1/*-
2 * SPDX-License-Identifier: ISC
3 *
4 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5 * Copyright (c) 2002-2006 Atheros Communications, Inc.
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 *
19 * $FreeBSD: releng/12.0/sys/dev/ath/ath_hal/ar5211/ar5211_reset.c 326695 2017-12-08 15:57:29Z pfg $
20 */
21#include "opt_ah.h"
22
23/*
24 * Chips specific device attachment and device info collection
25 * Connects Init Reg Vectors, EEPROM Data, and device Functions.
26 */
27#include "ah.h"
28#include "ah_internal.h"
29#include "ah_devid.h"
30
31#include "ar5211/ar5211.h"
32#include "ar5211/ar5211reg.h"
33#include "ar5211/ar5211phy.h"
34
35#include "ah_eeprom_v3.h"
36
37/* Add static register initialization vectors */
38#include "ar5211/boss.ini"
39
40/*
41 * Structure to hold 11b tuning information for Beanie/Sombrero
42 * 16 MHz mode, divider ratio = 198 = NP+S. N=16, S=4 or 6, P=12
43 */
44typedef struct {
45	uint32_t	refClkSel;	/* reference clock, 1 for 16 MHz */
46	uint32_t	channelSelect;	/* P[7:4]S[3:0] bits */
47	uint16_t	channel5111;	/* 11a channel for 5111 */
48} CHAN_INFO_2GHZ;
49
50#define CI_2GHZ_INDEX_CORRECTION 19
51static const CHAN_INFO_2GHZ chan2GHzData[] = {
52	{ 1, 0x46, 96  },	/* 2312 -19 */
53	{ 1, 0x46, 97  },	/* 2317 -18 */
54	{ 1, 0x46, 98  },	/* 2322 -17 */
55	{ 1, 0x46, 99  },	/* 2327 -16 */
56	{ 1, 0x46, 100 },	/* 2332 -15 */
57	{ 1, 0x46, 101 },	/* 2337 -14 */
58	{ 1, 0x46, 102 },	/* 2342 -13 */
59	{ 1, 0x46, 103 },	/* 2347 -12 */
60	{ 1, 0x46, 104 },	/* 2352 -11 */
61	{ 1, 0x46, 105 },	/* 2357 -10 */
62	{ 1, 0x46, 106 },	/* 2362  -9 */
63	{ 1, 0x46, 107 },	/* 2367  -8 */
64	{ 1, 0x46, 108 },	/* 2372  -7 */
65	/* index -6 to 0 are pad to make this a nolookup table */
66	{ 1, 0x46, 116 },	/*       -6 */
67	{ 1, 0x46, 116 },	/*       -5 */
68	{ 1, 0x46, 116 },	/*       -4 */
69	{ 1, 0x46, 116 },	/*       -3 */
70	{ 1, 0x46, 116 },	/*       -2 */
71	{ 1, 0x46, 116 },	/*       -1 */
72	{ 1, 0x46, 116 },	/*        0 */
73	{ 1, 0x46, 116 },	/* 2412   1 */
74	{ 1, 0x46, 117 },	/* 2417   2 */
75	{ 1, 0x46, 118 },	/* 2422   3 */
76	{ 1, 0x46, 119 },	/* 2427   4 */
77	{ 1, 0x46, 120 },	/* 2432   5 */
78	{ 1, 0x46, 121 },	/* 2437   6 */
79	{ 1, 0x46, 122 },	/* 2442   7 */
80	{ 1, 0x46, 123 },	/* 2447   8 */
81	{ 1, 0x46, 124 },	/* 2452   9 */
82	{ 1, 0x46, 125 },	/* 2457  10 */
83	{ 1, 0x46, 126 },	/* 2462  11 */
84	{ 1, 0x46, 127 },	/* 2467  12 */
85	{ 1, 0x46, 128 },	/* 2472  13 */
86	{ 1, 0x44, 124 },	/* 2484  14 */
87	{ 1, 0x46, 136 },	/* 2512  15 */
88	{ 1, 0x46, 140 },	/* 2532  16 */
89	{ 1, 0x46, 144 },	/* 2552  17 */
90	{ 1, 0x46, 148 },	/* 2572  18 */
91	{ 1, 0x46, 152 },	/* 2592  19 */
92	{ 1, 0x46, 156 },	/* 2612  20 */
93	{ 1, 0x46, 160 },	/* 2632  21 */
94	{ 1, 0x46, 164 },	/* 2652  22 */
95	{ 1, 0x46, 168 },	/* 2672  23 */
96	{ 1, 0x46, 172 },	/* 2692  24 */
97	{ 1, 0x46, 176 },	/* 2712  25 */
98	{ 1, 0x46, 180 } 	/* 2732  26 */
99};
100
101/* Power timeouts in usec to wait for chip to wake-up. */
102#define POWER_UP_TIME	2000
103
104#define	DELAY_PLL_SETTLE	300		/* 300 us */
105#define	DELAY_BASE_ACTIVATE	100		/* 100 us */
106
107#define NUM_RATES	8
108
109static HAL_BOOL ar5211SetResetReg(struct ath_hal *ah, uint32_t resetMask);
110static HAL_BOOL ar5211SetChannel(struct ath_hal *,
111		const struct ieee80211_channel *);
112static int16_t ar5211RunNoiseFloor(struct ath_hal *,
113		uint8_t runTime, int16_t startingNF);
114static HAL_BOOL ar5211IsNfGood(struct ath_hal *,
115		struct ieee80211_channel *chan);
116static HAL_BOOL ar5211SetRf6and7(struct ath_hal *,
117		const struct ieee80211_channel *chan);
118static HAL_BOOL ar5211SetBoardValues(struct ath_hal *,
119		const struct ieee80211_channel *chan);
120static void ar5211SetPowerTable(struct ath_hal *,
121		PCDACS_EEPROM *pSrcStruct, uint16_t channel);
122static HAL_BOOL ar5211SetTransmitPower(struct ath_hal *,
123		const struct ieee80211_channel *);
124static void ar5211SetRateTable(struct ath_hal *,
125		RD_EDGES_POWER *pRdEdgesPower, TRGT_POWER_INFO *pPowerInfo,
126		uint16_t numChannels, const struct ieee80211_channel *chan);
127static uint16_t ar5211GetScaledPower(uint16_t channel, uint16_t pcdacValue,
128		const PCDACS_EEPROM *pSrcStruct);
129static HAL_BOOL ar5211FindValueInList(uint16_t channel, uint16_t pcdacValue,
130		const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue);
131static uint16_t ar5211GetInterpolatedValue(uint16_t target,
132		uint16_t srcLeft, uint16_t srcRight,
133		uint16_t targetLeft, uint16_t targetRight, HAL_BOOL scaleUp);
134static void ar5211GetLowerUpperValues(uint16_t value,
135		const uint16_t *pList, uint16_t listSize,
136		uint16_t *pLowerValue, uint16_t *pUpperValue);
137static void ar5211GetLowerUpperPcdacs(uint16_t pcdac,
138		uint16_t channel, const PCDACS_EEPROM *pSrcStruct,
139		uint16_t *pLowerPcdac, uint16_t *pUpperPcdac);
140
141static void ar5211SetRfgain(struct ath_hal *, const GAIN_VALUES *);
142static void ar5211RequestRfgain(struct ath_hal *);
143static HAL_BOOL ar5211InvalidGainReadback(struct ath_hal *, GAIN_VALUES *);
144static HAL_BOOL ar5211IsGainAdjustNeeded(struct ath_hal *, const GAIN_VALUES *);
145static int32_t ar5211AdjustGain(struct ath_hal *, GAIN_VALUES *);
146static void ar5211SetOperatingMode(struct ath_hal *, int opmode);
147
148/*
149 * Places the device in and out of reset and then places sane
150 * values in the registers based on EEPROM config, initialization
151 * vectors (as determined by the mode), and station configuration
152 *
153 * bChannelChange is used to preserve DMA/PCU registers across
154 * a HW Reset during channel change.
155 */
156HAL_BOOL
157ar5211Reset(struct ath_hal *ah, HAL_OPMODE opmode,
158	struct ieee80211_channel *chan, HAL_BOOL bChannelChange,
159	HAL_RESET_TYPE resetType,
160	HAL_STATUS *status)
161{
162uint32_t softLedCfg, softLedState;
163#define	N(a)	(sizeof (a) /sizeof (a[0]))
164#define	FAIL(_code)	do { ecode = _code; goto bad; } while (0)
165	struct ath_hal_5211 *ahp = AH5211(ah);
166	HAL_CHANNEL_INTERNAL *ichan;
167	uint32_t i, ledstate;
168	HAL_STATUS ecode;
169	int q;
170
171	uint32_t		data, synthDelay;
172	uint32_t		macStaId1;
173	uint16_t		modesIndex = 0, freqIndex = 0;
174	uint32_t		saveFrameSeqCount[AR_NUM_DCU];
175	uint32_t		saveTsfLow = 0, saveTsfHigh = 0;
176	uint32_t		saveDefAntenna;
177
178	HALDEBUG(ah, HAL_DEBUG_RESET,
179	     "%s: opmode %u channel %u/0x%x %s channel\n",
180	     __func__, opmode, chan->ic_freq, chan->ic_flags,
181	     bChannelChange ? "change" : "same");
182
183	OS_MARK(ah, AH_MARK_RESET, bChannelChange);
184	/*
185	 * Map public channel to private.
186	 */
187	ichan = ath_hal_checkchannel(ah, chan);
188	if (ichan == AH_NULL)
189		FAIL(HAL_EINVAL);
190	switch (opmode) {
191	case HAL_M_STA:
192	case HAL_M_IBSS:
193	case HAL_M_HOSTAP:
194	case HAL_M_MONITOR:
195		break;
196	default:
197		HALDEBUG(ah, HAL_DEBUG_ANY,
198		    "%s: invalid operating mode %u\n", __func__, opmode);
199		FAIL(HAL_EINVAL);
200		break;
201	}
202	HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3);
203
204	/* Preserve certain DMA hardware registers on a channel change */
205	if (bChannelChange) {
206		/*
207		 * Need to save/restore the TSF because of an issue
208		 * that accelerates the TSF during a chip reset.
209		 *
210		 * We could use system timer routines to more
211		 * accurately restore the TSF, but
212		 * 1. Timer routines on certain platforms are
213		 *	not accurate enough (e.g. 1 ms resolution).
214		 * 2. It would still not be accurate.
215		 *
216		 * The most important aspect of this workaround,
217		 * is that, after reset, the TSF is behind
218		 * other STAs TSFs.  This will allow the STA to
219		 * properly resynchronize its TSF in adhoc mode.
