1/*-
2 * SPDX-License-Identifier: ISC
3 *
4 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5 * Copyright (c) 2002-2006 Atheros Communications, Inc.
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 *
19 * $FreeBSD: releng/12.0/sys/dev/ath/ath_hal/ar5211/ar5211_misc.c 326695 2017-12-08 15:57:29Z pfg $
20 */
21#include "opt_ah.h"
22
23#include "ah.h"
24#include "ah_internal.h"
25
26#include "ar5211/ar5211.h"
27#include "ar5211/ar5211reg.h"
28#include "ar5211/ar5211phy.h"
29
30#include "ah_eeprom_v3.h"
31
32#define	AR_NUM_GPIO	6		/* 6 GPIO bits */
33#define	AR_GPIOD_MASK	0x2f		/* 6-bit mask */
34
35void
36ar5211GetMacAddress(struct ath_hal *ah, uint8_t *mac)
37{
38	struct ath_hal_5211 *ahp = AH5211(ah);
39
40	OS_MEMCPY(mac, ahp->ah_macaddr, IEEE80211_ADDR_LEN);
41}
42
43HAL_BOOL
44ar5211SetMacAddress(struct ath_hal *ah, const uint8_t *mac)
45{
46	struct ath_hal_5211 *ahp = AH5211(ah);
47
48	OS_MEMCPY(ahp->ah_macaddr, mac, IEEE80211_ADDR_LEN);
49	return AH_TRUE;
50}
51
52void
53ar5211GetBssIdMask(struct ath_hal *ah, uint8_t *mask)
54{
55	static const uint8_t ones[IEEE80211_ADDR_LEN] =
56		{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
57	OS_MEMCPY(mask, ones, IEEE80211_ADDR_LEN);
58}
59
60HAL_BOOL
61ar5211SetBssIdMask(struct ath_hal *ah, const uint8_t *mask)
62{
63	return AH_FALSE;
64}
65
66/*
67 * Read 16 bits of data from the specified EEPROM offset.
68 */
69HAL_BOOL
70ar5211EepromRead(struct ath_hal *ah, u_int off, uint16_t *data)
71{
72	OS_REG_WRITE(ah, AR_EEPROM_ADDR, off);
73	OS_REG_WRITE(ah, AR_EEPROM_CMD, AR_EEPROM_CMD_READ);
74
75	if (!ath_hal_wait(ah, AR_EEPROM_STS,
76	    AR_EEPROM_STS_READ_COMPLETE | AR_EEPROM_STS_READ_ERROR,
77	    AR_EEPROM_STS_READ_COMPLETE)) {
78		HALDEBUG(ah, HAL_DEBUG_ANY,
79		    "%s: read failed for entry 0x%x\n", __func__, off);
80		return AH_FALSE;
81	}
82	*data = OS_REG_READ(ah, AR_EEPROM_DATA) & 0xffff;
83	return AH_TRUE;
84}
85
86#ifdef AH_SUPPORT_WRITE_EEPROM
87/*
88 * Write 16 bits of data to the specified EEPROM offset.
89 */
90HAL_BOOL
91ar5211EepromWrite(struct ath_hal *ah, u_int off, uint16_t data)
92{
93	return AH_FALSE;
94}
95#endif /* AH_SUPPORT_WRITE_EEPROM */
96
97/*
98 * Attempt to change the cards operating regulatory domain to the given value
99 */
100HAL_BOOL
101ar5211SetRegulatoryDomain(struct ath_hal *ah,
102	uint16_t regDomain, HAL_STATUS *status)
103{
104	HAL_STATUS ecode;
105
106	if (AH_PRIVATE(ah)->ah_currentRD == regDomain) {
107		ecode = HAL_EINVAL;
108		goto bad;
109	}
110	/*
111	 * Check if EEPROM is configured to allow this; must
112	 * be a proper version and the protection bits must
113	 * permit re-writing that segment of the EEPROM.
114	 */
115	if (ath_hal_eepromGetFlag(ah, AR_EEP_WRITEPROTECT)) {
116		ecode = HAL_EEWRITE;
117		goto bad;
118	}
119#ifdef AH_SUPPORT_WRITE_REGDOMAIN
120	if (ar5211EepromWrite(ah, AR_EEPROM_REG_DOMAIN, regDomain)) {
121		HALDEBUG(ah, HAL_DEBUG_ANY,
122		    "%s: set regulatory domain to %u (0x%x)\n",
123		    __func__, regDomain, regDomain);
124		AH_PRIVATE(ah)->ah_currentRD = regDomain;
125		return AH_TRUE;
126	}
127#endif
128	ecode = HAL_EIO;
129bad:
130	if (status)
131		*status = ecode;
132	return AH_FALSE;
133}
134
135/*
136 * Return the wireless modes (a,b,g,t) supported by hardware.
