1/*-
2 * SPDX-License-Identifier: ISC
3 *
4 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5 * Copyright (c) 2002-2008 Atheros Communications, Inc.
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 *
19 * $FreeBSD: releng/12.0/sys/dev/ath/ath_hal/ar5212/ar5111.c 326695 2017-12-08 15:57:29Z pfg $
20 */
21#include "opt_ah.h"
22
23#include "ah.h"
24#include "ah_internal.h"
25
26#include "ah_eeprom_v3.h"
27
28#include "ar5212/ar5212.h"
29#include "ar5212/ar5212reg.h"
30#include "ar5212/ar5212phy.h"
31
32#define AH_5212_5111
33#include "ar5212/ar5212.ini"
34
35#define	N(a)	(sizeof(a)/sizeof(a[0]))
36
37struct ar5111State {
38	RF_HAL_FUNCS	base;		/* public state, must be first */
39	uint16_t	pcdacTable[PWR_TABLE_SIZE];
40
41	uint32_t	Bank0Data[N(ar5212Bank0_5111)];
42	uint32_t	Bank1Data[N(ar5212Bank1_5111)];
43	uint32_t	Bank2Data[N(ar5212Bank2_5111)];
44	uint32_t	Bank3Data[N(ar5212Bank3_5111)];
45	uint32_t	Bank6Data[N(ar5212Bank6_5111)];
46	uint32_t	Bank7Data[N(ar5212Bank7_5111)];
47};
48#define	AR5111(ah)	((struct ar5111State *) AH5212(ah)->ah_rfHal)
49
50static uint16_t ar5212GetScaledPower(uint16_t channel, uint16_t pcdacValue,
51		const PCDACS_EEPROM *pSrcStruct);
52static HAL_BOOL ar5212FindValueInList(uint16_t channel, uint16_t pcdacValue,
53		const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue);
54static void ar5212GetLowerUpperPcdacs(uint16_t pcdac, uint16_t channel,
55		const PCDACS_EEPROM *pSrcStruct,
56		uint16_t *pLowerPcdac, uint16_t *pUpperPcdac);
57
58extern void ar5212GetLowerUpperValues(uint16_t value,
59		const uint16_t *pList, uint16_t listSize,
60		uint16_t *pLowerValue, uint16_t *pUpperValue);
61extern	void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
62		uint32_t numBits, uint32_t firstBit, uint32_t column);
63
64static void
65ar5111WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
66	int writes)
67{
68	HAL_INI_WRITE_ARRAY(ah, ar5212Modes_5111, modesIndex, writes);
69	HAL_INI_WRITE_ARRAY(ah, ar5212Common_5111, 1, writes);
70	HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_5111, freqIndex, writes);
71}
72
73/*
74 * Take the MHz channel value and set the Channel value
75 *
76 * ASSUMES: Writes enabled to analog bus
77 */
78static HAL_BOOL
79ar5111SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
80{
81#define CI_2GHZ_INDEX_CORRECTION 19
82	uint16_t freq = ath_hal_gethwchannel(ah, chan);
83	uint32_t refClk, reg32, data2111;
84	int16_t chan5111, chanIEEE;
85
86	/*
87	 * Structure to hold 11b tuning information for 5111/2111
88	 * 16 MHz mode, divider ratio = 198 = NP+S. N=16, S=4 or 6, P=12
89	 */
90	typedef struct {
91		uint32_t	refClkSel;	/* reference clock, 1 for 16 MHz */
92		uint32_t	channelSelect;	/* P[7:4]S[3:0] bits */
93		uint16_t	channel5111;	/* 11a channel for 5111 */
94	} CHAN_INFO_2GHZ;
95
96	static const CHAN_INFO_2GHZ chan2GHzData[] = {
97		{ 1, 0x46, 96  },	/* 2312 -19 */
98		{ 1, 0x46, 97  },	/* 2317 -18 */
99		{ 1, 0x46, 98  },	/* 2322 -17 */
100		{ 1, 0x46, 99  },	/* 2327 -16 */
101		{ 1, 0x46, 100 },	/* 2332 -15 */
102		{ 1, 0x46, 101 },	/* 2337 -14 */
103		{ 1, 0x46, 102 },	/* 2342 -13 */