220		 */
221		saveTsfLow  = OS_REG_READ(ah, AR_TSF_L32);
222		saveTsfHigh = OS_REG_READ(ah, AR_TSF_U32);
223
224		/* Read frame sequence count */
225		if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) {
226			saveFrameSeqCount[0] = OS_REG_READ(ah, AR_D0_SEQNUM);
227		} else {
228			for (i = 0; i < AR_NUM_DCU; i++)
229				saveFrameSeqCount[i] = OS_REG_READ(ah, AR_DSEQNUM(i));
230		}
231		if (!IEEE80211_IS_CHAN_DFS(chan))
232			chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
233	}
234
235	/*
236	 * Preserve the antenna on a channel change
237	 */
238	saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA);
239	if (saveDefAntenna == 0)
240		saveDefAntenna = 1;
241
242	/* Save hardware flag before chip reset clears the register */
243	macStaId1 = OS_REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
244
245	/* Save led state from pci config register */
246	ledstate = OS_REG_READ(ah, AR_PCICFG) &
247		(AR_PCICFG_LEDCTL | AR_PCICFG_LEDMODE | AR_PCICFG_LEDBLINK |
248		 AR_PCICFG_LEDSLOW);
249	softLedCfg = OS_REG_READ(ah, AR_GPIOCR);
250	softLedState = OS_REG_READ(ah, AR_GPIODO);
251
252	if (!ar5211ChipReset(ah, chan)) {
253		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
254		FAIL(HAL_EIO);
255	}
256
257	/* Setup the indices for the next set of register array writes */
258	if (IEEE80211_IS_CHAN_5GHZ(chan)) {
259		freqIndex = 1;
260		if (IEEE80211_IS_CHAN_TURBO(chan))
261			modesIndex = 2;
262		else if (IEEE80211_IS_CHAN_A(chan))
263			modesIndex = 1;
264		else {
265			HALDEBUG(ah, HAL_DEBUG_ANY,
266			    "%s: invalid channel %u/0x%x\n",
267			    __func__, chan->ic_freq, chan->ic_flags);
268			FAIL(HAL_EINVAL);
269		}
270	} else {
271		freqIndex = 2;
272		if (IEEE80211_IS_CHAN_B(chan))
273			modesIndex = 3;
274		else if (IEEE80211_IS_CHAN_PUREG(chan))
275			modesIndex = 4;
276		else {
277			HALDEBUG(ah, HAL_DEBUG_ANY,
278			    "%s: invalid channel %u/0x%x\n",
279			    __func__, chan->ic_freq, chan->ic_flags);
280			FAIL(HAL_EINVAL);
281		}
282	}
283
284	/* Set correct Baseband to analog shift setting to access analog chips. */
285	if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) {
286		OS_REG_WRITE(ah, AR_PHY_BASE, 0x00000007);
287	} else {
288		OS_REG_WRITE(ah, AR_PHY_BASE, 0x00000047);
289	}
290
291	/* Write parameters specific to AR5211 */
292	if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) {
293		if (IEEE80211_IS_CHAN_2GHZ(chan) &&
294		    AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3_1) {
295			HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
296			uint32_t ob2GHz, db2GHz;
297
298			if (IEEE80211_IS_CHAN_CCK(chan)) {
299				ob2GHz = ee->ee_ob2GHz[0];
300				db2GHz = ee->ee_db2GHz[0];
301			} else {
302				ob2GHz = ee->ee_ob2GHz[1];
303				db2GHz = ee->ee_db2GHz[1];
304			}
305			ob2GHz = ath_hal_reverseBits(ob2GHz, 3);
306			db2GHz = ath_hal_reverseBits(db2GHz, 3);
307			ar5211Mode2_4[25][freqIndex] =
308				(ar5211Mode2_4[25][freqIndex] & ~0xC0) |
309					((ob2GHz << 6) & 0xC0);
310			ar5211Mode2_4[26][freqIndex] =
311				(ar5211Mode2_4[26][freqIndex] & ~0x0F) |
312					(((ob2GHz >> 2) & 0x1) |
313					 ((db2GHz << 1) & 0x0E));
314		}
315		for (i = 0; i < N(ar5211Mode2_4); i++)
316			OS_REG_WRITE(ah, ar5211Mode2_4[i][0],
317				ar5211Mode2_4[i][freqIndex]);
318	}
319
320	/* Write the analog registers 6 and 7 before other config */
321	ar5211SetRf6and7(ah, chan);
322
323	/* Write registers that vary across all modes */
324	for (i = 0; i < N(ar5211Modes); i++)
325		OS_REG_WRITE(ah, ar5211Modes[i][0], ar5211Modes[i][modesIndex]);
326
327	/* Write RFGain Parameters that differ between 2.4 and 5 GHz */
328	for (i = 0; i < N(ar5211BB_RfGain); i++)
329		OS_REG_WRITE(ah, ar5211BB_RfGain[i][0], ar5211BB_RfGain[i][freqIndex]);
330
331	/* Write Common Array Parameters */
332	for (i = 0; i < N(ar5211Common); i++) {
333		uint32_t reg = ar5211Common[i][0];
334		/* On channel change, don't reset the PCU registers */
335		if (!(bChannelChange && (0x8000 <= reg && reg < 0x9000)))
336			OS_REG_WRITE(ah, reg, ar5211Common[i][1]);
337	}
338
339	/* Fix pre-AR5211 register values, this includes AR5311s. */
340	if (AH_PRIVATE(ah)->ah_macVersion < AR_SREV_VERSION_OAHU) {
341		/*
342		 * The TX and RX latency values have changed locations
343		 * within the USEC register in AR5211.  Since they're
344		 * set via the .ini, for both AR5211 and AR5311, they
345		 * are written properly here for AR5311.
346		 */
347		data = OS_REG_READ(ah, AR_USEC);
348		/* Must be 0 for proper write in AR5311 */
349		HALASSERT((data & 0x00700000) == 0);
350		OS_REG_WRITE(ah, AR_USEC,
351			(data & (AR_USEC_M | AR_USEC_32_M | AR5311_USEC_TX_LAT_M)) |
352			((29 << AR5311_USEC_RX_LAT_S) & AR5311_USEC_RX_LAT_M));
353		/* The following registers exist only on AR5311. */
354		OS_REG_WRITE(ah, AR5311_QDCLKGATE, 0);
355
356		/* Set proper ADC & DAC delays for AR5311. */
357		OS_REG_WRITE(ah, 0x00009878, 0x00000008);
358
359		/* Enable the PCU FIFO corruption ECO on AR5311. */
360		OS_REG_WRITE(ah, AR_DIAG_SW,
361			OS_REG_READ(ah, AR_DIAG_SW) | AR5311_DIAG_SW_USE_ECO);
362	}
363
364	/* Restore certain DMA hardware registers on a channel change */
365	if (bChannelChange) {
366		/* Restore TSF */
367		OS_REG_WRITE(ah, AR_TSF_L32, saveTsfLow);
368		OS_REG_WRITE(ah, AR_TSF_U32, saveTsfHigh);
369
370		if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) {
371			OS_REG_WRITE(ah, AR_D0_SEQNUM, saveFrameSeqCount[0]);
372		} else {
373			for (i = 0; i < AR_NUM_DCU; i++)
374				OS_REG_WRITE(ah, AR_DSEQNUM(i), saveFrameSeqCount[i]);
375		}
376	}
377
378	OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
379	OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)
380		| macStaId1
381	);
382	ar5211SetOperatingMode(ah, opmode);
383
384	/* Restore previous led state */
385	OS_REG_WRITE(ah, AR_PCICFG, OS_REG_READ(ah, AR_PCICFG) | ledstate);
386	OS_REG_WRITE(ah, AR_GPIOCR, softLedCfg);
387	OS_REG_WRITE(ah, AR_GPIODO, softLedState);
388
389	/* Restore previous antenna */
390	OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
391
392	OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
393	OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4));
394
395	/* Restore bmiss rssi & count thresholds */
396	OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
397
398	OS_REG_WRITE(ah, AR_ISR, ~0);		/* cleared on write */
399
400	/*
401	 * for pre-Production Oahu only.
402	 * Disable clock gating in all DMA blocks. Helps when using
403	 * 11B and AES but results in higher power consumption.
404	 */
405	if (AH_PRIVATE(ah)->ah_macVersion == AR_SREV_VERSION_OAHU &&
406	    AH_PRIVATE(ah)->ah_macRev < AR_SREV_OAHU_PROD) {
407		OS_REG_WRITE(ah, AR_CFG,
408			OS_REG_READ(ah, AR_CFG) | AR_CFG_CLK_GATE_DIS);
409	}
410
411	/* Setup the transmit power values. */
412	if (!ar5211SetTransmitPower(ah, chan)) {
413		HALDEBUG(ah, HAL_DEBUG_ANY,
414		    "%s: error init'ing transmit power\n", __func__);
415		FAIL(HAL_EIO);
416	}
417
418	/*
419	 * Configurable OFDM spoofing for 11n compatibility; used
420	 * only when operating in station mode.
421	 */
422	if (opmode != HAL_M_HOSTAP &&
423	    (AH_PRIVATE(ah)->ah_11nCompat & HAL_DIAG_11N_SERVICES) != 0) {
424		/* NB: override the .ini setting */
425		OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
426			AR_PHY_FRAME_CTL_ERR_SERV,
427			MS(AH_PRIVATE(ah)->ah_11nCompat, HAL_DIAG_11N_SERVICES)&1);
428	}
429
430	/* Setup board specific options for EEPROM version 3 */
431	ar5211SetBoardValues(ah, chan);
432
433	if (!ar5211SetChannel(ah, chan)) {
434		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set channel\n",
435		    __func__);
436		FAIL(HAL_EIO);
437	}
438
439	/* Activate the PHY */
440	if (AH_PRIVATE(ah)->ah_devid == AR5211_FPGA11B &&
441	    IEEE80211_IS_CHAN_2GHZ(chan))
442		OS_REG_WRITE(ah, 0xd808, 0x502); /* required for FPGA */
443	OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
444
445	/*
446	 * Wait for the frequency synth to settle (synth goes on
447	 * via AR_PHY_ACTIVE_EN).  Read the phy active delay register.
448	 * Value is in 100ns increments.
449	 */
450	data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_M;
451	if (IEEE80211_IS_CHAN_CCK(chan)) {
452		synthDelay = (4 * data) / 22;
453	} else {
454		synthDelay = data / 10;
455	}
456	/*
457	 * There is an issue if the AP starts the calibration before
458	 * the baseband timeout completes.  This could result in the
459	 * rxclear false triggering.  Add an extra delay to ensure this
460	 * this does not happen.
461	 */
462	OS_DELAY(synthDelay + DELAY_BASE_ACTIVATE);
463
464	/* Calibrate the AGC and wait for completion. */
465	OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
466		 OS_REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_CAL);
467	(void) ath_hal_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL, 0);
468
469	/* Perform noise floor and set status */
470	if (!ar5211CalNoiseFloor(ah, chan)) {
471		if (!IEEE80211_IS_CHAN_CCK(chan))
472			chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
473		HALDEBUG(ah, HAL_DEBUG_ANY,
474		    "%s: noise floor calibration failed\n", __func__);
475		FAIL(HAL_EIO);
476	}
477
478	/* Start IQ calibration w/ 2^(INIT_IQCAL_LOG_COUNT_MAX+1) samples */
479	if (ahp->ah_calibrationTime != 0) {
480		OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4,
481			AR_PHY_TIMING_CTRL4_DO_IQCAL | (INIT_IQCAL_LOG_COUNT_MAX << AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX_S));
482		ahp->ah_bIQCalibration = AH_TRUE;
483	}
484
485	/* set 1:1 QCU to DCU mapping for all queues */
486	for (q = 0; q < AR_NUM_DCU; q++)
487		OS_REG_WRITE(ah, AR_DQCUMASK(q), 1<<q);
488
489	for (q = 0; q < HAL_NUM_TX_QUEUES; q++)
490		ar5211ResetTxQueue(ah, q);
491
492	/* Setup QCU0 transmit interrupt masks (TX_ERR, TX_OK, TX_DESC, TX_URN) */
493	OS_REG_WRITE(ah, AR_IMR_S0,
494		 (AR_IMR_S0_QCU_TXOK & AR_QCU_0) |
495		 (AR_IMR_S0_QCU_TXDESC & (AR_QCU_0<<AR_IMR_S0_QCU_TXDESC_S)));
496	OS_REG_WRITE(ah, AR_IMR_S1, (AR_IMR_S1_QCU_TXERR & AR_QCU_0));
497	OS_REG_WRITE(ah, AR_IMR_S2, (AR_IMR_S2_QCU_TXURN & AR_QCU_0));
498
499	/*
500	 * GBL_EIFS must always be written after writing
501	 *		to any QCUMASK register.
