1/*
2 * Copyright (c) 2013 Qualcomm Atheros, Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
9 * REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
10 * AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
11 * INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
12 * LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
13 * OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
14 * PERFORMANCE OF THIS SOFTWARE.
15 */
16
17
18
19#include "opt_ah.h"
20
21#include "ah.h"
22#include "ah_internal.h"
23#include "ah_devid.h"
24#include "ah_desc.h"
25
26#include "ar9300.h"
27#include "ar9300reg.h"
28#include "ar9300phy.h"
29#include "ar9300desc.h"
30
31#define FIX_NOISE_FLOOR     1
32
33
34/* Additional Time delay to wait after activiting the Base band */
35#define BASE_ACTIVATE_DELAY         100     /* usec */
36#define RTC_PLL_SETTLE_DELAY        100     /* usec */
37#define COEF_SCALE_S                24
38#define HT40_CHANNEL_CENTER_SHIFT   10      /* MHz      */
39
40#define DELPT 32
41
42/* XXX Duplicates! (in ar9300desc.h) */
43#if 0
44extern  HAL_BOOL ar9300_reset_tx_queue(struct ath_hal *ah, u_int q);
45extern  u_int32_t ar9300_num_tx_pending(struct ath_hal *ah, u_int q);
46#endif
47
48
49#define MAX_MEASUREMENT 8
50#define MAXIQCAL 3
51struct coeff_t {
52    int32_t mag_coeff[AR9300_MAX_CHAINS][MAX_MEASUREMENT][MAXIQCAL];
53    int32_t phs_coeff[AR9300_MAX_CHAINS][MAX_MEASUREMENT][MAXIQCAL];
54    int32_t iqc_coeff[2];
55    int last_nmeasurement;
56    HAL_BOOL last_cal;
57};
58
59static HAL_BOOL ar9300_tx_iq_cal_hw_run(struct ath_hal *ah);
60static void ar9300_tx_iq_cal_post_proc(struct ath_hal *ah,HAL_CHANNEL_INTERNAL *ichan,
61       int iqcal_idx, int max_iqcal, HAL_BOOL is_cal_reusable, HAL_BOOL apply_last_corr);
62static void ar9300_tx_iq_cal_outlier_detection(struct ath_hal *ah,HAL_CHANNEL_INTERNAL *ichan,
63       u_int32_t num_chains, struct coeff_t *coeff, HAL_BOOL is_cal_reusable);
64#if ATH_SUPPORT_CAL_REUSE
65static void ar9300_tx_iq_cal_apply(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *ichan);
66#endif
67
68
69static inline void ar9300_prog_ini(struct ath_hal *ah, struct ar9300_ini_array *ini_arr, int column);
70static inline void ar9300_set_rf_mode(struct ath_hal *ah, struct ieee80211_channel *chan);
71static inline HAL_BOOL ar9300_init_cal(struct ath_hal *ah, struct ieee80211_channel *chan, HAL_BOOL skip_if_none, HAL_BOOL apply_last_corr);
72static inline void ar9300_init_user_settings(struct ath_hal *ah);
73
74#ifdef HOST_OFFLOAD
75/*
76 * For usb offload solution, some USB registers must be tuned
77 * to gain better stability/performance but these registers
78 * might be changed while doing wlan reset so do this here
79 */
80#define WAR_USB_DISABLE_PLL_LOCK_DETECT(__ah) \
81do { \
82    if (AR_SREV_HORNET(__ah) || AR_SREV_WASP(__ah)) { \
83        volatile u_int32_t *usb_ctrl_r1 = (u_int32_t *) 0xb8116c84; \
84        volatile u_int32_t *usb_ctrl_r2 = (u_int32_t *) 0xb8116c88; \
85        *usb_ctrl_r1 = (*usb_ctrl_r1 & 0xffefffff); \
86        *usb_ctrl_r2 = (*usb_ctrl_r2 & 0xfc1fffff) | (1 << 21) | (3 << 22); \
87    } \
88} while (0)
89#else
90#define WAR_USB_DISABLE_PLL_LOCK_DETECT(__ah)
91#endif
92
93/*
94 * Note: the below is the version that ships with ath9k.
95 * The original HAL version is above.
96 */
97
98static void
99ar9300_disable_pll_lock_detect(struct ath_hal *ah)
100{
101	/*
102	 * On AR9330 and AR9340 devices, some PHY registers must be
103	 * tuned to gain better stability/performance. These registers
104	 * might be changed while doing wlan reset so the registers must
105	 * be reprogrammed after each reset.
106	 */
107	if (AR_SREV_HORNET(ah) || AR_SREV_WASP(ah)) {
108		HALDEBUG(ah, HAL_DEBUG_RESET, "%s: called\n", __func__);
109		OS_REG_CLR_BIT(ah, AR_PHY_USB_CTRL1, (1 << 20));
110		OS_REG_RMW(ah, AR_PHY_USB_CTRL2,
111		    (1 << 21) | (0xf << 22),
112		    (1 << 21) | (0x3 << 22));
113	}
114}
115
116static inline void
117ar9300_attach_hw_platform(struct ath_hal *ah)
118{
119    struct ath_hal_9300 *ahp = AH9300(ah);
120
121    ahp->ah_hwp = HAL_TRUE_CHIP;
122    return;
123}
124
125/* Adjust various register settings based on half/quarter rate clock setting.
126 * This includes: +USEC, TX/RX latency,
127 *                + IFS params: slot, eifs, misc etc.
128 * SIFS stays the same.
129 */
130static void
131ar9300_set_ifs_timing(struct ath_hal *ah, struct ieee80211_channel *chan)
132{
133    u_int32_t tx_lat, rx_lat, usec, slot, regval, eifs;
134
135    regval = OS_REG_READ(ah, AR_USEC);
136    regval &= ~(AR_USEC_RX_LATENCY | AR_USEC_TX_LATENCY | AR_USEC_USEC);
137    if (IEEE80211_IS_CHAN_HALF(chan)) { /* half rates */
138        slot = ar9300_mac_to_clks(ah, AR_SLOT_HALF);
139        eifs = ar9300_mac_to_clks(ah, AR_EIFS_HALF);
140        if (IS_5GHZ_FAST_CLOCK_EN(ah, chan)) { /* fast clock */
141            rx_lat = SM(AR_RX_LATENCY_HALF_FAST_CLOCK, AR_USEC_RX_LATENCY);
142            tx_lat = SM(AR_TX_LATENCY_HALF_FAST_CLOCK, AR_USEC_TX_LATENCY);
143            usec = SM(AR_USEC_HALF_FAST_CLOCK, AR_USEC_USEC);
144        } else {
145            rx_lat = SM(AR_RX_LATENCY_HALF, AR_USEC_RX_LATENCY);
146            tx_lat = SM(AR_TX_LATENCY_HALF, AR_USEC_TX_LATENCY);
147            usec = SM(AR_USEC_HALF, AR_USEC_USEC);
148        }
149    } else { /* quarter rate */
150        slot = ar9300_mac_to_clks(ah, AR_SLOT_QUARTER);
151        eifs = ar9300_mac_to_clks(ah, AR_EIFS_QUARTER);
152        if (IS_5GHZ_FAST_CLOCK_EN(ah, chan)) { /* fast clock */
153            rx_lat = SM(AR_RX_LATENCY_QUARTER_FAST_CLOCK, AR_USEC_RX_LATENCY);
154            tx_lat = SM(AR_TX_LATENCY_QUARTER_FAST_CLOCK, AR_USEC_TX_LATENCY);
155            usec = SM(AR_USEC_QUARTER_FAST_CLOCK, AR_USEC_USEC);
156        } else {
157            rx_lat = SM(AR_RX_LATENCY_QUARTER, AR_USEC_RX_LATENCY);
158            tx_lat = SM(AR_TX_LATENCY_QUARTER, AR_USEC_TX_LATENCY);
159            usec = SM(AR_USEC_QUARTER, AR_USEC_USEC);
160        }
161    }
162
163    OS_REG_WRITE(ah, AR_USEC, (usec | regval | tx_lat | rx_lat));
164    OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, slot);
165    OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, eifs);
166}
167
168
169/*
170 * This inline function configures the chip either
171 * to encrypt/decrypt management frames or pass thru
172 */
173static inline void
174ar9300_init_mfp(struct ath_hal * ah)
175{
176    u_int32_t   mfpcap, mfp_qos;
177
178    ath_hal_getcapability(ah, HAL_CAP_MFP, 0, &mfpcap);
179
180    if (mfpcap == HAL_MFP_QOSDATA) {
181        /* Treat like legacy hardware. Do not touch the MFP registers. */
182        HALDEBUG(ah, HAL_DEBUG_RESET, "%s forced to use QOSDATA\n", __func__);
183        return;
184    }
185
186    /* MFP support (Sowl 1.0 or greater) */
187    if (mfpcap == HAL_MFP_HW_CRYPTO) {
188        /* configure hardware MFP support */
189        HALDEBUG(ah, HAL_DEBUG_RESET, "%s using HW crypto\n", __func__);
190        OS_REG_RMW_FIELD(ah,
191            AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT, AR_AES_MUTE_MASK1_FC_MGMT_MFP);
192        OS_REG_RMW(ah,
193            AR_PCU_MISC_MODE2, AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE,
194            AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
195        /*
196        * Mask used to construct AAD for CCMP-AES
197        * Cisco spec defined bits 0-3 as mask
198        * IEEE802.11w defined as bit 4.
199        */
200        if (ath_hal_get_mfp_qos(ah)) {
201            mfp_qos = AR_MFP_QOS_MASK_IEEE;
202        } else {
203            mfp_qos = AR_MFP_QOS_MASK_CISCO;
204        }
205        OS_REG_RMW_FIELD(ah,
206            AR_PCU_MISC_MODE2, AR_PCU_MISC_MODE2_MGMT_QOS, mfp_qos);
207    } else if (mfpcap == HAL_MFP_PASSTHRU) {
208        /* Disable en/decrypt by hardware */
209        HALDEBUG(ah, HAL_DEBUG_RESET, "%s using passthru\n", __func__);
210        OS_REG_RMW(ah,
211            AR_PCU_MISC_MODE2,
212            AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT,
213            AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
214    }
215}
216
217void
218ar9300_get_channel_centers(struct ath_hal *ah, const struct ieee80211_channel *chan,
219    CHAN_CENTERS *centers)
220{
221    int8_t      extoff;
222    struct ath_hal_9300 *ahp = AH9300(ah);
223    HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
224
225    if (!IEEE80211_IS_CHAN_HT40(chan)) {
226        centers->ctl_center = centers->ext_center =
227        centers->synth_center = ichan->channel;
228        return;
229    }
230
231    HALASSERT(IEEE80211_IS_CHAN_HT40(chan));
232
233    /*
234     * In 20/40 phy mode, the center frequency is
235     * "between" the primary and extension channels.
236     */
237    if (IEEE80211_IS_CHAN_HT40U(chan)) {
238        centers->synth_center = ichan->channel + HT40_CHANNEL_CENTER_SHIFT;
239        extoff = 1;
240    } else {
241        centers->synth_center = ichan->channel - HT40_CHANNEL_CENTER_SHIFT;
242        extoff = -1;
243    }
244
245    centers->ctl_center =
246        centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
247    centers->ext_center =
248        centers->synth_center +
249        (extoff * ((ahp->ah_ext_prot_spacing == HAL_HT_EXTPROTSPACING_20) ?
250            HT40_CHANNEL_CENTER_SHIFT : 15));
251}
252
253/*
254 * Read the noise-floor values from the HW.
255 * Specifically, read the minimum clear-channel assessment value for
256 * each chain, for both the control and extension channels.
257 * (The received power level during clear-channel periods is the
258 * noise floor.)
259 * These noise floor values computed by the HW will be stored in the
260 * NF history buffer.
261 * The HW sometimes produces bogus NF values.  To avoid using these
262 * bogus values, the NF data is (a) range-limited, and (b) filtered.
263 * However, this data-processing is done when reading the NF values
264 * out of the history buffer.  The history buffer stores the raw values.
265 * This allows the NF history buffer to be used to check for interference.
266 * A single high NF reading might be a bogus HW value, but if the NF
267 * readings are consistently high, it must be due to interference.
268 * This is the purpose of storing raw NF values in the history buffer,
269 * rather than processed values.  By looking at a history of NF values
270 * that have not been range-limited, we can check if they are consistently
271 * high (due to interference).
272 */
273#define AH_NF_SIGN_EXTEND(nf)      \
274    ((nf) & 0x100) ?               \
275        0 - (((nf) ^ 0x1ff) + 1) : \
276        (nf)
277void
278ar9300_upload_noise_floor(struct ath_hal *ah, int is_2g,
279    int16_t nfarray[HAL_NUM_NF_READINGS])
280{
281    int16_t nf;
282    int chan, chain;
283    u_int32_t regs[HAL_NUM_NF_READINGS] = {
284        /* control channel */
285        AR_PHY_CCA_0,     /* chain 0 */
286        AR_PHY_CCA_1,     /* chain 1 */
287        AR_PHY_CCA_2,     /* chain 2 */
288        /* extension channel */
289        AR_PHY_EXT_CCA,   /* chain 0 */
290        AR_PHY_EXT_CCA_1, /* chain 1 */
291        AR_PHY_EXT_CCA_2, /* chain 2 */
292    };
293    u_int8_t chainmask;
294
295    /*
296     * Within a given channel (ctl vs. ext), the CH0, CH1, and CH2
297     * masks and shifts are the same, though they differ for the
298     * control vs. extension channels.
299     */
300    u_int32_t masks[2] = {
301        AR_PHY_MINCCA_PWR,     /* control channel */
302        AR_PHY_EXT_MINCCA_PWR, /* extention channel */
303    };
304    u_int8_t shifts[2] = {
305        AR_PHY_MINCCA_PWR_S,     /* control channel */
306        AR_PHY_EXT_MINCCA_PWR_S, /* extention channel */
307    };
308
309    /*
310     * Force NF calibration for all chains.
311     */
312    if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah)) {
313        chainmask = 0x01;
314    } else if (AR_SREV_WASP(ah) || AR_SREV_JUPITER(ah) || AR_SREV_HONEYBEE(ah)) {
315        chainmask = 0x03;
316    } else {
317        chainmask = 0x07;
318    }
319
320    for (chan = 0; chan < 2 /*ctl,ext*/; chan++) {
321        for (chain = 0; chain < AR9300_MAX_CHAINS; chain++) {
322            int i;
323
324            if (!((chainmask >> chain) & 0x1)) {
325                continue;
326            }
327            i = chan * AR9300_MAX_CHAINS + chain;
328            nf = (OS_REG_READ(ah, regs[i]) & masks[chan]) >> shifts[chan];
329            nfarray[i] = AH_NF_SIGN_EXTEND(nf);
330        }
331    }
332}
333
334/* ar9300_get_min_cca_pwr -
335 * Used by the scan function for a quick read of the noise floor.
336 * This is used to detect presence of CW interference such as video bridge.
337 * The noise floor is assumed to have been already started during reset
338 * called during channel change. The function checks if the noise floor
339 * reading is done. In case it has been done, it reads the noise floor value.
340 * If the noise floor calibration has not been finished, it assumes this is
341 * due to presence of CW interference an returns a high value for noise floor,
342 * derived from the CW interference threshold + margin fudge factor.
343 */
344#define BAD_SCAN_NF_MARGIN (30)
345int16_t ar9300_get_min_cca_pwr(struct ath_hal *ah)
346{
347    int16_t nf;
348//    struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
349
350
351    if ((OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) == 0) {
352        nf = MS(OS_REG_READ(ah, AR_PHY_CCA_0), AR9280_PHY_MINCCA_PWR);
353        if (nf & 0x100) {
354            nf = 0 - ((nf ^ 0x1ff) + 1);
355        }
356    } else {
357        /* NF calibration is not done, assume CW interference */
358        nf = AH9300(ah)->nfp->nominal + AH9300(ah)->nf_cw_int_delta +
359            BAD_SCAN_NF_MARGIN;
360    }
361    return nf;
362}
363
364
365/*
366 * Noise Floor values for all chains.
367 * Most recently updated values from the NF history buffer are used.
368 */
369void ar9300_chain_noise_floor(struct ath_hal *ah, int16_t *nf_buf,
370    struct ieee80211_channel *chan, int is_scan)
371{
372    struct ath_hal_9300 *ahp = AH9300(ah);
373    int i, nf_hist_len, recent_nf_index = 0;
374    HAL_NFCAL_HIST_FULL *h;
375    u_int8_t rx_chainmask = ahp->ah_rx_chainmask | (ahp->ah_rx_chainmask << 3);
376    HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
377    HALASSERT(ichan);
378
379#ifdef ATH_NF_PER_CHAN
380    /* Fill 0 if valid internal channel is not found */
381    if (ichan == AH_NULL) {
382        OS_MEMZERO(nf_buf, sizeof(nf_buf[0])*HAL_NUM_NF_READINGS);
383        return;
384    }
385    h = &ichan->nf_cal_hist;
386    nf_hist_len = HAL_NF_CAL_HIST_LEN_FULL;
387#else
388    /*
389     * If a scan is not in progress, then the most recent value goes
390     * into ahpriv->nf_cal_hist.  If a scan is in progress, then
391     * the most recent value goes into ichan->nf_cal_hist.
392     * Thus, return the value from ahpriv->nf_cal_hist if there's
393     * no scan, and if the specified channel is the current channel.
394     * Otherwise, return the noise floor from ichan->nf_cal_hist.
395     */
396    if ((!is_scan) && chan == AH_PRIVATE(ah)->ah_curchan) {
397        h = &AH_PRIVATE(ah)->nf_cal_hist;
398        nf_hist_len = HAL_NF_CAL_HIST_LEN_FULL;
399    } else {
400        /* Fill 0 if valid internal channel is not found */
401        if (ichan == AH_NULL) {
402            OS_MEMZERO(nf_buf, sizeof(nf_buf[0])*HAL_NUM_NF_READINGS);
403            return;
404        }
405       /*
406        * It is okay to treat a HAL_NFCAL_HIST_SMALL struct as if it were a
407        * HAL_NFCAL_HIST_FULL struct, as long as only the index 0 of the
408        * nf_cal_buffer is used (nf_cal_buffer[0][0:HAL_NUM_NF_READINGS-1])
409        */
410        h = (HAL_NFCAL_HIST_FULL *) &ichan->nf_cal_hist;
411        nf_hist_len = HAL_NF_CAL_HIST_LEN_SMALL;
412    }
413#endif
414    /* Get most recently updated values from nf cal history buffer */
415    recent_nf_index =
416        (h->base.curr_index) ? h->base.curr_index - 1 : nf_hist_len - 1;
417
418    for (i = 0; i < HAL_NUM_NF_READINGS; i++) {
419        /* Fill 0 for unsupported chains */
420        if (!(rx_chainmask & (1 << i))) {
421            nf_buf[i] = 0;
422            continue;
423        }
424        nf_buf[i] = h->nf_cal_buffer[recent_nf_index][i];
425    }
426}
427
428/*
429 * Return the current NF value in register.
430 * If the current NF cal is not completed, return 0.
431 */
432int16_t ar9300_get_nf_from_reg(struct ath_hal *ah, struct ieee80211_channel *chan, int wait_time)
433{
434    int16_t nfarray[HAL_NUM_NF_READINGS] = {0};
435    int is_2g = 0;
436    HAL_CHANNEL_INTERNAL *ichan = NULL;
437
438    ichan = ath_hal_checkchannel(ah, chan);
439    if (ichan == NULL)
440        return (0);
441
442    if (wait_time <= 0) {
443        return 0;
444    }
445
446    if (!ath_hal_waitfor(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF, 0, wait_time)) {
447        ath_hal_printf(ah, "%s: NF cal is not complete in %dus", __func__, wait_time);
448        return 0;
449    }
450    is_2g = !! (IS_CHAN_2GHZ(ichan));
451    ar9300_upload_noise_floor(ah, is_2g, nfarray);
452
453    return nfarray[0];
454}
455
456/*
457 * Pick up the medium one in the noise floor buffer and update the
458 * corresponding range for valid noise floor values
459 */
460static int16_t
461ar9300_get_nf_hist_mid(struct ath_hal *ah, HAL_NFCAL_HIST_FULL *h, int reading,
462    int hist_len)
463{
464    int16_t nfval;
465    int16_t sort[HAL_NF_CAL_HIST_LEN_FULL]; /* upper bound for hist_len */
466    int i, j;
467
468
469    for (i = 0; i < hist_len; i++) {
470        sort[i] = h->nf_cal_buffer[i][reading];
471        HALDEBUG(ah, HAL_DEBUG_NFCAL,
472            "nf_cal_buffer[%d][%d] = %d\n", i, reading, (int)sort[i]);
473    }
474    for (i = 0; i < hist_len - 1; i++) {
475        for (j = 1; j < hist_len - i; j++) {
476            if (sort[j] > sort[j - 1]) {
477                nfval = sort[j];
478                sort[j] = sort[j - 1];
479                sort[j - 1] = nfval;
480            }
481        }
482    }
483    nfval = sort[(hist_len - 1) >> 1];
484
485    return nfval;
486}
487
488static int16_t ar9300_limit_nf_range(struct ath_hal *ah, int16_t nf)
489{
490    if (nf < AH9300(ah)->nfp->min) {
491        return AH9300(ah)->nfp->nominal;
492    } else if (nf > AH9300(ah)->nfp->max) {
493        return AH9300(ah)->nfp->max;
494    }
495    return nf;
496}
497
498#ifndef ATH_NF_PER_CHAN
499inline static void
500ar9300_reset_nf_hist_buff(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *ichan)
501{
502    HAL_CHAN_NFCAL_HIST *h = &ichan->nf_cal_hist;
503    HAL_NFCAL_HIST_FULL *home = &AH_PRIVATE(ah)->nf_cal_hist;
504    int i;
505
506    /*
507     * Copy the value for the channel in question into the home-channel
508     * NF history buffer.  The channel NF is probably a value filled in by
509     * a prior background channel scan, but if no scan has been done then
510     * it is the nominal noise floor filled in by ath_hal_init_NF_buffer
511     * for this chip and the channel's band.
512     * Replicate this channel NF into all entries of the home-channel NF
513     * history buffer.
514     * If the channel NF was filled in by a channel scan, it has not had
515     * bounds limits applied to it yet - do so now.  It is important to
516     * apply bounds limits to the priv_nf value that gets loaded into the
517     * WLAN chip's min_cca_pwr register field.  It is also necessary to
518     * apply bounds limits to the nf_cal_buffer[] elements.  Since we are
519     * replicating a single NF reading into all nf_cal_buffer elements,
520     * if the single reading were above the CW_INT threshold, the CW_INT
521     * check in ar9300_get_nf would immediately conclude that CW interference
522     * is present, even though we're not supposed to set CW_INT unless
523     * NF values are _consistently_ above the CW_INT threshold.
524     * Applying the bounds limits to the nf_cal_buffer contents fixes this
525     * problem.
526     */
527    for (i = 0; i < HAL_NUM_NF_READINGS; i ++) {
528        int j;
529        int16_t nf;
530        /*
531         * No need to set curr_index, since it already has a value in
532         * the range [0..HAL_NF_CAL_HIST_LEN_FULL), and all nf_cal_buffer
533         * values will be the same.
534         */
535        nf = ar9300_limit_nf_range(ah, h->nf_cal_buffer[0][i]);
536        for (j = 0; j < HAL_NF_CAL_HIST_LEN_FULL; j++) {
537            home->nf_cal_buffer[j][i] = nf;
538        }
539        AH_PRIVATE(ah)->nf_cal_hist.base.priv_nf[i] = nf;
540    }
541}
542#endif
543
544/*
545 *  Update the noise floor buffer as a ring buffer
546 */
547static int16_t
548ar9300_update_nf_hist_buff(struct ath_hal *ah, HAL_NFCAL_HIST_FULL *h,
549   int16_t *nfarray, int hist_len)
550{
551    int i, nr;
552    int16_t nf_no_lim_chain0;
553
554    nf_no_lim_chain0 = ar9300_get_nf_hist_mid(ah, h, 0, hist_len);
555
556    HALDEBUG(ah, HAL_DEBUG_NFCAL, "%s[%d] BEFORE\n", __func__, __LINE__);
557    for (nr = 0; nr < HAL_NF_CAL_HIST_LEN_FULL; nr++) {
558        for (i = 0; i < HAL_NUM_NF_READINGS; i++) {
559            HALDEBUG(ah, HAL_DEBUG_NFCAL,
560                "nf_cal_buffer[%d][%d] = %d\n",
561                nr, i, (int)h->nf_cal_buffer[nr][i]);
562        }
563    }
564    for (i = 0; i < HAL_NUM_NF_READINGS; i++) {
565        h->nf_cal_buffer[h->base.curr_index][i] = nfarray[i];
566        h->base.priv_nf[i] = ar9300_limit_nf_range(
567            ah, ar9300_get_nf_hist_mid(ah, h, i, hist_len));
568    }
569    HALDEBUG(ah, HAL_DEBUG_NFCAL, "%s[%d] AFTER\n", __func__, __LINE__);
570    for (nr = 0; nr < HAL_NF_CAL_HIST_LEN_FULL; nr++) {
571        for (i = 0; i < HAL_NUM_NF_READINGS; i++) {
572            HALDEBUG(ah, HAL_DEBUG_NFCAL,
573                "nf_cal_buffer[%d][%d] = %d\n",
574                nr, i, (int)h->nf_cal_buffer[nr][i]);
575        }
576    }
577
578    if (++h->base.curr_index >= hist_len) {
579        h->base.curr_index = 0;
580    }
581
582    return nf_no_lim_chain0;
583}
584
585#ifdef UNUSED
586static HAL_BOOL
587get_noise_floor_thresh(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *chan,
588    int16_t *nft)
589{
590    struct ath_hal_9300 *ahp = AH9300(ah);
591
592
593    switch (chan->channel_flags & CHANNEL_ALL_NOTURBO) {
594    case CHANNEL_A:
595    case CHANNEL_A_HT20:
596    case CHANNEL_A_HT40PLUS:
597    case CHANNEL_A_HT40MINUS:
598        *nft = (int8_t)ar9300_eeprom_get(ahp, EEP_NFTHRESH_5);
599        break;
600    case CHANNEL_B:
601    case CHANNEL_G:
602    case CHANNEL_G_HT20:
603    case CHANNEL_G_HT40PLUS:
604    case CHANNEL_G_HT40MINUS:
605        *nft = (int8_t)ar9300_eeprom_get(ahp, EEP_NFTHRESH_2);
606        break;
607    default:
608        HALDEBUG(ah, HAL_DEBUG_CHANNEL, "%s: invalid channel flags 0x%x\n",
609                __func__, chan->channel_flags);
610        return AH_FALSE;
611    }
612    return AH_TRUE;
613}
614#endif
615
616/*
617 * Read the NF and check it against the noise floor threshhold
618 */
619#define IS(_c, _f)       (((_c)->channel_flags & _f) || 0)
620static int
621ar9300_store_new_nf(struct ath_hal *ah, struct ieee80211_channel *chan,
622  int is_scan)
623{
624//    struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
625    int nf_hist_len;
626    int16_t nf_no_lim;
627    int16_t nfarray[HAL_NUM_NF_READINGS] = {0};
628    HAL_NFCAL_HIST_FULL *h;
629    int is_2g = 0;
630    HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
631    struct ath_hal_9300 *ahp = AH9300(ah);
632
633    if (OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) {
634        u_int32_t tsf32, nf_cal_dur_tsf;
635        /*
636         * The reason the NF calibration did not complete may just be that
637         * not enough time has passed since the NF calibration was started,
638         * because under certain conditions (when first moving to a new
639         * channel) the NF calibration may be checked very repeatedly.
