		}
2086	}
2087
2088	/* Write the OFDM power per rate set */
2089	OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
2090		POW_OFDM(ahp->ah_ratesArray[3], 24)
2091	      | POW_OFDM(ahp->ah_ratesArray[2], 16)
2092	      | POW_OFDM(ahp->ah_ratesArray[1],  8)
2093	      | POW_OFDM(ahp->ah_ratesArray[0],  0)
2094	);
2095	OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
2096		POW_OFDM(ahp->ah_ratesArray[7], 24)
2097	      | POW_OFDM(ahp->ah_ratesArray[6], 16)
2098	      | POW_OFDM(ahp->ah_ratesArray[5],  8)
2099	      | POW_OFDM(ahp->ah_ratesArray[4],  0)
2100	);
2101
2102	/* Write the CCK power per rate set */
2103	OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
2104		POW_CCK(ahp->ah_ratesArray[10], 24)
2105	      | POW_CCK(ahp->ah_ratesArray[9],  16)
2106	      | POW_CCK(ahp->ah_ratesArray[15],  8)	/* XR target power */
2107	      | POW_CCK(ahp->ah_ratesArray[8],   0)
2108	);
2109	OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
2110		POW_CCK(ahp->ah_ratesArray[14], 24)
2111	      | POW_CCK(ahp->ah_ratesArray[13], 16)
2112	      | POW_CCK(ahp->ah_ratesArray[12],  8)
2113	      | POW_CCK(ahp->ah_ratesArray[11],  0)
2114	);
2115
2116	/*
2117	 * Set max power to 30 dBm and, optionally,
2118	 * enable TPC in tx descriptors.
2119	 */
2120	OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, MAX_RATE_POWER |
2121		(ahp->ah_tpcEnabled ? AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE : 0));
2122
2123	return AH_TRUE;
2124#undef N
2125#undef POW_CCK
2126#undef POW_OFDM
2127}
2128
2129/*
2130 * Sets the transmit power in the baseband for the given
2131 * operating channel and mode.
2132 */
2133static HAL_BOOL
2134ar5212SetRateTable(struct ath_hal *ah, const struct ieee80211_channel *chan,
2135	int16_t tpcScaleReduction, int16_t powerLimit, HAL_BOOL commit,
2136	int16_t *pMinPower, int16_t *pMaxPower)
2137{
2138	struct ath_hal_5212 *ahp = AH5212(ah);
2139	uint16_t freq = ath_hal_gethwchannel(ah, chan);
2140	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
2141	uint16_t *rpow = ahp->ah_ratesArray;
2142	uint16_t twiceMaxEdgePower = MAX_RATE_POWER;
2143	uint16_t twiceMaxEdgePowerCck = MAX_RATE_POWER;
2144	uint16_t twiceMaxRDPower = MAX_RATE_POWER;
2145	int i;
2146	uint8_t cfgCtl;
2147	int8_t twiceAntennaGain, twiceAntennaReduction;
2148	const RD_EDGES_POWER *rep;
2149	TRGT_POWER_INFO targetPowerOfdm, targetPowerCck;
2150	int16_t scaledPower, maxAvailPower = 0;
2151	int16_t r13, r9, r7, r0;
2152
2153	HALASSERT(ah->ah_magic == AR5212_MAGIC);
2154
2155	twiceMaxRDPower = chan->ic_maxregpower * 2;
2156	*pMaxPower = -MAX_RATE_POWER;
2157	*pMinPower = MAX_RATE_POWER;
2158
2159	/* Get conformance test limit maximum for this channel */
2160	cfgCtl = ath_hal_getctl(ah, chan);
2161	for (i = 0; i < ee->ee_numCtls; i++) {
2162		uint16_t twiceMinEdgePower;
2163
2164		if (ee->ee_ctl[i] == 0)
2165			continue;
2166		if (ee->ee_ctl[i] == cfgCtl ||
2167		    cfgCtl == ((ee->ee_ctl[i] & CTL_MODE_M) | SD_NO_CTL)) {