502	 */
503	OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, OS_REG_READ(ah, AR_D_GBL_IFS_EIFS));
504
505	/* Now set up the Interrupt Mask Register and save it for future use */
506	OS_REG_WRITE(ah, AR_IMR, INIT_INTERRUPT_MASK);
507	ahp->ah_maskReg = INIT_INTERRUPT_MASK;
508
509	/* Enable bus error interrupts */
510	OS_REG_WRITE(ah, AR_IMR_S2, OS_REG_READ(ah, AR_IMR_S2) |
511		 AR_IMR_S2_MCABT | AR_IMR_S2_SSERR | AR_IMR_S2_DPERR);
512
513	/* Enable interrupts specific to AP */
514	if (opmode == HAL_M_HOSTAP) {
515		OS_REG_WRITE(ah, AR_IMR, OS_REG_READ(ah, AR_IMR) | AR_IMR_MIB);
516		ahp->ah_maskReg |= AR_IMR_MIB;
517	}
518
519	if (AH_PRIVATE(ah)->ah_rfkillEnabled)
520		ar5211EnableRfKill(ah);
521
522	/*
523	 * Writing to AR_BEACON will start timers. Hence it should
524	 * be the last register to be written. Do not reset tsf, do
525	 * not enable beacons at this point, but preserve other values
526	 * like beaconInterval.
527	 */
528	OS_REG_WRITE(ah, AR_BEACON,
529		(OS_REG_READ(ah, AR_BEACON) &~ (AR_BEACON_EN | AR_BEACON_RESET_TSF)));
530
531	/* Restore user-specified slot time and timeouts */
532	if (ahp->ah_sifstime != (u_int) -1)
533		ar5211SetSifsTime(ah, ahp->ah_sifstime);
534	if (ahp->ah_slottime != (u_int) -1)
535		ar5211SetSlotTime(ah, ahp->ah_slottime);
536	if (ahp->ah_acktimeout != (u_int) -1)
537		ar5211SetAckTimeout(ah, ahp->ah_acktimeout);
538	if (ahp->ah_ctstimeout != (u_int) -1)
539		ar5211SetCTSTimeout(ah, ahp->ah_ctstimeout);
540	if (AH_PRIVATE(ah)->ah_diagreg != 0)
541		OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
542
543	AH_PRIVATE(ah)->ah_opmode = opmode;	/* record operating mode */
544
545	HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
546
547	return AH_TRUE;
548bad:
549	if (status != AH_NULL)
550		*status = ecode;
551	return AH_FALSE;
552#undef FAIL
553#undef N
554}
555
556/*
557 * Places the PHY and Radio chips into reset.  A full reset
558 * must be called to leave this state.  The PCI/MAC/PCU are
559 * not placed into reset as we must receive interrupt to
560 * re-enable the hardware.
561 */
562HAL_BOOL
563ar5211PhyDisable(struct ath_hal *ah)
564{
565	return ar5211SetResetReg(ah, AR_RC_BB);
566}
567
568/*
569 * Places all of hardware into reset
570 */
571HAL_BOOL
572ar5211Disable(struct ath_hal *ah)
573{
574	if (!ar5211SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
575		return AH_FALSE;
576	/*
577	 * Reset the HW - PCI must be reset after the rest of the
578	 * device has been reset.
579	 */
580	if (!ar5211SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI))
581		return AH_FALSE;
582	OS_DELAY(2100);	   /* 8245 @ 96Mhz hangs with 2000us. */
583
584	return AH_TRUE;
585}
586
587/*
588 * Places the hardware into reset and then pulls it out of reset
589 *
590 * Only write the PLL if we're changing to or from CCK mode
591 *
592 * Attach calls with channelFlags = 0, as the coldreset should have
593 * us in the correct mode and we cannot check the hwchannel flags.
594 */
595HAL_BOOL
596ar5211ChipReset(struct ath_hal *ah, const struct ieee80211_channel *chan)
597{
598	if (!ar5211SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
599		return AH_FALSE;
600
601	/* NB: called from attach with chan null */
602	if (chan != AH_NULL) {
603		/* Set CCK and Turbo modes correctly */
604		OS_REG_WRITE(ah, AR_PHY_TURBO, IEEE80211_IS_CHAN_TURBO(chan) ?
605		    AR_PHY_FC_TURBO_MODE | AR_PHY_FC_TURBO_SHORT : 0);
606		if (IEEE80211_IS_CHAN_B(chan)) {
607			OS_REG_WRITE(ah, AR5211_PHY_MODE,
608			    AR5211_PHY_MODE_CCK | AR5211_PHY_MODE_RF2GHZ);
609			OS_REG_WRITE(ah, AR_PHY_PLL_CTL, AR_PHY_PLL_CTL_44);
610			/* Wait for the PLL to settle */
611			OS_DELAY(DELAY_PLL_SETTLE);
612		} else if (AH_PRIVATE(ah)->ah_devid == AR5211_DEVID) {
613			OS_REG_WRITE(ah, AR_PHY_PLL_CTL, AR_PHY_PLL_CTL_40);
614			OS_DELAY(DELAY_PLL_SETTLE);
615			OS_REG_WRITE(ah, AR5211_PHY_MODE,
616			    AR5211_PHY_MODE_OFDM | (IEEE80211_IS_CHAN_2GHZ(chan) ?
617				AR5211_PHY_MODE_RF2GHZ :
618				AR5211_PHY_MODE_RF5GHZ));
619		}
620	}
621
622	/*
623	 * Reset the HW - PCI must be reset after the rest of the
624	 * device has been reset
625	 */
626	if (!ar5211SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI))
627		return AH_FALSE;
628	OS_DELAY(2100);	   /* 8245 @ 96Mhz hangs with 2000us. */
629
630	/* Bring out of sleep mode (AGAIN) */
631	if (!ar5211SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
632		return AH_FALSE;
633
634	/* Clear warm reset register */
635	return ar5211SetResetReg(ah, 0);
636}
637
638/*
639 * Recalibrate the lower PHY chips to account for temperature/environment
640 * changes.
641 */
642HAL_BOOL
643ar5211PerCalibrationN(struct ath_hal *ah,  struct ieee80211_channel *chan,
644	u_int chainMask, HAL_BOOL longCal, HAL_BOOL *isCalDone)
645{
646	struct ath_hal_5211 *ahp = AH5211(ah);
647	HAL_CHANNEL_INTERNAL *ichan;
648	int32_t qCoff, qCoffDenom;
649	uint32_t data;
650	int32_t iqCorrMeas;
651	int32_t iCoff, iCoffDenom;
652	uint32_t powerMeasQ, powerMeasI;
653
654	ichan = ath_hal_checkchannel(ah, chan);
655	if (ichan == AH_NULL) {
656		HALDEBUG(ah, HAL_DEBUG_ANY,
657		    "%s: invalid channel %u/0x%x; no mapping\n",
658		    __func__, chan->ic_freq, chan->ic_flags);
659		return AH_FALSE;
660	}
661	/* IQ calibration in progress. Check to see if it has finished. */
662	if (ahp->ah_bIQCalibration &&
663	    !(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) & AR_PHY_TIMING_CTRL4_DO_IQCAL)) {
664		/* IQ Calibration has finished. */
665		ahp->ah_bIQCalibration = AH_FALSE;
666
667		/* Read calibration results. */
668		powerMeasI = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_I);
669		powerMeasQ = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_Q);
670		iqCorrMeas = OS_REG_READ(ah, AR_PHY_IQCAL_RES_IQ_CORR_MEAS);
671
672		/*
673		 * Prescale these values to remove 64-bit operation requirement at the loss
674		 * of a little precision.
675		 */
676		iCoffDenom = (powerMeasI / 2 + powerMeasQ / 2) / 128;
677		qCoffDenom = powerMeasQ / 64;
678
679		/* Protect against divide-by-0. */
680		if (iCoffDenom != 0 && qCoffDenom != 0) {
681			iCoff = (-iqCorrMeas) / iCoffDenom;
682			/* IQCORR_Q_I_COFF is a signed 6 bit number */
683			iCoff = iCoff & 0x3f;
684
685			qCoff = ((int32_t)powerMeasI / qCoffDenom) - 64;
686			/* IQCORR_Q_Q_COFF is a signed 5 bit number */
687			qCoff = qCoff & 0x1f;
688
689			HALDEBUG(ah, HAL_DEBUG_PERCAL, "powerMeasI = 0x%08x\n",
690			    powerMeasI);
691			HALDEBUG(ah, HAL_DEBUG_PERCAL, "powerMeasQ = 0x%08x\n",
692			    powerMeasQ);
693			HALDEBUG(ah, HAL_DEBUG_PERCAL, "iqCorrMeas = 0x%08x\n",
694			    iqCorrMeas);
695			HALDEBUG(ah, HAL_DEBUG_PERCAL, "iCoff	  = %d\n",
696			    iCoff);
697			HALDEBUG(ah, HAL_DEBUG_PERCAL, "qCoff	  = %d\n",
698			    qCoff);
699
700			/* Write IQ */
701			data  = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) |
702				AR_PHY_TIMING_CTRL4_IQCORR_ENABLE |
703				(((uint32_t)iCoff) << AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF_S) |
704				((uint32_t)qCoff);
705			OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4, data);
706		}
707	}
708	*isCalDone = !ahp->ah_bIQCalibration;
709
710	if (longCal) {
711		/* Perform noise floor and set status */
712		if (!ar5211IsNfGood(ah, chan)) {
713			/* report up and clear internal state */
714			chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
715			return AH_FALSE;
716		}
717		if (!ar5211CalNoiseFloor(ah, chan)) {
718			/*
719			 * Delay 5ms before retrying the noise floor
720			 * just to make sure, as we are in an error
721			 * condition here.
722			 */
723			OS_DELAY(5000);
724			if (!ar5211CalNoiseFloor(ah, chan)) {
725				if (!IEEE80211_IS_CHAN_CCK(chan))
726					chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
727				return AH_FALSE;
728			}
729		}
730		ar5211RequestRfgain(ah);
731	}
732	return AH_TRUE;
733}
734
735HAL_BOOL
736ar5211PerCalibration(struct ath_hal *ah, struct ieee80211_channel *chan,
737	HAL_BOOL *isIQdone)
738{
739	return ar5211PerCalibrationN(ah,  chan, 0x1, AH_TRUE, isIQdone);
740}
741
742HAL_BOOL
743ar5211ResetCalValid(struct ath_hal *ah, const struct ieee80211_channel *chan)
744{
745	/* XXX */
746	return AH_TRUE;
747}
748
749/*
750 * Writes the given reset bit mask into the reset register
751 */
752static HAL_BOOL
753ar5211SetResetReg(struct ath_hal *ah, uint32_t resetMask)
754{
755	uint32_t mask = resetMask ? resetMask : ~0;
756	HAL_BOOL rt;
757
758	(void) OS_REG_READ(ah, AR_RXDP);/* flush any pending MMR writes */
759	OS_REG_WRITE(ah, AR_RC, resetMask);
760
761	/* need to wait at least 128 clocks when reseting PCI before read */
762	OS_DELAY(15);
763
764	resetMask &= AR_RC_MAC | AR_RC_BB;
765	mask &= AR_RC_MAC | AR_RC_BB;
766	rt = ath_hal_wait(ah, AR_RC, mask, resetMask);
767        if ((resetMask & AR_RC_MAC) == 0) {
768		if (isBigEndian()) {
769			/*
770			 * Set CFG, little-endian for descriptor accesses.
771			 */
772			mask = INIT_CONFIG_STATUS | AR_CFG_SWTD | AR_CFG_SWRD;
773			OS_REG_WRITE(ah, AR_CFG, mask);
774		} else
775			OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS);
776	}
777	return rt;
778}
779
780/*
781 * Takes the MHz channel value and sets the Channel value
782 *
783 * ASSUMES: Writes enabled to analog bus before AGC is active
784 *   or by disabling the AGC.