640         * Or, there may be CW interference keeping the NF calibration
641         * from completing.  Check the delta time between when the NF
642         * calibration was started and now to see whether the NF calibration
643         * should have already completed (but hasn't, probably due to CW
644         * interference), or hasn't had enough time to finish yet.
645         */
646        /*
647         * AH_NF_CAL_DUR_MAX_TSF - A conservative maximum time that the
648         *     HW should need to finish a NF calibration.  If the HW
649         *     does not complete a NF calibration within this time period,
650         *     there must be a problem - probably CW interference.
651         * AH_NF_CAL_PERIOD_MAX_TSF - A conservative maximum time between
652         *     check of the HW's NF calibration being finished.
653         *     If the difference between the current TSF and the TSF
654         *     recorded when the NF calibration started is larger than this
655         *     value, the TSF must have been reset.
656         *     In general, we expect the TSF to only be reset during
657         *     regular operation for STAs, not for APs.  However, an
658         *     AP's TSF could be reset when joining an IBSS.
659         *     There's an outside chance that this could result in the
660         *     CW_INT flag being erroneously set, if the TSF adjustment
661         *     is smaller than AH_NF_CAL_PERIOD_MAX_TSF but larger than
662         *     AH_NF_CAL_DUR_TSF.  However, even if this does happen,
663         *     it shouldn't matter, as the IBSS case shouldn't be
664         *     concerned about CW_INT.
665         */
666        /* AH_NF_CAL_DUR_TSF - 90 sec in usec units */
667        #define AH_NF_CAL_DUR_TSF (90 * 1000 * 1000)
668        /* AH_NF_CAL_PERIOD_MAX_TSF - 180 sec in usec units */
669        #define AH_NF_CAL_PERIOD_MAX_TSF (180 * 1000 * 1000)
670        /* wraparound handled by using unsigned values */
671        tsf32 = ar9300_get_tsf32(ah);
672        nf_cal_dur_tsf = tsf32 - AH9300(ah)->nf_tsf32;
673        if (nf_cal_dur_tsf > AH_NF_CAL_PERIOD_MAX_TSF) {
674            /*
675             * The TSF must have gotten reset during the NF cal -
676             * just reset the NF TSF timestamp, so the next time
677             * this function is called, the timestamp comparison
678             * will be valid.
679             */
680            AH9300(ah)->nf_tsf32 = tsf32;
681        } else if (nf_cal_dur_tsf > AH_NF_CAL_DUR_TSF) {
682            HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
683                "%s: NF did not complete in calibration window\n", __func__);
684            /* the NF incompletion is probably due to CW interference */
685            chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
686        }
687        return 0; /* HW's NF measurement not finished */
688    }
689    HALDEBUG(ah, HAL_DEBUG_NFCAL,
690        "%s[%d] chan %d\n", __func__, __LINE__, ichan->channel);
691    is_2g = !! IS_CHAN_2GHZ(ichan);
692    ar9300_upload_noise_floor(ah, is_2g, nfarray);
693
694    /* Update the NF buffer for each chain masked by chainmask */
695#ifdef ATH_NF_PER_CHAN
696    h = &ichan->nf_cal_hist;
697    nf_hist_len = HAL_NF_CAL_HIST_LEN_FULL;
698#else
699    if (is_scan) {
700        /*
701         * This channel's NF cal info is just a HAL_NFCAL_HIST_SMALL struct
702         * rather than a HAL_NFCAL_HIST_FULL struct.
703         * As long as we only use the first history element of nf_cal_buffer
704         * (nf_cal_buffer[0][0:HAL_NUM_NF_READINGS-1]), we can use
705         * HAL_NFCAL_HIST_SMALL and HAL_NFCAL_HIST_FULL interchangeably.
706         */
707        h = (HAL_NFCAL_HIST_FULL *) &ichan->nf_cal_hist;
708        nf_hist_len = HAL_NF_CAL_HIST_LEN_SMALL;
709    } else {
710        h = &AH_PRIVATE(ah)->nf_cal_hist;
711        nf_hist_len = HAL_NF_CAL_HIST_LEN_FULL;
712    }
713#endif
714
715    /*
716     * nf_no_lim = median value from NF history buffer without bounds limits,
717     * priv_nf = median value from NF history buffer with bounds limits.
718     */
719    nf_no_lim = ar9300_update_nf_hist_buff(ah, h, nfarray, nf_hist_len);
720    ichan->rawNoiseFloor = h->base.priv_nf[0];
721
722    /* check if there is interference */
723//    ichan->channel_flags &= (~CHANNEL_CW_INT);
724    /*
725     * Use AR9300_EMULATION to check for emulation purpose as PCIE Device ID
726     * 0xABCD is recognized as valid Osprey as WAR in some EVs.
727     */
728    if (nf_no_lim > ahp->nfp->nominal + ahp->nf_cw_int_delta) {
729        /*
730         * Since this CW interference check is being applied to the
731         * median element of the NF history buffer, this indicates that
732         * the CW interference is persistent.  A single high NF reading
733         * will not show up in the median, and thus will not cause the
734         * CW_INT flag to be set.
735         */
736        HALDEBUG(ah, HAL_DEBUG_NFCAL,
737            "%s: NF Cal: CW interferer detected through NF: %d\n",
738            __func__, nf_no_lim);
739        chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
740    }
741    return 1; /* HW's NF measurement finished */
742}
743#undef IS
744
745static inline void
746ar9300_get_delta_slope_values(struct ath_hal *ah, u_int32_t coef_scaled,
747    u_int32_t *coef_mantissa, u_int32_t *coef_exponent)
748{
749    u_int32_t coef_exp, coef_man;
750
751    /*
752     * ALGO -> coef_exp = 14-floor(log2(coef));
753     * floor(log2(x)) is the highest set bit position
754     */
755    for (coef_exp = 31; coef_exp > 0; coef_exp--) {
756        if ((coef_scaled >> coef_exp) & 0x1) {
757            break;
758        }
759    }
760    /* A coef_exp of 0 is a legal bit position but an unexpected coef_exp */
761    HALASSERT(coef_exp);
762    coef_exp = 14 - (coef_exp - COEF_SCALE_S);
763
764
765    /*
766     * ALGO -> coef_man = floor(coef* 2^coef_exp+0.5);
767     * The coefficient is already shifted up for scaling
768     */
769    coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
770
771    *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
772    *coef_exponent = coef_exp - 16;
773}
774
775#define MAX_ANALOG_START        319             /* XXX */
776
777/*
778 * Delta slope coefficient computation.
779 * Required for OFDM operation.
780 */
781static void
782ar9300_set_delta_slope(struct ath_hal *ah, struct ieee80211_channel *chan)
783{
784    u_int32_t coef_scaled, ds_coef_exp, ds_coef_man;
785    u_int32_t fclk = COEFF; /* clock * 2.5 */
786
787    u_int32_t clock_mhz_scaled = 0x1000000 * fclk;
788    CHAN_CENTERS centers;
789
790    /*
791     * half and quarter rate can divide the scaled clock by 2 or 4
792     * scale for selected channel bandwidth
793     */
794    if (IEEE80211_IS_CHAN_HALF(chan)) {
795        clock_mhz_scaled = clock_mhz_scaled >> 1;
796    } else if (IEEE80211_IS_CHAN_QUARTER(chan)) {
797        clock_mhz_scaled = clock_mhz_scaled >> 2;
798    }
799
800    /*
801     * ALGO -> coef = 1e8/fcarrier*fclock/40;
802     * scaled coef to provide precision for this floating calculation
803     */
804    ar9300_get_channel_centers(ah, chan, &centers);
805    coef_scaled = clock_mhz_scaled / centers.synth_center;
806
807    ar9300_get_delta_slope_values(ah, coef_scaled, &ds_coef_man, &ds_coef_exp);
808
809    OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3, AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
810    OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3, AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
811
812    /*
813     * For Short GI,
814     * scaled coeff is 9/10 that of normal coeff
815     */
816    coef_scaled = (9 * coef_scaled) / 10;
817
818    ar9300_get_delta_slope_values(ah, coef_scaled, &ds_coef_man, &ds_coef_exp);
819
820    /* for short gi */
821    OS_REG_RMW_FIELD(ah, AR_PHY_SGI_DELTA, AR_PHY_SGI_DSC_MAN, ds_coef_man);
822    OS_REG_RMW_FIELD(ah, AR_PHY_SGI_DELTA, AR_PHY_SGI_DSC_EXP, ds_coef_exp);
823}
824
825#define IS(_c, _f)       (IEEE80211_IS_ ## _f(_c))
826
827/*
828 * XXX FreeBSD: This should be turned into something generic in ath_hal!
829 */
830HAL_CHANNEL_INTERNAL *
831ar9300_check_chan(struct ath_hal *ah, const struct ieee80211_channel *chan)
832{
833
834    if (chan == NULL) {
835        return AH_NULL;
836    }
837
838    if ((IS(chan, CHAN_2GHZ) ^ IS(chan, CHAN_5GHZ)) == 0) {
839        HALDEBUG(ah, HAL_DEBUG_CHANNEL,
840            "%s: invalid channel %u/0x%x; not marked as 2GHz or 5GHz\n",
841            __func__, chan->ic_freq , chan->ic_flags);
842        return AH_NULL;
843    }
844
845    /*
846     * FreeBSD sets multiple flags, so this will fail.
847     */
848#if 0
849    if ((IS(chan, CHAN_OFDM) ^ IS(chan, CHAN_CCK) ^ IS(chan, CHAN_DYN) ^
850         IS(chan, CHAN_HT20) ^ IS(chan, CHAN_HT40U) ^
851         IS(chan, CHAN_HT40D)) == 0)
852    {
853        HALDEBUG(ah, HAL_DEBUG_CHANNEL,
854            "%s: invalid channel %u/0x%x; not marked as "
855            "OFDM or CCK or DYN or HT20 or HT40PLUS or HT40MINUS\n",
856            __func__, chan->ic_freq , chan->ic_flags);
857        return AH_NULL;
858    }
859#endif
860
861    return (ath_hal_checkchannel(ah, chan));
862}
863#undef IS
864
865static void
866ar9300_set_11n_regs(struct ath_hal *ah, struct ieee80211_channel *chan,
867    HAL_HT_MACMODE macmode)
868{
869    u_int32_t phymode;
870//    struct ath_hal_9300 *ahp = AH9300(ah);
871    u_int32_t enable_dac_fifo;
872
873    /* XXX */
874    enable_dac_fifo =
875        OS_REG_READ(ah, AR_PHY_GEN_CTRL) & AR_PHY_GC_ENABLE_DAC_FIFO;
876
877    /* Enable 11n HT, 20 MHz */
878    phymode =
879        AR_PHY_GC_HT_EN | AR_PHY_GC_SINGLE_HT_LTF1 | AR_PHY_GC_SHORT_GI_40
880        | enable_dac_fifo;
881    /* Configure baseband for dynamic 20/40 operation */
882    if (IEEE80211_IS_CHAN_HT40(chan)) {
883        phymode |= AR_PHY_GC_DYN2040_EN;
884        /* Configure control (primary) channel at +-10MHz */
885        if (IEEE80211_IS_CHAN_HT40U(chan)) {
886            phymode |= AR_PHY_GC_DYN2040_PRI_CH;
887        }
888
889#if 0
890        /* Configure 20/25 spacing */
891        if (ahp->ah_ext_prot_spacing == HAL_HT_EXTPROTSPACING_25) {
892            phymode |= AR_PHY_GC_DYN2040_EXT_CH;
893        }
894#endif
895    }
896
897    /* make sure we preserve INI settings */
898    phymode |= OS_REG_READ(ah, AR_PHY_GEN_CTRL);
899
900    /* EV 62881/64991 - turn off Green Field detection for Maverick STA beta */
901    phymode &= ~AR_PHY_GC_GF_DETECT_EN;
902
903    OS_REG_WRITE(ah, AR_PHY_GEN_CTRL, phymode);
904
905    /* Set IFS timing for half/quarter rates */
906    if (IEEE80211_IS_CHAN_HALF(chan) || IEEE80211_IS_CHAN_QUARTER(chan)) {
907        u_int32_t modeselect = OS_REG_READ(ah, AR_PHY_MODE);
908
909        if (IEEE80211_IS_CHAN_HALF(chan)) {
910            modeselect |= AR_PHY_MS_HALF_RATE;
911        } else if (IEEE80211_IS_CHAN_QUARTER(chan)) {
912            modeselect |= AR_PHY_MS_QUARTER_RATE;
913        }
914        OS_REG_WRITE(ah, AR_PHY_MODE, modeselect);
915
916        ar9300_set_ifs_timing(ah, chan);
917        OS_REG_RMW_FIELD(
918            ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_CF_OVERLAP_WINDOW, 0x3);
919    }
920
921    /* Configure MAC for 20/40 operation */
922    ar9300_set_11n_mac2040(ah, macmode);
923
924    /* global transmit timeout (25 TUs default)*/
925    /* XXX - put this elsewhere??? */
926    OS_REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
927
928    /* carrier sense timeout */
929    OS_REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
930}
931
932/*
933 * Spur mitigation for MRC CCK
934 */
935static void
936ar9300_spur_mitigate_mrc_cck(struct ath_hal *ah, struct ieee80211_channel *chan)
937{
938    int i;
939    /* spur_freq_for_osprey - hardcoded by Systems team for now. */
940    u_int32_t spur_freq_for_osprey[4] = { 2420, 2440, 2464, 2480 };
941    u_int32_t spur_freq_for_jupiter[2] = { 2440, 2464};
942    int cur_bb_spur, negative = 0, cck_spur_freq;
943    u_int8_t* spur_fbin_ptr = NULL;
944    int synth_freq;
945    int range = 10;
946    int max_spurcounts = OSPREY_EEPROM_MODAL_SPURS;
947    HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
948
949    /*
950     * Need to verify range +/- 10 MHz in control channel, otherwise spur
951     * is out-of-band and can be ignored.
952     */
953    if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) ||
954        AR_SREV_WASP(ah)  || AR_SREV_SCORPION(ah)) {
955        spur_fbin_ptr = ar9300_eeprom_get_spur_chans_ptr(ah, 1);
956        if (spur_fbin_ptr[0] == 0) {
957            return;      /* No spur in the mode */
958        }
959        if (IEEE80211_IS_CHAN_HT40(chan)) {
960            range = 19;
961            if (OS_REG_READ_FIELD(ah, AR_PHY_GEN_CTRL, AR_PHY_GC_DYN2040_PRI_CH)
962                == 0x0)
963            {
964                synth_freq = ichan->channel + 10;
965            } else {
966                synth_freq = ichan->channel - 10;
967            }
968        } else {
969            range = 10;
970            synth_freq = ichan->channel;
971        }
972    } else if(AR_SREV_JUPITER(ah)) {
973        range = 5;
974        max_spurcounts = 2; /* Hardcoded by Jupiter Systems team for now. */
975        synth_freq = ichan->channel;
976    } else {
977        range = 10;
978        max_spurcounts = 4; /* Hardcoded by Osprey Systems team for now. */
979        synth_freq = ichan->channel;
980    }
981
982    for (i = 0; i < max_spurcounts; i++) {
983        negative = 0;
984
985        if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) ||
986            AR_SREV_WASP(ah) || AR_SREV_SCORPION(ah)) {
987            cur_bb_spur =
988                FBIN2FREQ(spur_fbin_ptr[i], HAL_FREQ_BAND_2GHZ) - synth_freq;
989        } else if(AR_SREV_JUPITER(ah)) {
990            cur_bb_spur = spur_freq_for_jupiter[i] - synth_freq;
991        } else {
992            cur_bb_spur = spur_freq_for_osprey[i] - synth_freq;
993        }
994
995        if (cur_bb_spur < 0) {
996            negative = 1;
997            cur_bb_spur = -cur_bb_spur;
998        }
999        if (cur_bb_spur < range) {
1000            cck_spur_freq = (int)((cur_bb_spur << 19) / 11);
1001            if (negative == 1) {
1002                cck_spur_freq = -cck_spur_freq;
1003            }
1004            cck_spur_freq = cck_spur_freq & 0xfffff;
1005            /*OS_REG_WRITE_field(ah, BB_agc_control.ycok_max, 0x7);*/
1006            OS_REG_RMW_FIELD(ah,
1007                AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_YCOK_MAX, 0x7);
1008            /*OS_REG_WRITE_field(ah, BB_cck_spur_mit.spur_rssi_thr, 0x7f);*/
1009            OS_REG_RMW_FIELD(ah,
1010                AR_PHY_CCK_SPUR_MIT, AR_PHY_CCK_SPUR_MIT_SPUR_RSSI_THR, 0x7f);
1011            /*OS_REG_WRITE(ah, BB_cck_spur_mit.spur_filter_type, 0x2);*/
1012            OS_REG_RMW_FIELD(ah,
1013                AR_PHY_CCK_SPUR_MIT, AR_PHY_CCK_SPUR_MIT_SPUR_FILTER_TYPE, 0x2);
1014            /*OS_REG_WRITE(ah, BB_cck_spur_mit.use_cck_spur_mit, 0x1);*/
1015            OS_REG_RMW_FIELD(ah,
1016                AR_PHY_CCK_SPUR_MIT, AR_PHY_CCK_SPUR_MIT_USE_CCK_SPUR_MIT, 0x1);
1017            /*OS_REG_WRITE(ah, BB_cck_spur_mit.cck_spur_freq, cck_spur_freq);*/
1018            OS_REG_RMW_FIELD(ah,
1019                AR_PHY_CCK_SPUR_MIT, AR_PHY_CCK_SPUR_MIT_CCK_SPUR_FREQ,
1020                cck_spur_freq);
1021            return;
1022        }
1023    }
1024
1025    /*OS_REG_WRITE(ah, BB_agc_control.ycok_max, 0x5);*/
1026    OS_REG_RMW_FIELD(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_YCOK_MAX, 0x5);
1027    /*OS_REG_WRITE(ah, BB_cck_spur_mit.use_cck_spur_mit, 0x0);*/
1028    OS_REG_RMW_FIELD(ah,
1029        AR_PHY_CCK_SPUR_MIT, AR_PHY_CCK_SPUR_MIT_USE_CCK_SPUR_MIT, 0x0);
1030    /*OS_REG_WRITE(ah, BB_cck_spur_mit.cck_spur_freq, 0x0);*/
1031    OS_REG_RMW_FIELD(ah,
1032        AR_PHY_CCK_SPUR_MIT, AR_PHY_CCK_SPUR_MIT_CCK_SPUR_FREQ, 0x0);
1033}
1034
1035/* Spur mitigation for OFDM */
1036static void
1037ar9300_spur_mitigate_ofdm(struct ath_hal *ah, struct ieee80211_channel *chan)
1038{
1039    int synth_freq;
1040    int range = 10;
1041    int freq_offset = 0;
1042    int spur_freq_sd = 0;
1043    int spur_subchannel_sd = 0;
1044    int spur_delta_phase = 0;
1045    int mask_index = 0;
1046    int i;
1047    int mode;
1048    u_int8_t* spur_chans_ptr;
1049    struct ath_hal_9300 *ahp;
1050    HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
1051	ahp = AH9300(ah);
1052
1053    if (IS_CHAN_5GHZ(ichan)) {
1054        spur_chans_ptr = ar9300_eeprom_get_spur_chans_ptr(ah, 0);
1055        mode = 0;
1056    } else {
1057        spur_chans_ptr = ar9300_eeprom_get_spur_chans_ptr(ah, 1);
1058        mode = 1;
1059    }
1060
1061    if (IEEE80211_IS_CHAN_HT40(chan)) {
1062        range = 19;
1063        if (OS_REG_READ_FIELD(ah, AR_PHY_GEN_CTRL, AR_PHY_GC_DYN2040_PRI_CH)
1064            == 0x0)
1065        {
1066            synth_freq = ichan->channel - 10;
1067        } else {
1068            synth_freq = ichan->channel + 10;
1069        }
1070    } else {
1071        range = 10;
1072        synth_freq = ichan->channel;
1073    }
1074
1075    /* Clean all spur register fields */
1076    OS_REG_RMW_FIELD(ah, AR_PHY_TIMING4, AR_PHY_TIMING4_ENABLE_SPUR_FILTER, 0);
1077    OS_REG_RMW_FIELD(ah, AR_PHY_TIMING11, AR_PHY_TIMING11_SPUR_FREQ_SD, 0);
1078    OS_REG_RMW_FIELD(ah, AR_PHY_TIMING11, AR_PHY_TIMING11_SPUR_DELTA_PHASE, 0);
1079    OS_REG_RMW_FIELD(ah,
1080        AR_PHY_SFCORR_EXT, AR_PHY_SFCORR_EXT_SPUR_SUBCHANNEL_SD, 0);
1081    OS_REG_RMW_FIELD(ah,
1082        AR_PHY_TIMING11, AR_PHY_TIMING11_USE_SPUR_FILTER_IN_AGC, 0);
1083    OS_REG_RMW_FIELD(ah,
1084        AR_PHY_TIMING11, AR_PHY_TIMING11_USE_SPUR_FILTER_IN_SELFCOR, 0);
1085    OS_REG_RMW_FIELD(ah, AR_PHY_TIMING4, AR_PHY_TIMING4_ENABLE_SPUR_RSSI, 0);
1086    OS_REG_RMW_FIELD(ah, AR_PHY_SPUR_REG, AR_PHY_SPUR_REG_EN_VIT_SPUR_RSSI, 0);
1087    OS_REG_RMW_FIELD(ah,
1088        AR_PHY_SPUR_REG, AR_PHY_SPUR_REG_ENABLE_NF_RSSI_SPUR_MIT, 0);
1089    OS_REG_RMW_FIELD(ah, AR_PHY_SPUR_REG, AR_PHY_SPUR_REG_ENABLE_MASK_PPM, 0);
1090    OS_REG_RMW_FIELD(ah, AR_PHY_TIMING4, AR_PHY_TIMING4_ENABLE_PILOT_MASK, 0);
1091    OS_REG_RMW_FIELD(ah, AR_PHY_TIMING4, AR_PHY_TIMING4_ENABLE_CHAN_MASK, 0);
1092    OS_REG_RMW_FIELD(ah,
1093        AR_PHY_PILOT_SPUR_MASK, AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_IDX_A, 0);
1094    OS_REG_RMW_FIELD(ah,
1095        AR_PHY_SPUR_MASK_A, AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_IDX_A, 0);
1096    OS_REG_RMW_FIELD(ah,
1097        AR_PHY_CHAN_SPUR_MASK, AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_IDX_A, 0);
1098    OS_REG_RMW_FIELD(ah,
1099        AR_PHY_PILOT_SPUR_MASK, AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_A, 0);
1100    OS_REG_RMW_FIELD(ah,
1101        AR_PHY_CHAN_SPUR_MASK, AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_A, 0);
1102    OS_REG_RMW_FIELD(ah,
1103        AR_PHY_SPUR_MASK_A, AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_A, 0);
1104    OS_REG_RMW_FIELD(ah, AR_PHY_SPUR_REG, AR_PHY_SPUR_REG_MASK_RATE_CNTL, 0);
1105
1106    i = 0;
1107    while (spur_chans_ptr[i] && i < 5) {
1108        freq_offset = FBIN2FREQ(spur_chans_ptr[i], mode) - synth_freq;
1109        if (abs(freq_offset) < range) {
1110            /*
1111            printf(
1112                "Spur Mitigation for OFDM: Synth Frequency = %d, "
1113                "Spur Frequency = %d\n",
1114                synth_freq, FBIN2FREQ(spur_chans_ptr[i], mode));
1115             */
1116            if (IEEE80211_IS_CHAN_HT40(chan)) {
1117                if (freq_offset < 0) {
1118                    if (OS_REG_READ_FIELD(
1119                        ah, AR_PHY_GEN_CTRL, AR_PHY_GC_DYN2040_PRI_CH) == 0x0)
1120                    {
1121                        spur_subchannel_sd = 1;
1122                    } else {
1123                        spur_subchannel_sd = 0;
1124                    }
1125                    spur_freq_sd = ((freq_offset + 10) << 9) / 11;
1126                } else {
1127                    if (OS_REG_READ_FIELD(ah,
1128                        AR_PHY_GEN_CTRL, AR_PHY_GC_DYN2040_PRI_CH) == 0x0)
1129                    {
1130                        spur_subchannel_sd = 0;
1131                    } else {
1132                        spur_subchannel_sd = 1;
1133                    }
1134                    spur_freq_sd = ((freq_offset - 10) << 9) / 11;
1135                }
1136                spur_delta_phase = (freq_offset << 17) / 5;
1137            } else {
1138                spur_subchannel_sd = 0;
1139                spur_freq_sd = (freq_offset << 9) / 11;
1140                spur_delta_phase = (freq_offset << 18) / 5;
1141            }
1142            spur_freq_sd = spur_freq_sd & 0x3ff;
1143            spur_delta_phase = spur_delta_phase & 0xfffff;
1144            /*
1145            printf(
1146                "spur_subchannel_sd = %d, spur_freq_sd = 0x%x, "
1147                "spur_delta_phase = 0x%x\n", spur_subchannel_sd,
1148                spur_freq_sd, spur_delta_phase);
1149             */
1150
1151            /* OFDM Spur mitigation */
1152            OS_REG_RMW_FIELD(ah,
1153                AR_PHY_TIMING4, AR_PHY_TIMING4_ENABLE_SPUR_FILTER, 0x1);
1154            OS_REG_RMW_FIELD(ah,
1155                AR_PHY_TIMING11, AR_PHY_TIMING11_SPUR_FREQ_SD, spur_freq_sd);
1156            OS_REG_RMW_FIELD(ah,
1157                AR_PHY_TIMING11, AR_PHY_TIMING11_SPUR_DELTA_PHASE,
1158                spur_delta_phase);
1159            OS_REG_RMW_FIELD(ah,
1160                AR_PHY_SFCORR_EXT, AR_PHY_SFCORR_EXT_SPUR_SUBCHANNEL_SD,
1161                spur_subchannel_sd);
1162            OS_REG_RMW_FIELD(ah,
1163                AR_PHY_TIMING11, AR_PHY_TIMING11_USE_SPUR_FILTER_IN_AGC, 0x1);
1164            OS_REG_RMW_FIELD(ah,
1165                AR_PHY_TIMING11, AR_PHY_TIMING11_USE_SPUR_FILTER_IN_SELFCOR,
1166                0x1);
1167            OS_REG_RMW_FIELD(ah,
1168                AR_PHY_TIMING4, AR_PHY_TIMING4_ENABLE_SPUR_RSSI, 0x1);
1169            OS_REG_RMW_FIELD(ah,
1170                AR_PHY_SPUR_REG, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH, 34);
1171            OS_REG_RMW_FIELD(ah,
1172                AR_PHY_SPUR_REG, AR_PHY_SPUR_REG_EN_VIT_SPUR_RSSI, 1);
1173
1174            /*
1175             * Do not subtract spur power from noise floor for wasp.
1176             * This causes the maximum client test (on Veriwave) to fail
1177             * when run on spur channel (2464 MHz).
1178             * Refer to ev#82746 and ev#82744.