137 *
138 * This value is what is actually supported by the hardware
139 * and is unaffected by regulatory/country code settings.
140 *
141 */
142u_int
143ar5211GetWirelessModes(struct ath_hal *ah)
144{
145	u_int mode = 0;
146
147	if (ath_hal_eepromGetFlag(ah, AR_EEP_AMODE)) {
148		mode = HAL_MODE_11A;
149		if (!ath_hal_eepromGetFlag(ah, AR_EEP_TURBO5DISABLE))
150			mode |= HAL_MODE_TURBO | HAL_MODE_108A;
151	}
152	if (ath_hal_eepromGetFlag(ah, AR_EEP_BMODE))
153		mode |= HAL_MODE_11B;
154	return mode;
155}
156
157#if 0
158HAL_BOOL
159ar5211GetTurboDisable(struct ath_hal *ah)
160{
161	return (AH5211(ah)->ah_turboDisable != 0);
162}
163#endif
164
165/*
166 * Called if RfKill is supported (according to EEPROM).  Set the interrupt and
167 * GPIO values so the ISR and can disable RF on a switch signal
168 */
169void
170ar5211EnableRfKill(struct ath_hal *ah)
171{
172	uint16_t rfsilent = AH_PRIVATE(ah)->ah_rfsilent;
173	int select = MS(rfsilent, AR_EEPROM_RFSILENT_GPIO_SEL);
174	int polarity = MS(rfsilent, AR_EEPROM_RFSILENT_POLARITY);
175
176	/*
177	 * Configure the desired GPIO port for input
178	 * and enable baseband rf silence.
179	 */
180	ar5211GpioCfgInput(ah, select);
181	OS_REG_SET_BIT(ah, AR_PHY_BASE, 0x00002000);
182	/*
183	 * If radio disable switch connection to GPIO bit x is enabled
184	 * program GPIO interrupt.
185	 * If rfkill bit on eeprom is 1, setupeeprommap routine has already
186	 * verified that it is a later version of eeprom, it has a place for
187	 * rfkill bit and it is set to 1, indicating that GPIO bit x hardware
188	 * connection is present.
189	 */
190	ar5211GpioSetIntr(ah, select, (ar5211GpioGet(ah, select) != polarity));
191}
192
193/*
194 * Configure GPIO Output lines
195 */
196HAL_BOOL
197ar5211GpioCfgOutput(struct ath_hal *ah, uint32_t gpio, HAL_GPIO_MUX_TYPE type)
198{
199	uint32_t reg;
200
201	HALASSERT(gpio < AR_NUM_GPIO);
202
203	reg =  OS_REG_READ(ah, AR_GPIOCR);
204	reg &= ~(AR_GPIOCR_0_CR_A << (gpio * AR_GPIOCR_CR_SHIFT));
205	reg |= AR_GPIOCR_0_CR_A << (gpio * AR_GPIOCR_CR_SHIFT);
206
207	OS_REG_WRITE(ah, AR_GPIOCR, reg);
208	return AH_TRUE;
209}
210
211/*
212 * Configure GPIO Input lines
213 */
214HAL_BOOL
215ar5211GpioCfgInput(struct ath_hal *ah, uint32_t gpio)
216{
217	uint32_t reg;
218
219	HALASSERT(gpio < AR_NUM_GPIO);
220
221	reg =  OS_REG_READ(ah, AR_GPIOCR);
222	reg &= ~(AR_GPIOCR_0_CR_A << (gpio * AR_GPIOCR_CR_SHIFT));
223	reg |= AR_GPIOCR_0_CR_N << (gpio * AR_GPIOCR_CR_SHIFT);
224
225	OS_REG_WRITE(ah, AR_GPIOCR, reg);
226	return AH_TRUE;
227}
228
229/*
230 * Once configured for I/O - set output lines
231 */
232HAL_BOOL
233ar5211GpioSet(struct ath_hal *ah, uint32_t gpio, uint32_t val)
234{
235	uint32_t reg;
236
237	HALASSERT(gpio < AR_NUM_GPIO);
238
239	reg =  OS_REG_READ(ah, AR_GPIODO);