2168			rep = &ee->ee_rdEdgesPower[i * NUM_EDGES];
2169			twiceMinEdgePower = ar5212GetMaxEdgePower(freq, rep);
2170			if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
2171				/* Find the minimum of all CTL edge powers that apply to this channel */
2172				twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
2173			} else {
2174				twiceMaxEdgePower = twiceMinEdgePower;
2175				break;
2176			}
2177		}
2178	}
2179
2180	if (IEEE80211_IS_CHAN_G(chan)) {
2181		/* Check for a CCK CTL for 11G CCK powers */
2182		cfgCtl = (cfgCtl & ~CTL_MODE_M) | CTL_11B;
2183		for (i = 0; i < ee->ee_numCtls; i++) {
2184			uint16_t twiceMinEdgePowerCck;
2185
2186			if (ee->ee_ctl[i] == 0)
2187				continue;
2188			if (ee->ee_ctl[i] == cfgCtl ||
2189			    cfgCtl == ((ee->ee_ctl[i] & CTL_MODE_M) | SD_NO_CTL)) {
2190				rep = &ee->ee_rdEdgesPower[i * NUM_EDGES];
2191				twiceMinEdgePowerCck = ar5212GetMaxEdgePower(freq, rep);
2192				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
2193					/* Find the minimum of all CTL edge powers that apply to this channel */
2194					twiceMaxEdgePowerCck = AH_MIN(twiceMaxEdgePowerCck, twiceMinEdgePowerCck);
2195				} else {
2196					twiceMaxEdgePowerCck = twiceMinEdgePowerCck;
2197					break;
2198				}
2199			}
2200		}
2201	} else {
2202		/* Set the 11B cck edge power to the one found before */
2203		twiceMaxEdgePowerCck = twiceMaxEdgePower;
2204	}
2205
2206	/* Get Antenna Gain reduction */
2207	if (IEEE80211_IS_CHAN_5GHZ(chan)) {
2208		ath_hal_eepromGet(ah, AR_EEP_ANTGAINMAX_5, &twiceAntennaGain);
2209	} else {
2210		ath_hal_eepromGet(ah, AR_EEP_ANTGAINMAX_2, &twiceAntennaGain);
2211	}
2212	twiceAntennaReduction =
2213		ath_hal_getantennareduction(ah, chan, twiceAntennaGain);
2214
2215	if (IEEE80211_IS_CHAN_OFDM(chan)) {
2216		/* Get final OFDM target powers */
2217		if (IEEE80211_IS_CHAN_2GHZ(chan)) {
2218			ar5212GetTargetPowers(ah, chan, ee->ee_trgtPwr_11g,
2219				ee->ee_numTargetPwr_11g, &targetPowerOfdm);
2220		} else {
2221			ar5212GetTargetPowers(ah, chan, ee->ee_trgtPwr_11a,
2222				ee->ee_numTargetPwr_11a, &targetPowerOfdm);
2223		}
2224
2225		/* Get Maximum OFDM power */
2226		/* Minimum of target and edge powers */
2227		scaledPower = AH_MIN(twiceMaxEdgePower,
2228				twiceMaxRDPower - twiceAntennaReduction);
2229
2230		/*
2231		 * If turbo is set, reduce power to keep power
2232		 * consumption under 2 Watts.  Note that we always do
2233		 * this unless specially configured.  Then we limit
2234		 * power only for non-AP operation.
2235		 */
2236		if (IEEE80211_IS_CHAN_TURBO(chan)
2237#ifdef AH_ENABLE_AP_SUPPORT
2238		    && AH_PRIVATE(ah)->ah_opmode != HAL_M_HOSTAP
2239#endif
2240		) {
2241			/*
2242			 * If turbo is set, reduce power to keep power
2243			 * consumption under 2 Watts
2244			 */
2245			if (ee->ee_version >= AR_EEPROM_VER3_1)
2246				scaledPower = AH_MIN(scaledPower,
2247					ee->ee_turbo2WMaxPower5);
2248			/*
2249			 * EEPROM version 4.0 added an additional
2250			 * constraint on 2.4GHz channels.