1179             */
1180            if (!AR_SREV_WASP(ah) && (OS_REG_READ_FIELD(ah, AR_PHY_MODE,
1181                                           AR_PHY_MODE_DYNAMIC) == 0x1)) {
1182                OS_REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
1183                    AR_PHY_SPUR_REG_ENABLE_NF_RSSI_SPUR_MIT, 1);
1184            }
1185
1186            mask_index = (freq_offset << 4) / 5;
1187            if (mask_index < 0) {
1188                mask_index = mask_index - 1;
1189            }
1190            mask_index = mask_index & 0x7f;
1191            /*printf("Bin 0x%x\n", mask_index);*/
1192
1193            OS_REG_RMW_FIELD(ah,
1194                AR_PHY_SPUR_REG, AR_PHY_SPUR_REG_ENABLE_MASK_PPM, 0x1);
1195            OS_REG_RMW_FIELD(ah,
1196                AR_PHY_TIMING4, AR_PHY_TIMING4_ENABLE_PILOT_MASK, 0x1);
1197            OS_REG_RMW_FIELD(ah,
1198                AR_PHY_TIMING4, AR_PHY_TIMING4_ENABLE_CHAN_MASK, 0x1);
1199            OS_REG_RMW_FIELD(ah,
1200                AR_PHY_PILOT_SPUR_MASK,
1201                AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_IDX_A, mask_index);
1202            OS_REG_RMW_FIELD(ah,
1203                AR_PHY_SPUR_MASK_A, AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_IDX_A,
1204                mask_index);
1205            OS_REG_RMW_FIELD(ah,
1206                AR_PHY_CHAN_SPUR_MASK,
1207                AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_IDX_A, mask_index);
1208            OS_REG_RMW_FIELD(ah,
1209                AR_PHY_PILOT_SPUR_MASK, AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_A,
1210                0xc);
1211            OS_REG_RMW_FIELD(ah,
1212                AR_PHY_CHAN_SPUR_MASK, AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_A,
1213                0xc);
1214            OS_REG_RMW_FIELD(ah,
1215                AR_PHY_SPUR_MASK_A, AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_A, 0xa0);
1216            OS_REG_RMW_FIELD(ah,
1217                AR_PHY_SPUR_REG, AR_PHY_SPUR_REG_MASK_RATE_CNTL, 0xff);
1218            /*
1219            printf("BB_timing_control_4 = 0x%x\n",
1220                OS_REG_READ(ah, AR_PHY_TIMING4));
1221            printf("BB_timing_control_11 = 0x%x\n",
1222                OS_REG_READ(ah, AR_PHY_TIMING11));
1223            printf("BB_ext_chan_scorr_thr = 0x%x\n",
1224                OS_REG_READ(ah, AR_PHY_SFCORR_EXT));
1225            printf("BB_spur_mask_controls = 0x%x\n",
1226                OS_REG_READ(ah, AR_PHY_SPUR_REG));
1227            printf("BB_pilot_spur_mask = 0x%x\n",
1228                OS_REG_READ(ah, AR_PHY_PILOT_SPUR_MASK));
1229            printf("BB_chan_spur_mask = 0x%x\n",
1230                OS_REG_READ(ah, AR_PHY_CHAN_SPUR_MASK));
1231            printf("BB_vit_spur_mask_A = 0x%x\n",
1232                OS_REG_READ(ah, AR_PHY_SPUR_MASK_A));
1233             */
1234            break;
1235        }
1236        i++;
1237    }
1238}
1239
1240
1241/*
1242 * Convert to baseband spur frequency given input channel frequency
1243 * and compute register settings below.
1244 */
1245static void
1246ar9300_spur_mitigate(struct ath_hal *ah, struct ieee80211_channel *chan)
1247{
1248    ar9300_spur_mitigate_ofdm(ah, chan);
1249    ar9300_spur_mitigate_mrc_cck(ah, chan);
1250}
1251
1252/**************************************************************
1253 * ar9300_channel_change
1254 * Assumes caller wants to change channel, and not reset.
1255 */
1256static inline HAL_BOOL
1257ar9300_channel_change(struct ath_hal *ah, struct ieee80211_channel *chan,
1258    HAL_CHANNEL_INTERNAL *ichan, HAL_HT_MACMODE macmode)
1259{
1260
1261    u_int32_t synth_delay, qnum;
1262    struct ath_hal_9300 *ahp = AH9300(ah);
1263
1264    /* TX must be stopped by now */
1265    for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1266        if (ar9300_num_tx_pending(ah, qnum)) {
1267            HALDEBUG(ah, HAL_DEBUG_QUEUE,
1268                "%s: Transmit frames pending on queue %d\n", __func__, qnum);
1269            HALASSERT(0);
1270            return AH_FALSE;
1271        }
1272    }
1273
1274
1275    /*
1276     * Kill last Baseband Rx Frame - Request analog bus grant
1277     */
1278    OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
1279    if (!ath_hal_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
1280            AR_PHY_RFBUS_GRANT_EN))
1281    {
1282        HALDEBUG(ah, HAL_DEBUG_PHYIO,
1283            "%s: Could not kill baseband RX\n", __func__);
1284        return AH_FALSE;
1285    }
1286
1287
1288    /* Setup 11n MAC/Phy mode registers */
1289    ar9300_set_11n_regs(ah, chan, macmode);
1290
1291    /*
1292     * Change the synth
1293     */
1294    if (!ahp->ah_rf_hal.set_channel(ah, chan)) {
1295        HALDEBUG(ah, HAL_DEBUG_CHANNEL, "%s: failed to set channel\n", __func__);
1296        return AH_FALSE;
1297    }
1298
1299    /*
1300     * Some registers get reinitialized during ATH_INI_POST INI programming.
1301     */
1302    ar9300_init_user_settings(ah);
1303
1304    /*
1305     * Setup the transmit power values.
1306     *
1307     * After the public to private hal channel mapping, ichan contains the
1308     * valid regulatory power value.
1309     * ath_hal_getctl and ath_hal_getantennaallowed look up ichan from chan.
1310     */
1311    if (ar9300_eeprom_set_transmit_power(
1312         ah, &ahp->ah_eeprom, chan, ath_hal_getctl(ah, chan),
1313         ath_hal_getantennaallowed(ah, chan),
1314         ath_hal_get_twice_max_regpower(AH_PRIVATE(ah), ichan, chan),
1315         AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit)) != HAL_OK)
1316    {
1317        HALDEBUG(ah, HAL_DEBUG_EEPROM,
1318            "%s: error init'ing transmit power\n", __func__);
1319        return AH_FALSE;
1320    }
1321
1322    /*
1323     * Release the RFBus Grant.
1324     */
1325    OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
1326
1327    /*
1328     * Write spur immunity and delta slope for OFDM enabled modes (A, G, Turbo)
1329     */
1330    if (IEEE80211_IS_CHAN_OFDM(chan) || IEEE80211_IS_CHAN_HT(chan)) {
1331        ar9300_set_delta_slope(ah, chan);
1332    } else {
1333        /* Set to Ini default */
1334        OS_REG_WRITE(ah, AR_PHY_TIMING3, 0x9c0a9f6b);
1335        OS_REG_WRITE(ah, AR_PHY_SGI_DELTA, 0x00046384);
1336    }
1337
1338    ar9300_spur_mitigate(ah, chan);
1339
1340
1341    /*
1342     * Wait for the frequency synth to settle (synth goes on via PHY_ACTIVE_EN).
1343     * Read the phy active delay register. Value is in 100ns increments.
1344     */
1345    synth_delay = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
1346    if (IEEE80211_IS_CHAN_CCK(chan)) {
1347        synth_delay = (4 * synth_delay) / 22;
1348    } else {
1349        synth_delay /= 10;
1350    }
1351
1352    OS_DELAY(synth_delay + BASE_ACTIVATE_DELAY);
1353
1354    /*
1355     * Do calibration.
1356     */
1357
1358    return AH_TRUE;
1359}
1360
1361void
1362ar9300_set_operating_mode(struct ath_hal *ah, int opmode)
1363{
1364    u_int32_t val;
1365
1366    val = OS_REG_READ(ah, AR_STA_ID1);
1367    val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
1368    switch (opmode) {
1369    case HAL_M_HOSTAP:
1370        OS_REG_WRITE(ah, AR_STA_ID1,
1371            val | AR_STA_ID1_STA_AP | AR_STA_ID1_KSRCH_MODE);
1372        OS_REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1373        break;
1374    case HAL_M_IBSS:
1375        OS_REG_WRITE(ah, AR_STA_ID1,
1376            val | AR_STA_ID1_ADHOC | AR_STA_ID1_KSRCH_MODE);
1377        OS_REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1378        break;
1379    case HAL_M_STA:
1380    case HAL_M_MONITOR:
1381        OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
1382        break;
1383    }
1384}
1385
1386/* XXX need the logic for Osprey */
1387void
1388ar9300_init_pll(struct ath_hal *ah, struct ieee80211_channel *chan)
1389{
1390    u_int32_t pll;
1391    u_int8_t clk_25mhz = AH9300(ah)->clk_25mhz;
1392    HAL_CHANNEL_INTERNAL *ichan = NULL;
1393
1394    if (chan)
1395        ichan = ath_hal_checkchannel(ah, chan);
1396
1397    if (AR_SREV_HORNET(ah)) {
1398        if (clk_25mhz) {
1399            /* Hornet uses PLL_CONTROL_2. Xtal is 25MHz for Hornet.
1400             * REFDIV set to 0x1.
1401             * $xtal_freq = 25;
1402             * $PLL2_div = (704/$xtal_freq); # 176 * 4 = 704.
1403             * MAC and BB run at 176 MHz.
1404             * $PLL2_divint = int($PLL2_div);
1405             * $PLL2_divfrac = $PLL2_div - $PLL2_divint;
1406             * $PLL2_divfrac = int($PLL2_divfrac * 0x4000); # 2^14
1407             * $PLL2_Val = ($PLL2_divint & 0x3f) << 19 | (0x1) << 14 |
1408             *     $PLL2_divfrac & 0x3fff;
1409             * Therefore, $PLL2_Val = 0xe04a3d
1410             */
1411#define DPLL2_KD_VAL            0x1D
1412#define DPLL2_KI_VAL            0x06
1413#define DPLL3_PHASE_SHIFT_VAL   0x1
1414
1415            /* Rewrite DDR PLL2 and PLL3 */
1416            /* program DDR PLL ki and kd value, ki=0x6, kd=0x1d */
1417            OS_REG_WRITE(ah, AR_HORNET_CH0_DDR_DPLL2, 0x18e82f01);
1418
1419            /* program DDR PLL phase_shift to 0x1 */
1420            OS_REG_RMW_FIELD(ah, AR_HORNET_CH0_DDR_DPLL3,
1421                AR_PHY_BB_DPLL3_PHASE_SHIFT, DPLL3_PHASE_SHIFT_VAL);
1422
1423            OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
1424            OS_DELAY(1000);
1425
1426            /* program refdiv, nint, frac to RTC register */
1427            OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL2, 0xe04a3d);
1428
1429            /* program BB PLL ki and kd value, ki=0x6, kd=0x1d */
1430            OS_REG_RMW_FIELD(ah, AR_PHY_BB_DPLL2,
1431                AR_PHY_BB_DPLL2_KD, DPLL2_KD_VAL);
1432            OS_REG_RMW_FIELD(ah, AR_PHY_BB_DPLL2,
1433                AR_PHY_BB_DPLL2_KI, DPLL2_KI_VAL);
1434
1435            /* program BB PLL phase_shift to 0x1 */
1436            OS_REG_RMW_FIELD(ah, AR_PHY_BB_DPLL3,
1437                AR_PHY_BB_DPLL3_PHASE_SHIFT, DPLL3_PHASE_SHIFT_VAL);
1438        } else { /* 40MHz */
1439#undef  DPLL2_KD_VAL
1440#undef  DPLL2_KI_VAL
1441#define DPLL2_KD_VAL            0x3D
1442#define DPLL2_KI_VAL            0x06
1443            /* Rewrite DDR PLL2 and PLL3 */
1444            /* program DDR PLL ki and kd value, ki=0x6, kd=0x3d */
1445            OS_REG_WRITE(ah, AR_HORNET_CH0_DDR_DPLL2, 0x19e82f01);
1446
1447            /* program DDR PLL phase_shift to 0x1 */
1448            OS_REG_RMW_FIELD(ah, AR_HORNET_CH0_DDR_DPLL3,
1449                AR_PHY_BB_DPLL3_PHASE_SHIFT, DPLL3_PHASE_SHIFT_VAL);
1450
1451            OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
1452            OS_DELAY(1000);
1453
1454            /* program refdiv, nint, frac to RTC register */
1455            OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL2, 0x886666);
1456
1457            /* program BB PLL ki and kd value, ki=0x6, kd=0x3d */
1458            OS_REG_RMW_FIELD(ah, AR_PHY_BB_DPLL2,
1459                AR_PHY_BB_DPLL2_KD, DPLL2_KD_VAL);
1460            OS_REG_RMW_FIELD(ah, AR_PHY_BB_DPLL2,
1461                AR_PHY_BB_DPLL2_KI, DPLL2_KI_VAL);
1462
1463            /* program BB PLL phase_shift to 0x1 */
1464            OS_REG_RMW_FIELD(ah, AR_PHY_BB_DPLL3,
1465                AR_PHY_BB_DPLL3_PHASE_SHIFT, DPLL3_PHASE_SHIFT_VAL);
1466        }
1467        OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x142c);
1468        OS_DELAY(1000);
1469    } else if (AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah)) {
1470        OS_REG_RMW_FIELD(ah, AR_PHY_BB_DPLL2, AR_PHY_BB_DPLL2_PLL_PWD, 0x1);
1471
1472        /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
1473        OS_REG_RMW_FIELD(ah, AR_PHY_BB_DPLL2,
1474            AR_PHY_BB_DPLL2_KD, 0x40);
1475        OS_REG_RMW_FIELD(ah, AR_PHY_BB_DPLL2,
1476            AR_PHY_BB_DPLL2_KI, 0x4);
1477
1478        OS_REG_RMW_FIELD(ah, AR_PHY_BB_DPLL1,
1479            AR_PHY_BB_DPLL1_REFDIV, 0x5);
1480        OS_REG_RMW_FIELD(ah, AR_PHY_BB_DPLL1,
1481            AR_PHY_BB_DPLL1_NINI, 0x58);
1482        OS_REG_RMW_FIELD(ah, AR_PHY_BB_DPLL1,
1483            AR_PHY_BB_DPLL1_NFRAC, 0x0);
1484
1485        OS_REG_RMW_FIELD(ah, AR_PHY_BB_DPLL2,
1486            AR_PHY_BB_DPLL2_OUTDIV, 0x1);
1487        OS_REG_RMW_FIELD(ah, AR_PHY_BB_DPLL2,
1488            AR_PHY_BB_DPLL2_LOCAL_PLL, 0x1);
1489        OS_REG_RMW_FIELD(ah, AR_PHY_BB_DPLL2,
1490            AR_PHY_BB_DPLL2_EN_NEGTRIG, 0x1);
1491
1492        /* program BB PLL phase_shift to 0x6 */
1493        OS_REG_RMW_FIELD(ah, AR_PHY_BB_DPLL3,
1494            AR_PHY_BB_DPLL3_PHASE_SHIFT, 0x6);
1495
1496        OS_REG_RMW_FIELD(ah, AR_PHY_BB_DPLL2,
1497            AR_PHY_BB_DPLL2_PLL_PWD, 0x0);
1498        OS_DELAY(1000);
1499
1500        OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x142c);
1501        OS_DELAY(1000);
1502    } else if (AR_SREV_WASP(ah) || AR_SREV_SCORPION(ah) || AR_SREV_HONEYBEE(ah)) {
1503#define SRIF_PLL 1
1504        u_int32_t regdata, pll2_divint, pll2_divfrac;
1505
1506#ifndef SRIF_PLL
1507	u_int32_t pll2_clkmode;
1508#endif
1509
1510#ifdef SRIF_PLL
1511        u_int32_t refdiv;
1512#endif
1513        if (clk_25mhz) {
1514#ifndef SRIF_PLL
1515            pll2_divint = 0x1c;
1516            pll2_divfrac = 0xa3d7;
1517#else
1518            if (AR_SREV_HONEYBEE(ah)) {
1519                pll2_divint = 0x1c;
1520                pll2_divfrac = 0xa3d2;
1521                refdiv = 1;
1522            } else {
1523                pll2_divint = 0x54;
1524                pll2_divfrac = 0x1eb85;
1525                refdiv = 3;
1526            }
1527#endif
1528        } else {
1529#ifndef SRIF_PLL
1530            pll2_divint = 0x11;
1531            pll2_divfrac = 0x26666;
1532#else
1533            if (AR_SREV_WASP(ah)) {
1534                pll2_divint = 88;
1535                pll2_divfrac = 0;
1536                refdiv = 5;
1537            } else {
1538                pll2_divint = 0x11;
1539                pll2_divfrac = 0x26666;
1540                refdiv = 1;
1541            }
1542#endif
1543        }
1544#ifndef SRIF_PLL
1545        pll2_clkmode = 0x3d;
1546#endif
1547        /* PLL programming through SRIF Local Mode */
1548        OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c); /* Bypass mode */
1549        OS_DELAY(1000);
1550        do {
1551            regdata = OS_REG_READ(ah, AR_PHY_PLL_MODE);
1552            if (AR_SREV_HONEYBEE(ah)) {
1553                regdata = regdata | (0x1 << 22);
1554            } else {
1555                regdata = regdata | (0x1 << 16);
1556            }
1557            OS_REG_WRITE(ah, AR_PHY_PLL_MODE, regdata); /* PWD_PLL set to 1 */
1558            OS_DELAY(100);
1559            /* override int, frac, refdiv */
1560#ifndef SRIF_PLL
1561            OS_REG_WRITE(ah, AR_PHY_PLL_CONTROL,
1562                ((1 << 27) | (pll2_divint << 18) | pll2_divfrac));
1563#else
1564            OS_REG_WRITE(ah, AR_PHY_PLL_CONTROL,
1565                ((refdiv << 27) | (pll2_divint << 18) | pll2_divfrac));
1566#endif
1567            OS_DELAY(100);
1568            regdata = OS_REG_READ(ah, AR_PHY_PLL_MODE);
1569#ifndef SRIF_PLL
1570            regdata = (regdata & 0x80071fff) |
1571                (0x1 << 30) | (0x1 << 13) | (0x6 << 26) | (pll2_clkmode << 19);
1572#else
1573            if (AR_SREV_WASP(ah)) {
1574                regdata = (regdata & 0x80071fff) |
1575                    (0x1 << 30) | (0x1 << 13) | (0x4 << 26) | (0x18 << 19);
1576            } else if (AR_SREV_HONEYBEE(ah)) {
1577                /*
1578                 * Kd=10, Ki=2, Outdiv=1, Local PLL=0, Phase Shift=4
1579                 */
1580                regdata = (regdata & 0x01c00fff) |
1581                    (0x1 << 31) | (0x2 << 29) | (0xa << 25) | (0x1 << 19) | (0x6 << 12);
1582            } else {
1583                regdata = (regdata & 0x80071fff) |
1584                    (0x3 << 30) | (0x1 << 13) | (0x4 << 26) | (0x60 << 19);
1585            }
1586#endif
1587            /* Ki, Kd, Local PLL, Outdiv */
1588            OS_REG_WRITE(ah, AR_PHY_PLL_MODE, regdata);
1589            regdata = OS_REG_READ(ah, AR_PHY_PLL_MODE);
1590            if (AR_SREV_HONEYBEE(ah)) {
1591                regdata = (regdata & 0xffbfffff);
1592            } else {
1593                regdata = (regdata & 0xfffeffff);
1594            }
1595            OS_REG_WRITE(ah, AR_PHY_PLL_MODE, regdata); /* PWD_PLL set to 0 */
1596            OS_DELAY(1000);
1597            if (AR_SREV_WASP(ah)) {
1598                /* clear do measure */
1599                regdata = OS_REG_READ(ah, AR_PHY_PLL_BB_DPLL3);
1600                regdata &= ~(1 << 30);
1601                OS_REG_WRITE(ah, AR_PHY_PLL_BB_DPLL3, regdata);
1602                OS_DELAY(100);
1603
1604                /* set do measure */
1605                regdata = OS_REG_READ(ah, AR_PHY_PLL_BB_DPLL3);
1606                regdata |= (1 << 30);
1607                OS_REG_WRITE(ah, AR_PHY_PLL_BB_DPLL3, regdata);
1608
1609                /* wait for measure done */
1610                do {
1611                    regdata = OS_REG_READ(ah, AR_PHY_PLL_BB_DPLL4);
1612                } while ((regdata & (1 << 3)) == 0);
1613
1614                /* clear do measure */
1615                regdata = OS_REG_READ(ah, AR_PHY_PLL_BB_DPLL3);
1616                regdata &= ~(1 << 30);
1617                OS_REG_WRITE(ah, AR_PHY_PLL_BB_DPLL3, regdata);
1618
1619                /* get measure sqsum dvc */
1620                regdata = (OS_REG_READ(ah, AR_PHY_PLL_BB_DPLL3) & 0x007FFFF8) >> 3;
1621            } else {
1622                break;
1623            }
1624        } while (regdata >= 0x40000);
1625
1626        /* Remove from Bypass mode */
1627        OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x142c);
1628        OS_DELAY(1000);
1629    } else {
1630        pll = SM(0x5, AR_RTC_PLL_REFDIV);
1631
1632        /* Supposedly not needed on Osprey */
1633#if 0
1634        if (chan && IS_CHAN_HALF_RATE(chan)) {
1635            pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
1636        } else if (chan && IS_CHAN_QUARTER_RATE(chan)) {
1637            pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
1638        }
1639#endif
1640        if (ichan && IS_CHAN_5GHZ(ichan)) {
1641            pll |= SM(0x28, AR_RTC_PLL_DIV);
1642            /*
1643             * When doing fast clock, set PLL to 0x142c
1644             */
1645            if (IS_5GHZ_FAST_CLOCK_EN(ah, chan)) {
1646                pll = 0x142c;
1647            }
1648        } else {
1649            pll |= SM(0x2c, AR_RTC_PLL_DIV);
1650        }
1651
1652        OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
1653    }
1654
1655    /* TODO:
1656     * For multi-band owl, switch between bands by reiniting the PLL.
1657     */
1658    OS_DELAY(RTC_PLL_SETTLE_DELAY);
1659
1660    OS_REG_WRITE(ah, AR_RTC_SLEEP_CLK,
1661        AR_RTC_FORCE_DERIVED_CLK | AR_RTC_PCIE_RST_PWDN_EN);
1662
1663    /* XXX TODO: honeybee? */
1664    if (AR_SREV_WASP(ah) || AR_SREV_SCORPION(ah)) {
1665        if (clk_25mhz) {
1666            OS_REG_WRITE(ah,
1667                AR_RTC_DERIVED_RTC_CLK, (0x17c << 1)); /* 32KHz sleep clk */
1668            OS_REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
1669            OS_REG_WRITE(ah, AR_SLP32_INC, 0x0001e7ae);
1670        } else {
1671            OS_REG_WRITE(ah,
1672                AR_RTC_DERIVED_RTC_CLK, (0x261 << 1)); /* 32KHz sleep clk */
1673            OS_REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
1674            OS_REG_WRITE(ah, AR_SLP32_INC, 0x0001e800);
1675        }
1676        OS_DELAY(100);
1677    }
1678}
1679
1680static inline HAL_BOOL
1681ar9300_set_reset(struct ath_hal *ah, int type)
1682{
1683    u_int32_t rst_flags;
1684    u_int32_t tmp_reg;
1685    struct ath_hal_9300 *ahp = AH9300(ah);
1686
1687    HALASSERT(type == HAL_RESET_WARM || type == HAL_RESET_COLD);
1688
1689    /*
1690     * RTC Force wake should be done before resetting the MAC.
1691     * MDK/ART does it that way.
1692     */
1693    OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_WA), AH9300(ah)->ah_wa_reg_val);
1694    OS_DELAY(10); /* delay to allow AR_WA reg write to kick in */
1695    OS_REG_WRITE(ah,
1696        AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1697
1698    /* Reset AHB */
1699    /* Bug26871 */
1700    tmp_reg = OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_INTR_SYNC_CAUSE));
1701    if (AR_SREV_WASP(ah)) {
1702        if (tmp_reg & (AR9340_INTR_SYNC_LOCAL_TIMEOUT)) {
1703            OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_INTR_SYNC_ENABLE), 0);
1704            OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_RC), AR_RC_HOSTIF);
1705        }
1706    } else {
1707        if (tmp_reg & (AR9300_INTR_SYNC_LOCAL_TIMEOUT | AR9300_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1708            OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_INTR_SYNC_ENABLE), 0);
1709            OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_RC), AR_RC_HOSTIF);
1710        }
1711        else {
1712            /* NO AR_RC_AHB in Osprey */
1713            /*OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_RC), AR_RC_AHB);*/
1714        }
1715    }
1716
1717    rst_flags = AR_RTC_RC_MAC_WARM;
1718    if (type == HAL_RESET_COLD) {
1719        rst_flags |= AR_RTC_RC_MAC_COLD;
1720    }
1721
1722#ifdef AH_SUPPORT_HORNET
1723    /* Hornet WAR: trigger SoC to reset WMAC if ...