785 */
786static HAL_BOOL
787ar5211SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
788{
789	uint32_t refClk, reg32, data2111;
790	int16_t chan5111, chanIEEE;
791
792	chanIEEE = chan->ic_ieee;
793	if (IEEE80211_IS_CHAN_2GHZ(chan)) {
794		const CHAN_INFO_2GHZ* ci =
795			&chan2GHzData[chanIEEE + CI_2GHZ_INDEX_CORRECTION];
796
797		data2111 = ((ath_hal_reverseBits(ci->channelSelect, 8) & 0xff)
798				<< 5)
799			 | (ci->refClkSel << 4);
800		chan5111 = ci->channel5111;
801	} else {
802		data2111 = 0;
803		chan5111 = chanIEEE;
804	}
805
806	/* Rest of the code is common for 5 GHz and 2.4 GHz. */
807	if (chan5111 >= 145 || (chan5111 & 0x1)) {
808		reg32 = ath_hal_reverseBits(chan5111 - 24, 8) & 0xFF;
809		refClk = 1;
810	} else {
811		reg32 = ath_hal_reverseBits(((chan5111 - 24) / 2), 8) & 0xFF;
812		refClk = 0;
813	}
814
815	reg32 = (reg32 << 2) | (refClk << 1) | (1 << 10) | 0x1;
816	OS_REG_WRITE(ah, AR_PHY(0x27), ((data2111 & 0xff) << 8) | (reg32 & 0xff));
817	reg32 >>= 8;
818	OS_REG_WRITE(ah, AR_PHY(0x34), (data2111 & 0xff00) | (reg32 & 0xff));
819
820	AH_PRIVATE(ah)->ah_curchan = chan;
821	return AH_TRUE;
822}
823
824static int16_t
825ar5211GetNoiseFloor(struct ath_hal *ah)
826{
827	int16_t nf;
828
829	nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
830	if (nf & 0x100)
831		nf = 0 - ((nf ^ 0x1ff) + 1);
832	return nf;
833}
834
835/*
836 * Peform the noisefloor calibration for the length of time set
837 * in runTime (valid values 1 to 7)
838 *
839 * Returns: The NF value at the end of the given time (or 0 for failure)
840 */
841int16_t
842ar5211RunNoiseFloor(struct ath_hal *ah, uint8_t runTime, int16_t startingNF)
843{
844	int i, searchTime;
845
846	HALASSERT(runTime <= 7);
847
848	/* Setup  noise floor run time and starting value */
849	OS_REG_WRITE(ah, AR_PHY(25),
850		(OS_REG_READ(ah, AR_PHY(25)) & ~0xFFF) |
851			 ((runTime << 9) & 0xE00) | (startingNF & 0x1FF));
852	/* Calibrate the noise floor */
853	OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
854		OS_REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_NF);
855
856	/* Compute the required amount of searchTime needed to finish NF */
857	if (runTime == 0) {
858		/* 8 search windows * 6.4us each */
859		searchTime = 8  * 7;
860	} else {
861		/* 512 * runtime search windows * 6.4us each */
862		searchTime = (runTime * 512)  * 7;
863	}
864
865	/*
866	 * Do not read noise floor until it has been updated
867	 *
868	 * As a guesstimate - we may only get 1/60th the time on
869	 * the air to see search windows  in a heavily congested
870	 * network (40 us every 2400 us of time)
871	 */
872	for (i = 0; i < 60; i++) {
873		if ((OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) == 0)
874			break;
875		OS_DELAY(searchTime);
876	}
877	if (i >= 60) {
878		HALDEBUG(ah, HAL_DEBUG_NFCAL,
879		    "NF with runTime %d failed to end on channel %d\n",
880		    runTime, AH_PRIVATE(ah)->ah_curchan->ic_freq);
881		HALDEBUG(ah, HAL_DEBUG_NFCAL,
882		    "  PHY NF Reg state:	 0x%x\n",
883		    OS_REG_READ(ah, AR_PHY_AGC_CONTROL));
884		HALDEBUG(ah, HAL_DEBUG_NFCAL,
885		    "  PHY Active Reg state: 0x%x\n",
886		    OS_REG_READ(ah, AR_PHY_ACTIVE));
887		return 0;
888	}
889
890	return ar5211GetNoiseFloor(ah);
891}
892
893static HAL_BOOL
894getNoiseFloorThresh(struct ath_hal *ah, const struct ieee80211_channel *chan,
895	int16_t *nft)
896{
897	HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
898
899	switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
900	case IEEE80211_CHAN_A:
901		*nft = ee->ee_noiseFloorThresh[0];
902		break;
903	case IEEE80211_CHAN_B:
904		*nft = ee->ee_noiseFloorThresh[1];
905		break;
906	case IEEE80211_CHAN_PUREG:
907		*nft = ee->ee_noiseFloorThresh[2];
908		break;
909	default:
910		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
911		    __func__, chan->ic_flags);
912		return AH_FALSE;
913	}
914	return AH_TRUE;
915}
916
917/*
918 * Read the NF and check it against the noise floor threshold
919 *
920 * Returns: TRUE if the NF is good
921 */
922static HAL_BOOL
923ar5211IsNfGood(struct ath_hal *ah, struct ieee80211_channel *chan)
924{
925	HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
926	int16_t nf, nfThresh;
927
928	if (!getNoiseFloorThresh(ah, chan, &nfThresh))
929		return AH_FALSE;
930	if (OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) {
931		HALDEBUG(ah, HAL_DEBUG_ANY,
932		    "%s: NF did not complete in calibration window\n", __func__);
933	}
934	nf = ar5211GetNoiseFloor(ah);
935	if (nf > nfThresh) {
936		HALDEBUG(ah, HAL_DEBUG_ANY,
937		    "%s: noise floor failed; detected %u, threshold %u\n",
938		    __func__, nf, nfThresh);
939		/*
940		 * NB: Don't discriminate 2.4 vs 5Ghz, if this
941		 *     happens it indicates a problem regardless
942		 *     of the band.
943		 */
944		chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
945	}
946	ichan->rawNoiseFloor = nf;
947	return (nf <= nfThresh);
948}
949
950/*
951 * Peform the noisefloor calibration and check for any constant channel
952 * interference.
953 *
954 * NOTE: preAR5211 have a lengthy carrier wave detection process - hence
955 * it is if'ed for MKK regulatory domain only.
956 *
957 * Returns: TRUE for a successful noise floor calibration; else FALSE
958 */
959HAL_BOOL
960ar5211CalNoiseFloor(struct ath_hal *ah, const struct ieee80211_channel *chan)
961{
962#define	N(a)	(sizeof (a) / sizeof (a[0]))
963	/* Check for Carrier Wave interference in MKK regulatory zone */
964	if (AH_PRIVATE(ah)->ah_macVersion < AR_SREV_VERSION_OAHU &&
965	    (chan->ic_flags & CHANNEL_NFCREQUIRED)) {
966		static const uint8_t runtime[3] = { 0, 2, 7 };
967		HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
968		int16_t nf, nfThresh;
969		int i;
970
971		if (!getNoiseFloorThresh(ah, chan, &nfThresh))
972			return AH_FALSE;
973		/*
974		 * Run a quick noise floor that will hopefully
975		 * complete (decrease delay time).
976		 */
977		for (i = 0; i < N(runtime); i++) {
978			nf = ar5211RunNoiseFloor(ah, runtime[i], 0);
979			if (nf > nfThresh) {
980				HALDEBUG(ah, HAL_DEBUG_ANY,
981				    "%s: run failed with %u > threshold %u "
982				    "(runtime %u)\n", __func__,
983				    nf, nfThresh, runtime[i]);
984				ichan->rawNoiseFloor = 0;
985			} else
986				ichan->rawNoiseFloor = nf;
987		}
988		return (i <= N(runtime));
989	} else {
990		/* Calibrate the noise floor */
991		OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
992			OS_REG_READ(ah, AR_PHY_AGC_CONTROL) |
993				 AR_PHY_AGC_CONTROL_NF);
994	}
995	return AH_TRUE;
996#undef N
997}
998
999/*
1000 * Adjust NF based on statistical values for 5GHz frequencies.
1001 */
1002int16_t
1003ar5211GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
1004{
1005	static const struct {
1006		uint16_t freqLow;
1007		int16_t	  adjust;
1008	} adjust5111[] = {
1009		{ 5790,	11 },	/* NB: ordered high -> low */
1010		{ 5730, 10 },
1011		{ 5690,  9 },
1012		{ 5660,  8 },
1013		{ 5610,  7 },
1014		{ 5530,  5 },
1015		{ 5450,  4 },
1016		{ 5379,  2 },
1017		{ 5209,  0 },	/* XXX? bogus but doesn't matter */
1018		{    0,  1 },
1019	};
1020	int i;
1021
1022	for (i = 0; c->channel <= adjust5111[i].freqLow; i++)
1023		;
1024	/* NB: placeholder for 5111's less severe requirement */
1025	return adjust5111[i].adjust / 3;
1026}
1027
1028/*
1029 * Reads EEPROM header info from device structure and programs
1030 * analog registers 6 and 7
1031 *
1032 * REQUIRES: Access to the analog device
1033 */
1034static HAL_BOOL
1035ar5211SetRf6and7(struct ath_hal *ah, const struct ieee80211_channel *chan)
1036{
1037#define	N(a)	(sizeof (a) / sizeof (a[0]))
1038	uint16_t freq = ath_hal_gethwchannel(ah, chan);
1039	HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1040	struct ath_hal_5211 *ahp = AH5211(ah);
1041	uint16_t rfXpdGain, rfPloSel, rfPwdXpd;
1042	uint16_t tempOB, tempDB;
1043	uint16_t freqIndex;
1044	int i;
1045
1046	freqIndex = IEEE80211_IS_CHAN_2GHZ(chan) ? 2 : 1;
1047
1048	/*
1049	 * TODO: This array mode correspondes with the index used
1050	 *	 during the read.