104		{ 1, 0x46, 103 },	/* 2347 -12 */
105		{ 1, 0x46, 104 },	/* 2352 -11 */
106		{ 1, 0x46, 105 },	/* 2357 -10 */
107		{ 1, 0x46, 106 },	/* 2362  -9 */
108		{ 1, 0x46, 107 },	/* 2367  -8 */
109		{ 1, 0x46, 108 },	/* 2372  -7 */
110		/* index -6 to 0 are pad to make this a nolookup table */
111		{ 1, 0x46, 116 },	/*       -6 */
112		{ 1, 0x46, 116 },	/*       -5 */
113		{ 1, 0x46, 116 },	/*       -4 */
114		{ 1, 0x46, 116 },	/*       -3 */
115		{ 1, 0x46, 116 },	/*       -2 */
116		{ 1, 0x46, 116 },	/*       -1 */
117		{ 1, 0x46, 116 },	/*        0 */
118		{ 1, 0x46, 116 },	/* 2412   1 */
119		{ 1, 0x46, 117 },	/* 2417   2 */
120		{ 1, 0x46, 118 },	/* 2422   3 */
121		{ 1, 0x46, 119 },	/* 2427   4 */
122		{ 1, 0x46, 120 },	/* 2432   5 */
123		{ 1, 0x46, 121 },	/* 2437   6 */
124		{ 1, 0x46, 122 },	/* 2442   7 */
125		{ 1, 0x46, 123 },	/* 2447   8 */
126		{ 1, 0x46, 124 },	/* 2452   9 */
127		{ 1, 0x46, 125 },	/* 2457  10 */
128		{ 1, 0x46, 126 },	/* 2462  11 */
129		{ 1, 0x46, 127 },	/* 2467  12 */
130		{ 1, 0x46, 128 },	/* 2472  13 */
131		{ 1, 0x44, 124 },	/* 2484  14 */
132		{ 1, 0x46, 136 },	/* 2512  15 */
133		{ 1, 0x46, 140 },	/* 2532  16 */
134		{ 1, 0x46, 144 },	/* 2552  17 */
135		{ 1, 0x46, 148 },	/* 2572  18 */
136		{ 1, 0x46, 152 },	/* 2592  19 */
137		{ 1, 0x46, 156 },	/* 2612  20 */
138		{ 1, 0x46, 160 },	/* 2632  21 */
139		{ 1, 0x46, 164 },	/* 2652  22 */
140		{ 1, 0x46, 168 },	/* 2672  23 */
141		{ 1, 0x46, 172 },	/* 2692  24 */
142		{ 1, 0x46, 176 },	/* 2712  25 */
143		{ 1, 0x46, 180 } 	/* 2732  26 */
144	};
145
146	OS_MARK(ah, AH_MARK_SETCHANNEL, freq);
147
148	chanIEEE = chan->ic_ieee;
149	if (IEEE80211_IS_CHAN_2GHZ(chan)) {
150		const CHAN_INFO_2GHZ* ci =
151			&chan2GHzData[chanIEEE + CI_2GHZ_INDEX_CORRECTION];
152		uint32_t txctl;
153
154		data2111 = ((ath_hal_reverseBits(ci->channelSelect, 8) & 0xff)
155				<< 5)
156			 | (ci->refClkSel << 4);
157		chan5111 = ci->channel5111;
158		txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
159		if (freq == 2484) {
160			/* Enable channel spreading for channel 14 */
161			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
162				txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
163		} else {
164			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
165				txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
166		}
167	} else {
168		chan5111 = chanIEEE;	/* no conversion needed */
169		data2111 = 0;
170	}
171
172	/* Rest of the code is common for 5 GHz and 2.4 GHz. */
173	if (chan5111 >= 145 || (chan5111 & 0x1)) {
174		reg32  = ath_hal_reverseBits(chan5111 - 24, 8) & 0xff;
175		refClk = 1;
176	} else {
177		reg32  = ath_hal_reverseBits(((chan5111 - 24)/2), 8) & 0xff;
178		refClk = 0;
179	}
180
181	reg32 = (reg32 << 2) | (refClk << 1) | (1 << 10) | 0x1;
182	OS_REG_WRITE(ah, AR_PHY(0x27), ((data2111 & 0xff) << 8) | (reg32 & 0xff));
183	reg32 >>= 8;
184	OS_REG_WRITE(ah, AR_PHY(0x34), (data2111 & 0xff00) | (reg32 & 0xff));
185
186	AH_PRIVATE(ah)->ah_curchan = chan;
187	return AH_TRUE;
188#undef CI_2GHZ_INDEX_CORRECTION
189}
190
191/*
192 * Return a reference to the requested RF Bank.