1724     * (1) doing cold reset. Ref: EV 69254
1725     * (2) beacon pending. Ref: EV 70983
1726     */
1727    if (AR_SREV_HORNET(ah) &&
1728        (ar9300_num_tx_pending(
1729            ah, AH_PRIVATE(ah)->ah_caps.halTotalQueues - 1) != 0 ||
1730         type == HAL_RESET_COLD))
1731    {
1732        u_int32_t time_out;
1733#define AR_SOC_RST_RESET         0xB806001C
1734#define AR_SOC_BOOT_STRAP        0xB80600AC
1735#define AR_SOC_WLAN_RST          0x00000800 /* WLAN reset */
1736#define REG_WRITE(_reg, _val)    *((volatile u_int32_t *)(_reg)) = (_val);
1737#define REG_READ(_reg)           *((volatile u_int32_t *)(_reg))
1738        HALDEBUG(ah, HAL_DEBUG_RESET, "%s: Hornet SoC reset WMAC.\n", __func__);
1739
1740        REG_WRITE(AR_SOC_RST_RESET,
1741            REG_READ(AR_SOC_RST_RESET) | AR_SOC_WLAN_RST);
1742        REG_WRITE(AR_SOC_RST_RESET,
1743            REG_READ(AR_SOC_RST_RESET) & (~AR_SOC_WLAN_RST));
1744
1745        time_out = 0;
1746
1747        while (1) {
1748            tmp_reg = REG_READ(AR_SOC_BOOT_STRAP);
1749            if ((tmp_reg & 0x10) == 0) {
1750                break;
1751            }
1752            if (time_out > 20) {
1753                break;
1754            }
1755            OS_DELAY(10000);
1756            time_out++;
1757        }
1758
1759        OS_REG_WRITE(ah, AR_RTC_RESET, 1);
1760#undef REG_READ
1761#undef REG_WRITE
1762#undef AR_SOC_WLAN_RST
1763#undef AR_SOC_RST_RESET
1764#undef AR_SOC_BOOT_STRAP
1765    }
1766#endif /* AH_SUPPORT_HORNET */
1767
1768#ifdef AH_SUPPORT_SCORPION
1769    if (AR_SREV_SCORPION(ah)) {
1770#define DDR_CTL_CONFIG_ADDRESS                                       0xb8000000
1771#define DDR_CTL_CONFIG_OFFSET                                        0x0108
1772#define DDR_CTL_CONFIG_CLIENT_ACTIVITY_MSB                           29
1773#define DDR_CTL_CONFIG_CLIENT_ACTIVITY_LSB                           21
1774#define DDR_CTL_CONFIG_CLIENT_ACTIVITY_MASK                          0x3fe00000
1775#define DDR_CTL_CONFIG_CLIENT_ACTIVITY_GET(x)                        (((x) & DDR_CTL_CONFIG_CLIENT_ACTIVITY_MASK) >> DDR_CTL_CONFIG_CLIENT_ACTIVITY_LSB)
1776#define DDR_CTL_CONFIG_CLIENT_ACTIVITY_SET(x)                        (((x) << DDR_CTL_CONFIG_CLIENT_ACTIVITY_LSB) & DDR_CTL_CONFIG_CLIENT_ACTIVITY_MASK)
1777#define MAC_DMA_CFG_ADDRESS                                          0xb8100000
1778#define MAC_DMA_CFG_OFFSET                                           0x0014
1779
1780#define MAC_DMA_CFG_HALT_REQ_MSB                                     11
1781#define MAC_DMA_CFG_HALT_REQ_LSB                                     11
1782#define MAC_DMA_CFG_HALT_REQ_MASK                                    0x00000800
1783#define MAC_DMA_CFG_HALT_REQ_GET(x)                                  (((x) & MAC_DMA_CFG_HALT_REQ_MASK) >> MAC_DMA_CFG_HALT_REQ_LSB)
1784#define MAC_DMA_CFG_HALT_REQ_SET(x)                                  (((x) << MAC_DMA_CFG_HALT_REQ_LSB) & MAC_DMA_CFG_HALT_REQ_MASK)
1785#define MAC_DMA_CFG_HALT_ACK_MSB                                     12
1786#define MAC_DMA_CFG_HALT_ACK_LSB                                     12
1787#define MAC_DMA_CFG_HALT_ACK_MASK                                    0x00001000
1788#define MAC_DMA_CFG_HALT_ACK_GET(x)                                  (((x) & MAC_DMA_CFG_HALT_ACK_MASK) >> MAC_DMA_CFG_HALT_ACK_LSB)
1789#define MAC_DMA_CFG_HALT_ACK_SET(x)                                  (((x) << MAC_DMA_CFG_HALT_ACK_LSB) & MAC_DMA_CFG_HALT_ACK_MASK)
1790
1791#define RST_RESET                                                    0xB806001c
1792#define RTC_RESET                                                    (1<<27)
1793
1794#define REG_READ(_reg)          *((volatile u_int32_t *)(_reg))
1795#define REG_WRITE(_reg, _val)   *((volatile u_int32_t *)(_reg)) = (_val);
1796
1797#define DDR_REG_READ(_ah, _reg) \
1798	    *((volatile u_int32_t *)( DDR_CTL_CONFIG_ADDRESS + (_reg)))
1799#define DDR_REG_WRITE(_ah, _reg, _val) \
1800	    *((volatile u_int32_t *)(DDR_CTL_CONFIG_ADDRESS + (_reg))) = (_val)
1801
1802	    OS_REG_WRITE(ah,MAC_DMA_CFG_OFFSET, (OS_REG_READ(ah,MAC_DMA_CFG_OFFSET) & ~MAC_DMA_CFG_HALT_REQ_MASK) |
1803			    MAC_DMA_CFG_HALT_REQ_SET(1));
1804
1805	    {
1806		    int count;
1807            u_int32_t data;
1808
1809		    count = 0;
1810		    while (!MAC_DMA_CFG_HALT_ACK_GET(OS_REG_READ(ah, MAC_DMA_CFG_OFFSET) ))
1811		    {
1812			    count++;
1813			    if (count > 10) {
1814				    ath_hal_printf(ah, "Halt ACK timeout\n");
1815				    break;
1816			    }
1817			    OS_DELAY(10);
1818		    }
1819
1820		    data = DDR_REG_READ(ah,DDR_CTL_CONFIG_OFFSET);
1821		    HALDEBUG(ah, HAL_DEBUG_RESET, "check DDR Activity - HIGH\n");
1822
1823		    count = 0;
1824		    while (DDR_CTL_CONFIG_CLIENT_ACTIVITY_GET(data)) {
1825			    //      AVE_DEBUG(0,"DDR Activity - HIGH\n");
1826			    HALDEBUG(ah, HAL_DEBUG_RESET, "DDR Activity - HIGH\n");
1827			    count++;
1828			    OS_DELAY(10);
1829			    data = DDR_REG_READ(ah,DDR_CTL_CONFIG_OFFSET);
1830			    if (count > 10) {
1831				    ath_hal_printf(ah, "DDR Activity timeout\n");
1832				    break;
1833			    }
1834		    }
1835	    }
1836
1837
1838	    {
1839		    //Force RTC reset
1840		    REG_WRITE(RST_RESET, (REG_READ(RST_RESET) | RTC_RESET));
1841		    OS_DELAY(10);
1842		    REG_WRITE(RST_RESET, (REG_READ(RST_RESET) & ~RTC_RESET));
1843		    OS_DELAY(10);
1844		    OS_REG_WRITE(ah, AR_RTC_RESET, 0);
1845		    OS_DELAY(10);
1846		    OS_REG_WRITE(ah, AR_RTC_RESET, 1);
1847		    OS_DELAY(10);
1848		    HALDEBUG(ah, HAL_DEBUG_RESET, "%s: Scorpion SoC RTC reset done.\n", __func__);
1849	    }
1850#undef REG_READ
1851#undef REG_WRITE
1852    }
1853#endif  /* AH_SUPPORT_SCORPION */
1854
1855    /*
1856     * Set Mac(BB,Phy) Warm Reset
1857     */
1858    OS_REG_WRITE(ah, AR_RTC_RC, rst_flags);
1859
1860    OS_DELAY(50); /* XXX 50 usec */
1861
1862    /*
1863     * Clear resets and force wakeup
1864     */
1865    OS_REG_WRITE(ah, AR_RTC_RC, 0);
1866    if (!ath_hal_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0)) {
1867        HALDEBUG(ah, HAL_DEBUG_UNMASKABLE,
1868            "%s: RTC stuck in MAC reset\n", __FUNCTION__);
1869        HALDEBUG(ah, HAL_DEBUG_UNMASKABLE,
1870            "%s: AR_RTC_RC = 0x%x\n", __func__, OS_REG_READ(ah, AR_RTC_RC));
1871        return AH_FALSE;
1872    }
1873
1874    /* Clear AHB reset */
1875    OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_RC), 0);
1876    ar9300_disable_pll_lock_detect(ah);
1877
1878    ar9300_attach_hw_platform(ah);
1879
1880    ahp->ah_chip_reset_done = 1;
1881    return AH_TRUE;
1882}
1883
1884static inline HAL_BOOL
1885ar9300_set_reset_power_on(struct ath_hal *ah)
1886{
1887    /* Force wake */
1888    OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_WA), AH9300(ah)->ah_wa_reg_val);
1889    OS_DELAY(10); /* delay to allow AR_WA reg write to kick in */
1890    OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1891        AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1892    /*
1893     * RTC reset and clear. Some delay in between is needed
1894     * to give the chip time to settle.
1895     */
1896    OS_REG_WRITE(ah, AR_RTC_RESET, 0);
1897    OS_DELAY(2);
1898    OS_REG_WRITE(ah, AR_RTC_RESET, 1);
1899
1900    /*
1901     * Poll till RTC is ON
1902     */
1903    if (!ath_hal_wait(ah,
1904             AR_RTC_STATUS, AR_RTC_STATUS_M,
1905             AR_RTC_STATUS_ON))
1906    {
1907        HALDEBUG(ah, HAL_DEBUG_UNMASKABLE,
1908            "%s: RTC not waking up for %d\n", __FUNCTION__, 1000);
1909        return AH_FALSE;
1910    }
1911
1912    /*
1913     * Read Revisions from Chip right after RTC is on for the first time.
1914     * This helps us detect the chip type early and initialize it accordingly.
1915     */
1916    ar9300_read_revisions(ah);
1917
1918    /*
1919     * Warm reset if we aren't really powering on,
1920     * just restarting the driver.
1921     */
1922    return ar9300_set_reset(ah, HAL_RESET_WARM);
1923}
1924
1925/*
1926 * Write the given reset bit mask into the reset register
1927 */
1928HAL_BOOL
1929ar9300_set_reset_reg(struct ath_hal *ah, u_int32_t type)
1930{
1931    HAL_BOOL ret = AH_FALSE;
1932
1933    /*
1934     * Set force wake
1935     */
1936    OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_WA), AH9300(ah)->ah_wa_reg_val);
1937    OS_DELAY(10); /* delay to allow AR_WA reg write to kick in */
1938    OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1939        AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1940
1941    switch (type) {
1942    case HAL_RESET_POWER_ON:
1943        ret = ar9300_set_reset_power_on(ah);
1944        break;
1945    case HAL_RESET_WARM:
1946    case HAL_RESET_COLD:
1947        ret = ar9300_set_reset(ah, type);
1948        break;
1949    default:
1950        break;
1951    }
1952
1953#if ATH_SUPPORT_MCI
1954    if (AH_PRIVATE(ah)->ah_caps.halMciSupport) {
1955        OS_REG_WRITE(ah, AR_RTC_KEEP_AWAKE, 0x2);
1956    }
1957#endif
1958
1959    return ret;
1960}
1961
1962/*
1963 * Places the PHY and Radio chips into reset.  A full reset
1964 * must be called to leave this state.  The PCI/MAC/PCU are
1965 * not placed into reset as we must receive interrupt to
1966 * re-enable the hardware.
1967 */
1968HAL_BOOL
1969ar9300_phy_disable(struct ath_hal *ah)
1970{
1971    if (!ar9300_set_reset_reg(ah, HAL_RESET_WARM)) {
1972        return AH_FALSE;
1973    }
1974
1975#ifdef ATH_SUPPORT_LED
1976#define REG_READ(_reg)          *((volatile u_int32_t *)(_reg))
1977#define REG_WRITE(_reg, _val)   *((volatile u_int32_t *)(_reg)) = (_val);
1978#define ATH_GPIO_OE             0xB8040000
1979#define ATH_GPIO_OUT            0xB8040008 /* GPIO Ouput Value reg.*/
1980    if (AR_SREV_WASP(ah)) {
1981        if (IS_CHAN_2GHZ((AH_PRIVATE(ah)->ah_curchan))) {
1982            REG_WRITE(ATH_GPIO_OE, (REG_READ(ATH_GPIO_OE) | (0x1 << 13)));
1983        }
1984        else {
1985            REG_WRITE(ATH_GPIO_OE, (REG_READ(ATH_GPIO_OE) | (0x1 << 12)));
1986        }
1987    }
1988    else if (AR_SREV_SCORPION(ah)) {
1989        if (IS_CHAN_2GHZ((AH_PRIVATE(ah)->ah_curchan))) {
1990            REG_WRITE(ATH_GPIO_OE, (REG_READ(ATH_GPIO_OE) | (0x1 << 13)));
1991        }
1992        else {
1993            REG_WRITE(ATH_GPIO_OE, (REG_READ(ATH_GPIO_OE) | (0x1 << 12)));
1994        }
1995        /* Turn off JMPST led */
1996        REG_WRITE(ATH_GPIO_OUT, (REG_READ(ATH_GPIO_OUT) | (0x1 << 15)));
1997    }
1998    else if (AR_SREV_HONEYBEE(ah)) {
1999        REG_WRITE(ATH_GPIO_OE, (REG_READ(ATH_GPIO_OE) | (0x1 << 12)));
2000    }
2001#undef REG_READ
2002#undef REG_WRITE
2003#endif
2004
2005    if ( AR_SREV_OSPREY(ah) ) {
2006        OS_REG_RMW(ah, AR_HOSTIF_REG(ah, AR_GPIO_OUTPUT_MUX1), 0x0, 0x1f);
2007    }
2008
2009
2010    ar9300_init_pll(ah, AH_NULL);
2011    ar9300_disable_pll_lock_detect(ah);
2012
2013    return AH_TRUE;
2014}
2015
2016/*
2017 * Places all of hardware into reset
2018 */
2019HAL_BOOL
2020ar9300_disable(struct ath_hal *ah)
2021{
2022    if (!ar9300_set_power_mode(ah, HAL_PM_AWAKE, AH_TRUE)) {
2023        return AH_FALSE;
2024    }
2025    if (!ar9300_set_reset_reg(ah, HAL_RESET_COLD)) {
2026        return AH_FALSE;
2027    }
2028
2029    ar9300_init_pll(ah, AH_NULL);
2030
2031    return AH_TRUE;
2032}
2033
2034/*
2035 * TODO: Only write the PLL if we're changing to or from CCK mode
2036 *
2037 * WARNING: The order of the PLL and mode registers must be correct.
2038 */
2039static inline void
2040ar9300_set_rf_mode(struct ath_hal *ah, struct ieee80211_channel *chan)
2041{
2042    u_int32_t rf_mode = 0;
2043
2044    if (chan == AH_NULL) {
2045        return;
2046    }
2047    switch (AH9300(ah)->ah_hwp) {
2048    case HAL_TRUE_CHIP:
2049        rf_mode |= (IEEE80211_IS_CHAN_B(chan) || IEEE80211_IS_CHAN_G(chan)) ?
2050            AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
2051        break;
2052    default:
2053        HALASSERT(0);
2054        break;
2055    }
2056    /*  Phy mode bits for 5GHz channels requiring Fast Clock */
2057    if ( IS_5GHZ_FAST_CLOCK_EN(ah, chan)) {
2058        rf_mode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
2059    }
2060    OS_REG_WRITE(ah, AR_PHY_MODE, rf_mode);
2061}
2062
2063/*
2064 * Places the hardware into reset and then pulls it out of reset
2065 */
2066HAL_BOOL
2067ar9300_chip_reset(struct ath_hal *ah, struct ieee80211_channel *chan, HAL_RESET_TYPE reset_type)
2068{
2069    struct ath_hal_9300     *ahp = AH9300(ah);
2070    int type = HAL_RESET_WARM;
2071
2072    OS_MARK(ah, AH_MARK_CHIPRESET, chan ? chan->ic_freq : 0);
2073
2074    /*
2075     * Warm reset is optimistic.
2076     *
2077     * If the TX/RX DMA engines aren't shut down (eg, they're
2078     * wedged) then we're better off doing a full cold reset
2079     * to try and shake that condition.
2080     */
2081    if (ahp->ah_chip_full_sleep ||
2082        (ah->ah_config.ah_force_full_reset == 1) ||
2083        (reset_type == HAL_RESET_FORCE_COLD) ||
2084        (reset_type == HAL_RESET_BBPANIC) ||
2085        OS_REG_READ(ah, AR_Q_TXE) ||
2086        (OS_REG_READ(ah, AR_CR) & AR_CR_RXE)) {
2087            HALDEBUG(ah, HAL_DEBUG_RESET,
2088              "%s: full reset; reset_type=%d, full_sleep=%d\n",
2089              __func__, reset_type, ahp->ah_chip_full_sleep);
2090            type = HAL_RESET_COLD;
2091    }
2092
2093    if (!ar9300_set_reset_reg(ah, type)) {
2094        return AH_FALSE;
2095    }
2096
2097    /* Bring out of sleep mode (AGAIN) */
2098    if (!ar9300_set_power_mode(ah, HAL_PM_AWAKE, AH_TRUE)) {
2099        return AH_FALSE;
2100    }
2101
2102    ahp->ah_chip_full_sleep = AH_FALSE;
2103
2104    if (AR_SREV_HORNET(ah)) {
2105        ar9300_internal_regulator_apply(ah);
2106    }
2107
2108    ar9300_init_pll(ah, chan);
2109
2110    /*
2111     * Perform warm reset before the mode/PLL/turbo registers
2112     * are changed in order to deactivate the radio.  Mode changes
2113     * with an active radio can result in corrupted shifts to the
2114     * radio device.
2115     */
2116    ar9300_set_rf_mode(ah, chan);
2117
2118    return AH_TRUE;
2119}
2120
2121/* ar9300_setup_calibration
2122 * Setup HW to collect samples used for current cal
2123 */
2124inline static void
2125ar9300_setup_calibration(struct ath_hal *ah, HAL_CAL_LIST *curr_cal)
2126{
2127    /* Select calibration to run */
2128    switch (curr_cal->cal_data->cal_type) {
2129    case IQ_MISMATCH_CAL:
2130        /* Start calibration w/ 2^(INIT_IQCAL_LOG_COUNT_MAX+1) samples */
2131        OS_REG_RMW_FIELD(ah, AR_PHY_TIMING4,
2132            AR_PHY_TIMING4_IQCAL_LOG_COUNT_MAX,
2133            curr_cal->cal_data->cal_count_max);
2134        OS_REG_WRITE(ah, AR_PHY_CALMODE, AR_PHY_CALMODE_IQ);
2135
2136        HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
2137            "%s: starting IQ Mismatch Calibration\n", __func__);
2138
2139        /* Kick-off cal */
2140        OS_REG_SET_BIT(ah, AR_PHY_TIMING4, AR_PHY_TIMING4_DO_CAL);
2141
2142        break;
2143    case TEMP_COMP_CAL:
2144        if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) ||
2145            AR_SREV_WASP(ah) || AR_SREV_SCORPION(ah)) {
2146            OS_REG_RMW_FIELD(ah,
2147                AR_HORNET_CH0_THERM, AR_PHY_65NM_CH0_THERM_LOCAL, 1);
2148            OS_REG_RMW_FIELD(ah,
2149                AR_HORNET_CH0_THERM, AR_PHY_65NM_CH0_THERM_START, 1);
2150        } else if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) {
2151            OS_REG_RMW_FIELD(ah,
2152                AR_PHY_65NM_CH0_THERM_JUPITER, AR_PHY_65NM_CH0_THERM_LOCAL, 1);
2153            OS_REG_RMW_FIELD(ah,
2154                AR_PHY_65NM_CH0_THERM_JUPITER, AR_PHY_65NM_CH0_THERM_START, 1);
2155        } else {
2156            OS_REG_RMW_FIELD(ah,
2157                AR_PHY_65NM_CH0_THERM, AR_PHY_65NM_CH0_THERM_LOCAL, 1);
2158            OS_REG_RMW_FIELD(ah,
2159                AR_PHY_65NM_CH0_THERM, AR_PHY_65NM_CH0_THERM_START, 1);
2160        }
2161
2162        HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
2163            "%s: starting Temperature Compensation Calibration\n", __func__);
2164        break;
2165    default:
2166        HALDEBUG(ah, HAL_DEBUG_UNMASKABLE,
2167            "%s called with incorrect calibration type.\n", __func__);
2168    }
2169}
2170
2171/* ar9300_reset_calibration
2172 * Initialize shared data structures and prepare a cal to be run.
2173 */
2174inline static void
2175ar9300_reset_calibration(struct ath_hal *ah, HAL_CAL_LIST *curr_cal)
2176{
2177    struct ath_hal_9300 *ahp = AH9300(ah);
2178    int i;
2179
2180    /* Setup HW for new calibration */
2181    ar9300_setup_calibration(ah, curr_cal);
2182
2183    /* Change SW state to RUNNING for this calibration */
2184    curr_cal->cal_state = CAL_RUNNING;
2185
2186    /* Reset data structures shared between different calibrations */
2187    for (i = 0; i < AR9300_MAX_CHAINS; i++) {
2188        ahp->ah_meas0.sign[i] = 0;
2189        ahp->ah_meas1.sign[i] = 0;
2190        ahp->ah_meas2.sign[i] = 0;
2191        ahp->ah_meas3.sign[i] = 0;
2192    }
2193
2194    ahp->ah_cal_samples = 0;
2195}
2196
2197#ifdef XXX_UNUSED_FUNCTION
2198/*
2199 * Find out which of the RX chains are enabled
2200 */
2201static u_int32_t
2202ar9300_get_rx_chain_mask(struct ath_hal *ah)
2203{
2204    u_int32_t ret_val = OS_REG_READ(ah, AR_PHY_RX_CHAINMASK);
2205    /* The bits [2:0] indicate the rx chain mask and are to be
2206     * interpreted as follows:
2207     * 00x => Only chain 0 is enabled
2208     * 01x => Chain 1 and 0 enabled
2209     * 1xx => Chain 2,1 and 0 enabled
2210     */
2211    return (ret_val & 0x7);
2212}
2213#endif
2214
2215static void
2216ar9300_get_nf_hist_base(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan,
2217    int is_scan, int16_t nf[])
2218{
2219    HAL_NFCAL_BASE *h_base;
2220
2221#ifdef ATH_NF_PER_CHAN
2222    h_base = &chan->nf_cal_hist.base;
2223#else
2224    if (is_scan) {
2225        /*
2226         * The channel we are currently on is not the home channel,
2227         * so we shouldn't use the home channel NF buffer's values on
2228         * this channel.  Instead, use the NF single value already
2229         * read for this channel.  (Or, if we haven't read the NF for
2230         * this channel yet, the SW default for this chip/band will
2231         * be used.)
2232         */
2233        h_base = &chan->nf_cal_hist.base;
2234    } else {
2235        /* use the home channel NF info */
2236        h_base = &AH_PRIVATE(ah)->nf_cal_hist.base;
2237    }
2238#endif
2239    OS_MEMCPY(nf, h_base->priv_nf, sizeof(h_base->priv_nf));
2240}
2241
2242HAL_BOOL
2243ar9300_load_nf(struct ath_hal *ah, int16_t nf[])
2244{
2245    int i, j;
2246    int32_t val;
2247    /* XXX where are EXT regs defined */
2248    const u_int32_t ar9300_cca_regs[] = {
2249        AR_PHY_CCA_0,
2250        AR_PHY_CCA_1,
2251        AR_PHY_CCA_2,
2252        AR_PHY_EXT_CCA,
2253        AR_PHY_EXT_CCA_1,
2254        AR_PHY_EXT_CCA_2,
2255    };
2256    u_int8_t chainmask;
2257
2258    /*
2259     * Force NF calibration for all chains, otherwise Vista station
2260     * would conduct a bad performance
2261     */
2262    if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah)) {
2263        chainmask = 0x9;
2264    } else if (AR_SREV_WASP(ah) || AR_SREV_JUPITER(ah) || AR_SREV_HONEYBEE(ah)) {
2265        chainmask = 0x1b;
2266    } else {
2267        chainmask = 0x3F;
2268    }
2269
2270    /*
2271     * Write filtered NF values into max_cca_pwr register parameter
2272     * so we can load below.
2273     */
2274    for (i = 0; i < HAL_NUM_NF_READINGS; i++) {
2275        if (chainmask & (1 << i)) {
2276            val = OS_REG_READ(ah, ar9300_cca_regs[i]);
2277            val &= 0xFFFFFE00;
2278            val |= (((u_int32_t)(nf[i]) << 1) & 0x1ff);
2279            OS_REG_WRITE(ah, ar9300_cca_regs[i], val);
2280        }
2281    }
2282
2283    HALDEBUG(ah, HAL_DEBUG_NFCAL, "%s: load %d %d %d %d %d %d\n",
2284      __func__,
2285      nf[0], nf[1], nf[2],
2286      nf[3], nf[4], nf[5]);
2287
2288    /*
2289     * Load software filtered NF value into baseband internal min_cca_pwr
2290     * variable.
2291     */
2292    OS_REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
2293    OS_REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
2294    OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
2295
2296    /* Wait for load to complete, should be fast, a few 10s of us. */
2297    /* Changed the max delay 250us back to 10000us, since 250us often
2298     * results in NF load timeout and causes deaf condition
2299     * during stress testing 12/12/2009
2300     */
2301    for (j = 0; j < 10000; j++) {
2302        if ((OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) == 0){
2303            break;
2304        }
2305        OS_DELAY(10);
2306    }
2307    if (j == 10000) {
2308        /*
2309         * We timed out waiting for the noisefloor to load, probably
2310         * due to an in-progress rx.  Simply return here and allow
2311         * the load plenty of time to complete before the next
2312         * calibration interval.  We need to avoid trying to load -50
2313         * (which happens below) while the previous load is still in
2314         * progress as this can cause rx deafness (see EV 66368,62830).
2315         * Instead by returning here, the baseband nf cal will
2316         * just be capped by our present noisefloor until the next
2317         * calibration timer.
2318         */
2319        HALDEBUG(AH_NULL, HAL_DEBUG_UNMASKABLE,
2320            "%s: *** TIMEOUT while waiting for nf to load: "
2321            "AR_PHY_AGC_CONTROL=0x%x ***\n",
2322            __func__, OS_REG_READ(ah, AR_PHY_AGC_CONTROL));
2323        return AH_FALSE;
2324    }
2325
2326    /*
2327     * Restore max_cca_power register parameter again so that we're not capped
2328     * by the median we just loaded.  This will be initial (and max) value
2329     * of next noise floor calibration the baseband does.
2330     */
2331    for (i = 0; i < HAL_NUM_NF_READINGS; i++) {
2332        if (chainmask & (1 << i)) {
2333            val = OS_REG_READ(ah, ar9300_cca_regs[i]);
2334            val &= 0xFFFFFE00;
2335            val |= (((u_int32_t)(-50) << 1) & 0x1ff);
2336            OS_REG_WRITE(ah, ar9300_cca_regs[i], val);
2337        }
2338    }
2339    return AH_TRUE;
2340}
2341
2342/* ar9300_per_calibration
2343 * Generic calibration routine.
2344 * Recalibrate the lower PHY chips to account for temperature/environment
2345 * changes.
2346 */
2347inline static void
2348ar9300_per_calibration(struct ath_hal *ah,  HAL_CHANNEL_INTERNAL *ichan,
2349    u_int8_t rxchainmask, HAL_CAL_LIST *curr_cal, HAL_BOOL *is_cal_done)
2350{
2351    struct ath_hal_9300 *ahp = AH9300(ah);
2352
2353    /* Cal is assumed not done until explicitly set below */
2354    *is_cal_done = AH_FALSE;
2355
2356    /* Calibration in progress. */
2357    if (curr_cal->cal_state == CAL_RUNNING) {
2358        /* Check to see if it has finished. */
2359        if (!(OS_REG_READ(ah, AR_PHY_TIMING4) & AR_PHY_TIMING4_DO_CAL)) {
2360            int i, num_chains = 0;
2361            for (i = 0; i < AR9300_MAX_CHAINS; i++) {
2362                if (rxchainmask & (1 << i)) {
2363                    num_chains++;
2364                }
2365            }
2366
2367            /*
2368             * Accumulate cal measures for active chains
2369             */
2370            curr_cal->cal_data->cal_collect(ah, num_chains);
2371
2372            ahp->ah_cal_samples++;
2373
2374            if (ahp->ah_cal_samples >= curr_cal->cal_data->cal_num_samples) {
2375                /*
2376                 * Process accumulated data
2377                 */
2378                curr_cal->cal_data->cal_post_proc(ah, num_chains);
2379
2380                /* Calibration has finished. */
2381                ichan->calValid |= curr_cal->cal_data->cal_type;
2382                curr_cal->cal_state = CAL_DONE;
2383                *is_cal_done = AH_TRUE;
2384            } else {
2385                /* Set-up collection of another sub-sample until we
2386                 * get desired number
2387                 */
2388                ar9300_setup_calibration(ah, curr_cal);
2389            }
2390        }
2391    } else if (!(ichan->calValid & curr_cal->cal_data->cal_type)) {
2392        /* If current cal is marked invalid in channel, kick it off */
2393        ar9300_reset_calibration(ah, curr_cal);
2394    }
2395}
2396
2397static void
2398ar9300_start_nf_cal(struct ath_hal *ah)
2399{
2400    struct ath_hal_9300 *ahp = AH9300(ah);
2401    OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
2402    OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
2403    OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
2404    AH9300(ah)->nf_tsf32 = ar9300_get_tsf32(ah);
2405
2406/*
2407 *  We are reading the NF values before we start the NF operation, because
2408 *  of that we are getting very high values like -45.
2409 *  This triggers the CW_INT detected and EACS module triggers the channel change
2410 *  chip_reset_done value is used to fix this issue.
2411 *  chip_reset_flag is set during the RTC reset.
2412 *  chip_reset_flag is cleared during the starting NF operation.
2413 *  if flag is set we will clear the flag and will not read the NF values.
2414 */
2415    ahp->ah_chip_reset_done = 0;
2416}
2417
2418/* ar9300_calibration
2419 * Wrapper for a more generic Calibration routine. Primarily to abstract to
2420 * upper layers whether there is 1 or more calibrations to be run.
