1/*-
2 * SPDX-License-Identifier: ISC
3 *
4 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5 * Copyright (c) 2002-2008 Atheros Communications, Inc.
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 *
19 * $FreeBSD: releng/12.0/sys/dev/ath/ath_hal/ar5212/ar2317.c 326695 2017-12-08 15:57:29Z pfg $
20 */
21#include "opt_ah.h"
22
23#include "ah.h"
24#include "ah_internal.h"
25
26#include "ar5212/ar5212.h"
27#include "ar5212/ar5212reg.h"
28#include "ar5212/ar5212phy.h"
29
30#include "ah_eeprom_v3.h"
31
32#define AH_5212_2317
33#include "ar5212/ar5212.ini"
34
35#define	N(a)	(sizeof(a)/sizeof(a[0]))
36
37typedef	RAW_DATA_STRUCT_2413 RAW_DATA_STRUCT_2317;
38typedef RAW_DATA_PER_CHANNEL_2413 RAW_DATA_PER_CHANNEL_2317;
39#define PWR_TABLE_SIZE_2317 PWR_TABLE_SIZE_2413
40
41struct ar2317State {
42	RF_HAL_FUNCS	base;		/* public state, must be first */
43	uint16_t	pcdacTable[PWR_TABLE_SIZE_2317];
44
45	uint32_t	Bank1Data[N(ar5212Bank1_2317)];
46	uint32_t	Bank2Data[N(ar5212Bank2_2317)];
47	uint32_t	Bank3Data[N(ar5212Bank3_2317)];
48	uint32_t	Bank6Data[N(ar5212Bank6_2317)];
49	uint32_t	Bank7Data[N(ar5212Bank7_2317)];
50
51	/*
52	 * Private state for reduced stack usage.
53	 */
54	/* filled out Vpd table for all pdGains (chanL) */
55	uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL]
56			    [MAX_PWR_RANGE_IN_HALF_DB];
57	/* filled out Vpd table for all pdGains (chanR) */
58	uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL]
59			    [MAX_PWR_RANGE_IN_HALF_DB];
60	/* filled out Vpd table for all pdGains (interpolated) */
61	uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL]
62			    [MAX_PWR_RANGE_IN_HALF_DB];
63};
64#define	AR2317(ah)	((struct ar2317State *) AH5212(ah)->ah_rfHal)
65
66extern	void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
67		uint32_t numBits, uint32_t firstBit, uint32_t column);
68
69static void
70ar2317WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
71	int writes)
72{
73	HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2317, modesIndex, writes);
74	HAL_INI_WRITE_ARRAY(ah, ar5212Common_2317, 1, writes);
75	HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2317, freqIndex, writes);
76}
77
78/*
79 * Take the MHz channel value and set the Channel value
80 *
81 * ASSUMES: Writes enabled to analog bus
82 */
83static HAL_BOOL
84ar2317SetChannel(struct ath_hal *ah,  const struct ieee80211_channel *chan)
85{
86	uint16_t freq = ath_hal_gethwchannel(ah, chan);
87	uint32_t channelSel  = 0;
88	uint32_t bModeSynth  = 0;
89	uint32_t aModeRefSel = 0;
90	uint32_t reg32       = 0;
91
92	OS_MARK(ah, AH_MARK_SETCHANNEL, freq);
93
94	if (freq < 4800) {
95		uint32_t txctl;
96		channelSel = freq - 2272 ;
97		channelSel = ath_hal_reverseBits(channelSel, 8);
98
99		txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
100		if (freq == 2484) {
101			/* Enable channel spreading for channel 14 */
102			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
103				txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
104		} else {
105			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
106				txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
107		}
108	} else if ((freq % 20) == 0 && freq >= 5120) {
109		channelSel = ath_hal_reverseBits(
110			((freq - 4800) / 20 << 2), 8);
111		aModeRefSel = ath_hal_reverseBits(3, 2);
112	} else if ((freq % 10) == 0) {
113		channelSel = ath_hal_reverseBits(
114			((freq - 4800) / 10 << 1), 8);
115		aModeRefSel = ath_hal_reverseBits(2, 2);
116	} else if ((freq % 5) == 0) {
117		channelSel = ath_hal_reverseBits(
118			(freq - 4800) / 5, 8);
119		aModeRefSel = ath_hal_reverseBits(1, 2);