193 */
194static uint32_t *
195ar5111GetRfBank(struct ath_hal *ah, int bank)
196{
197	struct ar5111State *priv = AR5111(ah);
198
199	HALASSERT(priv != AH_NULL);
200	switch (bank) {
201	case 0: return priv->Bank0Data;
202	case 1: return priv->Bank1Data;
203	case 2: return priv->Bank2Data;
204	case 3: return priv->Bank3Data;
205	case 6: return priv->Bank6Data;
206	case 7: return priv->Bank7Data;
207	}
208	HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
209	    __func__, bank);
210	return AH_NULL;
211}
212
213/*
214 * Reads EEPROM header info from device structure and programs
215 * all rf registers
216 *
217 * REQUIRES: Access to the analog rf device
218 */
219static HAL_BOOL
220ar5111SetRfRegs(struct ath_hal *ah, const struct ieee80211_channel *chan,
221	uint16_t modesIndex, uint16_t *rfXpdGain)
222{
223	uint16_t freq = ath_hal_gethwchannel(ah, chan);
224	struct ath_hal_5212 *ahp = AH5212(ah);
225	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
226	uint16_t rfXpdGainFixed, rfPloSel, rfPwdXpd, gainI;
227	uint16_t tempOB, tempDB;
228	uint32_t ob2GHz, db2GHz, rfReg[N(ar5212Bank6_5111)];
229	int i, regWrites = 0;
230
231	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n",
232	    __func__, chan->ic_freq, chan->ic_flags, modesIndex);
233
234	/* Setup rf parameters */
235	switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
236	case IEEE80211_CHAN_A:
237		if (4000 < freq && freq < 5260) {
238			tempOB = ee->ee_ob1;
239			tempDB = ee->ee_db1;
240		} else if (5260 <= freq && freq < 5500) {
241			tempOB = ee->ee_ob2;
242			tempDB = ee->ee_db2;
243		} else if (5500 <= freq && freq < 5725) {
244			tempOB = ee->ee_ob3;
245			tempDB = ee->ee_db3;
246		} else if (freq >= 5725) {
247			tempOB = ee->ee_ob4;
248			tempDB = ee->ee_db4;
249		} else {
250			/* XXX when does this happen??? */
251			tempOB = tempDB = 0;
252		}
253		ob2GHz = db2GHz = 0;
254
255		rfXpdGainFixed = ee->ee_xgain[headerInfo11A];
256		rfPloSel = ee->ee_xpd[headerInfo11A];
257		rfPwdXpd = !ee->ee_xpd[headerInfo11A];
258		gainI = ee->ee_gainI[headerInfo11A];
259		break;
260	case IEEE80211_CHAN_B:
261		tempOB = ee->ee_obFor24;
262		tempDB = ee->ee_dbFor24;
263		ob2GHz = ee->ee_ob2GHz[0];
264		db2GHz = ee->ee_db2GHz[0];
265
266		rfXpdGainFixed = ee->ee_xgain[headerInfo11B];
267		rfPloSel = ee->ee_xpd[headerInfo11B];
268		rfPwdXpd = !ee->ee_xpd[headerInfo11B];
269		gainI = ee->ee_gainI[headerInfo11B];
270		break;
271	case IEEE80211_CHAN_G:
272	case IEEE80211_CHAN_PUREG:	/* NB: really 108G */
273		tempOB = ee->ee_obFor24g;
274		tempDB = ee->ee_dbFor24g;
275		ob2GHz = ee->ee_ob2GHz[1];
276		db2GHz = ee->ee_db2GHz[1];
277
278		rfXpdGainFixed = ee->ee_xgain[headerInfo11G];
279		rfPloSel = ee->ee_xpd[headerInfo11G];
280		rfPwdXpd = !ee->ee_xpd[headerInfo11G];
281		gainI = ee->ee_gainI[headerInfo11G];
282		break;
283	default:
284		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