2251			 */
2252			if (ee->ee_version >= AR_EEPROM_VER4_0 &&
2253			    IEEE80211_IS_CHAN_2GHZ(chan))
2254				scaledPower = AH_MIN(scaledPower,
2255					ee->ee_turbo2WMaxPower2);
2256		}
2257
2258		maxAvailPower = AH_MIN(scaledPower,
2259					targetPowerOfdm.twicePwr6_24);
2260
2261		/* Reduce power by max regulatory domain allowed restrictions */
2262		scaledPower = maxAvailPower - (tpcScaleReduction * 2);
2263		scaledPower = (scaledPower < 0) ? 0 : scaledPower;
2264		scaledPower = AH_MIN(scaledPower, powerLimit);
2265
2266		if (commit) {
2267			/* Set OFDM rates 9, 12, 18, 24 */
2268			r0 = rpow[0] = rpow[1] = rpow[2] = rpow[3] = rpow[4] = scaledPower;
2269
2270			/* Set OFDM rates 36, 48, 54, XR */
2271			rpow[5] = AH_MIN(rpow[0], targetPowerOfdm.twicePwr36);
2272			rpow[6] = AH_MIN(rpow[0], targetPowerOfdm.twicePwr48);
2273			r7 = rpow[7] = AH_MIN(rpow[0], targetPowerOfdm.twicePwr54);
2274
2275			if (ee->ee_version >= AR_EEPROM_VER4_0) {
2276				/* Setup XR target power from EEPROM */
2277				rpow[15] = AH_MIN(scaledPower, IEEE80211_IS_CHAN_2GHZ(chan) ?
2278						  ee->ee_xrTargetPower2 : ee->ee_xrTargetPower5);
2279			} else {
2280				/* XR uses 6mb power */
2281				rpow[15] = rpow[0];
2282			}
2283			ahp->ah_ofdmTxPower = *pMaxPower;
2284
2285		} else {
2286			r0 = scaledPower;
2287			r7 = AH_MIN(r0, targetPowerOfdm.twicePwr54);
2288		}
2289		*pMinPower = r7;
2290		*pMaxPower = r0;
2291
2292		HALDEBUG(ah, HAL_DEBUG_RFPARAM,
2293		    "%s: MaxRD: %d TurboMax: %d MaxCTL: %d "
2294		    "TPC_Reduction %d chan=%d (0x%x) maxAvailPower=%d pwr6_24=%d, maxPower=%d\n",
2295		    __func__, twiceMaxRDPower, ee->ee_turbo2WMaxPower5,
2296		    twiceMaxEdgePower, tpcScaleReduction * 2,
2297		    chan->ic_freq, chan->ic_flags,
2298		    maxAvailPower, targetPowerOfdm.twicePwr6_24, *pMaxPower);
2299	}
2300
2301	if (IEEE80211_IS_CHAN_CCK(chan)) {
2302		/* Get final CCK target powers */
2303		ar5212GetTargetPowers(ah, chan, ee->ee_trgtPwr_11b,
2304			ee->ee_numTargetPwr_11b, &targetPowerCck);
2305
2306		/* Reduce power by max regulatory domain allowed restrictions */
2307		scaledPower = AH_MIN(twiceMaxEdgePowerCck,
2308			twiceMaxRDPower - twiceAntennaReduction);
2309		if (maxAvailPower < AH_MIN(scaledPower, targetPowerCck.twicePwr6_24))
2310			maxAvailPower = AH_MIN(scaledPower, targetPowerCck.twicePwr6_24);
2311
2312		/* Reduce power by user selection */
2313		scaledPower = AH_MIN(scaledPower, targetPowerCck.twicePwr6_24) - (tpcScaleReduction * 2);
2314		scaledPower = (scaledPower < 0) ? 0 : scaledPower;
2315		scaledPower = AH_MIN(scaledPower, powerLimit);
2316
2317		if (commit) {
2318			/* Set CCK rates 2L, 2S, 5.5L, 5.5S, 11L, 11S */
2319			rpow[8]  = AH_MIN(scaledPower, targetPowerCck.twicePwr6_24);
2320			r9 = rpow[9]  = AH_MIN(scaledPower, targetPowerCck.twicePwr36);
2321			rpow[10] = rpow[9];
2322			rpow[11] = AH_MIN(scaledPower, targetPowerCck.twicePwr48);
2323			rpow[12] = rpow[11];
2324			r13 = rpow[13] = AH_MIN(scaledPower, targetPowerCck.twicePwr54);
2325			rpow[14] = rpow[13];
2326		} else {
2327			r9 = AH_MIN(scaledPower, targetPowerCck.twicePwr36);