1051	 * For readability, this should be changed to an enum or #define
1052	 */
1053	switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
1054	case IEEE80211_CHAN_A:
1055		if (freq > 4000 && freq < 5260) {
1056			tempOB = ee->ee_ob1;
1057			tempDB = ee->ee_db1;
1058		} else if (freq >= 5260 && freq < 5500) {
1059			tempOB = ee->ee_ob2;
1060			tempDB = ee->ee_db2;
1061		} else if (freq >= 5500 && freq < 5725) {
1062			tempOB = ee->ee_ob3;
1063			tempDB = ee->ee_db3;
1064		} else if (freq >= 5725) {
1065			tempOB = ee->ee_ob4;
1066			tempDB = ee->ee_db4;
1067		} else {
1068			/* XXX panic?? */
1069			tempOB = tempDB = 0;
1070		}
1071
1072		rfXpdGain = ee->ee_xgain[0];
1073		rfPloSel  = ee->ee_xpd[0];
1074		rfPwdXpd  = !ee->ee_xpd[0];
1075
1076		ar5211Rf6n7[5][freqIndex]  =
1077			(ar5211Rf6n7[5][freqIndex] & ~0x10000000) |
1078				(ee->ee_cornerCal.pd84<< 28);
1079		ar5211Rf6n7[6][freqIndex]  =
1080			(ar5211Rf6n7[6][freqIndex] & ~0x04000000) |
1081				(ee->ee_cornerCal.pd90 << 26);
1082		ar5211Rf6n7[21][freqIndex] =
1083			(ar5211Rf6n7[21][freqIndex] & ~0x08) |
1084				(ee->ee_cornerCal.gSel << 3);
1085		break;
1086	case IEEE80211_CHAN_B:
1087		tempOB = ee->ee_obFor24;
1088		tempDB = ee->ee_dbFor24;
1089		rfXpdGain = ee->ee_xgain[1];
1090		rfPloSel  = ee->ee_xpd[1];
1091		rfPwdXpd  = !ee->ee_xpd[1];
1092		break;
1093	case IEEE80211_CHAN_PUREG:
1094		tempOB = ee->ee_obFor24g;
1095		tempDB = ee->ee_dbFor24g;
1096		rfXpdGain = ee->ee_xgain[2];
1097		rfPloSel  = ee->ee_xpd[2];
1098		rfPwdXpd  = !ee->ee_xpd[2];
1099		break;
1100	default:
1101		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1102		    __func__, chan->ic_flags);
1103		return AH_FALSE;
1104	}
1105
1106	HALASSERT(1 <= tempOB && tempOB <= 5);
1107	HALASSERT(1 <= tempDB && tempDB <= 5);
1108
1109	/* Set rfXpdGain and rfPwdXpd */
1110	ar5211Rf6n7[11][freqIndex] =  (ar5211Rf6n7[11][freqIndex] & ~0xC0) |
1111		(((ath_hal_reverseBits(rfXpdGain, 4) << 7) | (rfPwdXpd << 6)) & 0xC0);
1112	ar5211Rf6n7[12][freqIndex] =  (ar5211Rf6n7[12][freqIndex] & ~0x07) |
1113		((ath_hal_reverseBits(rfXpdGain, 4) >> 1) & 0x07);
1114
1115	/* Set OB */
1116	ar5211Rf6n7[12][freqIndex] =  (ar5211Rf6n7[12][freqIndex] & ~0x80) |
1117		((ath_hal_reverseBits(tempOB, 3) << 7) & 0x80);
1118	ar5211Rf6n7[13][freqIndex] =  (ar5211Rf6n7[13][freqIndex] & ~0x03) |
1119		((ath_hal_reverseBits(tempOB, 3) >> 1) & 0x03);
1120
1121	/* Set DB */
1122	ar5211Rf6n7[13][freqIndex] =  (ar5211Rf6n7[13][freqIndex] & ~0x1C) |
1123		((ath_hal_reverseBits(tempDB, 3) << 2) & 0x1C);
1124
1125	/* Set rfPloSel */
1126	ar5211Rf6n7[17][freqIndex] =  (ar5211Rf6n7[17][freqIndex] & ~0x08) |
1127		((rfPloSel << 3) & 0x08);
1128
1129	/* Write the Rf registers 6 & 7 */
1130	for (i = 0; i < N(ar5211Rf6n7); i++)
1131		OS_REG_WRITE(ah, ar5211Rf6n7[i][0], ar5211Rf6n7[i][freqIndex]);
1132
1133	/* Now that we have reprogrammed rfgain value, clear the flag. */
1134	ahp->ah_rfgainState = RFGAIN_INACTIVE;
1135
1136	return AH_TRUE;
1137#undef N
1138}
1139
1140HAL_BOOL
1141ar5211SetAntennaSwitchInternal(struct ath_hal *ah, HAL_ANT_SETTING settings,
1142	const struct ieee80211_channel *chan)
1143{
1144#define	ANT_SWITCH_TABLE1	0x9960
1145#define	ANT_SWITCH_TABLE2	0x9964
1146	HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1147	struct ath_hal_5211 *ahp = AH5211(ah);
1148	uint32_t antSwitchA, antSwitchB;
1149	int ix;
1150
1151	switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
1152	case IEEE80211_CHAN_A:		ix = 0; break;
1153	case IEEE80211_CHAN_B:		ix = 1; break;
1154	case IEEE80211_CHAN_PUREG:	ix = 2; break;
1155	default:
1156		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1157		    __func__, chan->ic_flags);
1158		return AH_FALSE;
1159	}
1160
1161	antSwitchA =  ee->ee_antennaControl[1][ix]
1162		   | (ee->ee_antennaControl[2][ix] << 6)
1163		   | (ee->ee_antennaControl[3][ix] << 12)
1164		   | (ee->ee_antennaControl[4][ix] << 18)
1165		   | (ee->ee_antennaControl[5][ix] << 24)
1166		   ;
1167	antSwitchB =  ee->ee_antennaControl[6][ix]
1168		   | (ee->ee_antennaControl[7][ix] << 6)
1169		   | (ee->ee_antennaControl[8][ix] << 12)
1170		   | (ee->ee_antennaControl[9][ix] << 18)
1171		   | (ee->ee_antennaControl[10][ix] << 24)
1172		   ;
1173	/*
1174	 * For fixed antenna, give the same setting for both switch banks
1175	 */
1176	switch (settings) {
1177	case HAL_ANT_FIXED_A:
1178		antSwitchB = antSwitchA;
1179		break;
1180	case HAL_ANT_FIXED_B:
1181		antSwitchA = antSwitchB;
1182		break;
1183	case HAL_ANT_VARIABLE:
1184		break;
1185	default:
1186		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad antenna setting %u\n",
1187		    __func__, settings);
1188		return AH_FALSE;
1189	}
1190	ahp->ah_diversityControl = settings;
1191
1192	OS_REG_WRITE(ah, ANT_SWITCH_TABLE1, antSwitchA);
1193	OS_REG_WRITE(ah, ANT_SWITCH_TABLE2, antSwitchB);
1194
1195	return AH_TRUE;
1196#undef ANT_SWITCH_TABLE1
1197#undef ANT_SWITCH_TABLE2
1198}
1199
1200/*
1201 * Reads EEPROM header info and programs the device for correct operation
1202 * given the channel value
1203 */
1204static HAL_BOOL
1205ar5211SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
1206{
1207	HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1208	struct ath_hal_5211 *ahp = AH5211(ah);
1209	int arrayMode, falseDectectBackoff;
1210
1211	switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
1212	case IEEE80211_CHAN_A:
1213		arrayMode = 0;
1214		OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
1215			AR_PHY_FRAME_CTL_TX_CLIP, ee->ee_cornerCal.clip);
1216		break;
1217	case IEEE80211_CHAN_B:
1218		arrayMode = 1;
1219		break;
1220	case IEEE80211_CHAN_PUREG:
1221		arrayMode = 2;
1222		break;
1223	default:
1224		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1225		    __func__, chan->ic_flags);
1226		return AH_FALSE;
1227	}
1228
1229	/* Set the antenna register(s) correctly for the chip revision */
1230	if (AH_PRIVATE(ah)->ah_macVersion < AR_SREV_VERSION_OAHU) {
1231		OS_REG_WRITE(ah, AR_PHY(68),
1232			(OS_REG_READ(ah, AR_PHY(68)) & 0xFFFFFFFC) | 0x3);
1233	} else {
1234		OS_REG_WRITE(ah, AR_PHY(68),
1235			(OS_REG_READ(ah, AR_PHY(68)) & 0xFFFFFC06) |
1236			(ee->ee_antennaControl[0][arrayMode] << 4) | 0x1);
1237
1238		ar5211SetAntennaSwitchInternal(ah,
1239			ahp->ah_diversityControl, chan);
1240
1241		/* Set the Noise Floor Thresh on ar5211 devices */
1242		OS_REG_WRITE(ah, AR_PHY_BASE + (90 << 2),
1243			(ee->ee_noiseFloorThresh[arrayMode] & 0x1FF) | (1<<9));
1244	}
1245	OS_REG_WRITE(ah, AR_PHY_BASE + (17 << 2),
1246		(OS_REG_READ(ah, AR_PHY_BASE + (17 << 2)) & 0xFFFFC07F) |
1247		((ee->ee_switchSettling[arrayMode] << 7) & 0x3F80));
1248	OS_REG_WRITE(ah, AR_PHY_BASE + (18 << 2),
1249		(OS_REG_READ(ah, AR_PHY_BASE + (18 << 2)) & 0xFFFC0FFF) |
1250		((ee->ee_txrxAtten[arrayMode] << 12) & 0x3F000));
1251	OS_REG_WRITE(ah, AR_PHY_BASE + (20 << 2),
1252		(OS_REG_READ(ah, AR_PHY_BASE + (20 << 2)) & 0xFFFF0000) |
1253		((ee->ee_pgaDesiredSize[arrayMode] << 8) & 0xFF00) |
1254		(ee->ee_adcDesiredSize[arrayMode] & 0x00FF));
1255	OS_REG_WRITE(ah, AR_PHY_BASE + (13 << 2),
1256		(ee->ee_txEndToXPAOff[arrayMode] << 24) |
1257		(ee->ee_txEndToXPAOff[arrayMode] << 16) |
1258		(ee->ee_txFrameToXPAOn[arrayMode] << 8) |
1259		ee->ee_txFrameToXPAOn[arrayMode]);
1260	OS_REG_WRITE(ah, AR_PHY_BASE + (10 << 2),
1261		(OS_REG_READ(ah, AR_PHY_BASE + (10 << 2)) & 0xFFFF00FF) |
1262		(ee->ee_txEndToXLNAOn[arrayMode] << 8));
1263	OS_REG_WRITE(ah, AR_PHY_BASE + (25 << 2),
1264		(OS_REG_READ(ah, AR_PHY_BASE + (25 << 2)) & 0xFFF80FFF) |
1265		((ee->ee_thresh62[arrayMode] << 12) & 0x7F000));
1266
1267#define NO_FALSE_DETECT_BACKOFF   2
1268#define CB22_FALSE_DETECT_BACKOFF 6
1269	/*
1270	 * False detect backoff - suspected 32 MHz spur causes
1271	 * false detects in OFDM, causing Tx Hangs.  Decrease
1272	 * weak signal sensitivity for this card.
1273	 */
1274	falseDectectBackoff = NO_FALSE_DETECT_BACKOFF;
1275	if (AH_PRIVATE(ah)->ah_eeversion < AR_EEPROM_VER3_3) {
1276		if (AH_PRIVATE(ah)->ah_subvendorid == 0x1022 &&
1277		    IEEE80211_IS_CHAN_OFDM(chan))
1278			falseDectectBackoff += CB22_FALSE_DETECT_BACKOFF;
1279	} else {
1280		uint16_t freq = ath_hal_gethwchannel(ah, chan);
1281		uint32_t remainder = freq % 32;
1282
1283		if (remainder && (remainder < 10 || remainder > 22))
1284			falseDectectBackoff += ee->ee_falseDetectBackoff[arrayMode];
1285	}
1286	OS_REG_WRITE(ah, 0x9924,
1287		(OS_REG_READ(ah, 0x9924) & 0xFFFFFF01)
1288		| ((falseDectectBackoff << 1) & 0xF7));
1289
1290	return AH_TRUE;
1291#undef NO_FALSE_DETECT_BACKOFF
1292#undef CB22_FALSE_DETECT_BACKOFF
1293}
1294
1295/*
1296 * Set the limit on the overall output power.  Used for dynamic
1297 * transmit power control and the like.
1298 *
1299 * NOTE: The power is passed in is in units of 0.5 dBm.
1300 */
1301HAL_BOOL
1302ar5211SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
1303{
1304
1305	AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER);
1306	OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, limit);
1307	return AH_TRUE;
1308}
1309
1310/*
1311 * Sets the transmit power in the baseband for the given
1312 * operating channel and mode.