285		    __func__, chan->ic_flags);
286		return AH_FALSE;
287	}
288
289	HALASSERT(1 <= tempOB && tempOB <= 5);
290	HALASSERT(1 <= tempDB && tempDB <= 5);
291
292	/* Bank 0 Write */
293	for (i = 0; i < N(ar5212Bank0_5111); i++)
294		rfReg[i] = ar5212Bank0_5111[i][modesIndex];
295	if (IEEE80211_IS_CHAN_2GHZ(chan)) {
296		ar5212ModifyRfBuffer(rfReg, ob2GHz, 3, 119, 0);
297		ar5212ModifyRfBuffer(rfReg, db2GHz, 3, 122, 0);
298	}
299	HAL_INI_WRITE_BANK(ah, ar5212Bank0_5111, rfReg, regWrites);
300
301	/* Bank 1 Write */
302	HAL_INI_WRITE_ARRAY(ah, ar5212Bank1_5111, 1, regWrites);
303
304	/* Bank 2 Write */
305	HAL_INI_WRITE_ARRAY(ah, ar5212Bank2_5111, modesIndex, regWrites);
306
307	/* Bank 3 Write */
308	HAL_INI_WRITE_ARRAY(ah, ar5212Bank3_5111, modesIndex, regWrites);
309
310	/* Bank 6 Write */
311	for (i = 0; i < N(ar5212Bank6_5111); i++)
312		rfReg[i] = ar5212Bank6_5111[i][modesIndex];
313	if (IEEE80211_IS_CHAN_A(chan)) {	/* NB: CHANNEL_A | CHANNEL_T */
314		ar5212ModifyRfBuffer(rfReg, ee->ee_cornerCal.pd84, 1, 51, 3);
315		ar5212ModifyRfBuffer(rfReg, ee->ee_cornerCal.pd90, 1, 45, 3);
316	}
317	ar5212ModifyRfBuffer(rfReg, rfPwdXpd, 1, 95, 0);
318	ar5212ModifyRfBuffer(rfReg, rfXpdGainFixed, 4, 96, 0);
319	/* Set 5212 OB & DB */
320	ar5212ModifyRfBuffer(rfReg, tempOB, 3, 104, 0);
321	ar5212ModifyRfBuffer(rfReg, tempDB, 3, 107, 0);
322	HAL_INI_WRITE_BANK(ah, ar5212Bank6_5111, rfReg, regWrites);
323
324	/* Bank 7 Write */
325	for (i = 0; i < N(ar5212Bank7_5111); i++)
326		rfReg[i] = ar5212Bank7_5111[i][modesIndex];
327	ar5212ModifyRfBuffer(rfReg, gainI, 6, 29, 0);
328	ar5212ModifyRfBuffer(rfReg, rfPloSel, 1, 4, 0);
329
330	if (IEEE80211_IS_CHAN_QUARTER(chan) || IEEE80211_IS_CHAN_HALF(chan)) {
331        	uint32_t	rfWaitI, rfWaitS, rfMaxTime;
332
333        	rfWaitS = 0x1f;
334        	rfWaitI = (IEEE80211_IS_CHAN_HALF(chan)) ?  0x10 : 0x1f;
335        	rfMaxTime = 3;
336        	ar5212ModifyRfBuffer(rfReg, rfWaitS, 5, 19, 0);
337        	ar5212ModifyRfBuffer(rfReg, rfWaitI, 5, 24, 0);
338        	ar5212ModifyRfBuffer(rfReg, rfMaxTime, 2, 49, 0);
339	}
340
341	HAL_INI_WRITE_BANK(ah, ar5212Bank7_5111, rfReg, regWrites);
342
343	/* Now that we have reprogrammed rfgain value, clear the flag. */
344	ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
345
346	return AH_TRUE;
347}
348
349/*
350 * Returns interpolated or the scaled up interpolated value
351 */
352static uint16_t
353interpolate(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
354	uint16_t targetLeft, uint16_t targetRight)
355{
356	uint16_t rv;
357	int16_t lRatio;
358
359	/* to get an accurate ratio, always scale, if want to scale, then don't scale back down */
360	if ((targetLeft * targetRight) == 0)
361		return 0;
362
363	if (srcRight != srcLeft) {
364		/*
365		 * Note the ratio always need to be scaled,
366		 * since it will be a fraction.