120	} else {
121		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
122		    __func__, freq);
123		return AH_FALSE;
124	}
125
126	reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
127			(1 << 12) | 0x1;
128	OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
129
130	reg32 >>= 8;
131	OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
132
133	AH_PRIVATE(ah)->ah_curchan = chan;
134	return AH_TRUE;
135}
136
137/*
138 * Reads EEPROM header info from device structure and programs
139 * all rf registers
140 *
141 * REQUIRES: Access to the analog rf device
142 */
143static HAL_BOOL
144ar2317SetRfRegs(struct ath_hal *ah,
145	const struct ieee80211_channel *chan,
146	uint16_t modesIndex, uint16_t *rfXpdGain)
147{
148#define	RF_BANK_SETUP(_priv, _ix, _col) do {				    \
149	int i;								    \
150	for (i = 0; i < N(ar5212Bank##_ix##_2317); i++)			    \
151		(_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2317[i][_col];\
152} while (0)
153	struct ath_hal_5212 *ahp = AH5212(ah);
154	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
155	uint16_t ob2GHz = 0, db2GHz = 0;
156	struct ar2317State *priv = AR2317(ah);
157	int regWrites = 0;
158
159	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n",
160	    __func__, chan->ic_freq, chan->ic_flags, modesIndex);
161
162	HALASSERT(priv);
163
164	/* Setup rf parameters */
165	if (IEEE80211_IS_CHAN_B(chan)) {
166		ob2GHz = ee->ee_obFor24;
167		db2GHz = ee->ee_dbFor24;
168	} else {
169		ob2GHz = ee->ee_obFor24g;
170		db2GHz = ee->ee_dbFor24g;
171	}
172
173	/* Bank 1 Write */
174	RF_BANK_SETUP(priv, 1, 1);
175
176	/* Bank 2 Write */
177	RF_BANK_SETUP(priv, 2, modesIndex);
178
179	/* Bank 3 Write */
180	RF_BANK_SETUP(priv, 3, modesIndex);
181
182	/* Bank 6 Write */
183	RF_BANK_SETUP(priv, 6, modesIndex);
184
185	ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz,   3, 193, 0);
186	ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz,   3, 190, 0);
187
188	/* Bank 7 Setup */
189	RF_BANK_SETUP(priv, 7, modesIndex);
190
191	/* Write Analog registers */
192	HAL_INI_WRITE_BANK(ah, ar5212Bank1_2317, priv->Bank1Data, regWrites);
193	HAL_INI_WRITE_BANK(ah, ar5212Bank2_2317, priv->Bank2Data, regWrites);
194	HAL_INI_WRITE_BANK(ah, ar5212Bank3_2317, priv->Bank3Data, regWrites);
195	HAL_INI_WRITE_BANK(ah, ar5212Bank6_2317, priv->Bank6Data, regWrites);
196	HAL_INI_WRITE_BANK(ah, ar5212Bank7_2317, priv->Bank7Data, regWrites);
197	/* Now that we have reprogrammed rfgain value, clear the flag. */
198	ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
199
200	return AH_TRUE;
201#undef	RF_BANK_SETUP
202}
203
204/*
205 * Return a reference to the requested RF Bank.
206 */
207static uint32_t *
208ar2317GetRfBank(struct ath_hal *ah, int bank)
209{
210	struct ar2317State *priv = AR2317(ah);
211
212	HALASSERT(priv != AH_NULL);
213	switch (bank) {
214	case 1: return priv->Bank1Data;
215	case 2: return priv->Bank2Data;
216	case 3: return priv->Bank3Data;
217	case 6: return priv->Bank6Data;
218	case 7: return priv->Bank7Data;
219	}
220	HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
221	    __func__, bank);
222	return AH_NULL;
223}
224
225/*
226 * Return indices surrounding the value in sorted integer lists.
227 *
228 * NB: the input list is assumed to be sorted in ascending order
229 */
230static void
231GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
232                          uint32_t *vlo, uint32_t *vhi)
233{
234	int16_t target = v;
235	const int16_t *ep = lp+listSize;
236	const int16_t *tp;
237
238	/*
239	 * Check first and last elements for out-of-bounds conditions.