240	reg &= ~(1 << gpio);
241	reg |= (val&1) << gpio;
242
243	OS_REG_WRITE(ah, AR_GPIODO, reg);
244	return AH_TRUE;
245}
246
247/*
248 * Once configured for I/O - get input lines
249 */
250uint32_t
251ar5211GpioGet(struct ath_hal *ah, uint32_t gpio)
252{
253	if (gpio < AR_NUM_GPIO) {
254		uint32_t val = OS_REG_READ(ah, AR_GPIODI);
255		val = ((val & AR_GPIOD_MASK) >> gpio) & 0x1;
256		return val;
257	} else  {
258		return 0xffffffff;
259	}
260}
261
262/*
263 * Set the GPIO 0 Interrupt (gpio is ignored)
264 */
265void
266ar5211GpioSetIntr(struct ath_hal *ah, u_int gpio, uint32_t ilevel)
267{
268	uint32_t val = OS_REG_READ(ah, AR_GPIOCR);
269
270	/* Clear the bits that we will modify. */
271	val &= ~(AR_GPIOCR_INT_SEL0 | AR_GPIOCR_INT_SELH | AR_GPIOCR_INT_ENA |
272			AR_GPIOCR_0_CR_A);
273
274	val |= AR_GPIOCR_INT_SEL0 | AR_GPIOCR_INT_ENA;
275	if (ilevel)
276		val |= AR_GPIOCR_INT_SELH;
277
278	/* Don't need to change anything for low level interrupt. */
279	OS_REG_WRITE(ah, AR_GPIOCR, val);
280
281	/* Change the interrupt mask. */
282	ar5211SetInterrupts(ah, AH5211(ah)->ah_maskReg | HAL_INT_GPIO);
283}
284
285/*
286 * Change the LED blinking pattern to correspond to the connectivity
287 */
288void
289ar5211SetLedState(struct ath_hal *ah, HAL_LED_STATE state)
290{
291	static const uint32_t ledbits[8] = {
292		AR_PCICFG_LEDCTL_NONE|AR_PCICFG_LEDMODE_PROP, /* HAL_LED_INIT */
293		AR_PCICFG_LEDCTL_PEND|AR_PCICFG_LEDMODE_PROP, /* HAL_LED_SCAN */
294		AR_PCICFG_LEDCTL_PEND|AR_PCICFG_LEDMODE_PROP, /* HAL_LED_AUTH */
295		AR_PCICFG_LEDCTL_ASSOC|AR_PCICFG_LEDMODE_PROP,/* HAL_LED_ASSOC*/
296		AR_PCICFG_LEDCTL_ASSOC|AR_PCICFG_LEDMODE_PROP,/* HAL_LED_RUN */
297		AR_PCICFG_LEDCTL_NONE|AR_PCICFG_LEDMODE_RAND,
298		AR_PCICFG_LEDCTL_NONE|AR_PCICFG_LEDMODE_RAND,
299		AR_PCICFG_LEDCTL_NONE|AR_PCICFG_LEDMODE_RAND,
300	};
301	OS_REG_WRITE(ah, AR_PCICFG,
302		(OS_REG_READ(ah, AR_PCICFG) &~
303			(AR_PCICFG_LEDCTL | AR_PCICFG_LEDMODE))
304		| ledbits[state & 0x7]
305	);
306}
307
308/*
309 * Change association related fields programmed into the hardware.
310 * Writing a valid BSSID to the hardware effectively enables the hardware
311 * to synchronize its TSF to the correct beacons and receive frames coming
312 * from that BSSID. It is called by the SME JOIN operation.
313 */
314void
315ar5211WriteAssocid(struct ath_hal *ah, const uint8_t *bssid, uint16_t assocId)
316{
317	struct ath_hal_5211 *ahp = AH5211(ah);
318
319	/* XXX save bssid for possible re-use on reset */
320	OS_MEMCPY(ahp->ah_bssid, bssid, IEEE80211_ADDR_LEN);
321	OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
322	OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid+4) |
323				     ((assocId & 0x3fff)<<AR_BSS_ID1_AID_S));
324}
325
326/*
327 * Get the current hardware tsf for stamlme.