367		 */
368		lRatio = (target - srcLeft) * EEP_SCALE / (srcRight - srcLeft);
369		if (lRatio < 0) {
370		    /* Return as Left target if value would be negative */
371		    rv = targetLeft;
372		} else if (lRatio > EEP_SCALE) {
373		    /* Return as Right target if Ratio is greater than 100% (SCALE) */
374		    rv = targetRight;
375		} else {
376			rv = (lRatio * targetRight + (EEP_SCALE - lRatio) *
377					targetLeft) / EEP_SCALE;
378		}
379	} else {
380		rv = targetLeft;
381	}
382	return rv;
383}
384
385/*
386 * Read the transmit power levels from the structures taken from EEPROM
387 * Interpolate read transmit power values for this channel
388 * Organize the transmit power values into a table for writing into the hardware
389 */
390static HAL_BOOL
391ar5111SetPowerTable(struct ath_hal *ah,
392	int16_t *pMinPower, int16_t *pMaxPower,
393	const struct ieee80211_channel *chan,
394	uint16_t *rfXpdGain)
395{
396	uint16_t freq = ath_hal_gethwchannel(ah, chan);
397	struct ath_hal_5212 *ahp = AH5212(ah);
398	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
399	FULL_PCDAC_STRUCT pcdacStruct;
400	int i, j;
401
402	uint16_t     *pPcdacValues;
403	int16_t      *pScaledUpDbm;
404	int16_t      minScaledPwr;
405	int16_t      maxScaledPwr;
406	int16_t      pwr;
407	uint16_t     pcdacMin = 0;
408	uint16_t     pcdacMax = PCDAC_STOP;
409	uint16_t     pcdacTableIndex;
410	uint16_t     scaledPcdac;
411	PCDACS_EEPROM *pSrcStruct;
412	PCDACS_EEPROM eepromPcdacs;
413
414	/* setup the pcdac struct to point to the correct info, based on mode */
415	switch (chan->ic_flags & IEEE80211_CHAN_ALLTURBOFULL) {
416	case IEEE80211_CHAN_A:
417	case IEEE80211_CHAN_ST:
418		eepromPcdacs.numChannels     = ee->ee_numChannels11a;
419		eepromPcdacs.pChannelList    = ee->ee_channels11a;
420		eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11a;
421		break;
422	case IEEE80211_CHAN_B:
423		eepromPcdacs.numChannels     = ee->ee_numChannels2_4;
424		eepromPcdacs.pChannelList    = ee->ee_channels11b;
425		eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11b;
426		break;
427	case IEEE80211_CHAN_G:
428	case IEEE80211_CHAN_108G:
429		eepromPcdacs.numChannels     = ee->ee_numChannels2_4;
430		eepromPcdacs.pChannelList    = ee->ee_channels11g;
431		eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11g;
432		break;
433	default:
434		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
435		    __func__, chan->ic_flags);
436		return AH_FALSE;
437	}
438
439	pSrcStruct = &eepromPcdacs;
440
441	OS_MEMZERO(&pcdacStruct, sizeof(pcdacStruct));
442	pPcdacValues = pcdacStruct.PcdacValues;
443	pScaledUpDbm = pcdacStruct.PwrValues;
444
445	/* Initialize the pcdacs to dBM structs pcdacs to be 1 to 63 */
446	for (i = PCDAC_START, j = 0; i <= PCDAC_STOP; i+= PCDAC_STEP, j++)
447		pPcdacValues[j] = i;
448
449	pcdacStruct.numPcdacValues = j;
450	pcdacStruct.pcdacMin = PCDAC_START;
451	pcdacStruct.pcdacMax = PCDAC_STOP;
452