240	 */
241	if (target < lp[0]) {
242		*vlo = *vhi = 0;
243		return;
244	}
245	if (target >= ep[-1]) {
246		*vlo = *vhi = listSize - 1;
247		return;
248	}
249
250	/* look for value being near or between 2 values in list */
251	for (tp = lp; tp < ep; tp++) {
252		/*
253		 * If value is close to the current value of the list
254		 * then target is not between values, it is one of the values
255		 */
256		if (*tp == target) {
257			*vlo = *vhi = tp - (const int16_t *) lp;
258			return;
259		}
260		/*
261		 * Look for value being between current value and next value
262		 * if so return these 2 values
263		 */
264		if (target < tp[1]) {
265			*vlo = tp - (const int16_t *) lp;
266			*vhi = *vlo + 1;
267			return;
268		}
269	}
270}
271
272/*
273 * Fill the Vpdlist for indices Pmax-Pmin
274 */
275static HAL_BOOL
276ar2317FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t  Pmax,
277		   const int16_t *pwrList, const int16_t *VpdList,
278		   uint16_t numIntercepts, uint16_t retVpdList[][64])
279{
280	uint16_t ii, jj, kk;
281	int16_t currPwr = (int16_t)(2*Pmin);
282	/* since Pmin is pwr*2 and pwrList is 4*pwr */
283	uint32_t  idxL, idxR;
284
285	ii = 0;
286	jj = 0;
287
288	if (numIntercepts < 2)
289		return AH_FALSE;
290
291	while (ii <= (uint16_t)(Pmax - Pmin)) {
292		GetLowerUpperIndex(currPwr, pwrList, numIntercepts,
293					 &(idxL), &(idxR));
294		if (idxR < 1)
295			idxR = 1;			/* extrapolate below */
296		if (idxL == (uint32_t)(numIntercepts - 1))
297			idxL = numIntercepts - 2;	/* extrapolate above */
298		if (pwrList[idxL] == pwrList[idxR])
299			kk = VpdList[idxL];
300		else
301			kk = (uint16_t)
302				(((currPwr - pwrList[idxL])*VpdList[idxR]+
303				  (pwrList[idxR] - currPwr)*VpdList[idxL])/
304				 (pwrList[idxR] - pwrList[idxL]));
305		retVpdList[pdGainIdx][ii] = kk;
306		ii++;
307		currPwr += 2;				/* half dB steps */
308	}
309
310	return AH_TRUE;
311}
312
313/*
314 * Returns interpolated or the scaled up interpolated value
315 */
316static int16_t
317interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
318	int16_t targetLeft, int16_t targetRight)
319{
320	int16_t rv;
321
322	if (srcRight != srcLeft) {
323		rv = ((target - srcLeft)*targetRight +
324		      (srcRight - target)*targetLeft) / (srcRight - srcLeft);
325	} else {
326		rv = targetLeft;
327	}
328	return rv;
329}
330
331/*
332 * Uses the data points read from EEPROM to reconstruct the pdadc power table
333 * Called by ar2317SetPowerTable()
334 */
335static int
336ar2317getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
337		const RAW_DATA_STRUCT_2317 *pRawDataset,
338		uint16_t pdGainOverlap_t2,
339		int16_t  *pMinCalPower, uint16_t pPdGainBoundaries[],
340		uint16_t pPdGainValues[], uint16_t pPDADCValues[])
341{
342	struct ar2317State *priv = AR2317(ah);
343#define	VpdTable_L	priv->vpdTable_L
344#define	VpdTable_R	priv->vpdTable_R
345#define	VpdTable_I	priv->vpdTable_I
346	/* XXX excessive stack usage? */
347	uint32_t ii, jj, kk;
348	int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
349	uint32_t idxL, idxR;
350	uint32_t numPdGainsUsed = 0;
351	/*
352	 * If desired to support -ve power levels in future, just
353	 * change pwr_I_0 to signed 5-bits.