328 */
329uint64_t
330ar5211GetTsf64(struct ath_hal *ah)
331{
332	uint32_t low1, low2, u32;
333
334	/* sync multi-word read */
335	low1 = OS_REG_READ(ah, AR_TSF_L32);
336	u32 = OS_REG_READ(ah, AR_TSF_U32);
337	low2 = OS_REG_READ(ah, AR_TSF_L32);
338	if (low2 < low1) {	/* roll over */
339		/*
340		 * If we are not preempted this will work.  If we are
341		 * then we re-reading AR_TSF_U32 does no good as the
342		 * low bits will be meaningless.  Likewise reading
343		 * L32, U32, U32, then comparing the last two reads
344		 * to check for rollover doesn't help if preempted--so
345		 * we take this approach as it costs one less PCI
346		 * read which can be noticeable when doing things
347		 * like timestamping packets in monitor mode.
348		 */
349		u32++;
350	}
351	return (((uint64_t) u32) << 32) | ((uint64_t) low2);
352}
353
354/*
355 * Get the current hardware tsf for stamlme.
356 */
357uint32_t
358ar5211GetTsf32(struct ath_hal *ah)
359{
360	return OS_REG_READ(ah, AR_TSF_L32);
361}
362
363/*
364 * Reset the current hardware tsf for stamlme
365 */
366void
367ar5211ResetTsf(struct ath_hal *ah)
368{
369	uint32_t val = OS_REG_READ(ah, AR_BEACON);
370
371	OS_REG_WRITE(ah, AR_BEACON, val | AR_BEACON_RESET_TSF);
372}
373
374/*
375 * Grab a semi-random value from hardware registers - may not
376 * change often
377 */
378uint32_t
379ar5211GetRandomSeed(struct ath_hal *ah)
380{
381	uint32_t nf;
382
383	nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
384	if (nf & 0x100)
385		nf = 0 - ((nf ^ 0x1ff) + 1);
386	return (OS_REG_READ(ah, AR_TSF_U32) ^
387		OS_REG_READ(ah, AR_TSF_L32) ^ nf);
388}
389
390/*
391 * Detect if our card is present
392 */
393HAL_BOOL
394ar5211DetectCardPresent(struct ath_hal *ah)
395{
396	uint16_t macVersion, macRev;
397	uint32_t v;
398
399	/*
400	 * Read the Silicon Revision register and compare that
401	 * to what we read at attach time.  If the same, we say
402	 * a card/device is present.
403	 */
404	v = OS_REG_READ(ah, AR_SREV) & AR_SREV_ID_M;
405	macVersion = v >> AR_SREV_ID_S;
406	macRev = v & AR_SREV_REVISION_M;
407	return (AH_PRIVATE(ah)->ah_macVersion == macVersion &&
408		AH_PRIVATE(ah)->ah_macRev == macRev);
409}
410
411/*
412 * Update MIB Counters
413 */
414void
415ar5211UpdateMibCounters(struct ath_hal *ah, HAL_MIB_STATS *stats)
416{
417	stats->ackrcv_bad += OS_REG_READ(ah, AR_ACK_FAIL);
418	stats->rts_bad	  += OS_REG_READ(ah, AR_RTS_FAIL);
419	stats->fcs_bad	  += OS_REG_READ(ah, AR_FCS_FAIL);
420	stats->rts_good	  += OS_REG_READ(ah, AR_RTS_OK);
421	stats->beacons	  += OS_REG_READ(ah, AR_BEACON_CNT);
422}
423
424HAL_BOOL
425ar5211SetSifsTime(struct ath_hal *ah, u_int us)
426{
427	struct ath_hal_5211 *ahp = AH5211(ah);
428
429	if (us > ath_hal_mac_usec(ah, 0xffff)) {
430		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad SIFS time %u\n",
431		    __func__, us);
432		ahp->ah_sifstime = (u_int) -1;	/* restore default handling */
433		return AH_FALSE;
434	} else {
435		/* convert to system clocks */
436		OS_REG_WRITE(ah, AR_D_GBL_IFS_SIFS, ath_hal_mac_clks(ah, us));
437		ahp->ah_slottime = us;
438		return AH_TRUE;
439	}
440}
441
442u_int
443ar5211GetSifsTime(struct ath_hal *ah)
444{
445	u_int clks = OS_REG_READ(ah, AR_D_GBL_IFS_SIFS) & 0xffff;
446	return ath_hal_mac_usec(ah, clks);	/* convert from system clocks */
447}
448
449HAL_BOOL
450ar5211SetSlotTime(struct ath_hal *ah, u_int us)
451{
452	struct ath_hal_5211 *ahp = AH5211(ah);
453
454	if (us < HAL_SLOT_TIME_9 || us > ath_hal_mac_usec(ah, 0xffff)) {
455		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad slot time %u\n",