2421 */
2422HAL_BOOL
2423ar9300_calibration(struct ath_hal *ah, struct ieee80211_channel *chan, u_int8_t rxchainmask,
2424    HAL_BOOL do_nf_cal, HAL_BOOL *is_cal_done, int is_scan,
2425    u_int32_t *sched_cals)
2426{
2427    struct ath_hal_9300 *ahp = AH9300(ah);
2428    HAL_CAL_LIST *curr_cal = ahp->ah_cal_list_curr;
2429    HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
2430    int16_t nf_buf[HAL_NUM_NF_READINGS];
2431
2432    *is_cal_done = AH_TRUE;
2433
2434
2435    /* XXX: For initial wasp bringup - disable periodic calibration */
2436    /* Invalid channel check */
2437    if (ichan == AH_NULL) {
2438        HALDEBUG(ah, HAL_DEBUG_CHANNEL,
2439            "%s: invalid channel %u/0x%x; no mapping\n",
2440            __func__, chan->ic_freq, chan->ic_flags);
2441        return AH_FALSE;
2442    }
2443
2444    HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
2445        "%s: Entering, Doing NF Cal = %d\n", __func__, do_nf_cal);
2446    HALDEBUG(ah, HAL_DEBUG_CALIBRATE, "%s: Chain 0 Rx IQ Cal Correction 0x%08x\n",
2447        __func__, OS_REG_READ(ah, AR_PHY_RX_IQCAL_CORR_B0));
2448    if (!AR_SREV_HORNET(ah) && !AR_SREV_POSEIDON(ah) && !AR_SREV_APHRODITE(ah)) {
2449        HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
2450            "%s: Chain 1 Rx IQ Cal Correction 0x%08x\n",
2451            __func__, OS_REG_READ(ah, AR_PHY_RX_IQCAL_CORR_B1));
2452        if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah) && !AR_SREV_HONEYBEE(ah)) {
2453            HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
2454                "%s: Chain 2 Rx IQ Cal Correction 0x%08x\n",
2455                __func__, OS_REG_READ(ah, AR_PHY_RX_IQCAL_CORR_B2));
2456        }
2457    }
2458
2459    OS_MARK(ah, AH_MARK_PERCAL, chan->ic_freq);
2460
2461    /* For given calibration:
2462     * 1. Call generic cal routine
2463     * 2. When this cal is done (is_cal_done) if we have more cals waiting
2464     *    (eg after reset), mask this to upper layers by not propagating
2465     *    is_cal_done if it is set to TRUE.
2466     *    Instead, change is_cal_done to FALSE and setup the waiting cal(s)
2467     *    to be run.
2468     */
2469    if (curr_cal && (curr_cal->cal_data->cal_type & *sched_cals) &&
2470        (curr_cal->cal_state == CAL_RUNNING ||
2471         curr_cal->cal_state == CAL_WAITING))
2472    {
2473        ar9300_per_calibration(ah, ichan, rxchainmask, curr_cal, is_cal_done);
2474
2475        if (*is_cal_done == AH_TRUE) {
2476            ahp->ah_cal_list_curr = curr_cal = curr_cal->cal_next;
2477
2478            if (curr_cal && curr_cal->cal_state == CAL_WAITING) {
2479                *is_cal_done = AH_FALSE;
2480                ar9300_reset_calibration(ah, curr_cal);
2481            } else {
2482                *sched_cals &= ~IQ_MISMATCH_CAL;
2483            }
2484        }
2485    }
2486
2487    /* Do NF cal only at longer intervals */
2488    if (do_nf_cal) {
2489        int nf_done;
2490
2491        /* Get the value from the previous NF cal and update history buffer */
2492        nf_done = ar9300_store_new_nf(ah, chan, is_scan);
2493#if 0
2494        if (ichan->channel_flags & CHANNEL_CW_INT) {
2495            chan->channel_flags |= CHANNEL_CW_INT;
2496        }
2497#endif
2498        chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
2499
2500        if (nf_done) {
2501            int ret;
2502            /*
2503             * Load the NF from history buffer of the current channel.
2504             * NF is slow time-variant, so it is OK to use a historical value.
2505             */
2506            ar9300_get_nf_hist_base(ah, ichan, is_scan, nf_buf);
2507
2508            ret = ar9300_load_nf(ah, nf_buf);
2509            /* start NF calibration, without updating BB NF register*/
2510            ar9300_start_nf_cal(ah);
2511
2512            /*
2513             * If we failed the NF cal then tell the upper layer that we
2514             * failed so we can do a full reset
2515             */
2516            if (! ret)
2517                return AH_FALSE;
2518        }
2519    }
2520    return AH_TRUE;
2521}
2522
2523/* ar9300_iq_cal_collect
2524 * Collect data from HW to later perform IQ Mismatch Calibration
2525 */
2526void
2527ar9300_iq_cal_collect(struct ath_hal *ah, u_int8_t num_chains)
2528{
2529    struct ath_hal_9300 *ahp = AH9300(ah);
2530    int i;
2531
2532    /*
2533     * Accumulate IQ cal measures for active chains
2534     */
2535    for (i = 0; i < num_chains; i++) {
2536        ahp->ah_total_power_meas_i[i] = OS_REG_READ(ah, AR_PHY_CAL_MEAS_0(i));
2537        ahp->ah_total_power_meas_q[i] = OS_REG_READ(ah, AR_PHY_CAL_MEAS_1(i));
2538        ahp->ah_total_iq_corr_meas[i] =
2539            (int32_t) OS_REG_READ(ah, AR_PHY_CAL_MEAS_2(i));
2540        HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
2541            "%d: Chn %d "
2542            "Reg Offset(0x%04x)pmi=0x%08x; "
2543            "Reg Offset(0x%04x)pmq=0x%08x; "
2544            "Reg Offset (0x%04x)iqcm=0x%08x;\n",
2545            ahp->ah_cal_samples,
2546            i,
2547            (unsigned) AR_PHY_CAL_MEAS_0(i),
2548            ahp->ah_total_power_meas_i[i],
2549            (unsigned) AR_PHY_CAL_MEAS_1(i),
2550            ahp->ah_total_power_meas_q[i],
2551            (unsigned) AR_PHY_CAL_MEAS_2(i),
2552            ahp->ah_total_iq_corr_meas[i]);
2553    }
2554}
2555
2556/* ar9300_iq_calibration
2557 * Use HW data to perform IQ Mismatch Calibration
2558 */
2559void
2560ar9300_iq_calibration(struct ath_hal *ah, u_int8_t num_chains)
2561{
2562    struct ath_hal_9300 *ahp = AH9300(ah);
2563    u_int32_t power_meas_q, power_meas_i, iq_corr_meas;
2564    u_int32_t q_coff_denom, i_coff_denom;
2565    int32_t q_coff, i_coff;
2566    int iq_corr_neg, i;
2567    HAL_CHANNEL_INTERNAL *ichan;
2568    static const u_int32_t offset_array[3] = {
2569        AR_PHY_RX_IQCAL_CORR_B0,
2570        AR_PHY_RX_IQCAL_CORR_B1,
2571        AR_PHY_RX_IQCAL_CORR_B2,
2572    };
2573
2574    ichan = ath_hal_checkchannel(ah, AH_PRIVATE(ah)->ah_curchan);
2575
2576    for (i = 0; i < num_chains; i++) {
2577        power_meas_i = ahp->ah_total_power_meas_i[i];
2578        power_meas_q = ahp->ah_total_power_meas_q[i];
2579        iq_corr_meas = ahp->ah_total_iq_corr_meas[i];
2580
2581        HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
2582            "Starting IQ Cal and Correction for Chain %d\n", i);
2583        HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
2584            "Orignal: Chn %diq_corr_meas = 0x%08x\n",
2585            i, ahp->ah_total_iq_corr_meas[i]);
2586
2587        iq_corr_neg = 0;
2588
2589        /* iq_corr_meas is always negative. */
2590        if (iq_corr_meas > 0x80000000)  {
2591            iq_corr_meas = (0xffffffff - iq_corr_meas) + 1;
2592            iq_corr_neg = 1;
2593        }
2594
2595        HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
2596            "Chn %d pwr_meas_i = 0x%08x\n", i, power_meas_i);
2597        HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
2598            "Chn %d pwr_meas_q = 0x%08x\n", i, power_meas_q);
2599        HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
2600            "iq_corr_neg is 0x%08x\n", iq_corr_neg);
2601
2602        i_coff_denom = (power_meas_i / 2 + power_meas_q / 2) / 256;
2603        q_coff_denom = power_meas_q / 64;
2604
2605        /* Protect against divide-by-0 */
2606        if ((i_coff_denom != 0) && (q_coff_denom != 0)) {
2607            /* IQ corr_meas is already negated if iqcorr_neg == 1 */
2608            i_coff = iq_corr_meas / i_coff_denom;
2609            q_coff = power_meas_i / q_coff_denom - 64;
2610            HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
2611                "Chn %d i_coff = 0x%08x\n", i, i_coff);
2612            HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
2613                "Chn %d q_coff = 0x%08x\n", i, q_coff);
2614
2615            /* Force bounds on i_coff */
2616            if (i_coff >= 63) {
2617                i_coff = 63;
2618            } else if (i_coff <= -63) {
2619                i_coff = -63;
2620            }
2621
2622            /* Negate i_coff if iq_corr_neg == 0 */
2623            if (iq_corr_neg == 0x0) {
2624                i_coff = -i_coff;
2625            }
2626
2627            /* Force bounds on q_coff */
2628            if (q_coff >= 63) {
2629                q_coff = 63;
2630            } else if (q_coff <= -63) {
2631                q_coff = -63;
2632            }
2633
2634            i_coff = i_coff & 0x7f;
2635            q_coff = q_coff & 0x7f;
2636
2637            HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
2638                "Chn %d : i_coff = 0x%x  q_coff = 0x%x\n", i, i_coff, q_coff);
2639            HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
2640                "Register offset (0x%04x) before update = 0x%x\n",
2641                offset_array[i], OS_REG_READ(ah, offset_array[i]));
2642
2643            OS_REG_RMW_FIELD(ah, offset_array[i],
2644                AR_PHY_RX_IQCAL_CORR_IQCORR_Q_I_COFF, i_coff);
2645            OS_REG_RMW_FIELD(ah, offset_array[i],
2646                AR_PHY_RX_IQCAL_CORR_IQCORR_Q_Q_COFF, q_coff);
2647
2648            /* store the RX cal results */
2649	    if (ichan != NULL) {
2650            ahp->ah_rx_cal_corr[i] = OS_REG_READ(ah, offset_array[i]) & 0x7fff;
2651            ahp->ah_rx_cal_complete = AH_TRUE;
2652            ahp->ah_rx_cal_chan = ichan->channel;
2653//            ahp->ah_rx_cal_chan_flag = ichan->channel_flags &~ CHANNEL_PASSIVE;
2654            ahp->ah_rx_cal_chan_flag = 0; /* XXX */
2655	    } else {
2656	        /* XXX? Is this what I should do? */
2657            	ahp->ah_rx_cal_complete = AH_FALSE;
2658
2659	    }
2660
2661            HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
2662                "Register offset (0x%04x) QI COFF (bitfields 0x%08x) "
2663                "after update = 0x%x\n",
2664                offset_array[i], AR_PHY_RX_IQCAL_CORR_IQCORR_Q_I_COFF,
2665                OS_REG_READ(ah, offset_array[i]));
2666            HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
2667                "Register offset (0x%04x) QQ COFF (bitfields 0x%08x) "
2668                "after update = 0x%x\n",
2669                offset_array[i], AR_PHY_RX_IQCAL_CORR_IQCORR_Q_Q_COFF,
2670                OS_REG_READ(ah, offset_array[i]));
2671            HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
2672                "IQ Cal and Correction done for Chain %d\n", i);
2673        }
2674    }
2675
2676    OS_REG_SET_BIT(ah,
2677        AR_PHY_RX_IQCAL_CORR_B0, AR_PHY_RX_IQCAL_CORR_IQCORR_ENABLE);
2678    HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
2679        "IQ Cal and Correction (offset 0x%04x) enabled "
2680        "(bit position 0x%08x). New Value 0x%08x\n",
2681        (unsigned) (AR_PHY_RX_IQCAL_CORR_B0),
2682        AR_PHY_RX_IQCAL_CORR_IQCORR_ENABLE,
2683        OS_REG_READ(ah, AR_PHY_RX_IQCAL_CORR_B0));
2684}
2685
2686/*
2687 * When coming back from offchan, we do not perform RX IQ Cal.
2688 * But the chip reset will clear all previous results
2689 * We store the previous results and restore here.
2690 */
2691static void
2692ar9300_rx_iq_cal_restore(struct ath_hal *ah)
2693{
2694    struct ath_hal_9300 *ahp = AH9300(ah);
2695    u_int32_t   i_coff, q_coff;
2696    HAL_BOOL is_restore = AH_FALSE;
2697    int i;
2698    static const u_int32_t offset_array[3] = {
2699        AR_PHY_RX_IQCAL_CORR_B0,
2700        AR_PHY_RX_IQCAL_CORR_B1,
2701        AR_PHY_RX_IQCAL_CORR_B2,
2702    };
2703
2704    for (i=0; i<AR9300_MAX_CHAINS; i++) {
2705        if (ahp->ah_rx_cal_corr[i]) {
2706            i_coff = (ahp->ah_rx_cal_corr[i] &
2707                        AR_PHY_RX_IQCAL_CORR_IQCORR_Q_I_COFF) >>
2708                        AR_PHY_RX_IQCAL_CORR_IQCORR_Q_I_COFF_S;
2709            q_coff = (ahp->ah_rx_cal_corr[i] &
2710                        AR_PHY_RX_IQCAL_CORR_IQCORR_Q_Q_COFF) >>
2711                        AR_PHY_RX_IQCAL_CORR_IQCORR_Q_Q_COFF_S;
2712
2713            OS_REG_RMW_FIELD(ah, offset_array[i],
2714                AR_PHY_RX_IQCAL_CORR_IQCORR_Q_I_COFF, i_coff);
2715            OS_REG_RMW_FIELD(ah, offset_array[i],
2716                AR_PHY_RX_IQCAL_CORR_IQCORR_Q_Q_COFF, q_coff);
2717
2718            is_restore = AH_TRUE;
2719        }
2720    }
2721
2722    if (is_restore)
2723        OS_REG_SET_BIT(ah,
2724            AR_PHY_RX_IQCAL_CORR_B0, AR_PHY_RX_IQCAL_CORR_IQCORR_ENABLE);
2725
2726    HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
2727        "%s: IQ Cal and Correction (offset 0x%04x) enabled "
2728        "(bit position 0x%08x). New Value 0x%08x\n",
2729        __func__,
2730        (unsigned) (AR_PHY_RX_IQCAL_CORR_B0),
2731        AR_PHY_RX_IQCAL_CORR_IQCORR_ENABLE,
2732        OS_REG_READ(ah, AR_PHY_RX_IQCAL_CORR_B0));
2733}
2734
2735/*
2736 * Set a limit on the overall output power.  Used for dynamic
2737 * transmit power control and the like.
2738 *
2739 * NB: limit is in units of 0.5 dbM.
2740 */
2741HAL_BOOL
2742ar9300_set_tx_power_limit(struct ath_hal *ah, u_int32_t limit,
2743    u_int16_t extra_txpow, u_int16_t tpc_in_db)
2744{
2745    struct ath_hal_9300 *ahp = AH9300(ah);
2746    struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
2747    const struct ieee80211_channel *chan = ahpriv->ah_curchan;
2748    HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
2749
2750    if (NULL == chan) {
2751        return AH_FALSE;
2752    }
2753
2754    ahpriv->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER);
2755    ahpriv->ah_extraTxPow = extra_txpow;
2756
2757    if(chan == NULL) {
2758        return AH_FALSE;
2759    }
2760    if (ar9300_eeprom_set_transmit_power(ah, &ahp->ah_eeprom, chan,
2761        ath_hal_getctl(ah, chan), ath_hal_getantennaallowed(ah, chan),
2762        ath_hal_get_twice_max_regpower(ahpriv, ichan, chan),
2763        AH_MIN(MAX_RATE_POWER, ahpriv->ah_powerLimit)) != HAL_OK)
2764    {
2765        return AH_FALSE;
2766    }
2767    return AH_TRUE;
2768}
2769
2770/*
2771 * Exported call to check for a recent gain reading and return
2772 * the current state of the thermal calibration gain engine.
2773 */
2774HAL_RFGAIN
2775ar9300_get_rfgain(struct ath_hal *ah)
2776{
2777    return HAL_RFGAIN_INACTIVE;
2778}
2779
2780#define HAL_GREEN_AP_RX_MASK 0x1
2781
2782static inline void
2783ar9300_init_chain_masks(struct ath_hal *ah, int rx_chainmask, int tx_chainmask)
2784{
2785    if (AH9300(ah)->green_ap_ps_on) {
2786        rx_chainmask = HAL_GREEN_AP_RX_MASK;
2787    }
2788    if (rx_chainmask == 0x5) {
2789        OS_REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN);
2790    }
2791    OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
2792    OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
2793
2794    /*
2795     * Adaptive Power Management:
2796     * Some 3 stream chips exceed the PCIe power requirements.
2797     * This workaround will reduce power consumption by using 2 tx chains
2798     * for 1 and 2 stream rates (5 GHz only).
2799     *
2800     * Set the self gen mask to 2 tx chains when APM is enabled.
2801     *
2802     */
2803    if (AH_PRIVATE(ah)->ah_caps.halApmEnable && (tx_chainmask == 0x7)) {
2804        OS_REG_WRITE(ah, AR_SELFGEN_MASK, 0x3);
2805    }
2806    else {
2807        OS_REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
2808    }
2809
2810    if (tx_chainmask == 0x5) {
2811        OS_REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN);
2812    }
2813}
2814
2815/*
2816 * Override INI values with chip specific configuration.
2817 */
2818static inline void
2819ar9300_override_ini(struct ath_hal *ah, struct ieee80211_channel *chan)
2820{
2821    u_int32_t val;
2822    HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
2823
2824    /*
2825     * Set the RX_ABORT and RX_DIS and clear it only after
2826     * RXE is set for MAC. This prevents frames with
2827     * corrupted descriptor status.
2828     */
2829    OS_REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
2830    /*
2831     * For Merlin and above, there is a new feature that allows Multicast
2832     * search based on both MAC Address and Key ID.
2833     * By default, this feature is enabled.
2834     * But since the driver is not using this feature, we switch it off;
2835     * otherwise multicast search based on MAC addr only will fail.
2836     */
2837    val = OS_REG_READ(ah, AR_PCU_MISC_MODE2) & (~AR_ADHOC_MCAST_KEYID_ENABLE);
2838    OS_REG_WRITE(ah, AR_PCU_MISC_MODE2,
2839        val | AR_BUG_58603_FIX_ENABLE | AR_AGG_WEP_ENABLE);
2840
2841
2842    /* Osprey revision specific configuration */
2843
2844    /* Osprey 2.0+ - if SW RAC support is disabled, must also disable
2845     * the Osprey 2.0 hardware RAC fix.
2846     */
2847    if (p_cap->halIsrRacSupport == AH_FALSE) {
2848        OS_REG_CLR_BIT(ah, AR_CFG, AR_CFG_MISSING_TX_INTR_FIX_ENABLE);
2849    }
2850
2851    /* try to enable old pal if it is needed for h/w green tx */
2852    ar9300_hwgreentx_set_pal_spare(ah, 1);
2853}
2854
2855static inline void
2856ar9300_prog_ini(struct ath_hal *ah, struct ar9300_ini_array *ini_arr,
2857    int column)
2858{
2859    int i, reg_writes = 0;
2860
2861    /* New INI format: Array may be undefined (pre, core, post arrays) */
2862    if (ini_arr->ia_array == NULL) {
2863        return;
2864    }
2865
2866    /*
2867     * New INI format: Pre, core, and post arrays for a given subsystem may be
2868     * modal (> 2 columns) or non-modal (2 columns).
2869     * Determine if the array is non-modal and force the column to 1.
2870     */
2871    if (column >= ini_arr->ia_columns) {
2872        column = 1;
2873    }
2874
2875    for (i = 0; i < ini_arr->ia_rows; i++) {
2876        u_int32_t reg = INI_RA(ini_arr, i, 0);
2877        u_int32_t val = INI_RA(ini_arr, i, column);
2878
2879        /*
2880        ** Determine if this is a shift register value
2881        ** (reg >= 0x16000 && reg < 0x17000 for Osprey) ,
2882        ** and insert the configured delay if so.
2883        ** -this delay is not required for Osprey (EV#71410)
2884        */
2885        OS_REG_WRITE(ah, reg, val);
2886        WAR_6773(reg_writes);
2887
2888    }
2889}
2890
2891static inline HAL_STATUS
2892ar9300_process_ini(struct ath_hal *ah, struct ieee80211_channel *chan,
2893    HAL_CHANNEL_INTERNAL *ichan, HAL_HT_MACMODE macmode)
2894{
2895    int reg_writes = 0;
2896    struct ath_hal_9300 *ahp = AH9300(ah);
2897    u_int modes_index, modes_txgaintable_index = 0;
2898    int i;
2899    HAL_STATUS status;
2900    struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
2901    /* Setup the indices for the next set of register array writes */
2902    /* TODO:
2903     * If the channel marker is indicative of the current mode rather
2904     * than capability, we do not need to check the phy mode below.
2905     */
2906#if 0
2907    switch (chan->channel_flags & CHANNEL_ALL) {
2908    case CHANNEL_A:
2909    case CHANNEL_A_HT20:
2910        if (AR_SREV_SCORPION(ah)){
2911            if (chan->channel <= 5350){
2912                modes_txgaintable_index = 1;
2913            }else if ((chan->channel > 5350) && (chan->channel <= 5600)){
2914                modes_txgaintable_index = 3;
2915            }else if (chan->channel > 5600){
2916                modes_txgaintable_index = 5;
2917            }
2918        }
2919        modes_index = 1;
2920        freq_index  = 1;
2921        break;
2922
2923    case CHANNEL_A_HT40PLUS:
2924    case CHANNEL_A_HT40MINUS:
2925        if (AR_SREV_SCORPION(ah)){
2926            if (chan->channel <= 5350){
2927                modes_txgaintable_index = 2;
2928            }else if ((chan->channel > 5350) && (chan->channel <= 5600)){
2929                modes_txgaintable_index = 4;
2930            }else if (chan->channel > 5600){
2931                modes_txgaintable_index = 6;
2932            }
2933        }
2934        modes_index = 2;
2935        freq_index  = 1;
2936        break;
2937
2938    case CHANNEL_PUREG:
2939    case CHANNEL_G_HT20:
2940    case CHANNEL_B:
2941        if (AR_SREV_SCORPION(ah)){
2942            modes_txgaintable_index = 8;
2943        }else if (AR_SREV_HONEYBEE(ah)){
2944	    modes_txgaintable_index = 1;
2945	}
2946        modes_index = 4;
2947        freq_index  = 2;
2948        break;
2949
2950    case CHANNEL_G_HT40PLUS:
2951    case CHANNEL_G_HT40MINUS:
2952        if (AR_SREV_SCORPION(ah)){
2953            modes_txgaintable_index = 7;
2954        }else if (AR_SREV_HONEYBEE(ah)){
2955            modes_txgaintable_index = 1;
2956        }
2957        modes_index = 3;
2958        freq_index  = 2;
2959        break;
2960
2961    case CHANNEL_108G:
2962        modes_index = 5;
2963        freq_index  = 2;
2964        break;
2965
2966    default:
2967        HALASSERT(0);
2968        return HAL_EINVAL;
2969    }
2970#endif
2971
2972    /* FreeBSD */
2973    if (IS_CHAN_5GHZ(ichan)) {
2974        if (IEEE80211_IS_CHAN_HT40U(chan) || IEEE80211_IS_CHAN_HT40D(chan)) {
2975            if (AR_SREV_SCORPION(ah)){
2976                if (ichan->channel <= 5350){
2977                    modes_txgaintable_index = 2;
2978                }else if ((ichan->channel > 5350) && (ichan->channel <= 5600)){
2979                    modes_txgaintable_index = 4;
2980                }else if (ichan->channel > 5600){
2981                    modes_txgaintable_index = 6;
2982                }
2983            }
2984            modes_index = 2;
2985        } else if (IEEE80211_IS_CHAN_A(chan) || IEEE80211_IS_CHAN_HT20(chan)) {
2986            if (AR_SREV_SCORPION(ah)){
2987                if (ichan->channel <= 5350){
2988                    modes_txgaintable_index = 1;
2989                }else if ((ichan->channel > 5350) && (ichan->channel <= 5600)){
2990                    modes_txgaintable_index = 3;
2991                }else if (ichan->channel > 5600){
2992                    modes_txgaintable_index = 5;
2993                }
2994            }
2995            modes_index = 1;
2996        } else
2997            return HAL_EINVAL;
2998    } else if (IS_CHAN_2GHZ(ichan)) {
2999        if (IEEE80211_IS_CHAN_108G(chan)) {
3000            modes_index = 5;
3001        } else if (IEEE80211_IS_CHAN_HT40U(chan) || IEEE80211_IS_CHAN_HT40D(chan)) {
3002            if (AR_SREV_SCORPION(ah)){
3003                modes_txgaintable_index = 7;
3004            } else if (AR_SREV_HONEYBEE(ah)){
3005                modes_txgaintable_index = 1;
3006            }
3007            modes_index = 3;
3008        } else if (IEEE80211_IS_CHAN_HT20(chan) || IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_B(chan) || IEEE80211_IS_CHAN_PUREG(chan)) {
3009            if (AR_SREV_SCORPION(ah)){
3010                modes_txgaintable_index = 8;
3011            } else if (AR_SREV_HONEYBEE(ah)){
3012                modes_txgaintable_index = 1;
3013            }
3014            modes_index = 4;
3015        } else
3016            return HAL_EINVAL;
3017    } else
3018            return HAL_EINVAL;
3019
3020#if 0
3021    /* Set correct Baseband to analog shift setting to access analog chips. */
3022    OS_REG_WRITE(ah, AR_PHY(0), 0x00000007);
3023#endif
3024
3025    HALDEBUG(ah, HAL_DEBUG_RESET,
3026        "ar9300_process_ini: "
3027        "Skipping OS-REG-WRITE(ah, AR-PHY(0), 0x00000007)\n");
3028    HALDEBUG(ah, HAL_DEBUG_RESET,
3029        "ar9300_process_ini: no ADDac programming\n");
3030
3031
3032    /*
3033     * Osprey 2.0+ - new INI format.
3034     * Each subsystem has a pre, core, and post array.