453	/* Fill out the power values for this channel */
454	for (j = 0; j < pcdacStruct.numPcdacValues; j++ )
455		pScaledUpDbm[j] = ar5212GetScaledPower(freq,
456			pPcdacValues[j], pSrcStruct);
457
458	/* Now scale the pcdac values to fit in the 64 entry power table */
459	minScaledPwr = pScaledUpDbm[0];
460	maxScaledPwr = pScaledUpDbm[pcdacStruct.numPcdacValues - 1];
461
462	/* find minimum and make monotonic */
463	for (j = 0; j < pcdacStruct.numPcdacValues; j++) {
464		if (minScaledPwr >= pScaledUpDbm[j]) {
465			minScaledPwr = pScaledUpDbm[j];
466			pcdacMin = j;
467		}
468		/*
469		 * Make the full_hsh monotonically increasing otherwise
470		 * interpolation algorithm will get fooled gotta start
471		 * working from the top, hence i = 63 - j.
472		 */
473		i = (uint16_t)(pcdacStruct.numPcdacValues - 1 - j);
474		if (i == 0)
475			break;
476		if (pScaledUpDbm[i-1] > pScaledUpDbm[i]) {
477			/*
478			 * It could be a glitch, so make the power for
479			 * this pcdac the same as the power from the
480			 * next highest pcdac.
481			 */
482			pScaledUpDbm[i - 1] = pScaledUpDbm[i];
483		}
484	}
485
486	for (j = 0; j < pcdacStruct.numPcdacValues; j++)
487		if (maxScaledPwr < pScaledUpDbm[j]) {
488			maxScaledPwr = pScaledUpDbm[j];
489			pcdacMax = j;
490		}
491
492	/* Find the first power level with a pcdac */
493	pwr = (uint16_t)(PWR_STEP *
494		((minScaledPwr - PWR_MIN + PWR_STEP / 2) / PWR_STEP) + PWR_MIN);
495
496	/* Write all the first pcdac entries based off the pcdacMin */
497	pcdacTableIndex = 0;
498	for (i = 0; i < (2 * (pwr - PWR_MIN) / EEP_SCALE + 1); i++) {
499		HALASSERT(pcdacTableIndex < PWR_TABLE_SIZE);
500		ahp->ah_pcdacTable[pcdacTableIndex++] = pcdacMin;
501	}
502
503	i = 0;
504	while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1] &&
505	    pcdacTableIndex < PWR_TABLE_SIZE) {
506		pwr += PWR_STEP;
507		/* stop if dbM > max_power_possible */
508		while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1] &&
509		       (pwr - pScaledUpDbm[i])*(pwr - pScaledUpDbm[i+1]) > 0)
510			i++;
511		/* scale by 2 and add 1 to enable round up or down as needed */
512		scaledPcdac = (uint16_t)(interpolate(pwr,
513			pScaledUpDbm[i], pScaledUpDbm[i + 1],
514			(uint16_t)(pPcdacValues[i] * 2),
515			(uint16_t)(pPcdacValues[i + 1] * 2)) + 1);
516
517		HALASSERT(pcdacTableIndex < PWR_TABLE_SIZE);
518		ahp->ah_pcdacTable[pcdacTableIndex] = scaledPcdac / 2;
519		if (ahp->ah_pcdacTable[pcdacTableIndex] > pcdacMax)
520			ahp->ah_pcdacTable[pcdacTableIndex] = pcdacMax;
521		pcdacTableIndex++;
522	}
523
524	/* Write all the last pcdac entries based off the last valid pcdac */
525	while (pcdacTableIndex < PWR_TABLE_SIZE) {
526		ahp->ah_pcdacTable[pcdacTableIndex] =
527			ahp->ah_pcdacTable[pcdacTableIndex - 1];
528		pcdacTableIndex++;
529	}
530
531	/* No power table adjustment for 5111 */
532	ahp->ah_txPowerIndexOffset = 0;
533
534	return AH_TRUE;
535}
536
537/*
538 * Get or interpolate the pcdac value from the calibrated data.