1313 */
1314static HAL_BOOL
1315ar5211SetTransmitPower(struct ath_hal *ah, const struct ieee80211_channel *chan)
1316{
1317	uint16_t freq = ath_hal_gethwchannel(ah, chan);
1318	HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1319	TRGT_POWER_INFO *pi;
1320	RD_EDGES_POWER *rep;
1321	PCDACS_EEPROM eepromPcdacs;
1322	u_int nchan, cfgCtl;
1323	int i;
1324
1325	/* setup the pcdac struct to point to the correct info, based on mode */
1326	switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
1327	case IEEE80211_CHAN_A:
1328		eepromPcdacs.numChannels = ee->ee_numChannels11a;
1329		eepromPcdacs.pChannelList= ee->ee_channels11a;
1330		eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11a;
1331		nchan = ee->ee_numTargetPwr_11a;
1332		pi = ee->ee_trgtPwr_11a;
1333		break;
1334	case IEEE80211_CHAN_PUREG:
1335		eepromPcdacs.numChannels = ee->ee_numChannels2_4;
1336		eepromPcdacs.pChannelList= ee->ee_channels11g;
1337		eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11g;
1338		nchan = ee->ee_numTargetPwr_11g;
1339		pi = ee->ee_trgtPwr_11g;
1340		break;
1341	case IEEE80211_CHAN_B:
1342		eepromPcdacs.numChannels = ee->ee_numChannels2_4;
1343		eepromPcdacs.pChannelList= ee->ee_channels11b;
1344		eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11b;
1345		nchan = ee->ee_numTargetPwr_11b;
1346		pi = ee->ee_trgtPwr_11b;
1347		break;
1348	default:
1349		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1350		    __func__, chan->ic_flags);
1351		return AH_FALSE;
1352	}
1353
1354	ar5211SetPowerTable(ah, &eepromPcdacs, freq);
1355
1356	rep = AH_NULL;
1357	/* Match CTL to EEPROM value */
1358	cfgCtl = ath_hal_getctl(ah, chan);
1359	for (i = 0; i < ee->ee_numCtls; i++)
1360		if (ee->ee_ctl[i] != 0 && ee->ee_ctl[i] == cfgCtl) {
1361			rep = &ee->ee_rdEdgesPower[i * NUM_EDGES];
1362			break;
1363		}
1364	ar5211SetRateTable(ah, rep, pi, nchan, chan);
1365
1366	return AH_TRUE;
1367}
1368
1369/*
1370 * Read the transmit power levels from the structures taken
1371 * from EEPROM. Interpolate read transmit power values for
1372 * this channel. Organize the transmit power values into a
1373 * table for writing into the hardware.
1374 */
1375void
1376ar5211SetPowerTable(struct ath_hal *ah, PCDACS_EEPROM *pSrcStruct,
1377	uint16_t channel)
1378{
1379	static FULL_PCDAC_STRUCT pcdacStruct;
1380	static uint16_t pcdacTable[PWR_TABLE_SIZE];
1381
1382	uint16_t	 i, j;
1383	uint16_t	 *pPcdacValues;
1384	int16_t	  *pScaledUpDbm;
1385	int16_t	  minScaledPwr;
1386	int16_t	  maxScaledPwr;
1387	int16_t	  pwr;
1388	uint16_t	 pcdacMin = 0;
1389	uint16_t	 pcdacMax = 63;
1390	uint16_t	 pcdacTableIndex;
1391	uint16_t	 scaledPcdac;
1392	uint32_t	 addr;
1393	uint32_t	 temp32;
1394
1395	OS_MEMZERO(&pcdacStruct, sizeof(FULL_PCDAC_STRUCT));
1396	OS_MEMZERO(pcdacTable, sizeof(uint16_t) * PWR_TABLE_SIZE);
1397	pPcdacValues = pcdacStruct.PcdacValues;
1398	pScaledUpDbm = pcdacStruct.PwrValues;
1399
1400	/* Initialize the pcdacs to dBM structs pcdacs to be 1 to 63 */
1401	for (i = PCDAC_START, j = 0; i <= PCDAC_STOP; i+= PCDAC_STEP, j++)
1402		pPcdacValues[j] = i;
1403
1404	pcdacStruct.numPcdacValues = j;
1405	pcdacStruct.pcdacMin = PCDAC_START;
1406	pcdacStruct.pcdacMax = PCDAC_STOP;
1407
1408	/* Fill out the power values for this channel */
1409	for (j = 0; j < pcdacStruct.numPcdacValues; j++ )
1410		pScaledUpDbm[j] = ar5211GetScaledPower(channel, pPcdacValues[j], pSrcStruct);
1411
1412	/* Now scale the pcdac values to fit in the 64 entry power table */
1413	minScaledPwr = pScaledUpDbm[0];
1414	maxScaledPwr = pScaledUpDbm[pcdacStruct.numPcdacValues - 1];
1415
1416	/* find minimum and make monotonic */
1417	for (j = 0; j < pcdacStruct.numPcdacValues; j++) {
1418		if (minScaledPwr >= pScaledUpDbm[j]) {
1419			minScaledPwr = pScaledUpDbm[j];
1420			pcdacMin = j;
1421		}
1422		/*
1423		 * Make the full_hsh monotonically increasing otherwise
1424		 * interpolation algorithm will get fooled gotta start
1425		 * working from the top, hence i = 63 - j.
1426		 */
1427		i = (uint16_t)(pcdacStruct.numPcdacValues - 1 - j);
1428		if (i == 0)
1429			break;
1430		if (pScaledUpDbm[i-1] > pScaledUpDbm[i]) {
1431			/*
1432			 * It could be a glitch, so make the power for
1433			 * this pcdac the same as the power from the
1434			 * next highest pcdac.
1435			 */
1436			pScaledUpDbm[i - 1] = pScaledUpDbm[i];
1437		}
1438	}
1439
1440	for (j = 0; j < pcdacStruct.numPcdacValues; j++)
1441		if (maxScaledPwr < pScaledUpDbm[j]) {
1442			maxScaledPwr = pScaledUpDbm[j];
1443			pcdacMax = j;
1444		}
1445
1446	/* Find the first power level with a pcdac */
1447	pwr = (uint16_t)(PWR_STEP * ((minScaledPwr - PWR_MIN + PWR_STEP / 2) / PWR_STEP)  + PWR_MIN);
1448
1449	/* Write all the first pcdac entries based off the pcdacMin */
1450	pcdacTableIndex = 0;
1451	for (i = 0; i < (2 * (pwr - PWR_MIN) / EEP_SCALE + 1); i++)
1452		pcdacTable[pcdacTableIndex++] = pcdacMin;
1453
1454	i = 0;
1455	while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1]) {
1456		pwr += PWR_STEP;
1457		/* stop if dbM > max_power_possible */
1458		while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1] &&
1459		       (pwr - pScaledUpDbm[i])*(pwr - pScaledUpDbm[i+1]) > 0)
1460			i++;
1461		/* scale by 2 and add 1 to enable round up or down as needed */
1462		scaledPcdac = (uint16_t)(ar5211GetInterpolatedValue(pwr,
1463				pScaledUpDbm[i], pScaledUpDbm[i+1],
1464				(uint16_t)(pPcdacValues[i] * 2),
1465				(uint16_t)(pPcdacValues[i+1] * 2), 0) + 1);
1466
1467		pcdacTable[pcdacTableIndex] = scaledPcdac / 2;
1468		if (pcdacTable[pcdacTableIndex] > pcdacMax)
1469			pcdacTable[pcdacTableIndex] = pcdacMax;
1470		pcdacTableIndex++;
1471	}
1472
1473	/* Write all the last pcdac entries based off the last valid pcdac */
1474	while (pcdacTableIndex < PWR_TABLE_SIZE) {
1475		pcdacTable[pcdacTableIndex] = pcdacTable[pcdacTableIndex - 1];
1476		pcdacTableIndex++;
1477	}
1478
1479	/* Finally, write the power values into the baseband power table */
1480	addr = AR_PHY_BASE + (608 << 2);
1481	for (i = 0; i < 32; i++) {
1482		temp32 = 0xffff & ((pcdacTable[2 * i + 1] << 8) | 0xff);
1483		temp32 = (temp32 << 16) | (0xffff & ((pcdacTable[2 * i] << 8) | 0xff));
1484		OS_REG_WRITE(ah, addr, temp32);
1485		addr += 4;
1486	}
1487
1488}
1489
1490/*
1491 * Set the transmit power in the baseband for the given
1492 * operating channel and mode.
1493 */
1494static void
1495ar5211SetRateTable(struct ath_hal *ah, RD_EDGES_POWER *pRdEdgesPower,
1496	TRGT_POWER_INFO *pPowerInfo, uint16_t numChannels,
1497	const struct ieee80211_channel *chan)
1498{
1499	uint16_t freq = ath_hal_gethwchannel(ah, chan);
1500	HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1501	struct ath_hal_5211 *ahp = AH5211(ah);
1502	static uint16_t ratesArray[NUM_RATES];
1503	static const uint16_t tpcScaleReductionTable[5] =
1504		{ 0, 3, 6, 9, MAX_RATE_POWER };
1505
1506	uint16_t	*pRatesPower;
1507	uint16_t	lowerChannel, lowerIndex=0, lowerPower=0;
1508	uint16_t	upperChannel, upperIndex=0, upperPower=0;
1509	uint16_t	twiceMaxEdgePower=63;
1510	uint16_t	twicePower = 0;
1511	uint16_t	i, numEdges;
1512	uint16_t	tempChannelList[NUM_EDGES]; /* temp array for holding edge channels */
1513	uint16_t	twiceMaxRDPower;
1514	int16_t	 scaledPower = 0;		/* for gcc -O2 */
1515	uint16_t	mask = 0x3f;
1516	HAL_BOOL	  paPreDEnable = 0;
1517	int8_t	  twiceAntennaGain, twiceAntennaReduction = 0;
1518
1519	pRatesPower = ratesArray;
1520	twiceMaxRDPower = chan->ic_maxregpower * 2;
1521
1522	if (IEEE80211_IS_CHAN_5GHZ(chan)) {
1523		twiceAntennaGain = ee->ee_antennaGainMax[0];
1524	} else {
1525		twiceAntennaGain = ee->ee_antennaGainMax[1];
1526	}
1527
1528	twiceAntennaReduction = ath_hal_getantennareduction(ah, chan, twiceAntennaGain);
1529
1530	if (pRdEdgesPower) {
1531		/* Get the edge power */
1532		for (i = 0; i < NUM_EDGES; i++) {
1533			if (pRdEdgesPower[i].rdEdge == 0)
1534				break;
1535			tempChannelList[i] = pRdEdgesPower[i].rdEdge;
1536		}
1537		numEdges = i;
1538
1539		ar5211GetLowerUpperValues(freq, tempChannelList,
1540			numEdges, &lowerChannel, &upperChannel);
1541		/* Get the index for this channel */
1542		for (i = 0; i < numEdges; i++)
1543			if (lowerChannel == tempChannelList[i])
1544				break;
1545		HALASSERT(i != numEdges);
1546
1547		if ((lowerChannel == upperChannel &&
1548		     lowerChannel == freq) ||
1549		    pRdEdgesPower[i].flag) {
1550			twiceMaxEdgePower = pRdEdgesPower[i].twice_rdEdgePower;
1551			HALASSERT(twiceMaxEdgePower > 0);
1552		}
1553	}
1554
1555	/* extrapolate the power values for the test Groups */
1556	for (i = 0; i < numChannels; i++)
1557		tempChannelList[i] = pPowerInfo[i].testChannel;
1558
1559	ar5211GetLowerUpperValues(freq, tempChannelList,
1560		numChannels, &lowerChannel, &upperChannel);
1561
1562	/* get the index for the channel */
1563	for (i = 0; i < numChannels; i++) {
1564		if (lowerChannel == tempChannelList[i])
1565			lowerIndex = i;
1566		if (upperChannel == tempChannelList[i]) {
1567			upperIndex = i;
1568			break;
1569		}
1570	}
1571
1572	for (i = 0; i < NUM_RATES; i++) {
1573		if (IEEE80211_IS_CHAN_OFDM(chan)) {
1574			/* power for rates 6,9,12,18,24 is all the same */
1575			if (i < 5) {
1576				lowerPower = pPowerInfo[lowerIndex].twicePwr6_24;
1577				upperPower = pPowerInfo[upperIndex].twicePwr6_24;
1578			} else if (i == 5) {
1579				lowerPower = pPowerInfo[lowerIndex].twicePwr36;
1580				upperPower = pPowerInfo[upperIndex].twicePwr36;
1581			} else if (i == 6) {
1582				lowerPower = pPowerInfo[lowerIndex].twicePwr48;
1583				upperPower = pPowerInfo[upperIndex].twicePwr48;
1584			} else if (i == 7) {
1585				lowerPower = pPowerInfo[lowerIndex].twicePwr54;
1586				upperPower = pPowerInfo[upperIndex].twicePwr54;
1587			}
1588		} else {
1589			switch (i) {
1590			case 0:
1591			case 1:
1592				lowerPower = pPowerInfo[lowerIndex].twicePwr6_24;
1593				upperPower = pPowerInfo[upperIndex].twicePwr6_24;
1594				break;
1595			case 2:
1596			case 3:
1597				lowerPower = pPowerInfo[lowerIndex].twicePwr36;
1598				upperPower = pPowerInfo[upperIndex].twicePwr36;
1599				break;
1600			case 4:
1601			case 5:
1602				lowerPower = pPowerInfo[lowerIndex].twicePwr48;
1603				upperPower = pPowerInfo[upperIndex].twicePwr48;
1604				break;
1605			case 6:
1606			case 7:
1607				lowerPower = pPowerInfo[lowerIndex].twicePwr54;
1608				upperPower = pPowerInfo[upperIndex].twicePwr54;
1609				break;
1610			}
1611		}
1612
1613		twicePower = ar5211GetInterpolatedValue(freq,
1614			lowerChannel, upperChannel, lowerPower, upperPower, 0);
1615
1616		/* Reduce power by band edge restrictions */
1617		twicePower = AH_MIN(twicePower, twiceMaxEdgePower);
1618
1619		/*
1620		 * If turbo is set, reduce power to keep power
1621		 * consumption under 2 Watts.  Note that we always do
1622		 * this unless specially configured.  Then we limit
1623		 * power only for non-AP operation.