3035     */
3036    for (i = 0; i < ATH_INI_NUM_SPLIT; i++) {
3037        ar9300_prog_ini(ah, &ahp->ah_ini_soc[i], modes_index);
3038        ar9300_prog_ini(ah, &ahp->ah_ini_mac[i], modes_index);
3039        ar9300_prog_ini(ah, &ahp->ah_ini_bb[i], modes_index);
3040        ar9300_prog_ini(ah, &ahp->ah_ini_radio[i], modes_index);
3041        if ((i == ATH_INI_POST) && (AR_SREV_JUPITER_20_OR_LATER(ah) || AR_SREV_APHRODITE(ah))) {
3042            ar9300_prog_ini(ah, &ahp->ah_ini_radio_post_sys2ant, modes_index);
3043        }
3044
3045    }
3046
3047	if (!(AR_SREV_SOC(ah))) {
3048			/* Doubler issue : Some board doesn't work well with MCS15. Turn off doubler after freq locking is complete*/
3049			//ath_hal_printf(ah, "%s[%d] ==== before reg[0x%08x] = 0x%08x\n", __func__, __LINE__, AR_PHY_65NM_CH0_RXTX2, OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2));
3050			OS_REG_RMW(ah, AR_PHY_65NM_CH0_RXTX2, 1 << AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK_S |
3051			               1 << AR_PHY_65NM_CH0_RXTX2_SYNTHOVR_MASK_S, 0); /*Set synthon, synthover */
3052			//ath_hal_printf(ah, "%s[%d] ==== after reg[0x%08x] = 0x%08x\n", __func__, __LINE__, AR_PHY_65NM_CH0_RXTX2, OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2));
3053
3054			OS_REG_RMW(ah, AR_PHY_65NM_CH1_RXTX2, 1 << AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK_S |
3055			               1 << AR_PHY_65NM_CH0_RXTX2_SYNTHOVR_MASK_S, 0); /*Set synthon, synthover */
3056			OS_REG_RMW(ah, AR_PHY_65NM_CH2_RXTX2, 1 << AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK_S |
3057			               1 << AR_PHY_65NM_CH0_RXTX2_SYNTHOVR_MASK_S, 0); /*Set synthon, synthover */
3058			OS_DELAY(200);
3059
3060			//ath_hal_printf(ah, "%s[%d] ==== before reg[0x%08x] = 0x%08x\n", __func__, __LINE__, AR_PHY_65NM_CH0_RXTX2, OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2));
3061			OS_REG_CLR_BIT(ah, AR_PHY_65NM_CH0_RXTX2, AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK); /* clr synthon */
3062			OS_REG_CLR_BIT(ah, AR_PHY_65NM_CH1_RXTX2, AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK); /* clr synthon */
3063			OS_REG_CLR_BIT(ah, AR_PHY_65NM_CH2_RXTX2, AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK); /* clr synthon */
3064			//ath_hal_printf(ah, "%s[%d] ==== after reg[0x%08x] = 0x%08x\n", __func__, __LINE__, AR_PHY_65NM_CH0_RXTX2, OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2));
3065
3066			OS_DELAY(1);
3067
3068			//ath_hal_printf(ah, "%s[%d] ==== before reg[0x%08x] = 0x%08x\n", __func__, __LINE__, AR_PHY_65NM_CH0_RXTX2, OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2));
3069			OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_RXTX2, AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK, 1); /* set synthon */
3070			OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH1_RXTX2, AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK, 1); /* set synthon */
3071			OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX2, AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK, 1); /* set synthon */
3072			//ath_hal_printf(ah, "%s[%d] ==== after reg[0x%08x] = 0x%08x\n", __func__, __LINE__, AR_PHY_65NM_CH0_RXTX2, OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2));
3073
3074			OS_DELAY(200);
3075
3076			//ath_hal_printf(ah, "%s[%d] ==== before reg[0x%08x] = 0x%08x\n", __func__, __LINE__, AR_PHY_65NM_CH0_SYNTH12, OS_REG_READ(ah, AR_PHY_65NM_CH0_SYNTH12));
3077			OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_SYNTH12, AR_PHY_65NM_CH0_SYNTH12_VREFMUL3, 0xf);
3078			//OS_REG_CLR_BIT(ah, AR_PHY_65NM_CH0_SYNTH12, 1<< 16); /* clr charge pump */
3079			//ath_hal_printf(ah, "%s[%d] ==== After  reg[0x%08x] = 0x%08x\n", __func__, __LINE__, AR_PHY_65NM_CH0_SYNTH12, OS_REG_READ(ah, AR_PHY_65NM_CH0_SYNTH12));
3080
3081			OS_REG_RMW(ah, AR_PHY_65NM_CH0_RXTX2, 0, 1 << AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK_S |
3082			               1 << AR_PHY_65NM_CH0_RXTX2_SYNTHOVR_MASK_S); /*Clr synthon, synthover */
3083			OS_REG_RMW(ah, AR_PHY_65NM_CH1_RXTX2, 0, 1 << AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK_S |
3084			               1 << AR_PHY_65NM_CH0_RXTX2_SYNTHOVR_MASK_S); /*Clr synthon, synthover */
3085			OS_REG_RMW(ah, AR_PHY_65NM_CH2_RXTX2, 0, 1 << AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK_S |
3086			               1 << AR_PHY_65NM_CH0_RXTX2_SYNTHOVR_MASK_S); /*Clr synthon, synthover */
3087			//ath_hal_printf(ah, "%s[%d] ==== after reg[0x%08x] = 0x%08x\n", __func__, __LINE__, AR_PHY_65NM_CH0_RXTX2, OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2));
3088		}
3089
3090    /* Write rxgain Array Parameters */
3091    REG_WRITE_ARRAY(&ahp->ah_ini_modes_rxgain, 1, reg_writes);
3092    HALDEBUG(ah, HAL_DEBUG_RESET, "ar9300_process_ini: Rx Gain programming\n");
3093
3094    if (AR_SREV_JUPITER_20_OR_LATER(ah)) {
3095        /*
3096         * CUS217 mix LNA mode.
3097         */
3098        if (ar9300_rx_gain_index_get(ah) == 2) {
3099            REG_WRITE_ARRAY(&ahp->ah_ini_modes_rxgain_bb_core, 1, reg_writes);
3100            REG_WRITE_ARRAY(&ahp->ah_ini_modes_rxgain_bb_postamble,
3101                modes_index, reg_writes);
3102        }
3103
3104        /*
3105         * 5G-XLNA
3106         */
3107        if ((ar9300_rx_gain_index_get(ah) == 2) ||
3108            (ar9300_rx_gain_index_get(ah) == 3)) {
3109            REG_WRITE_ARRAY(&ahp->ah_ini_modes_rxgain_xlna, modes_index,
3110              reg_writes);
3111        }
3112    }
3113
3114    if (AR_SREV_SCORPION(ah)) {
3115        /* Write rxgain bounds Array */
3116        REG_WRITE_ARRAY(&ahp->ah_ini_modes_rxgain_bounds, modes_index, reg_writes);
3117        HALDEBUG(ah, HAL_DEBUG_RESET, "ar9300_process_ini: Rx Gain table bounds programming\n");
3118    }
3119    /* UB124 xLNA settings */
3120    if (AR_SREV_WASP(ah) && ar9300_rx_gain_index_get(ah) == 2) {
3121#define REG_WRITE(_reg,_val)    *((volatile u_int32_t *)(_reg)) = (_val);
3122#define REG_READ(_reg)          *((volatile u_int32_t *)(_reg))
3123        u_int32_t val;
3124        /* B8040000:  bit[0]=0, bit[3]=0; */
3125        val = REG_READ(0xB8040000);
3126        val &= 0xfffffff6;
3127        REG_WRITE(0xB8040000, val);
3128        /* B804002c:  bit[31:24]=0x2e; bit[7:0]=0x2f; */
3129        val = REG_READ(0xB804002c);
3130        val &= 0x00ffff00;
3131        val |= 0x2e00002f;
3132        REG_WRITE(0xB804002c, val);
3133        /* B804006c:  bit[1]=1; */
3134        val = REG_READ(0xB804006c);
3135        val |= 0x2;
3136        REG_WRITE(0xB804006c, val);
3137#undef REG_READ
3138#undef REG_WRITE
3139    }
3140
3141
3142    /* Write txgain Array Parameters */
3143    if (AR_SREV_SCORPION(ah) || AR_SREV_HONEYBEE(ah)) {
3144        REG_WRITE_ARRAY(&ahp->ah_ini_modes_txgain, modes_txgaintable_index,
3145            reg_writes);
3146    }else{
3147        REG_WRITE_ARRAY(&ahp->ah_ini_modes_txgain, modes_index, reg_writes);
3148    }
3149    HALDEBUG(ah, HAL_DEBUG_RESET, "ar9300_process_ini: Tx Gain programming\n");
3150
3151
3152    /* For 5GHz channels requiring Fast Clock, apply different modal values */
3153    if (IS_5GHZ_FAST_CLOCK_EN(ah, chan)) {
3154        HALDEBUG(ah, HAL_DEBUG_RESET,
3155            "%s: Fast clock enabled, use special ini values\n", __func__);
3156        REG_WRITE_ARRAY(&ahp->ah_ini_modes_additional, modes_index, reg_writes);
3157    }
3158
3159    if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah)) {
3160        HALDEBUG(ah, HAL_DEBUG_RESET,
3161            "%s: use xtal ini for AH9300(ah)->clk_25mhz: %d\n",
3162            __func__, AH9300(ah)->clk_25mhz);
3163        REG_WRITE_ARRAY(
3164            &ahp->ah_ini_modes_additional, 1/*modes_index*/, reg_writes);
3165    }
3166
3167    if (AR_SREV_WASP(ah) && (AH9300(ah)->clk_25mhz == 0)) {
3168        HALDEBUG(ah, HAL_DEBUG_RESET, "%s: Apply 40MHz ini settings\n", __func__);
3169        REG_WRITE_ARRAY(
3170            &ahp->ah_ini_modes_additional_40mhz, 1/*modesIndex*/, reg_writes);
3171    }
3172
3173    /* Handle Japan Channel 14 channel spreading */
3174    if (2484 == ichan->channel) {
3175        ar9300_prog_ini(ah, &ahp->ah_ini_japan2484, 1);
3176    }
3177
3178#if 0
3179    /* XXX TODO! */
3180    if (AR_SREV_JUPITER_20_OR_LATER(ah) || AR_SREV_APHRODITE(ah)) {
3181        ar9300_prog_ini(ah, &ahp->ah_ini_BTCOEX_MAX_TXPWR, 1);
3182    }
3183#endif
3184
3185    /* Override INI with chip specific configuration */
3186    ar9300_override_ini(ah, chan);
3187
3188    /* Setup 11n MAC/Phy mode registers */
3189    ar9300_set_11n_regs(ah, chan, macmode);
3190
3191    /*
3192     * Moved ar9300_init_chain_masks() here to ensure the swap bit is set before
3193     * the pdadc table is written.  Swap must occur before any radio dependent
3194     * replicated register access.  The pdadc curve addressing in particular
3195     * depends on the consistent setting of the swap bit.
3196     */
3197    ar9300_init_chain_masks(ah, ahp->ah_rx_chainmask, ahp->ah_tx_chainmask);
3198
3199    /*
3200     * Setup the transmit power values.
3201     *
3202     * After the public to private hal channel mapping, ichan contains the
3203     * valid regulatory power value.
3204     * ath_hal_getctl and ath_hal_getantennaallowed look up ichan from chan.
3205     */
3206    status = ar9300_eeprom_set_transmit_power(ah, &ahp->ah_eeprom, chan,
3207             ath_hal_getctl(ah, chan), ath_hal_getantennaallowed(ah, chan),
3208             ath_hal_get_twice_max_regpower(ahpriv, ichan, chan),
3209             AH_MIN(MAX_RATE_POWER, ahpriv->ah_powerLimit));
3210    if (status != HAL_OK) {
3211        HALDEBUG(ah, HAL_DEBUG_POWER_MGMT,
3212            "%s: error init'ing transmit power\n", __func__);
3213        return HAL_EIO;
3214    }
3215
3216
3217    return HAL_OK;
3218#undef N
3219}
3220
3221/* ar9300_is_cal_supp
3222 * Determine if calibration is supported by device and channel flags
3223 */
3224inline static HAL_BOOL
3225ar9300_is_cal_supp(struct ath_hal *ah, const struct ieee80211_channel *chan,
3226    HAL_CAL_TYPES cal_type)
3227{
3228    struct ath_hal_9300 *ahp = AH9300(ah);
3229    HAL_BOOL retval = AH_FALSE;
3230
3231    switch (cal_type & ahp->ah_supp_cals) {
3232    case IQ_MISMATCH_CAL:
3233        /* Run IQ Mismatch for non-CCK only */
3234        if (!IEEE80211_IS_CHAN_B(chan)) {
3235            retval = AH_TRUE;
3236        }
3237        break;
3238    case TEMP_COMP_CAL:
3239        retval = AH_TRUE;
3240        break;
3241    }
3242
3243    return retval;
3244}
3245
3246
3247#if 0
3248/* ar9285_pa_cal
3249 * PA Calibration for Kite 1.1 and later versions of Kite.
3250 * - from system's team.
3251 */
3252static inline void
3253ar9285_pa_cal(struct ath_hal *ah)
3254{
3255    u_int32_t reg_val;
3256    int i, lo_gn, offs_6_1, offs_0;
3257    u_int8_t reflo;
3258    u_int32_t phy_test2_reg_val, phy_adc_ctl_reg_val;
3259    u_int32_t an_top2_reg_val, phy_tst_dac_reg_val;
3260
3261
3262    /* Kite 1.1 WAR for Bug 35666
3263     * Increase the LDO value to 1.28V before accessing analog Reg */
3264    if (AR_SREV_KITE_11(ah)) {
3265        OS_REG_WRITE(ah, AR9285_AN_TOP4, (AR9285_AN_TOP4_DEFAULT | 0x14) );
3266    }
3267    an_top2_reg_val = OS_REG_READ(ah, AR9285_AN_TOP2);
3268
3269    /* set pdv2i pdrxtxbb */
3270    reg_val = OS_REG_READ(ah, AR9285_AN_RXTXBB1);
3271    reg_val |= ((0x1 << 5) | (0x1 << 7));
3272    OS_REG_WRITE(ah, AR9285_AN_RXTXBB1, reg_val);
3273
3274    /* clear pwddb */
3275    reg_val = OS_REG_READ(ah, AR9285_AN_RF2G7);
3276    reg_val &= 0xfffffffd;
3277    OS_REG_WRITE(ah, AR9285_AN_RF2G7, reg_val);
3278
3279    /* clear enpacal */
3280    reg_val = OS_REG_READ(ah, AR9285_AN_RF2G1);
3281    reg_val &= 0xfffff7ff;
3282    OS_REG_WRITE(ah, AR9285_AN_RF2G1, reg_val);
3283
3284    /* set offcal */
3285    reg_val = OS_REG_READ(ah, AR9285_AN_RF2G2);
3286    reg_val |= (0x1 << 12);
3287    OS_REG_WRITE(ah, AR9285_AN_RF2G2, reg_val);
3288
3289    /* set pdpadrv1=pdpadrv2=pdpaout=1 */
3290    reg_val = OS_REG_READ(ah, AR9285_AN_RF2G1);
3291    reg_val |= (0x7 << 23);
3292    OS_REG_WRITE(ah, AR9285_AN_RF2G1, reg_val);
3293
3294    /* Read back reflo, increase it by 1 and write it. */
3295    reg_val = OS_REG_READ(ah, AR9285_AN_RF2G3);
3296    reflo = ((reg_val >> 26) & 0x7);
3297
3298    if (reflo < 0x7) {
3299        reflo++;
3300    }
3301    reg_val = ((reg_val & 0xe3ffffff) | (reflo << 26));
3302    OS_REG_WRITE(ah, AR9285_AN_RF2G3, reg_val);
3303
3304    reg_val = OS_REG_READ(ah, AR9285_AN_RF2G3);
3305    reflo = ((reg_val >> 26) & 0x7);
3306
3307    /* use TX single carrier to transmit
3308     * dac const
3309     * reg. 15
3310     */
3311    phy_tst_dac_reg_val = OS_REG_READ(ah, AR_PHY_TSTDAC_CONST);
3312    OS_REG_WRITE(ah, AR_PHY_TSTDAC_CONST, ((0x7ff << 11) | 0x7ff));
3313    reg_val = OS_REG_READ(ah, AR_PHY_TSTDAC_CONST);
3314
3315    /* source is dac const
3316     * reg. 2
3317     */
3318    phy_test2_reg_val = OS_REG_READ(ah, AR_PHY_TEST2);
3319    OS_REG_WRITE(ah, AR_PHY_TEST2, ((0x1 << 7) | (0x1 << 1)));
3320    reg_val = OS_REG_READ(ah, AR_PHY_TEST2);
3321
3322    /* set dac on
3323     * reg. 11
3324     */
3325    phy_adc_ctl_reg_val = OS_REG_READ(ah, AR_PHY_ADC_CTL);
3326    OS_REG_WRITE(ah, AR_PHY_ADC_CTL, 0x80008000);
3327    reg_val = OS_REG_READ(ah, AR_PHY_ADC_CTL);
3328
3329    OS_REG_WRITE(ah, AR9285_AN_TOP2, (0x1 << 27) | (0x1 << 17) | (0x1 << 16) |
3330              (0x1 << 14) | (0x1 << 12) | (0x1 << 11) |
3331              (0x1 << 7) | (0x1 << 5));
3332
3333    OS_DELAY(10); /* 10 usec */
3334
3335    /* clear off[6:0] */
3336    reg_val = OS_REG_READ(ah, AR9285_AN_RF2G6);
3337    reg_val &= 0xfc0fffff;
3338    OS_REG_WRITE(ah, AR9285_AN_RF2G6, reg_val);
3339    reg_val = OS_REG_READ(ah, AR9285_AN_RF2G3);
3340    reg_val &= 0xfdffffff;
3341    OS_REG_WRITE(ah, AR9285_AN_RF2G3, reg_val);
3342
3343    offs_6_1 = 0;
3344    for (i = 6; i > 0; i--) {
3345        /* sef off[$k]==1 */
3346        reg_val = OS_REG_READ(ah, AR9285_AN_RF2G6);
3347        reg_val &= 0xfc0fffff;
3348        reg_val = reg_val | (0x1 << (19 + i)) | ((offs_6_1) << 20);
3349        OS_REG_WRITE(ah, AR9285_AN_RF2G6, reg_val);
3350        lo_gn = (OS_REG_READ(ah, AR9285_AN_RF2G9)) & 0x1;
3351        offs_6_1 = offs_6_1 | (lo_gn << (i - 1));
3352    }
3353
3354    reg_val = OS_REG_READ(ah, AR9285_AN_RF2G6);
3355    reg_val &= 0xfc0fffff;
3356    reg_val = reg_val | ((offs_6_1 - 1) << 20);
3357    OS_REG_WRITE(ah, AR9285_AN_RF2G6, reg_val);
3358
3359    /* set off_0=1; */
3360    reg_val = OS_REG_READ(ah, AR9285_AN_RF2G3);
3361    reg_val &= 0xfdffffff;
3362    reg_val = reg_val | (0x1 << 25);
3363    OS_REG_WRITE(ah, AR9285_AN_RF2G3, reg_val);
3364
3365    lo_gn = OS_REG_READ(ah, AR9285_AN_RF2G9) & 0x1;
3366    offs_0 = lo_gn;
3367
3368    reg_val = OS_REG_READ(ah, AR9285_AN_RF2G3);
3369    reg_val &= 0xfdffffff;
3370    reg_val = reg_val | (offs_0 << 25);
3371    OS_REG_WRITE(ah, AR9285_AN_RF2G3, reg_val);
3372
3373    /* clear pdv2i */
3374    reg_val = OS_REG_READ(ah, AR9285_AN_RXTXBB1);
3375    reg_val &= 0xffffff5f;
3376    OS_REG_WRITE(ah, AR9285_AN_RXTXBB1, reg_val);
3377
3378    /* set enpacal */
3379    reg_val = OS_REG_READ(ah, AR9285_AN_RF2G1);
3380    reg_val |= (0x1 << 11);
3381    OS_REG_WRITE(ah, AR9285_AN_RF2G1, reg_val);
3382
3383    /* clear offcal */
3384    reg_val = OS_REG_READ(ah, AR9285_AN_RF2G2);
3385    reg_val &= 0xffffefff;
3386    OS_REG_WRITE(ah, AR9285_AN_RF2G2, reg_val);
3387
3388    /* set pdpadrv1=pdpadrv2=pdpaout=0 */
3389    reg_val = OS_REG_READ(ah, AR9285_AN_RF2G1);
3390    reg_val &= 0xfc7fffff;
3391    OS_REG_WRITE(ah, AR9285_AN_RF2G1, reg_val);
3392
3393    /* Read back reflo, decrease it by 1 and write it. */
3394    reg_val = OS_REG_READ(ah, AR9285_AN_RF2G3);
3395    reflo = (reg_val >> 26) & 0x7;
3396    if (reflo) {
3397        reflo--;
3398    }
3399    reg_val = ((reg_val & 0xe3ffffff) | (reflo << 26));
3400    OS_REG_WRITE(ah, AR9285_AN_RF2G3, reg_val);
3401    reg_val = OS_REG_READ(ah, AR9285_AN_RF2G3);
3402    reflo = (reg_val >> 26) & 0x7;
3403
3404    /* write back registers */
3405    OS_REG_WRITE(ah, AR_PHY_TSTDAC_CONST, phy_tst_dac_reg_val);
3406    OS_REG_WRITE(ah, AR_PHY_TEST2, phy_test2_reg_val);
3407    OS_REG_WRITE(ah, AR_PHY_ADC_CTL, phy_adc_ctl_reg_val);
3408    OS_REG_WRITE(ah, AR9285_AN_TOP2, an_top2_reg_val);
3409
3410    /* Kite 1.1 WAR for Bug 35666
3411     * Decrease the LDO value back to 1.20V */
3412    if (AR_SREV_KITE_11(ah)) {
3413        OS_REG_WRITE(ah, AR9285_AN_TOP4, AR9285_AN_TOP4_DEFAULT);
3414    }
3415}
3416#endif
3417
3418/* ar9300_run_init_cals
3419 * Runs non-periodic calibrations
3420 */
3421inline static HAL_BOOL
3422ar9300_run_init_cals(struct ath_hal *ah, int init_cal_count)
3423{
3424    struct ath_hal_9300 *ahp = AH9300(ah);
3425    HAL_CHANNEL_INTERNAL ichan; /* bogus */
3426    HAL_BOOL is_cal_done;
3427    HAL_CAL_LIST *curr_cal;
3428    const HAL_PERCAL_DATA *cal_data;
3429    int i;
3430
3431    curr_cal = ahp->ah_cal_list_curr;
3432    if (curr_cal == AH_NULL) {
3433        return AH_FALSE;
3434    }
3435    cal_data = curr_cal->cal_data;
3436    ichan.calValid = 0;
3437
3438    for (i = 0; i < init_cal_count; i++) {
3439        /* Reset this Cal */
3440        ar9300_reset_calibration(ah, curr_cal);
3441        /* Poll for offset calibration complete */
3442        if (!ath_hal_wait(
3443                ah, AR_PHY_TIMING4, AR_PHY_TIMING4_DO_CAL, 0))
3444        {
3445            HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
3446                "%s: Cal %d failed to complete in 100ms.\n",
3447                __func__, curr_cal->cal_data->cal_type);
3448            /* Re-initialize list pointers for periodic cals */
3449            ahp->ah_cal_list = ahp->ah_cal_list_last = ahp->ah_cal_list_curr
3450                = AH_NULL;
3451            return AH_FALSE;
3452        }
3453        /* Run this cal */
3454        ar9300_per_calibration(
3455            ah, &ichan, ahp->ah_rx_chainmask, curr_cal, &is_cal_done);
3456        if (is_cal_done == AH_FALSE) {
3457            HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
3458                "%s: Not able to run Init Cal %d.\n", __func__,
3459                curr_cal->cal_data->cal_type);
3460        }
3461        if (curr_cal->cal_next) {
3462            curr_cal = curr_cal->cal_next;
3463        }
3464    }
3465
3466    /* Re-initialize list pointers for periodic cals */
3467    ahp->ah_cal_list = ahp->ah_cal_list_last = ahp->ah_cal_list_curr = AH_NULL;
3468    return AH_TRUE;
3469}
3470
3471#if 0
3472static void
3473ar9300_tx_carrier_leak_war(struct ath_hal *ah)
3474{
3475    unsigned long tx_gain_table_max;
3476    unsigned long reg_bb_cl_map_0_b0 = 0xffffffff;
3477    unsigned long reg_bb_cl_map_1_b0 = 0xffffffff;
3478    unsigned long reg_bb_cl_map_2_b0 = 0xffffffff;
3479    unsigned long reg_bb_cl_map_3_b0 = 0xffffffff;
3480    unsigned long tx_gain, cal_run = 0;
3481    unsigned long cal_gain[AR_PHY_TPC_7_TX_GAIN_TABLE_MAX + 1];
3482    unsigned long cal_gain_index[AR_PHY_TPC_7_TX_GAIN_TABLE_MAX + 1];
3483    unsigned long new_gain[AR_PHY_TPC_7_TX_GAIN_TABLE_MAX + 1];
3484    int i, j;
3485
3486    OS_MEMSET(new_gain, 0, sizeof(new_gain));
3487    /*printf("     Running TxCarrierLeakWAR\n");*/
3488
3489    /* process tx gain table, we use cl_map_hw_gen=0. */
3490    OS_REG_RMW_FIELD(ah, AR_PHY_CL_CAL_CTL, AR_PHY_CL_MAP_HW_GEN, 0);
3491
3492	//the table we used is txbb_gc[2:0], 1dB[2:1].