354	 */
355	int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
356	/* to accommodate -ve power levels later on. */
357	int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
358	/* to accommodate -ve power levels later on */
359	uint16_t numVpd = 0;
360	uint16_t Vpd_step;
361	int16_t tmpVal ;
362	uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
363
364	/* Get upper lower index */
365	GetLowerUpperIndex(channel, pRawDataset->pChannels,
366				 pRawDataset->numChannels, &(idxL), &(idxR));
367
368	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
369		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
370		/* work backwards 'cause highest pdGain for lowest power */
371		numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
372		if (numVpd > 0) {
373			pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
374			Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
375			if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
376				Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
377			}
378			Pmin_t2[numPdGainsUsed] = (int16_t)
379				(Pmin_t2[numPdGainsUsed] / 2);
380			Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
381			if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
382				Pmax_t2[numPdGainsUsed] =
383					pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
384			Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
385			ar2317FillVpdTable(
386					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
387					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]),
388					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
389					   );
390			ar2317FillVpdTable(
391					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
392					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
393					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
394					   );
395			for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
396				VpdTable_I[numPdGainsUsed][kk] =
397					interpolate_signed(
398							   channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
399							   (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
400			}
401			/* fill VpdTable_I for this pdGain */
402			numPdGainsUsed++;
403		}
404		/* if this pdGain is used */
405	}
406
407	*pMinCalPower = Pmin_t2[0];
408	kk = 0; /* index for the final table */
409	for (ii = 0; ii < numPdGainsUsed; ii++) {
410		if (ii == (numPdGainsUsed - 1))
411			pPdGainBoundaries[ii] = Pmax_t2[ii] +
412				PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
413		else
414			pPdGainBoundaries[ii] = (uint16_t)
415				((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
416		if (pPdGainBoundaries[ii] > 63) {
417			HALDEBUG(ah, HAL_DEBUG_ANY,
418			    "%s: clamp pPdGainBoundaries[%d] %d\n",
419			   __func__, ii, pPdGainBoundaries[ii]);/*XXX*/
420			pPdGainBoundaries[ii] = 63;
421		}
422
423		/* Find starting index for this pdGain */
424		if (ii == 0)
425			ss = 0; /* for the first pdGain, start from index 0 */
426		else
427			ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) -
428				pdGainOverlap_t2;
429		Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
430		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
431		/*
432		 *-ve ss indicates need to extrapolate data below for this pdGain
433		 */
434		while (ss < 0) {
435			tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
436			pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
437			ss++;
438		}
439
440		sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
441		tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
442		maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
443
444		while (ss < (int16_t)maxIndex)
445			pPDADCValues[kk++] = VpdTable_I[ii][ss++];
446
447		Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
448				       VpdTable_I[ii][sizeCurrVpdTable-2]);
449		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
450		/*
451		 * for last gain, pdGainBoundary == Pmax_t2, so will
452		 * have to extrapolate
453		 */
454		if (tgtIndex > maxIndex) {	/* need to extrapolate above */
455			while(ss < (int16_t)tgtIndex) {
456				tmpVal = (uint16_t)
457					(VpdTable_I[ii][sizeCurrVpdTable-1] +
458					 (ss-maxIndex)*Vpd_step);
459				pPDADCValues[kk++] = (tmpVal > 127) ?
460					127 : tmpVal;
461				ss++;
462			}
463		}				/* extrapolated above */
464	}					/* for all pdGainUsed */
465
466	while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
467		pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
468		ii++;
469	}
470	while (kk < 128) {
471		pPDADCValues[kk] = pPDADCValues[kk-1];
472		kk++;
473	}
474
475	return numPdGainsUsed;
476#undef VpdTable_L
477#undef VpdTable_R
478#undef VpdTable_I
479}
480
481static HAL_BOOL
482ar2317SetPowerTable(struct ath_hal *ah,
483	int16_t *minPower, int16_t *maxPower,
484	const struct ieee80211_channel *chan,
485	uint16_t *rfXpdGain)
486{
487	struct ath_hal_5212 *ahp = AH5212(ah);
488	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
489	const RAW_DATA_STRUCT_2317 *pRawDataset = AH_NULL;
490	uint16_t pdGainOverlap_t2;
491	int16_t minCalPower2317_t2;
492	uint16_t *pdadcValues = ahp->ah_pcdacTable;
493	uint16_t gainBoundaries[4];
494	uint32_t reg32, regoffset;
495	int i, numPdGainsUsed;
496#ifndef AH_USE_INIPDGAIN
497	uint32_t tpcrg1;
498#endif
499
500	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n",
501	    __func__, chan->ic_freq, chan->ic_flags);
502
503	if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
504		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
505	else if (IEEE80211_IS_CHAN_B(chan))
506		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
507	else {
508		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: illegal mode\n", __func__);
509		return AH_FALSE;
510	}
511
512	pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
513					  AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
514
515	numPdGainsUsed = ar2317getGainBoundariesAndPdadcsForPowers(ah,
516		chan->channel, pRawDataset, pdGainOverlap_t2,
517		&minCalPower2317_t2,gainBoundaries, rfXpdGain, pdadcValues);
518	HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3);
519
520#ifdef AH_USE_INIPDGAIN
521	/*
522	 * Use pd_gains curve from eeprom; Atheros always uses
523	 * the default curve from the ini file but some vendors
524	 * (e.g. Zcomax) want to override this curve and not
525	 * honoring their settings results in tx power 5dBm low.