539 */
540static uint16_t
541ar5212GetScaledPower(uint16_t channel, uint16_t pcdacValue,
542	const PCDACS_EEPROM *pSrcStruct)
543{
544	uint16_t powerValue;
545	uint16_t lFreq, rFreq;		/* left and right frequency values */
546	uint16_t llPcdac, ulPcdac;	/* lower and upper left pcdac values */
547	uint16_t lrPcdac, urPcdac;	/* lower and upper right pcdac values */
548	uint16_t lPwr, uPwr;		/* lower and upper temp pwr values */
549	uint16_t lScaledPwr, rScaledPwr; /* left and right scaled power */
550
551	if (ar5212FindValueInList(channel, pcdacValue, pSrcStruct, &powerValue)) {
552		/* value was copied from srcStruct */
553		return powerValue;
554	}
555
556	ar5212GetLowerUpperValues(channel,
557		pSrcStruct->pChannelList, pSrcStruct->numChannels,
558		&lFreq, &rFreq);
559	ar5212GetLowerUpperPcdacs(pcdacValue,
560		lFreq, pSrcStruct, &llPcdac, &ulPcdac);
561	ar5212GetLowerUpperPcdacs(pcdacValue,
562		rFreq, pSrcStruct, &lrPcdac, &urPcdac);
563
564	/* get the power index for the pcdac value */
565	ar5212FindValueInList(lFreq, llPcdac, pSrcStruct, &lPwr);
566	ar5212FindValueInList(lFreq, ulPcdac, pSrcStruct, &uPwr);
567	lScaledPwr = interpolate(pcdacValue, llPcdac, ulPcdac, lPwr, uPwr);
568
569	ar5212FindValueInList(rFreq, lrPcdac, pSrcStruct, &lPwr);
570	ar5212FindValueInList(rFreq, urPcdac, pSrcStruct, &uPwr);
571	rScaledPwr = interpolate(pcdacValue, lrPcdac, urPcdac, lPwr, uPwr);
572
573	return interpolate(channel, lFreq, rFreq, lScaledPwr, rScaledPwr);
574}
575
576/*
577 * Find the value from the calibrated source data struct
578 */
579static HAL_BOOL
580ar5212FindValueInList(uint16_t channel, uint16_t pcdacValue,
581	const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue)
582{
583	const DATA_PER_CHANNEL *pChannelData = pSrcStruct->pDataPerChannel;
584	int i;
585
586	for (i = 0; i < pSrcStruct->numChannels; i++ ) {
587		if (pChannelData->channelValue == channel) {
588			const uint16_t* pPcdac = pChannelData->PcdacValues;
589			int j;
590
591			for (j = 0; j < pChannelData->numPcdacValues; j++ ) {
592				if (*pPcdac == pcdacValue) {
593					*powerValue = pChannelData->PwrValues[j];
594					return AH_TRUE;
595				}
596				pPcdac++;
597			}
598		}
599		pChannelData++;
600	}
601	return AH_FALSE;
602}
603
604/*
605 * Get the upper and lower pcdac given the channel and the pcdac
606 * used in the search
607 */
608static void
609ar5212GetLowerUpperPcdacs(uint16_t pcdac, uint16_t channel,
610	const PCDACS_EEPROM *pSrcStruct,
611	uint16_t *pLowerPcdac, uint16_t *pUpperPcdac)
612{
613	const DATA_PER_CHANNEL *pChannelData = pSrcStruct->pDataPerChannel;
614	int i;
615
616	/* Find the channel information */
617	for (i = 0; i < pSrcStruct->numChannels; i++) {
618		if (pChannelData->channelValue == channel)
619			break;
620		pChannelData++;
621	}
622	ar5212GetLowerUpperValues(pcdac, pChannelData->PcdacValues,
623		      pChannelData->numPcdacValues,
624		      pLowerPcdac, pUpperPcdac);
625}
626
627static HAL_BOOL
628ar5111GetChannelMaxMinPower(struct ath_hal *ah,
629	const struct ieee80211_channel *chan,
630	int16_t *maxPow, int16_t *minPow)
631{
632	/* XXX - Get 5111 power limits! */
633	/* NB: caller will cope */
634	return AH_FALSE;
635}
636
637/*
638 * Adjust NF based on statistical values for 5GHz frequencies.