2328			r13 = AH_MIN(scaledPower, targetPowerCck.twicePwr54);
2329		}
2330
2331		/* Set min/max power based off OFDM values or initialization */
2332		if (r13 < *pMinPower)
2333			*pMinPower = r13;
2334		if (r9 > *pMaxPower)
2335			*pMaxPower = r9;
2336
2337		HALDEBUG(ah, HAL_DEBUG_RFPARAM,
2338		    "%s: cck: MaxRD: %d MaxCTL: %d "
2339		    "TPC_Reduction %d chan=%d (0x%x) maxAvailPower=%d pwr6_24=%d, maxPower=%d\n",
2340		    __func__, twiceMaxRDPower, twiceMaxEdgePowerCck,
2341		    tpcScaleReduction * 2, chan->ic_freq, chan->ic_flags,
2342		    maxAvailPower, targetPowerCck.twicePwr6_24, *pMaxPower);
2343	}
2344	if (commit) {
2345		ahp->ah_tx6PowerInHalfDbm = *pMaxPower;
2346		AH_PRIVATE(ah)->ah_maxPowerLevel = ahp->ah_tx6PowerInHalfDbm;
2347	}
2348	return AH_TRUE;
2349}
2350
2351HAL_BOOL
2352ar5212GetChipPowerLimits(struct ath_hal *ah, struct ieee80211_channel *chan)
2353{
2354	struct ath_hal_5212 *ahp = AH5212(ah);
2355#if 0
2356	static const uint16_t tpcScaleReductionTable[5] =
2357		{ 0, 3, 6, 9, MAX_RATE_POWER };
2358	int16_t tpcInDb, powerLimit;
2359#endif
2360	int16_t minPower, maxPower;
2361
2362	/*
2363	 * Get Pier table max and min powers.
2364	 */
2365	if (ahp->ah_rfHal->getChannelMaxMinPower(ah, chan, &maxPower, &minPower)) {
2366		/* NB: rf code returns 1/4 dBm units, convert */
2367		chan->ic_maxpower = maxPower / 2;
2368		chan->ic_minpower = minPower / 2;
2369	} else {
2370		HALDEBUG(ah, HAL_DEBUG_ANY,
2371		    "%s: no min/max power for %u/0x%x\n",
2372		    __func__, chan->ic_freq, chan->ic_flags);
2373		chan->ic_maxpower = MAX_RATE_POWER;
2374		chan->ic_minpower = 0;
2375	}
2376#if 0
2377	/*
2378	 * Now adjust to reflect any global scale and/or CTL's.
2379	 * (XXX is that correct?)
2380	 */
2381	powerLimit = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
2382	if (powerLimit >= MAX_RATE_POWER || powerLimit == 0)
2383		tpcInDb = tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale];
2384	else
2385		tpcInDb = 0;
2386	if (!ar5212SetRateTable(ah, chan, tpcInDb, powerLimit,
2387				AH_FALSE, &minPower, &maxPower)) {
2388		HALDEBUG(ah, HAL_DEBUG_ANY,
2389		    "%s: unable to find max/min power\n",__func__);
2390		return AH_FALSE;
2391	}
2392	if (maxPower < chan->ic_maxpower)
2393		chan->ic_maxpower = maxPower;
2394	if (minPower < chan->ic_minpower)
2395		chan->ic_minpower = minPower;
2396	HALDEBUG(ah, HAL_DEBUG_RESET,
2397	    "Chan %d: MaxPow = %d MinPow = %d\n",
2398	    chan->ic_freq, chan->ic_maxpower, chans->ic_minpower);
2399#endif
2400	return AH_TRUE;
2401}
2402
2403/*
2404 * Correct for the gain-delta between ofdm and cck mode target
2405 * powers. Write the results to the rate table and the power table.
2406 *
2407 *   Conventions :
2408 *   1. rpow[ii] is the integer value of 2*(desired power
2409 *    for the rate ii in dBm) to provide 0.5dB resolution. rate
2410 *    mapping is as following :
2411 *     [0..7]  --> ofdm 6, 9, .. 48, 54
2412 *     [8..14] --> cck 1L, 2L, 2S, .. 11L, 11S
2413 *     [15]    --> XR (all rates get the same power)
2414 *   2. powv[ii]  is the pcdac corresponding to ii/2 dBm.