526	 */
527	OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
528			 (pRawDataset->pDataPerChannel[0].numPdGains - 1));
529#else
530	tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1);
531	tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN)
532		  | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN);
533	switch (numPdGainsUsed) {
534	case 3:
535		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3;
536		tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3);
537		/* fall thru... */
538	case 2:
539		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2;
540		tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2);
541		/* fall thru... */
542	case 1:
543		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1;
544		tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1);
545		break;
546	}
547#ifdef AH_DEBUG
548	if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1))
549		HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default "
550		    "pd_gains (default 0x%x, calculated 0x%x)\n",
551		    __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1);
552#endif
553	OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1);
554#endif
555
556	/*
557	 * Note the pdadc table may not start at 0 dBm power, could be
558	 * negative or greater than 0.  Need to offset the power
559	 * values by the amount of minPower for griffin
560	 */
561	if (minCalPower2317_t2 != 0)
562		ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2317_t2);
563	else
564		ahp->ah_txPowerIndexOffset = 0;
565
566	/* Finally, write the power values into the baseband power table */
567	regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
568	for (i = 0; i < 32; i++) {
569		reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0)  |
570			((pdadcValues[4*i + 1] & 0xFF) << 8)  |
571			((pdadcValues[4*i + 2] & 0xFF) << 16) |
572			((pdadcValues[4*i + 3] & 0xFF) << 24) ;
573		OS_REG_WRITE(ah, regoffset, reg32);
574		regoffset += 4;
575	}
576
577	OS_REG_WRITE(ah, AR_PHY_TPCRG5,
578		     SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
579		     SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
580		     SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
581		     SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
582		     SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
583
584	return AH_TRUE;
585}
586
587static int16_t
588ar2317GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2317 *data)
589{
590	uint32_t ii,jj;
591	uint16_t Pmin=0,numVpd;
592
593	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
594		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
595		/* work backwards 'cause highest pdGain for lowest power */
596		numVpd = data->pDataPerPDGain[jj].numVpd;
597		if (numVpd > 0) {
598			Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
599			return(Pmin);
600		}
601	}
602	return(Pmin);
603}
604
605static int16_t
606ar2317GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2317 *data)
607{
608	uint32_t ii;
609	uint16_t Pmax=0,numVpd;
610	uint16_t vpdmax;
611
612	for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
613		/* work forwards cuase lowest pdGain for highest power */
614		numVpd = data->pDataPerPDGain[ii].numVpd;
615		if (numVpd > 0) {
616			Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
617			vpdmax = data->pDataPerPDGain[ii].Vpd[numVpd-1];
618			return(Pmax);
619		}
620	}
621	return(Pmax);
622}
623
624static HAL_BOOL
625ar2317GetChannelMaxMinPower(struct ath_hal *ah,
626	const struct ieee80211_channel *chan,
627	int16_t *maxPow, int16_t *minPow)
628{
629	uint16_t freq = chan->ic_freq;		/* NB: never mapped */
630	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