639 */
640static int16_t
641ar5111GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
642{
643	static const struct {
644		uint16_t freqLow;
645		int16_t	  adjust;
646	} adjust5111[] = {
647		{ 5790,	6 },	/* NB: ordered high -> low */
648		{ 5730, 4 },
649		{ 5690, 3 },
650		{ 5660, 2 },
651		{ 5610, 1 },
652		{ 5530, 0 },
653		{ 5450, 0 },
654		{ 5379, 1 },
655		{ 5209, 3 },
656		{ 3000, 5 },
657		{    0, 0 },
658	};
659	int i;
660
661	for (i = 0; c->channel <= adjust5111[i].freqLow; i++)
662		;
663	return adjust5111[i].adjust;
664}
665
666/*
667 * Free memory for analog bank scratch buffers
668 */
669static void
670ar5111RfDetach(struct ath_hal *ah)
671{
672	struct ath_hal_5212 *ahp = AH5212(ah);
673
674	HALASSERT(ahp->ah_rfHal != AH_NULL);
675	ath_hal_free(ahp->ah_rfHal);
676	ahp->ah_rfHal = AH_NULL;
677}
678
679/*
680 * Allocate memory for analog bank scratch buffers
681 * Scratch Buffer will be reinitialized every reset so no need to zero now
682 */
683static HAL_BOOL
684ar5111RfAttach(struct ath_hal *ah, HAL_STATUS *status)
685{
686	struct ath_hal_5212 *ahp = AH5212(ah);
687	struct ar5111State *priv;
688
689	HALASSERT(ah->ah_magic == AR5212_MAGIC);
690
691	HALASSERT(ahp->ah_rfHal == AH_NULL);
692	priv = ath_hal_malloc(sizeof(struct ar5111State));
693	if (priv == AH_NULL) {
694		HALDEBUG(ah, HAL_DEBUG_ANY,
695		    "%s: cannot allocate private state\n", __func__);
696		*status = HAL_ENOMEM;		/* XXX */
697		return AH_FALSE;
698	}
699	priv->base.rfDetach		= ar5111RfDetach;
700	priv->base.writeRegs		= ar5111WriteRegs;
701	priv->base.getRfBank		= ar5111GetRfBank;
702	priv->base.setChannel		= ar5111SetChannel;
703	priv->base.setRfRegs		= ar5111SetRfRegs;
704	priv->base.setPowerTable	= ar5111SetPowerTable;
705	priv->base.getChannelMaxMinPower = ar5111GetChannelMaxMinPower;
706	priv->base.getNfAdjust		= ar5111GetNfAdjust;
707
708	ahp->ah_pcdacTable = priv->pcdacTable;
709	ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
710	ahp->ah_rfHal = &priv->base;
711
712	return AH_TRUE;
713}
714
715static HAL_BOOL
716ar5111Probe(struct ath_hal *ah)
717{
718	return IS_RAD5111(ah);
719}
720AH_RF(RF5111, ar5111Probe, ar5111RfAttach);
721