2415 */
2416static void
2417ar5212CorrectGainDelta(struct ath_hal *ah, int twiceOfdmCckDelta)
2418{
2419#define	N(_a)	(sizeof(_a) / sizeof(_a[0]))
2420	struct ath_hal_5212 *ahp = AH5212(ah);
2421	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
2422	int16_t ratesIndex[N(ahp->ah_ratesArray)];
2423	uint16_t ii, jj, iter;
2424	int32_t cckIndex;
2425	int16_t gainDeltaAdjust;
2426
2427	HALASSERT(ah->ah_magic == AR5212_MAGIC);
2428
2429	gainDeltaAdjust = ee->ee_cckOfdmGainDelta;
2430
2431	/* make a local copy of desired powers as initial indices */
2432	OS_MEMCPY(ratesIndex, ahp->ah_ratesArray, sizeof(ratesIndex));
2433
2434	/* fix only the CCK indices */
2435	for (ii = 8; ii < 15; ii++) {
2436		/* apply a gain_delta correction of -15 for CCK */
2437		ratesIndex[ii] -= gainDeltaAdjust;
2438
2439		/* Now check for contention with all ofdm target powers */
2440		jj = 0;
2441		iter = 0;
2442		/* indicates not all ofdm rates checked forcontention yet */
2443		while (jj < 16) {
2444			if (ratesIndex[ii] < 0)
2445				ratesIndex[ii] = 0;
2446			if (jj == 8) {		/* skip CCK rates */
2447				jj = 15;
2448				continue;
2449			}
2450			if (ratesIndex[ii] == ahp->ah_ratesArray[jj]) {
2451				if (ahp->ah_ratesArray[jj] == 0)
2452					ratesIndex[ii]++;
2453				else if (iter > 50) {
2454					/*
2455					 * To avoid pathological case of of
2456					 * dm target powers 0 and 0.5dBm
2457					 */
2458					ratesIndex[ii]++;
2459				} else
2460					ratesIndex[ii]--;
2461				/* check with all rates again */
2462				jj = 0;
2463				iter++;
2464			} else
2465				jj++;
2466		}
2467		if (ratesIndex[ii] >= PWR_TABLE_SIZE)
2468			ratesIndex[ii] = PWR_TABLE_SIZE -1;
2469		cckIndex = ahp->ah_ratesArray[ii] - twiceOfdmCckDelta;
2470		if (cckIndex < 0)
2471			cckIndex = 0;
2472
2473		/*
2474		 * Validate that the indexes for the powv are not
2475		 * out of bounds.
2476		 */
2477		HALASSERT(cckIndex < PWR_TABLE_SIZE);
2478		HALASSERT(ratesIndex[ii] < PWR_TABLE_SIZE);
2479		ahp->ah_pcdacTable[ratesIndex[ii]] =
2480			ahp->ah_pcdacTable[cckIndex];
2481	}
2482	/* Override rate per power table with new values */
2483	for (ii = 8; ii < 15; ii++)
2484		ahp->ah_ratesArray[ii] = ratesIndex[ii];
2485#undef N
2486}
2487
2488/*
2489 * Find the maximum conformance test limit for the given channel and CTL info
2490 */
2491static uint16_t
2492ar5212GetMaxEdgePower(uint16_t channel, const RD_EDGES_POWER *pRdEdgesPower)
2493{
2494	/* temp array for holding edge channels */
2495	uint16_t tempChannelList[NUM_EDGES];
2496	uint16_t clo, chi, twiceMaxEdgePower;
2497	int i, numEdges;
2498
2499	/* Get the edge power */
2500	for (i = 0; i < NUM_EDGES; i++) {
2501		if (pRdEdgesPower[i].rdEdge == 0)
2502			break;
2503		tempChannelList[i] = pRdEdgesPower[i].rdEdge;
2504	}
2505	numEdges = i;
2506
2507	ar5212GetLowerUpperValues(channel, tempChannelList,
2508		numEdges, &clo, &chi);
2509	/* Get the index for the lower channel */
2510	for (i = 0; i < numEdges && clo != tempChannelList[i]; i++)
2511		;
2512	/* Is lower channel ever outside the rdEdge? */
2513	HALASSERT(i != numEdges);
2514
2515	if ((clo == chi && clo == channel) || (pRdEdgesPower[i].flag)) {
2516		/*
2517		 * If there's an exact channel match or an inband flag set
2518		 * on the lower channel use the given rdEdgePower
2519		 */
2520		twiceMaxEdgePower = pRdEdgesPower[i].twice_rdEdgePower;
2521		HALASSERT(twiceMaxEdgePower > 0);
2522	} else
2523		twiceMaxEdgePower = MAX_RATE_POWER;
2524	return twiceMaxEdgePower;
2525}
2526
2527/*
2528 * Returns interpolated or the scaled up interpolated value
2529 */
2530static uint16_t
2531interpolate(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
2532	uint16_t targetLeft, uint16_t targetRight)
2533{
2534	uint16_t rv;
2535	int16_t lRatio;
2536
2537	/* to get an accurate ratio, always scale, if want to scale, then don't scale back down */
2538	if ((targetLeft * targetRight) == 0)
2539		return 0;
2540
2541	if (srcRight != srcLeft) {
2542		/*
2543		 * Note the ratio always need to be scaled,
2544		 * since it will be a fraction.