3493    tx_gain_table_max = OS_REG_READ_FIELD(ah,
3494        AR_PHY_TPC_7, AR_PHY_TPC_7_TX_GAIN_TABLE_MAX);
3495
3496    for (i = 0; i <= tx_gain_table_max; i++) {
3497        tx_gain = OS_REG_READ(ah, AR_PHY_TXGAIN_TAB(1) + i * 4);
3498        cal_gain[i] = (((tx_gain >> 5)& 0x7) << 2) |
3499            (((tx_gain >> 1) & 0x3) << 0);
3500        if (i == 0) {
3501            cal_gain_index[i] = cal_run;
3502            new_gain[i] = 1;
3503            cal_run++;
3504        } else {
3505            new_gain[i] = 1;
3506            for (j = 0; j < i; j++) {
3507                /*
3508                printf("i=%d, j=%d cal_gain[$i]=0x%04x\n", i, j, cal_gain[i]);
3509                 */
3510                if (new_gain[i]) {
3511                    if ((cal_gain[i] != cal_gain[j])) {
3512                        new_gain[i] = 1;
3513                    } else {
3514                        /* if old gain found, use old cal_run value. */
3515                        new_gain[i] = 0;
3516                        cal_gain_index[i] = cal_gain_index[j];
3517                    }
3518                }
3519            }
3520            /* if new gain found, increase cal_run */
3521            if (new_gain[i] == 1) {
3522                cal_gain_index[i] = cal_run;
3523                cal_run++;
3524            }
3525        }
3526
3527        reg_bb_cl_map_0_b0 = (reg_bb_cl_map_0_b0 & ~(0x1 << i)) |
3528            ((cal_gain_index[i] >> 0 & 0x1) << i);
3529        reg_bb_cl_map_1_b0 = (reg_bb_cl_map_1_b0 & ~(0x1 << i)) |
3530            ((cal_gain_index[i] >> 1 & 0x1) << i);
3531        reg_bb_cl_map_2_b0 = (reg_bb_cl_map_2_b0 & ~(0x1 << i)) |
3532            ((cal_gain_index[i] >> 2 & 0x1) << i);
3533        reg_bb_cl_map_3_b0 = (reg_bb_cl_map_3_b0 & ~(0x1 << i)) |
3534            ((cal_gain_index[i] >> 3 & 0x1) << i);
3535
3536        /*
3537        printf("i=%2d, cal_gain[$i]= 0x%04x, cal_run= %d, "
3538            "cal_gain_index[i]=%d, new_gain[i] = %d\n",
3539            i, cal_gain[i], cal_run, cal_gain_index[i], new_gain[i]);
3540         */
3541    }
3542    OS_REG_WRITE(ah, AR_PHY_CL_MAP_0_B0, reg_bb_cl_map_0_b0);
3543    OS_REG_WRITE(ah, AR_PHY_CL_MAP_1_B0, reg_bb_cl_map_1_b0);
3544    OS_REG_WRITE(ah, AR_PHY_CL_MAP_2_B0, reg_bb_cl_map_2_b0);
3545    OS_REG_WRITE(ah, AR_PHY_CL_MAP_3_B0, reg_bb_cl_map_3_b0);
3546    if (AR_SREV_WASP(ah)) {
3547        OS_REG_WRITE(ah, AR_PHY_CL_MAP_0_B1, reg_bb_cl_map_0_b0);
3548        OS_REG_WRITE(ah, AR_PHY_CL_MAP_1_B1, reg_bb_cl_map_1_b0);
3549        OS_REG_WRITE(ah, AR_PHY_CL_MAP_2_B1, reg_bb_cl_map_2_b0);
3550        OS_REG_WRITE(ah, AR_PHY_CL_MAP_3_B1, reg_bb_cl_map_3_b0);
3551    }
3552}
3553#endif
3554
3555
3556static inline void
3557ar9300_invalidate_saved_cals(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *ichan)
3558{
3559#if ATH_SUPPORT_CAL_REUSE
3560    if (AH_PRIVATE(ah)->ah_config.ath_hal_cal_reuse &
3561        ATH_CAL_REUSE_REDO_IN_FULL_RESET)
3562    {
3563        ichan->one_time_txiqcal_done = AH_FALSE;
3564        ichan->one_time_txclcal_done = AH_FALSE;
3565    }
3566#endif
3567}
3568
3569static inline HAL_BOOL
3570ar9300_restore_rtt_cals(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *ichan)
3571{
3572    HAL_BOOL restore_status = AH_FALSE;
3573
3574    return restore_status;
3575}
3576
3577/* ar9300_init_cal
3578 * Initialize Calibration infrastructure
3579 */
3580static inline HAL_BOOL
3581ar9300_init_cal_internal(struct ath_hal *ah, struct ieee80211_channel *chan,
3582                         HAL_CHANNEL_INTERNAL *ichan,
3583                         HAL_BOOL enable_rtt, HAL_BOOL do_rtt_cal, HAL_BOOL skip_if_none, HAL_BOOL apply_last_iqcorr)
3584{
3585    struct ath_hal_9300 *ahp = AH9300(ah);
3586    HAL_BOOL txiqcal_success_flag = AH_FALSE;
3587    HAL_BOOL cal_done = AH_FALSE;
3588    int iqcal_idx = 0;
3589    HAL_BOOL do_sep_iq_cal = AH_FALSE;
3590    HAL_BOOL do_agc_cal = do_rtt_cal;
3591    HAL_BOOL is_cal_reusable = AH_TRUE;
3592#if ATH_SUPPORT_CAL_REUSE
3593    HAL_BOOL      cal_reuse_enable = AH_PRIVATE(ah)->ah_config.ath_hal_cal_reuse &
3594                                 ATH_CAL_REUSE_ENABLE;
3595    HAL_BOOL      clc_success = AH_FALSE;
3596    int32_t   ch_idx, j, cl_tab_reg;
3597    u_int32_t BB_cl_tab_entry = MAX_BB_CL_TABLE_ENTRY;
3598    u_int32_t BB_cl_tab_b[AR9300_MAX_CHAINS] = {
3599                    AR_PHY_CL_TAB_0,
3600                    AR_PHY_CL_TAB_1,
3601                    AR_PHY_CL_TAB_2
3602                };
3603#endif
3604
3605    if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah)) {
3606        /* Hornet: 1 x 1 */
3607        ahp->ah_rx_cal_chainmask = 0x1;
3608        ahp->ah_tx_cal_chainmask = 0x1;
3609    } else if (AR_SREV_WASP(ah) || AR_SREV_JUPITER(ah) || AR_SREV_HONEYBEE(ah)) {
3610        /* Wasp/Jupiter: 2 x 2 */
3611        ahp->ah_rx_cal_chainmask = 0x3;
3612        ahp->ah_tx_cal_chainmask = 0x3;
3613    } else {
3614        /*
3615         * Osprey needs to be configured for the correct chain mode
3616         * before running AGC/TxIQ cals.
3617         */
3618        if (ahp->ah_enterprise_mode & AR_ENT_OTP_CHAIN2_DISABLE) {
3619            /* chain 2 disabled - 2 chain mode */
3620            ahp->ah_rx_cal_chainmask = 0x3;
3621            ahp->ah_tx_cal_chainmask = 0x3;
3622        } else {
3623            ahp->ah_rx_cal_chainmask = 0x7;
3624            ahp->ah_tx_cal_chainmask = 0x7;
3625        }
3626    }
3627        ar9300_init_chain_masks(ah, ahp->ah_rx_cal_chainmask, ahp->ah_tx_cal_chainmask);
3628
3629
3630    if (ahp->tx_cl_cal_enable) {
3631#if ATH_SUPPORT_CAL_REUSE
3632        /* disable Carrie Leak or set do_agc_cal accordingly */
3633        if (cal_reuse_enable && ichan->one_time_txclcal_done)
3634        {
3635            OS_REG_CLR_BIT(ah, AR_PHY_CL_CAL_CTL, AR_PHY_CL_CAL_ENABLE);
3636        } else
3637#endif /* ATH_SUPPORT_CAL_REUSE */
3638        {
3639            OS_REG_SET_BIT(ah, AR_PHY_CL_CAL_CTL, AR_PHY_CL_CAL_ENABLE);
3640            do_agc_cal = AH_TRUE;
3641        }
3642    }
3643
3644    /* Do Tx IQ Calibration here for osprey hornet and wasp */
3645    /* XXX: For initial wasp bringup - check and enable this */
3646    /* EV 74233: Tx IQ fails to complete for half/quarter rates */
3647    if (!(IEEE80211_IS_CHAN_HALF(chan) || IEEE80211_IS_CHAN_QUARTER(chan))) {
3648        if (ahp->tx_iq_cal_enable) {
3649            /* this should be eventually moved to INI file */
3650            OS_REG_RMW_FIELD(ah, AR_PHY_TX_IQCAL_CONTROL_1(ah),
3651                AR_PHY_TX_IQCAL_CONTROL_1_IQCORR_I_Q_COFF_DELPT, DELPT);
3652
3653            /*
3654             * For poseidon and later chips,
3655             * Tx IQ cal HW run will be a part of AGC calibration
3656             */
3657            if (ahp->tx_iq_cal_during_agc_cal) {
3658                /*
3659                 * txiqcal_success_flag always set to 1 to run
3660                 *     ar9300_tx_iq_cal_post_proc
3661                 * if following AGC cal passes
3662                */
3663#if ATH_SUPPORT_CAL_REUSE
3664                if (!cal_reuse_enable || !ichan->one_time_txiqcal_done)
3665                {
3666                    txiqcal_success_flag = AH_TRUE;
3667                    OS_REG_WRITE(ah, AR_PHY_TX_IQCAL_CONTROL_0(ah),
3668                        OS_REG_READ(ah, AR_PHY_TX_IQCAL_CONTROL_0(ah)) |
3669                        AR_PHY_TX_IQCAL_CONTROL_0_ENABLE_TXIQ_CAL);
3670                } else {
3671                    OS_REG_WRITE(ah, AR_PHY_TX_IQCAL_CONTROL_0(ah),
3672                        OS_REG_READ(ah, AR_PHY_TX_IQCAL_CONTROL_0(ah)) &
3673                        (~AR_PHY_TX_IQCAL_CONTROL_0_ENABLE_TXIQ_CAL));
3674                }
3675#else
3676		if (OS_REG_READ_FIELD(ah,
3677					AR_PHY_TX_IQCAL_CONTROL_0(ah),
3678					AR_PHY_TX_IQCAL_CONTROL_0_ENABLE_TXIQ_CAL)){
3679			if (apply_last_iqcorr == AH_TRUE) {
3680				OS_REG_CLR_BIT(ah, AR_PHY_TX_IQCAL_CONTROL_0(ah),
3681						AR_PHY_TX_IQCAL_CONTROL_0_ENABLE_TXIQ_CAL);
3682				txiqcal_success_flag = AH_FALSE;
3683			} else {
3684				txiqcal_success_flag = AH_TRUE;
3685			}
3686		}else{
3687			txiqcal_success_flag = AH_FALSE;
3688		}
3689#endif
3690                if (txiqcal_success_flag) {
3691                    do_agc_cal = AH_TRUE;
3692                }
3693            } else
3694#if ATH_SUPPORT_CAL_REUSE
3695            if (!cal_reuse_enable || !ichan->one_time_txiqcal_done)
3696#endif
3697            {
3698                do_sep_iq_cal = AH_TRUE;
3699                do_agc_cal = AH_TRUE;
3700            }
3701        }
3702    }
3703
3704#if ATH_SUPPORT_MCI
3705    if (AH_PRIVATE(ah)->ah_caps.halMciSupport &&
3706        IS_CHAN_2GHZ(ichan) &&
3707        (ahp->ah_mci_bt_state == MCI_BT_AWAKE) &&
3708        do_agc_cal &&
3709        !(ah->ah_config.ath_hal_mci_config &
3710        ATH_MCI_CONFIG_DISABLE_MCI_CAL))
3711    {
3712        u_int32_t payload[4] = {0, 0, 0, 0};
3713
3714        /* Send CAL_REQ only when BT is AWAKE. */
3715        HALDEBUG(ah, HAL_DEBUG_BT_COEX, "(MCI) %s: Send WLAN_CAL_REQ 0x%X\n",
3716            __func__, ahp->ah_mci_wlan_cal_seq);
3717        MCI_GPM_SET_CAL_TYPE(payload, MCI_GPM_WLAN_CAL_REQ);
3718        payload[MCI_GPM_WLAN_CAL_W_SEQUENCE] = ahp->ah_mci_wlan_cal_seq++;
3719        ar9300_mci_send_message(ah, MCI_GPM, 0, payload, 16, AH_TRUE, AH_FALSE);
3720
3721        /* Wait BT_CAL_GRANT for 50ms */
3722        HALDEBUG(ah, HAL_DEBUG_BT_COEX,
3723            "(MCI) %s: Wait for BT_CAL_GRANT\n", __func__);
3724        if (ar9300_mci_wait_for_gpm(ah, MCI_GPM_BT_CAL_GRANT, 0, 50000))
3725        {
3726            HALDEBUG(ah, HAL_DEBUG_BT_COEX,
3727                "(MCI) %s: Got BT_CAL_GRANT.\n", __func__);
3728        }
3729        else {
3730            is_cal_reusable = AH_FALSE;
3731            HALDEBUG(ah, HAL_DEBUG_BT_COEX,
3732                "(MCI) %s: BT is not responding.\n", __func__);
3733        }
3734    }
3735#endif /* ATH_SUPPORT_MCI */
3736
3737    if (do_sep_iq_cal)
3738    {
3739        /* enable Tx IQ Calibration HW for osprey/hornet/wasp */
3740        txiqcal_success_flag = ar9300_tx_iq_cal_hw_run(ah);
3741        OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
3742        OS_DELAY(5);
3743        OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
3744    }
3745#if 0
3746    if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah)) {
3747        ar9300_tx_carrier_leak_war(ah);
3748    }
3749#endif
3750    /*
3751     * Calibrate the AGC
3752     *
3753     * Tx IQ cal is a part of AGC cal for Jupiter/Poseidon, etc.
3754     * please enable the bit of txiqcal_control_0[31] in INI file
3755     * for Jupiter/Poseidon/etc.
3756     */
3757    if(!AR_SREV_SCORPION(ah)) {
3758        if (do_agc_cal || !skip_if_none) {
3759            OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
3760                OS_REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_CAL);
3761
3762            /* Poll for offset calibration complete */
3763            cal_done = ath_hal_wait(ah,
3764                    AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL, 0);
3765            if (!cal_done) {
3766                HALDEBUG(ah, HAL_DEBUG_FCS_RTT,
3767                    "(FCS) CAL NOT DONE!!! - %d\n", ichan->channel);
3768            }
3769        } else {
3770            cal_done = AH_TRUE;
3771        }
3772            /*
3773             * Tx IQ cal post-processing in SW
3774             * This part of code should be common to all chips,
3775             * no chip specific code for Jupiter/Posdeion except for register names.
3776             */
3777            if (txiqcal_success_flag) {
3778                ar9300_tx_iq_cal_post_proc(ah,ichan, 1, 1,is_cal_reusable, AH_FALSE);
3779            }
3780    } else {
3781        if (!txiqcal_success_flag) {
3782            OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
3783                OS_REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_CAL);
3784            if (!ath_hal_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL,
3785                    0)) {
3786                HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
3787                    "%s: offset calibration failed to complete in 1ms; "
3788                    "noisy environment?\n", __func__);
3789                return AH_FALSE;
3790            }
3791            if (apply_last_iqcorr == AH_TRUE) {
3792                ar9300_tx_iq_cal_post_proc(ah, ichan, 0, 0, is_cal_reusable, AH_TRUE);
3793            }
3794        } else {
3795            for (iqcal_idx=0;iqcal_idx<MAXIQCAL;iqcal_idx++) {
3796                OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
3797                    OS_REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_CAL);
3798
3799                /* Poll for offset calibration complete */
3800                if (!ath_hal_wait(ah, AR_PHY_AGC_CONTROL,
3801                        AR_PHY_AGC_CONTROL_CAL, 0)) {
3802                    HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
3803                        "%s: offset calibration failed to complete in 1ms; "
3804                        "noisy environment?\n", __func__);
3805                    return AH_FALSE;
3806                }
3807                /*
3808                 * Tx IQ cal post-processing in SW
3809                 * This part of code should be common to all chips,
3810                 * no chip specific code for Jupiter/Posdeion except for register names.
3811                 */
3812                ar9300_tx_iq_cal_post_proc(ah, ichan, iqcal_idx+1, MAXIQCAL, is_cal_reusable, AH_FALSE);
3813            }
3814       }
3815    }
3816
3817
3818#if ATH_SUPPORT_MCI
3819    if (AH_PRIVATE(ah)->ah_caps.halMciSupport &&
3820        IS_CHAN_2GHZ(ichan) &&
3821        (ahp->ah_mci_bt_state == MCI_BT_AWAKE) &&
3822        do_agc_cal &&
3823        !(ah->ah_config.ath_hal_mci_config &
3824        ATH_MCI_CONFIG_DISABLE_MCI_CAL))
3825    {
3826        u_int32_t payload[4] = {0, 0, 0, 0};
3827
3828        HALDEBUG(ah, HAL_DEBUG_BT_COEX, "(MCI) %s: Send WLAN_CAL_DONE 0x%X\n",
3829            __func__, ahp->ah_mci_wlan_cal_done);
3830        MCI_GPM_SET_CAL_TYPE(payload, MCI_GPM_WLAN_CAL_DONE);
3831        payload[MCI_GPM_WLAN_CAL_W_SEQUENCE] = ahp->ah_mci_wlan_cal_done++;
3832        ar9300_mci_send_message(ah, MCI_GPM, 0, payload, 16, AH_TRUE, AH_FALSE);
3833    }
3834#endif /* ATH_SUPPORT_MCI */
3835
3836
3837    if (!cal_done && !AR_SREV_SCORPION(ah) )
3838    {
3839        HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
3840            "%s: offset calibration failed to complete in 1ms; "
3841            "noisy environment?\n", __func__);
3842        return AH_FALSE;
3843    }
3844
3845#if 0
3846     /* Beacon stuck fix, refer to EV 120056 */
3847    if(IS_CHAN_2GHZ(chan) && AR_SREV_SCORPION(ah))
3848        OS_REG_WRITE(ah, AR_PHY_TIMING5, OS_REG_READ(ah,AR_PHY_TIMING5) & ~AR_PHY_TIMING5_CYCPWR_THR1_ENABLE);
3849#endif
3850
3851#if 0
3852    /* Do PA Calibration */
3853    if (AR_SREV_KITE(ah) && AR_SREV_KITE_11_OR_LATER(ah)) {
3854        ar9285_pa_cal(ah);
3855    }
3856#endif
3857
3858#if ATH_SUPPORT_CAL_REUSE
3859     if (ichan->one_time_txiqcal_done) {
3860        ar9300_tx_iq_cal_apply(ah, ichan);
3861        HALDEBUG(ah, HAL_DEBUG_FCS_RTT,
3862            "(FCS) TXIQCAL applied - %d\n", ichan->channel);
3863    }
3864#endif /* ATH_SUPPORT_CAL_REUSE */
3865
3866#if ATH_SUPPORT_CAL_REUSE
3867    if (cal_reuse_enable && ahp->tx_cl_cal_enable)
3868    {
3869        clc_success = (OS_REG_READ(ah, AR_PHY_AGC_CONTROL) &
3870                  AR_PHY_AGC_CONTROL_CLC_SUCCESS) ? 1 : 0;
3871
3872        if (ichan->one_time_txclcal_done)
3873        {
3874            /* reapply CL cal results */
3875            for (ch_idx = 0; ch_idx < AR9300_MAX_CHAINS; ch_idx++) {
3876                if ((ahp->ah_tx_cal_chainmask & (1 << ch_idx)) == 0) {
3877                    continue;
3878                }
3879                cl_tab_reg = BB_cl_tab_b[ch_idx];
3880                for (j = 0; j < BB_cl_tab_entry; j++) {
3881                    OS_REG_WRITE(ah, cl_tab_reg, ichan->tx_clcal[ch_idx][j]);
3882                    cl_tab_reg += 4;;
3883                }
3884            }
3885            HALDEBUG(ah, HAL_DEBUG_FCS_RTT,
3886                "(FCS) TX CL CAL applied - %d\n", ichan->channel);
3887        }
3888        else if (is_cal_reusable && clc_success) {
3889            /* save CL cal results */
3890            for (ch_idx = 0; ch_idx < AR9300_MAX_CHAINS; ch_idx++) {
3891                if ((ahp->ah_tx_cal_chainmask & (1 << ch_idx)) == 0) {
3892                    continue;
3893                }
3894                cl_tab_reg = BB_cl_tab_b[ch_idx];
3895                for (j = 0; j < BB_cl_tab_entry; j++) {
3896                    ichan->tx_clcal[ch_idx][j] = OS_REG_READ(ah, cl_tab_reg);
3897                    cl_tab_reg += 4;
3898                }
3899            }
3900            ichan->one_time_txclcal_done = AH_TRUE;
3901            HALDEBUG(ah, HAL_DEBUG_FCS_RTT,
3902                "(FCS) TX CL CAL saved - %d\n", ichan->channel);
3903        }
3904    }
3905#endif /* ATH_SUPPORT_CAL_REUSE */
3906
3907    /* Revert chainmasks to their original values before NF cal */
3908    ar9300_init_chain_masks(ah, ahp->ah_rx_chainmask, ahp->ah_tx_chainmask);
3909
3910#if !FIX_NOISE_FLOOR
3911    /*
3912     * Do NF calibration after DC offset and other CALs.
3913     * Per system engineers, noise floor value can sometimes be 20 dB
3914     * higher than normal value if DC offset and noise floor cal are
3915     * triggered at the same time.
3916     */
3917    OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
3918        OS_REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_NF);
3919#endif
3920
3921    /* Initialize list pointers */
3922    ahp->ah_cal_list = ahp->ah_cal_list_last = ahp->ah_cal_list_curr = AH_NULL;
3923
3924    /*
3925     * Enable IQ, ADC Gain, ADC DC Offset Cals
3926     */
3927    /* Setup all non-periodic, init time only calibrations */
3928    /* XXX: Init DC Offset not working yet */
3929#ifdef not_yet
3930    if (AH_TRUE == ar9300_is_cal_supp(ah, chan, ADC_DC_INIT_CAL)) {
3931        INIT_CAL(&ahp->ah_adc_dc_cal_init_data);
3932        INSERT_CAL(ahp, &ahp->ah_adc_dc_cal_init_data);
3933    }
3934
3935    /* Initialize current pointer to first element in list */
3936    ahp->ah_cal_list_curr = ahp->ah_cal_list;
3937
3938    if (ahp->ah_cal_list_curr) {
3939        if (ar9300_run_init_cals(ah, 0) == AH_FALSE) {
3940            return AH_FALSE;
3941        }
3942    }
3943#endif
3944    /* end - Init time calibrations */
3945
3946    /* Do not do RX cal in case of offchan, or cal data already exists on same channel*/
3947    if (ahp->ah_skip_rx_iq_cal) {
3948        HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
3949                "Skip RX IQ Cal\n");
3950        return AH_TRUE;
3951    }
3952
3953    /* If Cals are supported, add them to list via INIT/INSERT_CAL */
3954    if (AH_TRUE == ar9300_is_cal_supp(ah, chan, IQ_MISMATCH_CAL)) {
3955        INIT_CAL(&ahp->ah_iq_cal_data);
3956        INSERT_CAL(ahp, &ahp->ah_iq_cal_data);
3957        HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
3958            "%s: enabling IQ Calibration.\n", __func__);
3959    }
3960    if (AH_TRUE == ar9300_is_cal_supp(ah, chan, TEMP_COMP_CAL)) {
3961        INIT_CAL(&ahp->ah_temp_comp_cal_data);
3962        INSERT_CAL(ahp, &ahp->ah_temp_comp_cal_data);
3963        HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
3964            "%s: enabling Temperature Compensation Calibration.\n", __func__);
3965    }
3966
3967    /* Initialize current pointer to first element in list */
3968    ahp->ah_cal_list_curr = ahp->ah_cal_list;
3969
3970    /* Reset state within current cal */
3971    if (ahp->ah_cal_list_curr) {
3972        ar9300_reset_calibration(ah, ahp->ah_cal_list_curr);
3973    }
3974
3975    /* Mark all calibrations on this channel as being invalid */
3976    ichan->calValid = 0;
3977
3978    return AH_TRUE;
3979}
3980
3981static inline HAL_BOOL
3982ar9300_init_cal(struct ath_hal *ah, struct ieee80211_channel *chan, HAL_BOOL skip_if_none, HAL_BOOL apply_last_iqcorr)
3983{
3984    HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
3985    HAL_BOOL do_rtt_cal = AH_TRUE;
3986    HAL_BOOL enable_rtt = AH_FALSE;
3987
3988    HALASSERT(ichan);
3989
3990    return ar9300_init_cal_internal(ah, chan, ichan, enable_rtt, do_rtt_cal, skip_if_none, apply_last_iqcorr);
3991}
3992
3993/* ar9300_reset_cal_valid
3994 * Entry point for upper layers to restart current cal.
3995 * Reset the calibration valid bit in channel.
3996 */
3997void
3998ar9300_reset_cal_valid(struct ath_hal *ah, const struct ieee80211_channel *chan,
3999    HAL_BOOL *is_cal_done, u_int32_t cal_type)
4000{
4001    struct ath_hal_9300 *ahp = AH9300(ah);
4002    HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
4003    HAL_CAL_LIST *curr_cal = ahp->ah_cal_list_curr;
4004
4005    *is_cal_done = AH_TRUE;
4006
4007    if (curr_cal == AH_NULL) {
4008        return;
4009    }
4010    if (ichan == AH_NULL) {
4011        HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
4012            "%s: invalid channel %u/0x%x; no mapping\n",
4013            __func__, chan->ic_freq, chan->ic_flags);
4014        return;
4015    }
4016
4017    if (!(cal_type & IQ_MISMATCH_CAL)) {
4018        *is_cal_done = AH_FALSE;
4019        return;
4020    }
4021
4022    /* Expected that this calibration has run before, post-reset.
4023     * Current state should be done
4024     */
4025    if (curr_cal->cal_state != CAL_DONE) {
4026        HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
4027            "%s: Calibration state incorrect, %d\n",
4028            __func__, curr_cal->cal_state);
4029        return;
4030    }
4031
4032    /* Verify Cal is supported on this channel */
4033    if (ar9300_is_cal_supp(ah, chan, curr_cal->cal_data->cal_type) == AH_FALSE) {
4034        return;
4035    }
4036
4037    HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
4038        "%s: Resetting Cal %d state for channel %u/0x%x\n", __func__,
4039        curr_cal->cal_data->cal_type, chan->ic_freq, chan->ic_flags);
4040
4041    /* Disable cal validity in channel */
4042    ichan->calValid &= ~curr_cal->cal_data->cal_type;
4043    curr_cal->cal_state = CAL_WAITING;
4044    /* Indicate to upper layers that we need polling */
4045    *is_cal_done = AH_FALSE;
4046}
4047
4048static inline void
4049ar9300_set_dma(struct ath_hal *ah)
4050{
4051    u_int32_t   regval;
4052    struct ath_hal_9300 *ahp = AH9300(ah);
4053    struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
4054    HAL_CAPABILITIES *pCap = &ahpriv->ah_caps;
4055
4056#if 0
4057    /*
4058     * set AHB_MODE not to do cacheline prefetches
4059     */
4060    regval = OS_REG_READ(ah, AR_AHB_MODE);
4061    OS_REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
4062#endif
4063
4064    /*
4065     * let mac dma reads be in 128 byte chunks
4066     */
4067    regval = OS_REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
4068    OS_REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
4069
4070    /*
4071     * Restore TX Trigger Level to its pre-reset value.
4072     * The initial value depends on whether aggregation is enabled, and is
4073     * adjusted whenever underruns are detected.
4074     */
4075    /*
4076    OS_REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, AH_PRIVATE(ah)->ah_tx_trig_level);
4077     */
4078    /*
4079     * Osprey 1.0 bug (EV 61936). Don't change trigger level from .ini default.
4080     * Osprey 2.0 - hardware recommends using the default INI settings.
4081     */
4082#if 0
4083    OS_REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, 0x3f);
4084#endif
4085    /*
4086     * let mac dma writes be in 128 byte chunks
4087     */
4088    regval = OS_REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
4089    OS_REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
4090
4091    /*
4092     * Setup receive FIFO threshold to hold off TX activities
4093     */
4094    OS_REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
4095
4096    /*
4097     * reduce the number of usable entries in PCU TXBUF to avoid
4098     * wrap around bugs. (bug 20428)
4099     */
4100
4101    if (AR_SREV_WASP(ah) &&
4102        (AH_PRIVATE((ah))->ah_macRev > AR_SREV_REVISION_WASP_12)) {
4103        /* Wasp 1.3 fix for EV#85395 requires usable entries
4104         * to be set to 0x500
4105         */
4106        OS_REG_WRITE(ah, AR_PCU_TXBUF_CTRL, 0x500);
4107    } else {
4108        OS_REG_WRITE(ah, AR_PCU_TXBUF_CTRL, AR_PCU_TXBUF_CTRL_USABLE_SIZE);
4109    }
4110
4111    /*
4112     * Enable HPQ for UAPSD
4113     */
4114    if (pCap->halHwUapsdTrig == AH_TRUE) {
4115    /* Only enable this if HAL capabilities says it is OK */
4116        if (AH_PRIVATE(ah)->ah_opmode == HAL_M_HOSTAP) {
4117            OS_REG_WRITE(ah, AR_HP_Q_CONTROL,
4118                    AR_HPQ_ENABLE | AR_HPQ_UAPSD | AR_HPQ_UAPSD_TRIGGER_EN);
4119        }
4120    } else {
4121        /* use default value from ini file - which disable HPQ queue usage */
4122    }
4123
4124    /*
4125     * set the transmit status ring
4126     */
4127    ar9300_reset_tx_status_ring(ah);
4128
4129    /*
4130     * set rxbp threshold.  Must be non-zero for RX_EOL to occur.
4131     * For Osprey 2.0+, keep the original thresholds
4132     * otherwise performance is lost due to excessive RX EOL interrupts.
4133     */
4134    OS_REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
4135    OS_REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
4136
4137    /*
4138     * set receive buffer size.
4139     */
4140    if (ahp->rx_buf_size) {
4141        OS_REG_WRITE(ah, AR_DATABUF, ahp->rx_buf_size);
4142    }
4143}
4144
4145static inline void
4146ar9300_init_bb(struct ath_hal *ah, struct ieee80211_channel *chan)
4147{
4148    u_int32_t synth_delay;
4149
4150    /*
4151     * Wait for the frequency synth to settle (synth goes on
4152     * via AR_PHY_ACTIVE_EN).  Read the phy active delay register.