1624		 */
1625		if (IEEE80211_IS_CHAN_TURBO(chan) &&
1626		    AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3_1
1627#ifdef AH_ENABLE_AP_SUPPORT
1628		    && AH_PRIVATE(ah)->ah_opmode != HAL_M_HOSTAP
1629#endif
1630		) {
1631			twicePower = AH_MIN(twicePower, ee->ee_turbo2WMaxPower5);
1632		}
1633
1634		/* Reduce power by max regulatory domain allowed restrictions */
1635		pRatesPower[i] = AH_MIN(twicePower, twiceMaxRDPower - twiceAntennaReduction);
1636
1637		/* Use 6 Mb power level for transmit power scaling reduction */
1638		/* We don't want to reduce higher rates if its not needed */
1639		if (i == 0) {
1640			scaledPower = pRatesPower[0] -
1641				(tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale] * 2);
1642			if (scaledPower < 1)
1643				scaledPower = 1;
1644		}
1645
1646		pRatesPower[i] = AH_MIN(pRatesPower[i], scaledPower);
1647	}
1648
1649	/* Record txPower at Rate 6 for info gathering */
1650	ahp->ah_tx6PowerInHalfDbm = pRatesPower[0];
1651
1652#ifdef AH_DEBUG
1653	HALDEBUG(ah, HAL_DEBUG_RESET,
1654	    "%s: final output power setting %d MHz:\n",
1655	    __func__, chan->ic_freq);
1656	HALDEBUG(ah, HAL_DEBUG_RESET,
1657	    "6 Mb %d dBm, MaxRD: %d dBm, MaxEdge %d dBm\n",
1658	    scaledPower / 2, twiceMaxRDPower / 2, twiceMaxEdgePower / 2);
1659	HALDEBUG(ah, HAL_DEBUG_RESET, "TPC Scale %d dBm - Ant Red %d dBm\n",
1660	    tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale] * 2,
1661	    twiceAntennaReduction / 2);
1662	if (IEEE80211_IS_CHAN_TURBO(chan) &&
1663	    AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3_1)
1664		HALDEBUG(ah, HAL_DEBUG_RESET, "Max Turbo %d dBm\n",
1665		    ee->ee_turbo2WMaxPower5);
1666	HALDEBUG(ah, HAL_DEBUG_RESET,
1667	    "  %2d | %2d | %2d | %2d | %2d | %2d | %2d | %2d dBm\n",
1668	    pRatesPower[0] / 2, pRatesPower[1] / 2, pRatesPower[2] / 2,
1669	    pRatesPower[3] / 2, pRatesPower[4] / 2, pRatesPower[5] / 2,
1670	    pRatesPower[6] / 2, pRatesPower[7] / 2);
1671#endif /* AH_DEBUG */
1672
1673	/* Write the power table into the hardware */
1674	OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
1675		 ((paPreDEnable & 1)<< 30) | ((pRatesPower[3] & mask) << 24) |
1676		 ((paPreDEnable & 1)<< 22) | ((pRatesPower[2] & mask) << 16) |
1677		 ((paPreDEnable & 1)<< 14) | ((pRatesPower[1] & mask) << 8) |
1678		 ((paPreDEnable & 1)<< 6 ) |  (pRatesPower[0] & mask));
1679	OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
1680		 ((paPreDEnable & 1)<< 30) | ((pRatesPower[7] & mask) << 24) |
1681		 ((paPreDEnable & 1)<< 22) | ((pRatesPower[6] & mask) << 16) |
1682		 ((paPreDEnable & 1)<< 14) | ((pRatesPower[5] & mask) << 8) |
1683		 ((paPreDEnable & 1)<< 6 ) |  (pRatesPower[4] & mask));
1684
1685	/* set max power to the power value at rate 6 */
1686	ar5211SetTxPowerLimit(ah, pRatesPower[0]);
1687
1688	AH_PRIVATE(ah)->ah_maxPowerLevel = pRatesPower[0];
1689}
1690
1691/*
1692 * Get or interpolate the pcdac value from the calibrated data
1693 */
1694uint16_t
1695ar5211GetScaledPower(uint16_t channel, uint16_t pcdacValue,
1696	const PCDACS_EEPROM *pSrcStruct)
1697{
1698	uint16_t powerValue;
1699	uint16_t lFreq, rFreq;		/* left and right frequency values */
1700	uint16_t llPcdac, ulPcdac;	/* lower and upper left pcdac values */
1701	uint16_t lrPcdac, urPcdac;	/* lower and upper right pcdac values */
1702	uint16_t lPwr, uPwr;		/* lower and upper temp pwr values */
1703	uint16_t lScaledPwr, rScaledPwr; /* left and right scaled power */
1704
1705	if (ar5211FindValueInList(channel, pcdacValue, pSrcStruct, &powerValue))
1706		/* value was copied from srcStruct */
1707		return powerValue;
1708
1709	ar5211GetLowerUpperValues(channel, pSrcStruct->pChannelList,
1710		pSrcStruct->numChannels, &lFreq, &rFreq);
1711	ar5211GetLowerUpperPcdacs(pcdacValue, lFreq, pSrcStruct,
1712		&llPcdac, &ulPcdac);
1713	ar5211GetLowerUpperPcdacs(pcdacValue, rFreq, pSrcStruct,
1714		&lrPcdac, &urPcdac);
1715
1716	/* get the power index for the pcdac value */
1717	ar5211FindValueInList(lFreq, llPcdac, pSrcStruct, &lPwr);
1718	ar5211FindValueInList(lFreq, ulPcdac, pSrcStruct, &uPwr);
1719	lScaledPwr = ar5211GetInterpolatedValue(pcdacValue,
1720				llPcdac, ulPcdac, lPwr, uPwr, 0);
1721
1722	ar5211FindValueInList(rFreq, lrPcdac, pSrcStruct, &lPwr);
1723	ar5211FindValueInList(rFreq, urPcdac, pSrcStruct, &uPwr);
1724	rScaledPwr = ar5211GetInterpolatedValue(pcdacValue,
1725				lrPcdac, urPcdac, lPwr, uPwr, 0);
1726
1727	return ar5211GetInterpolatedValue(channel, lFreq, rFreq,
1728		lScaledPwr, rScaledPwr, 0);
1729}
1730
1731/*
1732 * Find the value from the calibrated source data struct
1733 */
1734HAL_BOOL
1735ar5211FindValueInList(uint16_t channel, uint16_t pcdacValue,
1736	const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue)
1737{
1738	const DATA_PER_CHANNEL *pChannelData;
1739	const uint16_t *pPcdac;
1740	uint16_t i, j;
1741
1742	pChannelData = pSrcStruct->pDataPerChannel;
1743	for (i = 0; i < pSrcStruct->numChannels; i++ ) {
1744		if (pChannelData->channelValue == channel) {
1745			pPcdac = pChannelData->PcdacValues;
1746			for (j = 0; j < pChannelData->numPcdacValues; j++ ) {
1747				if (*pPcdac == pcdacValue) {
1748					*powerValue = pChannelData->PwrValues[j];
1749					return AH_TRUE;
1750				}
1751				pPcdac++;
1752			}
1753		}
1754		pChannelData++;
1755	}
1756	return AH_FALSE;
1757}
1758
1759/*
1760 * Returns interpolated or the scaled up interpolated value
1761 */
1762uint16_t
1763ar5211GetInterpolatedValue(uint16_t target,
1764	uint16_t srcLeft, uint16_t srcRight,
1765	uint16_t targetLeft, uint16_t targetRight,
1766	HAL_BOOL scaleUp)
1767{
1768	uint16_t rv;
1769	int16_t lRatio;
1770	uint16_t scaleValue = EEP_SCALE;
1771
1772	/* to get an accurate ratio, always scale, if want to scale, then don't scale back down */
1773	if ((targetLeft * targetRight) == 0)
1774		return 0;
1775	if (scaleUp)
1776		scaleValue = 1;
1777
1778	if (srcRight != srcLeft) {
1779		/*
1780		 * Note the ratio always need to be scaled,
1781		 * since it will be a fraction.