2545		 */
2546		lRatio = (target - srcLeft) * EEP_SCALE / (srcRight - srcLeft);
2547		if (lRatio < 0) {
2548		    /* Return as Left target if value would be negative */
2549		    rv = targetLeft;
2550		} else if (lRatio > EEP_SCALE) {
2551		    /* Return as Right target if Ratio is greater than 100% (SCALE) */
2552		    rv = targetRight;
2553		} else {
2554			rv = (lRatio * targetRight + (EEP_SCALE - lRatio) *
2555					targetLeft) / EEP_SCALE;
2556		}
2557	} else {
2558		rv = targetLeft;
2559	}
2560	return rv;
2561}
2562
2563/*
2564 * Return the four rates of target power for the given target power table
2565 * channel, and number of channels
2566 */
2567static void
2568ar5212GetTargetPowers(struct ath_hal *ah, const struct ieee80211_channel *chan,
2569	const TRGT_POWER_INFO *powInfo,
2570	uint16_t numChannels, TRGT_POWER_INFO *pNewPower)
2571{
2572	uint16_t freq = ath_hal_gethwchannel(ah, chan);
2573	/* temp array for holding target power channels */
2574	uint16_t tempChannelList[NUM_TEST_FREQUENCIES];
2575	uint16_t clo, chi, ixlo, ixhi;
2576	int i;
2577
2578	/* Copy the target powers into the temp channel list */
2579	for (i = 0; i < numChannels; i++)
2580		tempChannelList[i] = powInfo[i].testChannel;
2581
2582	ar5212GetLowerUpperValues(freq, tempChannelList,
2583		numChannels, &clo, &chi);
2584
2585	/* Get the indices for the channel */
2586	ixlo = ixhi = 0;
2587	for (i = 0; i < numChannels; i++) {
2588		if (clo == tempChannelList[i]) {
2589			ixlo = i;
2590		}
2591		if (chi == tempChannelList[i]) {
2592			ixhi = i;
2593			break;
2594		}
2595	}
2596
2597	/*
2598	 * Get the lower and upper channels, target powers,
2599	 * and interpolate between them.
2600	 */
2601	pNewPower->twicePwr6_24 = interpolate(freq, clo, chi,
2602		powInfo[ixlo].twicePwr6_24, powInfo[ixhi].twicePwr6_24);
2603	pNewPower->twicePwr36 = interpolate(freq, clo, chi,
2604		powInfo[ixlo].twicePwr36, powInfo[ixhi].twicePwr36);
2605	pNewPower->twicePwr48 = interpolate(freq, clo, chi,
2606		powInfo[ixlo].twicePwr48, powInfo[ixhi].twicePwr48);
2607	pNewPower->twicePwr54 = interpolate(freq, clo, chi,
2608		powInfo[ixlo].twicePwr54, powInfo[ixhi].twicePwr54);
2609}
2610
2611static uint32_t
2612udiff(uint32_t u, uint32_t v)
2613{
2614	return (u >= v ? u - v : v - u);
2615}
2616
2617/*
2618 * Search a list for a specified value v that is within
2619 * EEP_DELTA of the search values.  Return the closest
2620 * values in the list above and below the desired value.