456		    __func__, us);
457		ahp->ah_slottime = us;	/* restore default handling */
458		return AH_FALSE;
459	} else {
460		/* convert to system clocks */
461		OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath_hal_mac_clks(ah, us));
462		ahp->ah_slottime = us;
463		return AH_TRUE;
464	}
465}
466
467u_int
468ar5211GetSlotTime(struct ath_hal *ah)
469{
470	u_int clks = OS_REG_READ(ah, AR_D_GBL_IFS_SLOT) & 0xffff;
471	return ath_hal_mac_usec(ah, clks);	/* convert from system clocks */
472}
473
474HAL_BOOL
475ar5211SetAckTimeout(struct ath_hal *ah, u_int us)
476{
477	struct ath_hal_5211 *ahp = AH5211(ah);
478
479	if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
480		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad ack timeout %u\n",
481		    __func__, us);
482		ahp->ah_acktimeout = (u_int) -1; /* restore default handling */
483		return AH_FALSE;
484	} else {
485		/* convert to system clocks */
486		OS_REG_RMW_FIELD(ah, AR_TIME_OUT,
487			AR_TIME_OUT_ACK, ath_hal_mac_clks(ah, us));
488		ahp->ah_acktimeout = us;
489		return AH_TRUE;
490	}
491}
492
493u_int
494ar5211GetAckTimeout(struct ath_hal *ah)
495{
496	u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_ACK);
497	return ath_hal_mac_usec(ah, clks);	/* convert from system clocks */
498}
499
500u_int
501ar5211GetAckCTSRate(struct ath_hal *ah)
502{
503	return ((AH5211(ah)->ah_staId1Defaults & AR_STA_ID1_ACKCTS_6MB) == 0);
504}
505
506HAL_BOOL
507ar5211SetAckCTSRate(struct ath_hal *ah, u_int high)
508{
509	struct ath_hal_5211 *ahp = AH5211(ah);
510
511	if (high) {
512		OS_REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB);
513		ahp->ah_staId1Defaults &= ~AR_STA_ID1_ACKCTS_6MB;
514	} else {
515		OS_REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB);
516		ahp->ah_staId1Defaults |= AR_STA_ID1_ACKCTS_6MB;
517	}
518	return AH_TRUE;
519}
520
521HAL_BOOL
522ar5211SetCTSTimeout(struct ath_hal *ah, u_int us)
523{
524	struct ath_hal_5211 *ahp = AH5211(ah);
525
526	if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
527		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad cts timeout %u\n",
528		    __func__, us);
529		ahp->ah_ctstimeout = (u_int) -1; /* restore default handling */
530		return AH_FALSE;
531	} else {
532		/* convert to system clocks */
533		OS_REG_RMW_FIELD(ah, AR_TIME_OUT,
534			AR_TIME_OUT_CTS, ath_hal_mac_clks(ah, us));
535		ahp->ah_ctstimeout = us;
536		return AH_TRUE;
537	}
538}
539
540u_int
541ar5211GetCTSTimeout(struct ath_hal *ah)
542{
543	u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_CTS);
544	return ath_hal_mac_usec(ah, clks);	/* convert from system clocks */
545}
546
547HAL_BOOL
548ar5211SetDecompMask(struct ath_hal *ah, uint16_t keyidx, int en)
549{
550	/* nothing to do */
551        return AH_TRUE;
552}
553
554void
555ar5211SetCoverageClass(struct ath_hal *ah, uint8_t coverageclass, int now)
556{
557}
558
559HAL_STATUS
560ar5211SetQuiet(struct ath_hal *ah, uint32_t period, uint32_t duration,
561    uint32_t next_start, HAL_QUIET_FLAG flags)
562{
563	return HAL_OK;
564}
565
566/*
567 * Control Adaptive Noise Immunity Parameters
568 */
569HAL_BOOL
570ar5211AniControl(struct ath_hal *ah, HAL_ANI_CMD cmd, int param)
571{
572	return AH_FALSE;
573}
574
575void
576ar5211AniPoll(struct ath_hal *ah, const struct ieee80211_channel *chan)
577{
578}
579
580void
581ar5211RxMonitor(struct ath_hal *ah, const HAL_NODE_STATS *stats,
582	const struct ieee80211_channel *chan)
583{
584}
585
586void
587ar5211MibEvent(struct ath_hal *ah, const HAL_NODE_STATS *stats)
588{
589}
590
591/*
592 * Get the rssi of frame curently being received.