1782		 */
1783		lRatio = (target - srcLeft) * EEP_SCALE / (srcRight - srcLeft);
1784		if (lRatio < 0) {
1785		    /* Return as Left target if value would be negative */
1786		    rv = targetLeft * (scaleUp ? EEP_SCALE : 1);
1787		} else if (lRatio > EEP_SCALE) {
1788		    /* Return as Right target if Ratio is greater than 100% (SCALE) */
1789		    rv = targetRight * (scaleUp ? EEP_SCALE : 1);
1790		} else {
1791			rv = (lRatio * targetRight + (EEP_SCALE - lRatio) *
1792					targetLeft) / scaleValue;
1793		}
1794	} else {
1795		rv = targetLeft;
1796		if (scaleUp)
1797			rv *= EEP_SCALE;
1798	}
1799	return rv;
1800}
1801
1802/*
1803 *  Look for value being within 0.1 of the search values
1804 *  however, NDIS can't do float calculations, so multiply everything
1805 *  up by EEP_SCALE so can do integer arithmatic
1806 *
1807 * INPUT  value	   -value to search for
1808 * INPUT  pList	   -ptr to the list to search
1809 * INPUT  listSize	-number of entries in list
1810 * OUTPUT pLowerValue -return the lower value
1811 * OUTPUT pUpperValue -return the upper value
1812 */
1813void
1814ar5211GetLowerUpperValues(uint16_t value,
1815	const uint16_t *pList, uint16_t listSize,
1816	uint16_t *pLowerValue, uint16_t *pUpperValue)
1817{
1818	const uint16_t listEndValue = *(pList + listSize - 1);
1819	uint32_t target = value * EEP_SCALE;
1820	int i;
1821
1822	/*
1823	 * See if value is lower than the first value in the list
1824	 * if so return first value
1825	 */
1826	if (target < (uint32_t)(*pList * EEP_SCALE - EEP_DELTA)) {
1827		*pLowerValue = *pList;
1828		*pUpperValue = *pList;
1829		return;
1830	}
1831
1832	/*
1833	 * See if value is greater than last value in list
1834	 * if so return last value
1835	 */
1836	if (target > (uint32_t)(listEndValue * EEP_SCALE + EEP_DELTA)) {
1837		*pLowerValue = listEndValue;
1838		*pUpperValue = listEndValue;
1839		return;
1840	}
1841
1842	/* look for value being near or between 2 values in list */
1843	for (i = 0; i < listSize; i++) {
1844		/*
1845		 * If value is close to the current value of the list
1846		 * then target is not between values, it is one of the values
1847		 */
1848		if (abs(pList[i] * EEP_SCALE - (int32_t) target) < EEP_DELTA) {
1849			*pLowerValue = pList[i];
1850			*pUpperValue = pList[i];
1851			return;
1852		}
1853
1854		/*
1855		 * Look for value being between current value and next value
1856		 * if so return these 2 values
1857		 */
1858		if (target < (uint32_t)(pList[i + 1] * EEP_SCALE - EEP_DELTA)) {
1859			*pLowerValue = pList[i];
1860			*pUpperValue = pList[i + 1];
1861			return;
1862		}
1863	}
1864}
1865
1866/*
1867 * Get the upper and lower pcdac given the channel and the pcdac
1868 * used in the search
1869 */
1870void
1871ar5211GetLowerUpperPcdacs(uint16_t pcdac, uint16_t channel,
1872	const PCDACS_EEPROM *pSrcStruct,
1873	uint16_t *pLowerPcdac, uint16_t *pUpperPcdac)
1874{
1875	const DATA_PER_CHANNEL *pChannelData;
1876	int i;
1877
1878	/* Find the channel information */
1879	pChannelData = pSrcStruct->pDataPerChannel;
1880	for (i = 0; i < pSrcStruct->numChannels; i++) {
1881		if (pChannelData->channelValue == channel)
1882			break;
1883		pChannelData++;
1884	}
1885	ar5211GetLowerUpperValues(pcdac, pChannelData->PcdacValues,
1886		pChannelData->numPcdacValues, pLowerPcdac, pUpperPcdac);
1887}
1888
1889#define	DYN_ADJ_UP_MARGIN	15
1890#define	DYN_ADJ_LO_MARGIN	20
1891
1892static const GAIN_OPTIMIZATION_LADDER gainLadder = {
1893	9,					/* numStepsInLadder */
1894	4,					/* defaultStepNum */
1895	{ { {4, 1, 1, 1},  6, "FG8"},
1896	  { {4, 0, 1, 1},  4, "FG7"},
1897	  { {3, 1, 1, 1},  3, "FG6"},
1898	  { {4, 0, 0, 1},  1, "FG5"},
1899	  { {4, 1, 1, 0},  0, "FG4"},	/* noJack */
1900	  { {4, 0, 1, 0}, -2, "FG3"},	/* halfJack */
1901	  { {3, 1, 1, 0}, -3, "FG2"},	/* clip3 */
1902	  { {4, 0, 0, 0}, -4, "FG1"},	/* noJack */
1903	  { {2, 1, 1, 0}, -6, "FG0"} 	/* clip2 */
1904	}
1905};
1906
1907/*
1908 * Initialize the gain structure to good values
1909 */
1910void
1911ar5211InitializeGainValues(struct ath_hal *ah)
1912{
1913	struct ath_hal_5211 *ahp = AH5211(ah);
1914	GAIN_VALUES *gv = &ahp->ah_gainValues;
1915
1916	/* initialize gain optimization values */
1917	gv->currStepNum = gainLadder.defaultStepNum;
1918	gv->currStep = &gainLadder.optStep[gainLadder.defaultStepNum];
1919	gv->active = AH_TRUE;
1920	gv->loTrig = 20;
1921	gv->hiTrig = 35;
1922}
1923
1924static HAL_BOOL
1925ar5211InvalidGainReadback(struct ath_hal *ah, GAIN_VALUES *gv)
1926{
1927	const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
1928	uint32_t gStep, g;
1929	uint32_t L1, L2, L3, L4;
1930
1931	if (IEEE80211_IS_CHAN_CCK(chan)) {
1932		gStep = 0x18;
1933		L1 = 0;
1934		L2 = gStep + 4;
1935		L3 = 0x40;
1936		L4 = L3 + 50;
1937
1938		gv->loTrig = L1;
1939		gv->hiTrig = L4+5;
1940	} else {
1941		gStep = 0x3f;
1942		L1 = 0;
1943		L2 = 50;
1944		L3 = L1;
1945		L4 = L3 + 50;
1946
1947		gv->loTrig = L1 + DYN_ADJ_LO_MARGIN;
1948		gv->hiTrig = L4 - DYN_ADJ_UP_MARGIN;
1949	}
1950	g = gv->currGain;
1951
1952	return !((g >= L1 && g<= L2) || (g >= L3 && g <= L4));
1953}
1954
1955/*
1956 * Enable the probe gain check on the next packet
1957 */
1958static void
1959ar5211RequestRfgain(struct ath_hal *ah)
1960{
1961	struct ath_hal_5211 *ahp = AH5211(ah);
1962
1963	/* Enable the gain readback probe */
1964	OS_REG_WRITE(ah, AR_PHY_PAPD_PROBE,
1965		  SM(ahp->ah_tx6PowerInHalfDbm, AR_PHY_PAPD_PROBE_POWERTX)
1966		| AR_PHY_PAPD_PROBE_NEXT_TX);
1967
1968	ahp->ah_rfgainState = HAL_RFGAIN_READ_REQUESTED;
1969}
1970
1971/*
1972 * Exported call to check for a recent gain reading and return
1973 * the current state of the thermal calibration gain engine.
1974 */
1975HAL_RFGAIN
1976ar5211GetRfgain(struct ath_hal *ah)
1977{
1978	struct ath_hal_5211 *ahp = AH5211(ah);
1979	GAIN_VALUES *gv = &ahp->ah_gainValues;
1980	uint32_t rddata;
1981
1982	if (!gv->active)
1983		return HAL_RFGAIN_INACTIVE;
1984
1985	if (ahp->ah_rfgainState == HAL_RFGAIN_READ_REQUESTED) {
1986		/* Caller had asked to setup a new reading. Check it. */
1987		rddata = OS_REG_READ(ah, AR_PHY_PAPD_PROBE);
1988
1989		if ((rddata & AR_PHY_PAPD_PROBE_NEXT_TX) == 0) {
1990			/* bit got cleared, we have a new reading. */
1991			gv->currGain = rddata >> AR_PHY_PAPD_PROBE_GAINF_S;
1992			/* inactive by default */
1993			ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
1994
1995			if (!ar5211InvalidGainReadback(ah, gv) &&
1996			    ar5211IsGainAdjustNeeded(ah, gv) &&
1997			    ar5211AdjustGain(ah, gv) > 0) {
1998				/*
1999				 * Change needed. Copy ladder info
2000				 * into eeprom info.
2001				 */
2002				ar5211SetRfgain(ah, gv);
2003				ahp->ah_rfgainState = HAL_RFGAIN_NEED_CHANGE;
2004			}
2005		}
2006	}
2007	return ahp->ah_rfgainState;
2008}
2009
2010/*
2011 * Check to see if our readback gain level sits within the linear
2012 * region of our current variable attenuation window
2013 */
2014static HAL_BOOL
2015ar5211IsGainAdjustNeeded(struct ath_hal *ah, const GAIN_VALUES *gv)
2016{
2017	return (gv->currGain <= gv->loTrig || gv->currGain >= gv->hiTrig);
2018}
2019
2020/*
2021 * Move the rabbit ears in the correct direction.
2022 */
2023static int32_t
2024ar5211AdjustGain(struct ath_hal *ah, GAIN_VALUES *gv)
2025{
2026	/* return > 0 for valid adjustments. */
2027	if (!gv->active)
2028		return -1;
2029
2030	gv->currStep = &gainLadder.optStep[gv->currStepNum];
2031	if (gv->currGain >= gv->hiTrig) {
2032		if (gv->currStepNum == 0) {
2033			HALDEBUG(ah, HAL_DEBUG_RFPARAM,
2034			    "%s: Max gain limit.\n", __func__);
2035			return -1;
2036		}
2037		HALDEBUG(ah, HAL_DEBUG_RFPARAM,
2038		    "%s: Adding gain: currG=%d [%s] --> ",
2039		    __func__, gv->currGain, gv->currStep->stepName);
2040		gv->targetGain = gv->currGain;
2041		while (gv->targetGain >= gv->hiTrig && gv->currStepNum > 0) {
2042			gv->targetGain -= 2 * (gainLadder.optStep[--(gv->currStepNum)].stepGain -
2043				gv->currStep->stepGain);
2044			gv->currStep = &gainLadder.optStep[gv->currStepNum];
2045		}
2046		HALDEBUG(ah, HAL_DEBUG_RFPARAM, "targG=%d [%s]\n",
2047		    gv->targetGain, gv->currStep->stepName);
2048		return 1;
2049	}
2050	if (gv->currGain <= gv->loTrig) {
2051		if (gv->currStepNum == gainLadder.numStepsInLadder-1) {
2052			HALDEBUG(ah, HAL_DEBUG_RFPARAM,
2053			    "%s: Min gain limit.\n", __func__);
2054			return -2;
2055		}
2056		HALDEBUG(ah, HAL_DEBUG_RFPARAM,
2057		    "%s: Deducting gain: currG=%d [%s] --> ",
2058		    __func__, gv->currGain, gv->currStep->stepName);
2059		gv->targetGain = gv->currGain;
2060		while (gv->targetGain <= gv->loTrig &&
2061		      gv->currStepNum < (gainLadder.numStepsInLadder - 1)) {
2062			gv->targetGain -= 2 *
2063				(gainLadder.optStep[++(gv->currStepNum)].stepGain - gv->currStep->stepGain);
2064			gv->currStep = &gainLadder.optStep[gv->currStepNum];
2065		}
2066		HALDEBUG(ah, HAL_DEBUG_RFPARAM, "targG=%d [%s]\n",
2067		    gv->targetGain, gv->currStep->stepName);
2068		return 2;
2069	}
2070	return 0;		/* caller didn't call needAdjGain first */
2071}
2072
2073/*
2074 * Adjust the 5GHz EEPROM information with the desired calibration values.
2075 */
2076static void
2077ar5211SetRfgain(struct ath_hal *ah, const GAIN_VALUES *gv)
2078{
2079	HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
2080
2081	if (!gv->active)
2082		return;
2083	ee->ee_cornerCal.clip = gv->currStep->paramVal[0]; /* bb_tx_clip */
2084	ee->ee_cornerCal.pd90 = gv->currStep->paramVal[1]; /* rf_pwd_90 */
2085	ee->ee_cornerCal.pd84 = gv->currStep->paramVal[2]; /* rf_pwd_84 */
2086	ee->ee_cornerCal.gSel = gv->currStep->paramVal[3]; /* rf_rfgainsel */
2087}
2088
2089static void
2090ar5211SetOperatingMode(struct ath_hal *ah, int opmode)
2091{
2092	struct ath_hal_5211 *ahp = AH5211(ah);
2093	uint32_t val;
2094
2095	val = OS_REG_READ(ah, AR_STA_ID1) & 0xffff;
2096	switch (opmode) {
2097	case HAL_M_HOSTAP:
2098		OS_REG_WRITE(ah, AR_STA_ID1, val
2099			| AR_STA_ID1_STA_AP
2100			| AR_STA_ID1_RTS_USE_DEF
2101			| ahp->ah_staId1Defaults);
2102		break;
2103	case HAL_M_IBSS:
2104		OS_REG_WRITE(ah, AR_STA_ID1, val
2105			| AR_STA_ID1_ADHOC
2106			| AR_STA_ID1_DESC_ANTENNA
2107			| ahp->ah_staId1Defaults);
2108		break;
2109	case HAL_M_STA:
2110	case HAL_M_MONITOR:
2111		OS_REG_WRITE(ah, AR_STA_ID1, val
2112			| AR_STA_ID1_DEFAULT_ANTENNA
2113			| ahp->ah_staId1Defaults);
2114		break;
2115	}
2116}
2117
2118void
2119ar5211SetPCUConfig(struct ath_hal *ah)
2120{
2121	ar5211SetOperatingMode(ah, AH_PRIVATE(ah)->ah_opmode);
2122}
2123