2621 * EEP_DELTA is a factional value; everything is scaled
2622 * so only integer arithmetic is used.
2623 *
2624 * NB: the input list is assumed to be sorted in ascending order
2625 */
2626void
2627ar5212GetLowerUpperValues(uint16_t v, uint16_t *lp, uint16_t listSize,
2628                          uint16_t *vlo, uint16_t *vhi)
2629{
2630	uint32_t target = v * EEP_SCALE;
2631	uint16_t *ep = lp+listSize;
2632
2633	/*
2634	 * Check first and last elements for out-of-bounds conditions.
2635	 */
2636	if (target < (uint32_t)(lp[0] * EEP_SCALE - EEP_DELTA)) {
2637		*vlo = *vhi = lp[0];
2638		return;
2639	}
2640	if (target > (uint32_t)(ep[-1] * EEP_SCALE + EEP_DELTA)) {
2641		*vlo = *vhi = ep[-1];
2642		return;
2643	}
2644
2645	/* look for value being near or between 2 values in list */
2646	for (; lp < ep; lp++) {
2647		/*
2648		 * If value is close to the current value of the list
2649		 * then target is not between values, it is one of the values
2650		 */
2651		if (udiff(lp[0] * EEP_SCALE, target) < EEP_DELTA) {
2652			*vlo = *vhi = lp[0];
2653			return;
2654		}
2655		/*
2656		 * Look for value being between current value and next value
2657		 * if so return these 2 values
2658		 */
2659		if (target < (uint32_t)(lp[1] * EEP_SCALE - EEP_DELTA)) {
2660			*vlo = lp[0];
2661			*vhi = lp[1];
2662			return;
2663		}
2664	}
2665	HALASSERT(AH_FALSE);		/* should not reach here */
2666}
2667
2668/*
2669 * Perform analog "swizzling" of parameters into their location
2670 *
2671 * NB: used by RF backends
2672 */
2673void
2674ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32, uint32_t numBits,
2675                     uint32_t firstBit, uint32_t column)
2676{
2677#define	MAX_ANALOG_START	319		/* XXX */
2678	uint32_t tmp32, mask, arrayEntry, lastBit;
2679	int32_t bitPosition, bitsLeft;
2680
2681	HALASSERT(column <= 3);
2682	HALASSERT(numBits <= 32);
2683	HALASSERT(firstBit + numBits <= MAX_ANALOG_START);
2684
2685	tmp32 = ath_hal_reverseBits(reg32, numBits);
2686	arrayEntry = (firstBit - 1) / 8;
2687	bitPosition = (firstBit - 1) % 8;
2688	bitsLeft = numBits;
2689	while (bitsLeft > 0) {
2690		lastBit = (bitPosition + bitsLeft > 8) ?
2691			8 : bitPosition + bitsLeft;
2692		mask = (((1 << lastBit) - 1) ^ ((1 << bitPosition) - 1)) <<
2693			(column * 8);
2694		rfBuf[arrayEntry] &= ~mask;
2695		rfBuf[arrayEntry] |= ((tmp32 << bitPosition) <<
2696			(column * 8)) & mask;
2697		bitsLeft -= 8 - bitPosition;
2698		tmp32 = tmp32 >> (8 - bitPosition);
2699		bitPosition = 0;
2700		arrayEntry++;
2701	}
2702#undef MAX_ANALOG_START
2703}
2704
2705/*
2706 * Sets the rate to duration values in MAC - used for multi-
2707 * rate retry.
2708 * The rate duration table needs to cover all valid rate codes;
2709 * the 11g table covers all ofdm rates, while the 11b table
2710 * covers all cck rates => all valid rates get covered between
2711 * these two mode's ratetables!