631	const RAW_DATA_STRUCT_2317 *pRawDataset = AH_NULL;
632	const RAW_DATA_PER_CHANNEL_2317 *data=AH_NULL;
633	uint16_t numChannels;
634	int totalD,totalF, totalMin,last, i;
635
636	*maxPow = 0;
637
638	if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
639		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
640	else if (IEEE80211_IS_CHAN_B(chan))
641		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
642	else
643		return(AH_FALSE);
644
645	numChannels = pRawDataset->numChannels;
646	data = pRawDataset->pDataPerChannel;
647
648	/* Make sure the channel is in the range of the TP values
649	 *  (freq piers)
650	 */
651	if (numChannels < 1)
652		return(AH_FALSE);
653
654	if ((freq < data[0].channelValue) ||
655	    (freq > data[numChannels-1].channelValue)) {
656		if (freq < data[0].channelValue) {
657			*maxPow = ar2317GetMaxPower(ah, &data[0]);
658			*minPow = ar2317GetMinPower(ah, &data[0]);
659			return(AH_TRUE);
660		} else {
661			*maxPow = ar2317GetMaxPower(ah, &data[numChannels - 1]);
662			*minPow = ar2317GetMinPower(ah, &data[numChannels - 1]);
663			return(AH_TRUE);
664		}
665	}
666
667	/* Linearly interpolate the power value now */
668	for (last=0,i=0; (i<numChannels) && (freq > data[i].channelValue);
669	     last = i++);
670	totalD = data[i].channelValue - data[last].channelValue;
671	if (totalD > 0) {
672		totalF = ar2317GetMaxPower(ah, &data[i]) - ar2317GetMaxPower(ah, &data[last]);
673		*maxPow = (int8_t) ((totalF*(freq-data[last].channelValue) +
674				     ar2317GetMaxPower(ah, &data[last])*totalD)/totalD);
675		totalMin = ar2317GetMinPower(ah, &data[i]) - ar2317GetMinPower(ah, &data[last]);
676		*minPow = (int8_t) ((totalMin*(freq-data[last].channelValue) +
677				     ar2317GetMinPower(ah, &data[last])*totalD)/totalD);
678		return(AH_TRUE);
679	} else {
680		if (freq == data[i].channelValue) {
681			*maxPow = ar2317GetMaxPower(ah, &data[i]);
682			*minPow = ar2317GetMinPower(ah, &data[i]);
683			return(AH_TRUE);
684		} else
685			return(AH_FALSE);
686	}
687}
688
689/*
690 * Free memory for analog bank scratch buffers
691 */
692static void
693ar2317RfDetach(struct ath_hal *ah)
694{
695	struct ath_hal_5212 *ahp = AH5212(ah);
696
697	HALASSERT(ahp->ah_rfHal != AH_NULL);
698	ath_hal_free(ahp->ah_rfHal);
699	ahp->ah_rfHal = AH_NULL;
700}
701
702/*
703 * Allocate memory for analog bank scratch buffers
704 * Scratch Buffer will be reinitialized every reset so no need to zero now
705 */
706static HAL_BOOL
707ar2317RfAttach(struct ath_hal *ah, HAL_STATUS *status)
708{
709	struct ath_hal_5212 *ahp = AH5212(ah);
710	struct ar2317State *priv;
711
712	HALASSERT(ah->ah_magic == AR5212_MAGIC);
713
714	HALASSERT(ahp->ah_rfHal == AH_NULL);
715	priv = ath_hal_malloc(sizeof(struct ar2317State));
716	if (priv == AH_NULL) {
717		HALDEBUG(ah, HAL_DEBUG_ANY,
718		    "%s: cannot allocate private state\n", __func__);
719		*status = HAL_ENOMEM;		/* XXX */
720		return AH_FALSE;
721	}
722	priv->base.rfDetach		= ar2317RfDetach;
723	priv->base.writeRegs		= ar2317WriteRegs;
724	priv->base.getRfBank		= ar2317GetRfBank;
725	priv->base.setChannel		= ar2317SetChannel;
726	priv->base.setRfRegs		= ar2317SetRfRegs;
727	priv->base.setPowerTable	= ar2317SetPowerTable;
728	priv->base.getChannelMaxMinPower = ar2317GetChannelMaxMinPower;
729	priv->base.getNfAdjust		= ar5212GetNfAdjust;
730
731	ahp->ah_pcdacTable = priv->pcdacTable;
732	ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
733	ahp->ah_rfHal = &priv->base;
734
735	return AH_TRUE;
736}
737
738static HAL_BOOL
739ar2317Probe(struct ath_hal *ah)
740{
741	return IS_2317(ah);
742}
743AH_RF(RF2317, ar2317Probe, ar2317RfAttach);
744