593 */
594uint32_t
595ar5211GetCurRssi(struct ath_hal *ah)
596{
597	return (OS_REG_READ(ah, AR_PHY_CURRENT_RSSI) & 0xff);
598}
599
600u_int
601ar5211GetDefAntenna(struct ath_hal *ah)
602{
603	return (OS_REG_READ(ah, AR_DEF_ANTENNA) & 0x7);
604}
605
606void
607ar5211SetDefAntenna(struct ath_hal *ah, u_int antenna)
608{
609	OS_REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
610}
611
612HAL_ANT_SETTING
613ar5211GetAntennaSwitch(struct ath_hal *ah)
614{
615	return AH5211(ah)->ah_diversityControl;
616}
617
618HAL_BOOL
619ar5211SetAntennaSwitch(struct ath_hal *ah, HAL_ANT_SETTING settings)
620{
621	const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
622
623	if (chan == AH_NULL) {
624		AH5211(ah)->ah_diversityControl = settings;
625		return AH_TRUE;
626	}
627	return ar5211SetAntennaSwitchInternal(ah, settings, chan);
628}
629
630HAL_STATUS
631ar5211GetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
632	uint32_t capability, uint32_t *result)
633{
634
635	switch (type) {
636	case HAL_CAP_CIPHER:		/* cipher handled in hardware */
637		switch (capability) {
638		case HAL_CIPHER_AES_OCB:
639		case HAL_CIPHER_WEP:
640		case HAL_CIPHER_CLR:
641			return HAL_OK;
642		default:
643			return HAL_ENOTSUPP;
644		}
645	default:
646		return ath_hal_getcapability(ah, type, capability, result);
647	}
648}
649
650HAL_BOOL
651ar5211SetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
652	uint32_t capability, uint32_t setting, HAL_STATUS *status)
653{
654	switch (type) {
655	case HAL_CAP_DIAG:		/* hardware diagnostic support */
656		/*
657		 * NB: could split this up into virtual capabilities,
658		 *     (e.g. 1 => ACK, 2 => CTS, etc.) but it hardly
659		 *     seems worth the additional complexity.
660		 */
661#ifdef AH_DEBUG
662		AH_PRIVATE(ah)->ah_diagreg = setting;
663#else
664		AH_PRIVATE(ah)->ah_diagreg = setting & 0x6;	/* ACK+CTS */
665#endif
666		OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
667		return AH_TRUE;
668	default:
669		return ath_hal_setcapability(ah, type, capability,
670			setting, status);
671	}
672}
673
674HAL_BOOL
675ar5211GetDiagState(struct ath_hal *ah, int request,
676	const void *args, uint32_t argsize,
677	void **result, uint32_t *resultsize)
678{
679	struct ath_hal_5211 *ahp = AH5211(ah);
680
681	(void) ahp;
682	if (ath_hal_getdiagstate(ah, request, args, argsize, result, resultsize))
683		return AH_TRUE;
684	switch (request) {
685	case HAL_DIAG_EEPROM:
686		return ath_hal_eepromDiag(ah, request,
687		    args, argsize, result, resultsize);
688	case HAL_DIAG_RFGAIN:
689		*result = &ahp->ah_gainValues;
690		*resultsize = sizeof(GAIN_VALUES);
691		return AH_TRUE;
692	case HAL_DIAG_RFGAIN_CURSTEP:
693		*result = __DECONST(void *, ahp->ah_gainValues.currStep);
694		*resultsize = (*result == AH_NULL) ?
695			0 : sizeof(GAIN_OPTIMIZATION_STEP);
696		return AH_TRUE;
697	}
698	return AH_FALSE;
699}
700
701/*
702 * Return what percentage of the extension channel is busy.
703 * This is always disabled for AR5211 series NICs.
704 */
705uint32_t
706ar5211Get11nExtBusy(struct ath_hal *ah)
707{
708	return (0);
709}
710
711/*
712 * There's no channel survey support for the AR5211.
713 */
714HAL_BOOL
715ar5211GetMibCycleCounts(struct ath_hal *ah, HAL_SURVEY_SAMPLE *hsample)
716{
717
718	return (AH_FALSE);
719}
720
721void
722ar5211SetChainMasks(struct ath_hal *ah, uint32_t txchainmask,
723    uint32_t rxchainmask)
724{
725}
726
727void
728ar5211EnableDfs(struct ath_hal *ah, HAL_PHYERR_PARAM *pe)
729{
730}
731
732void
733ar5211GetDfsThresh(struct ath_hal *ah, HAL_PHYERR_PARAM *pe)
734{
735}
736