2712 * But if we're turbo, the ofdm phy is replaced by the turbo phy
2713 * and cck is not valid with turbo => all rates get covered
2714 * by the turbo ratetable only
2715 */
2716void
2717ar5212SetRateDurationTable(struct ath_hal *ah,
2718	const struct ieee80211_channel *chan)
2719{
2720	const HAL_RATE_TABLE *rt;
2721	int i;
2722
2723	/* NB: band doesn't matter for 1/2 and 1/4 rate */
2724	if (IEEE80211_IS_CHAN_HALF(chan)) {
2725		rt = ar5212GetRateTable(ah, HAL_MODE_11A_HALF_RATE);
2726	} else if (IEEE80211_IS_CHAN_QUARTER(chan)) {
2727		rt = ar5212GetRateTable(ah, HAL_MODE_11A_QUARTER_RATE);
2728	} else {
2729		rt = ar5212GetRateTable(ah,
2730			IEEE80211_IS_CHAN_TURBO(chan) ? HAL_MODE_TURBO : HAL_MODE_11G);
2731	}
2732
2733	for (i = 0; i < rt->rateCount; ++i)
2734		OS_REG_WRITE(ah,
2735			AR_RATE_DURATION(rt->info[i].rateCode),
2736			ath_hal_computetxtime(ah, rt,
2737				WLAN_CTRL_FRAME_SIZE,
2738				rt->info[i].controlRate, AH_FALSE, AH_TRUE));
2739	if (!IEEE80211_IS_CHAN_TURBO(chan)) {
2740		/* 11g Table is used to cover the CCK rates. */
2741		rt = ar5212GetRateTable(ah, HAL_MODE_11G);
2742		for (i = 0; i < rt->rateCount; ++i) {
2743			uint32_t reg = AR_RATE_DURATION(rt->info[i].rateCode);
2744
2745			if (rt->info[i].phy != IEEE80211_T_CCK)
2746				continue;
2747
2748			OS_REG_WRITE(ah, reg,
2749				ath_hal_computetxtime(ah, rt,
2750					WLAN_CTRL_FRAME_SIZE,
2751					rt->info[i].controlRate, AH_FALSE,
2752					AH_TRUE));
2753			/* cck rates have short preamble option also */
2754			if (rt->info[i].shortPreamble) {
2755				reg += rt->info[i].shortPreamble << 2;
2756				OS_REG_WRITE(ah, reg,
2757					ath_hal_computetxtime(ah, rt,
2758						WLAN_CTRL_FRAME_SIZE,
2759						rt->info[i].controlRate,
2760						AH_TRUE, AH_TRUE));
2761			}
2762		}
2763	}
2764}
2765
2766/* Adjust various register settings based on half/quarter rate clock setting.
2767 * This includes: +USEC, TX/RX latency,
2768 *                + IFS params: slot, eifs, misc etc.
2769 */
2770void
2771ar5212SetIFSTiming(struct ath_hal *ah, const struct ieee80211_channel *chan)
2772{
2773	uint32_t txLat, rxLat, usec, slot, refClock, eifs, init_usec;
2774
2775	HALASSERT(IEEE80211_IS_CHAN_HALF(chan) ||
2776		  IEEE80211_IS_CHAN_QUARTER(chan));
2777
2778	refClock = OS_REG_READ(ah, AR_USEC) & AR_USEC_USEC32;
2779	if (IEEE80211_IS_CHAN_HALF(chan)) {
2780		slot = IFS_SLOT_HALF_RATE;
2781		rxLat = RX_NON_FULL_RATE_LATENCY << AR5212_USEC_RX_LAT_S;
2782		txLat = TX_HALF_RATE_LATENCY << AR5212_USEC_TX_LAT_S;
2783		usec = HALF_RATE_USEC;
2784		eifs = IFS_EIFS_HALF_RATE;
2785		init_usec = INIT_USEC >> 1;
2786	} else { /* quarter rate */
2787		slot = IFS_SLOT_QUARTER_RATE;
2788		rxLat = RX_NON_FULL_RATE_LATENCY << AR5212_USEC_RX_LAT_S;
2789		txLat = TX_QUARTER_RATE_LATENCY << AR5212_USEC_TX_LAT_S;
2790		usec = QUARTER_RATE_USEC;
2791		eifs = IFS_EIFS_QUARTER_RATE;
2792		init_usec = INIT_USEC >> 2;
2793	}
2794
2795	OS_REG_WRITE(ah, AR_USEC, (usec | refClock | txLat | rxLat));
2796	OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, slot);
2797	OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, eifs);
2798	OS_REG_RMW_FIELD(ah, AR_D_GBL_IFS_MISC,
2799				AR_D_GBL_IFS_MISC_USEC_DURATION, init_usec);
2800}
2801