4153     * Value is in 100ns increments.
4154     */
4155    synth_delay = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
4156    if (IEEE80211_IS_CHAN_CCK(chan)) {
4157        synth_delay = (4 * synth_delay) / 22;
4158    } else {
4159        synth_delay /= 10;
4160    }
4161
4162    /* Activate the PHY (includes baseband activate + synthesizer on) */
4163    OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
4164
4165    /*
4166     * There is an issue if the AP starts the calibration before
4167     * the base band timeout completes.  This could result in the
4168     * rx_clear false triggering.  As a workaround we add delay an
4169     * extra BASE_ACTIVATE_DELAY usecs to ensure this condition
4170     * does not happen.
4171     */
4172    OS_DELAY(synth_delay + BASE_ACTIVATE_DELAY);
4173}
4174
4175static inline void
4176ar9300_init_interrupt_masks(struct ath_hal *ah, HAL_OPMODE opmode)
4177{
4178    struct ath_hal_9300 *ahp = AH9300(ah);
4179    u_int32_t msi_cfg = 0;
4180    u_int32_t sync_en_def = AR9300_INTR_SYNC_DEFAULT;
4181
4182    /*
4183     * Setup interrupt handling.  Note that ar9300_reset_tx_queue
4184     * manipulates the secondary IMR's as queues are enabled
4185     * and disabled.  This is done with RMW ops to insure the
4186     * settings we make here are preserved.
4187     */
4188    ahp->ah_mask_reg =
4189        AR_IMR_TXERR | AR_IMR_TXURN |
4190        AR_IMR_RXERR | AR_IMR_RXORN |
4191        AR_IMR_BCNMISC;
4192
4193    if (ahp->ah_intr_mitigation_rx) {
4194        /* enable interrupt mitigation for rx */
4195        ahp->ah_mask_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR | AR_IMR_RXOK_HP;
4196        msi_cfg |= AR_INTCFG_MSI_RXINTM | AR_INTCFG_MSI_RXMINTR;
4197    } else {
4198        ahp->ah_mask_reg |= AR_IMR_RXOK_LP | AR_IMR_RXOK_HP;
4199        msi_cfg |= AR_INTCFG_MSI_RXOK;
4200    }
4201    if (ahp->ah_intr_mitigation_tx) {
4202        /* enable interrupt mitigation for tx */
4203        ahp->ah_mask_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
4204        msi_cfg |= AR_INTCFG_MSI_TXINTM | AR_INTCFG_MSI_TXMINTR;
4205    } else {
4206        ahp->ah_mask_reg |= AR_IMR_TXOK;
4207        msi_cfg |= AR_INTCFG_MSI_TXOK;
4208    }
4209    if (opmode == HAL_M_HOSTAP) {
4210        ahp->ah_mask_reg |= AR_IMR_MIB;
4211    }
4212
4213    OS_REG_WRITE(ah, AR_IMR, ahp->ah_mask_reg);
4214    OS_REG_WRITE(ah, AR_IMR_S2, OS_REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT);
4215    ahp->ah_mask2Reg = OS_REG_READ(ah, AR_IMR_S2);
4216
4217    if (ah->ah_config.ath_hal_enable_msi) {
4218        /* Cache MSI register value */
4219        ahp->ah_msi_reg = OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_PCIE_MSI));
4220        ahp->ah_msi_reg |= AR_PCIE_MSI_HW_DBI_WR_EN;
4221        if (AR_SREV_POSEIDON(ah)) {
4222            ahp->ah_msi_reg &= AR_PCIE_MSI_HW_INT_PENDING_ADDR_MSI_64;
4223        } else {
4224            ahp->ah_msi_reg &= AR_PCIE_MSI_HW_INT_PENDING_ADDR;
4225        }
4226        /* Program MSI configuration */
4227        OS_REG_WRITE(ah, AR_INTCFG, msi_cfg);
4228    }
4229
4230    /*
4231     * debug - enable to see all synchronous interrupts status
4232     */
4233    /* Clear any pending sync cause interrupts */
4234    OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_INTR_SYNC_CAUSE), 0xFFFFFFFF);
4235
4236    /* Allow host interface sync interrupt sources to set cause bit */
4237    if (AR_SREV_POSEIDON(ah)) {
4238        sync_en_def = AR9300_INTR_SYNC_DEF_NO_HOST1_PERR;
4239    }
4240    else if (AR_SREV_WASP(ah)) {
4241        sync_en_def = AR9340_INTR_SYNC_DEFAULT;
4242    }
4243    OS_REG_WRITE(ah,
4244        AR_HOSTIF_REG(ah, AR_INTR_SYNC_ENABLE), sync_en_def);
4245
4246    /* _Disable_ host interface sync interrupt when cause bits set */
4247    OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_INTR_SYNC_MASK), 0);
4248
4249    OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_INTR_PRIO_ASYNC_ENABLE), 0);
4250    OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_INTR_PRIO_ASYNC_MASK), 0);
4251    OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_INTR_PRIO_SYNC_ENABLE), 0);
4252    OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_INTR_PRIO_SYNC_MASK), 0);
4253}
4254
4255static inline void
4256ar9300_init_qos(struct ath_hal *ah)
4257{
4258    OS_REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);  /* XXX magic */
4259    OS_REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);    /* XXX magic */
4260
4261    /* Turn on NOACK Support for QoS packets */
4262    OS_REG_WRITE(ah, AR_QOS_NO_ACK,
4263        SM(2, AR_QOS_NO_ACK_TWO_BIT) |
4264        SM(5, AR_QOS_NO_ACK_BIT_OFF) |
4265        SM(0, AR_QOS_NO_ACK_BYTE_OFF));
4266
4267    /*
4268     * initialize TXOP for all TIDs
4269     */
4270    OS_REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
4271    OS_REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
4272    OS_REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
4273    OS_REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
4274    OS_REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
4275}
4276
4277static inline void
4278ar9300_init_user_settings(struct ath_hal *ah)
4279{
4280    struct ath_hal_9300 *ahp = AH9300(ah);
4281
4282    /* Restore user-specified settings */
4283    HALDEBUG(ah, HAL_DEBUG_RESET,
4284        "--AP %s ahp->ah_misc_mode 0x%x\n", __func__, ahp->ah_misc_mode);
4285    if (ahp->ah_misc_mode != 0) {
4286        OS_REG_WRITE(ah,
4287            AR_PCU_MISC, OS_REG_READ(ah, AR_PCU_MISC) | ahp->ah_misc_mode);
4288    }
4289    if (ahp->ah_get_plcp_hdr) {
4290        OS_REG_CLR_BIT(ah, AR_PCU_MISC, AR_PCU_SEL_EVM);
4291    }
4292    if (ahp->ah_slot_time != (u_int) -1) {
4293        ar9300_set_slot_time(ah, ahp->ah_slot_time);
4294    }
4295    if (ahp->ah_ack_timeout != (u_int) -1) {
4296        ar9300_set_ack_timeout(ah, ahp->ah_ack_timeout);
4297    }
4298    if (AH_PRIVATE(ah)->ah_diagreg != 0) {
4299        OS_REG_SET_BIT(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
4300    }
4301    if (ahp->ah_beacon_rssi_threshold != 0) {
4302        ar9300_set_hw_beacon_rssi_threshold(ah, ahp->ah_beacon_rssi_threshold);
4303    }
4304//#ifdef ATH_SUPPORT_DFS
4305    if (ahp->ah_cac_quiet_enabled) {
4306        ar9300_cac_tx_quiet(ah, 1);
4307    }
4308//#endif /* ATH_SUPPORT_DFS */
4309}
4310
4311int
4312ar9300_get_spur_info(struct ath_hal * ah, int *enable, int len, u_int16_t *freq)
4313{
4314//    struct ath_hal_private *ap = AH_PRIVATE(ah);
4315    int i, j;
4316
4317    for (i = 0; i < len; i++) {
4318        freq[i] =  0;
4319    }
4320
4321    *enable = ah->ah_config.ath_hal_spur_mode;
4322    for (i = 0, j = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
4323        if (AH9300(ah)->ath_hal_spur_chans[i][0] != AR_NO_SPUR) {
4324            freq[j++] = AH9300(ah)->ath_hal_spur_chans[i][0];
4325            HALDEBUG(ah, HAL_DEBUG_ANI,
4326                "1. get spur %d\n", AH9300(ah)->ath_hal_spur_chans[i][0]);
4327        }
4328        if (AH9300(ah)->ath_hal_spur_chans[i][1] != AR_NO_SPUR) {
4329            freq[j++] = AH9300(ah)->ath_hal_spur_chans[i][1];
4330            HALDEBUG(ah, HAL_DEBUG_ANI,
4331                "2. get spur %d\n", AH9300(ah)->ath_hal_spur_chans[i][1]);
4332        }
4333    }
4334
4335    return 0;
4336}
4337
4338#define ATH_HAL_2GHZ_FREQ_MIN   20000
4339#define ATH_HAL_2GHZ_FREQ_MAX   29999
4340#define ATH_HAL_5GHZ_FREQ_MIN   50000
4341#define ATH_HAL_5GHZ_FREQ_MAX   59999
4342
4343#if 0
4344int
4345ar9300_set_spur_info(struct ath_hal * ah, int enable, int len, u_int16_t *freq)
4346{
4347    struct ath_hal_private *ap = AH_PRIVATE(ah);
4348    int i, j, k;
4349
4350    ap->ah_config.ath_hal_spur_mode = enable;
4351
4352    if (ap->ah_config.ath_hal_spur_mode == SPUR_ENABLE_IOCTL) {
4353        for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
4354            AH9300(ah)->ath_hal_spur_chans[i][0] = AR_NO_SPUR;
4355            AH9300(ah)->ath_hal_spur_chans[i][1] = AR_NO_SPUR;
4356        }
4357        for (i = 0, j = 0, k = 0; i < len; i++) {
4358            if (freq[i] > ATH_HAL_2GHZ_FREQ_MIN &&
4359                freq[i] < ATH_HAL_2GHZ_FREQ_MAX)
4360            {
4361                /* 2GHz Spur */
4362                if (j < AR_EEPROM_MODAL_SPURS) {
4363                    AH9300(ah)->ath_hal_spur_chans[j++][1] =  freq[i];
4364                    HALDEBUG(ah, HAL_DEBUG_ANI, "1 set spur %d\n", freq[i]);
4365                }
4366            } else if (freq[i] > ATH_HAL_5GHZ_FREQ_MIN &&
4367                       freq[i] < ATH_HAL_5GHZ_FREQ_MAX)
4368            {
4369                /* 5Ghz Spur */
4370                if (k < AR_EEPROM_MODAL_SPURS) {
4371                    AH9300(ah)->ath_hal_spur_chans[k++][0] =  freq[i];
4372                    HALDEBUG(ah, HAL_DEBUG_ANI, "2 set spur %d\n", freq[i]);
4373                }
4374            }
4375        }
4376    }
4377
4378    return 0;
4379}
4380#endif
4381
4382#define ar9300_check_op_mode(_opmode) \
4383    ((_opmode == HAL_M_STA) || (_opmode == HAL_M_IBSS) ||\
4384     (_opmode == HAL_M_HOSTAP) || (_opmode == HAL_M_MONITOR))
4385
4386
4387
4388
4389#ifndef ATH_NF_PER_CHAN
4390/*
4391* To fixed first reset noise floor value not correct issue
4392* For ART need it to fixed low rate sens too low issue
4393*/
4394static int
4395First_NFCal(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *ichan,
4396    int is_scan, struct ieee80211_channel *chan)
4397{
4398    HAL_NFCAL_HIST_FULL *nfh;
4399    int i, j, k;
4400    int16_t nfarray[HAL_NUM_NF_READINGS] = {0};
4401    int is_2g = 0;
4402    int nf_hist_len;
4403    int stats = 0;
4404
4405    int16_t nf_buf[HAL_NUM_NF_READINGS];
4406#define IS(_c, _f)       (((_c)->channel_flags & _f) || 0)
4407
4408
4409    if ((!is_scan) &&
4410        chan->ic_freq == AH_PRIVATE(ah)->ah_curchan->ic_freq)
4411    {
4412        nfh = &AH_PRIVATE(ah)->nf_cal_hist;
4413    } else {
4414        nfh = (HAL_NFCAL_HIST_FULL *) &ichan->nf_cal_hist;
4415    }
4416
4417    ar9300_start_nf_cal(ah);
4418    for (j = 0; j < 10000; j++) {
4419        if ((OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) == 0){
4420            break;
4421		}
4422        OS_DELAY(10);
4423    }
4424	if (j < 10000) {
4425        is_2g = IEEE80211_IS_CHAN_2GHZ(chan);
4426        ar9300_upload_noise_floor(ah, is_2g, nfarray);
4427
4428	    if (is_scan) {
4429			/*
4430			 * This channel's NF cal info is just a HAL_NFCAL_HIST_SMALL struct
4431			 * rather than a HAL_NFCAL_HIST_FULL struct.
4432			 * As long as we only use the first history element of nf_cal_buffer
4433			 * (nf_cal_buffer[0][0:HAL_NUM_NF_READINGS-1]), we can use
4434			 * HAL_NFCAL_HIST_SMALL and HAL_NFCAL_HIST_FULL interchangeably.
4435			 */
4436            nfh = (HAL_NFCAL_HIST_FULL *) &ichan->nf_cal_hist;
4437            nf_hist_len = HAL_NF_CAL_HIST_LEN_SMALL;
4438		} else {
4439            nfh = &AH_PRIVATE(ah)->nf_cal_hist;
4440            nf_hist_len = HAL_NF_CAL_HIST_LEN_FULL;
4441		}
4442
4443  	    for (i = 0; i < HAL_NUM_NF_READINGS; i ++) {
4444    		for (k = 0; k < HAL_NF_CAL_HIST_LEN_FULL; k++) {
4445                nfh->nf_cal_buffer[k][i] = nfarray[i];
4446            }
4447            nfh->base.priv_nf[i] = ar9300_limit_nf_range(ah,
4448							ar9300_get_nf_hist_mid(ah, nfh, i, nf_hist_len));
4449  		}
4450
4451
4452		//ar9300StoreNewNf(ah, ichan, is_scan);
4453
4454		/*
4455		 * See if the NF value from the old channel should be
4456		 * retained when switching to a new channel.
4457		 * TBD: this may need to be changed, as it wipes out the
4458		 * purpose of saving NF values for each channel.
4459		 */
4460		for (i = 0; i < HAL_NUM_NF_READINGS; i++)
4461		{
4462    		if (IEEE80211_IS_CHAN_2GHZ(chan))
4463    		{
4464    			if (nfh->nf_cal_buffer[0][i] <
4465					AR_PHY_CCA_MAX_GOOD_VAL_OSPREY_2GHZ)
4466                {
4467                    ichan->nf_cal_hist.nf_cal_buffer[0][i] =
4468							AH_PRIVATE(ah)->nf_cal_hist.nf_cal_buffer[0][i];
4469				}
4470    		} else {
4471                if (AR_SREV_AR9580(ah)) {
4472                    if (nfh->nf_cal_buffer[0][i] <
4473                        AR_PHY_CCA_NOM_VAL_PEACOCK_5GHZ)
4474                    {
4475                       ichan->nf_cal_hist.nf_cal_buffer[0][i] =
4476                       AH_PRIVATE(ah)->nf_cal_hist.nf_cal_buffer[0][i];
4477                    }
4478                } else {
4479                   if (nfh->nf_cal_buffer[0][i] <
4480                       AR_PHY_CCA_NOM_VAL_OSPREY_5GHZ)
4481                    {
4482                        ichan->nf_cal_hist.nf_cal_buffer[0][i] =
4483                            AH_PRIVATE(ah)->nf_cal_hist.nf_cal_buffer[0][i];
4484                     }
4485                }
4486            }
4487        }
4488		/*
4489		 * Copy the channel's NF buffer, which may have been modified
4490		 * just above here, to the full NF history buffer.
4491		 */
4492        ar9300_reset_nf_hist_buff(ah, ichan);
4493        ar9300_get_nf_hist_base(ah, ichan, is_scan, nf_buf);
4494        ar9300_load_nf(ah, nf_buf);
4495        /* XXX TODO: handle failure from load_nf */
4496        stats = 0;
4497	} else {
4498        stats = 1;
4499	}
4500#undef IS
4501    return stats;
4502}
4503#endif
4504
4505
4506/*
4507 * Places the device in and out of reset and then places sane
4508 * values in the registers based on EEPROM config, initialization
4509 * vectors (as determined by the mode), and station configuration
4510 *
4511 * b_channel_change is used to preserve DMA/PCU registers across
4512 * a HW Reset during channel change.
4513 */
4514HAL_BOOL
4515ar9300_reset(struct ath_hal *ah, HAL_OPMODE opmode, struct ieee80211_channel *chan,
4516    HAL_HT_MACMODE macmode, u_int8_t txchainmask, u_int8_t rxchainmask,
4517    HAL_HT_EXTPROTSPACING extprotspacing, HAL_BOOL b_channel_change,
4518    HAL_STATUS *status, HAL_RESET_TYPE reset_type, int is_scan)
4519{
4520#define FAIL(_code)     do { ecode = _code; goto bad; } while (0)
4521    u_int32_t               save_led_state;
4522    struct ath_hal_9300     *ahp = AH9300(ah);
4523    struct ath_hal_private  *ap  = AH_PRIVATE(ah);
4524    HAL_CHANNEL_INTERNAL    *ichan;
4525    //const struct ieee80211_channel *curchan = ap->ah_curchan;
4526#if ATH_SUPPORT_MCI
4527    HAL_BOOL                    save_full_sleep = ahp->ah_chip_full_sleep;
4528#endif
4529    u_int32_t               save_def_antenna;
4530    u_int32_t               mac_sta_id1;
4531    HAL_STATUS              ecode;
4532    int                     i, rx_chainmask;
4533    int                     nf_hist_buff_reset = 0;
4534    int16_t                 nf_buf[HAL_NUM_NF_READINGS];
4535#ifdef ATH_FORCE_PPM
4536    u_int32_t               save_force_val, tmp_reg;
4537#endif
4538    u_int8_t                clk_25mhz = AH9300(ah)->clk_25mhz;
4539    HAL_BOOL                    stopped, cal_ret;
4540    HAL_BOOL                    apply_last_iqcorr = AH_FALSE;
4541
4542
4543    if (OS_REG_READ(ah, AR_IER) == AR_IER_ENABLE) {
4544        HALDEBUG(AH_NULL, HAL_DEBUG_UNMASKABLE, "** Reset called with WLAN "
4545                "interrupt enabled %08x **\n", ar9300_get_interrupts(ah));
4546    }
4547
4548    /*
4549     * Set the status to "ok" by default to cover the cases
4550     * where we return false without going to "bad"
4551     */
4552    HALASSERT(status);
4553    *status = HAL_OK;
4554    if ((ah->ah_config.ath_hal_sta_update_tx_pwr_enable)) {
4555        AH9300(ah)->green_tx_status = HAL_RSSI_TX_POWER_NONE;
4556    }
4557
4558#if ATH_SUPPORT_MCI
4559    if (AH_PRIVATE(ah)->ah_caps.halMciSupport &&
4560        (AR_SREV_JUPITER_20_OR_LATER(ah) || AR_SREV_APHRODITE(ah)))
4561    {
4562        ar9300_mci_2g5g_changed(ah, IEEE80211_IS_CHAN_2GHZ(chan));
4563    }
4564#endif
4565
4566    ahp->ah_ext_prot_spacing = extprotspacing;
4567    ahp->ah_tx_chainmask = txchainmask & ap->ah_caps.halTxChainMask;
4568    ahp->ah_rx_chainmask = rxchainmask & ap->ah_caps.halRxChainMask;
4569    ahp->ah_tx_cal_chainmask = ap->ah_caps.halTxChainMask;
4570    ahp->ah_rx_cal_chainmask = ap->ah_caps.halRxChainMask;
4571
4572    /*
4573     * Keep the previous optinal txchainmask value
4574     */
4575
4576    HALASSERT(ar9300_check_op_mode(opmode));
4577
4578    OS_MARK(ah, AH_MARK_RESET, b_channel_change);
4579
4580    /*
4581     * Map public channel to private.
4582     */
4583    ichan = ar9300_check_chan(ah, chan);
4584    if (ichan == AH_NULL) {
4585        HALDEBUG(ah, HAL_DEBUG_CHANNEL,
4586            "%s: invalid channel %u/0x%x; no mapping\n",
4587            __func__, chan->ic_freq, chan->ic_flags);
4588        FAIL(HAL_EINVAL);
4589    }
4590
4591    ichan->paprd_table_write_done = 0;  /* Clear PAPRD table write flag */
4592#if 0
4593    chan->paprd_table_write_done = 0;  /* Clear PAPRD table write flag */
4594#endif
4595
4596    if (ar9300_get_power_mode(ah) != HAL_PM_FULL_SLEEP) {
4597        /* Need to stop RX DMA before reset otherwise chip might hang */
4598        stopped = ar9300_set_rx_abort(ah, AH_TRUE); /* abort and disable PCU */
4599        ar9300_set_rx_filter(ah, 0);
4600        stopped &= ar9300_stop_dma_receive(ah, 0); /* stop and disable RX DMA */
4601        if (!stopped) {
4602            /*
4603             * During the transition from full sleep to reset,
4604             * recv DMA regs are not available to be read
4605             */
4606            HALDEBUG(ah, HAL_DEBUG_UNMASKABLE,
4607                "%s[%d]: ar9300_stop_dma_receive failed\n", __func__, __LINE__);
4608            b_channel_change = AH_FALSE;
4609        }
4610    } else {
4611        HALDEBUG(ah, HAL_DEBUG_UNMASKABLE,
4612            "%s[%d]: Chip is already in full sleep\n", __func__, __LINE__);
4613    }
4614
4615#if ATH_SUPPORT_MCI
4616    if ((AH_PRIVATE(ah)->ah_caps.halMciSupport) &&
4617        (ahp->ah_mci_bt_state == MCI_BT_CAL_START))
4618    {
4619        u_int32_t payload[4] = {0, 0, 0, 0};
4620
4621        HALDEBUG(ah, HAL_DEBUG_BT_COEX,
4622            "(MCI) %s: Stop rx for BT cal.\n", __func__);
4623        ahp->ah_mci_bt_state = MCI_BT_CAL;
4624
4625        /*
4626         * MCIFIX: disable mci interrupt here. This is to avoid SW_MSG_DONE or
4627         * RX_MSG bits to trigger MCI_INT and lead to mci_intr reentry.
4628         */
4629        ar9300_mci_disable_interrupt(ah);
4630
4631        HALDEBUG(ah, HAL_DEBUG_BT_COEX,
4632            "(MCI) %s: Send WLAN_CAL_GRANT\n", __func__);
4633        MCI_GPM_SET_CAL_TYPE(payload, MCI_GPM_WLAN_CAL_GRANT);
4634        ar9300_mci_send_message(ah, MCI_GPM, 0, payload, 16, AH_TRUE, AH_FALSE);
4635
4636        /* Wait BT calibration to be completed for 25ms */
4637        HALDEBUG(ah, HAL_DEBUG_BT_COEX,
4638            "(MCI) %s: BT is calibrating.\n", __func__);
4639        if (ar9300_mci_wait_for_gpm(ah, MCI_GPM_BT_CAL_DONE, 0, 25000)) {
4640            HALDEBUG(ah, HAL_DEBUG_BT_COEX,
4641                "(MCI) %s: Got BT_CAL_DONE.\n", __func__);
4642        }
4643        else {
4644            HALDEBUG(ah, HAL_DEBUG_BT_COEX,
4645                "(MCI) %s: ### BT cal takes too long. Force bt_state to be bt_awake.\n",
4646                __func__);
4647        }
4648        ahp->ah_mci_bt_state = MCI_BT_AWAKE;
4649        /* MCIFIX: enable mci interrupt here */
4650        ar9300_mci_enable_interrupt(ah);
4651
4652        return AH_TRUE;
4653    }
4654#endif
4655
4656    /* Bring out of sleep mode */
4657    if (!ar9300_set_power_mode(ah, HAL_PM_AWAKE, AH_TRUE)) {
4658        *status = HAL_INV_PMODE;
4659        return AH_FALSE;
4660    }
4661
4662    /* Check the Rx mitigation config again, it might have changed
4663     * during attach in ath_vap_attach.
4664     */
4665    if (ah->ah_config.ath_hal_intr_mitigation_rx != 0) {
4666        ahp->ah_intr_mitigation_rx = AH_TRUE;
4667    } else {
4668        ahp->ah_intr_mitigation_rx = AH_FALSE;
4669    }
4670
4671    /*
4672     * XXX TODO FreeBSD:
4673     *
4674     * This is painful because we don't have a non-const channel pointer
4675     * at this stage.
4676     *
4677     * Make sure this gets fixed!
4678     */
4679#if 0
4680    /* Get the value from the previous NF cal and update history buffer */
4681    if (curchan && (ahp->ah_chip_full_sleep != AH_TRUE)) {
4682
4683        if(ahp->ah_chip_reset_done){
4684            ahp->ah_chip_reset_done = 0;
4685        } else {
4686        	/*
4687         	 * is_scan controls updating NF for home channel or off channel.
4688         	 * Home -> Off, update home channel
4689         	 * Off -> Home, update off channel
4690         	 * Home -> Home, uppdate home channel
4691         	 */
4692        	if (ap->ah_curchan->channel != chan->channel)
4693            	ar9300_store_new_nf(ah, curchan, !is_scan);
4694        	else
4695            	ar9300_store_new_nf(ah, curchan, is_scan);
4696        }
4697    }
4698#endif
4699
4700    /*
4701     * Account for the effect of being in either the 2 GHz or 5 GHz band
4702     * on the nominal, max allowable, and min allowable noise floor values.
4703     */
4704    AH9300(ah)->nfp = IS_CHAN_2GHZ(ichan) ? &ahp->nf_2GHz : &ahp->nf_5GHz;
4705
4706    /*
4707     * XXX FreeBSD For now, don't apply the last IQ correction.
4708     *
4709     * This should be done when scorpion is enabled on FreeBSD; just be
4710     * sure to fix this channel match code so it uses net80211 flags
4711     * instead.
4712     */
4713#if 0
4714    if (AR_SREV_SCORPION(ah) && curchan && (chan->channel == curchan->channel) &&
4715        ((chan->channel_flags & (CHANNEL_ALL|CHANNEL_HALF|CHANNEL_QUARTER)) ==
4716         (curchan->channel_flags &
4717          (CHANNEL_ALL | CHANNEL_HALF | CHANNEL_QUARTER)))) {
4718            apply_last_iqcorr = AH_TRUE;
4719    }
4720#endif
4721    apply_last_iqcorr = AH_FALSE;
4722
4723
4724#ifndef ATH_NF_PER_CHAN
4725    /*
4726     * If there's only one full-size home-channel NF history buffer
4727     * rather than a full-size NF history buffer per channel, decide
4728     * whether to (re)initialize the home-channel NF buffer.
4729     * If this is just a channel change for a scan, or if the channel
4730     * is not being changed, don't mess up the home channel NF history
4731     * buffer with NF values from this scanned channel.  If we're
4732     * changing the home channel to a new channel, reset the home-channel
4733     * NF history buffer with the most accurate NF known for the new channel.
4734     */
4735    if (!is_scan && (!ap->ah_curchan ||
4736        ap->ah_curchan->ic_freq != chan->ic_freq)) // ||
4737//        ap->ah_curchan->channel_flags != chan->channel_flags))
4738    {
4739        nf_hist_buff_reset = 1;
4740        ar9300_reset_nf_hist_buff(ah, ichan);
4741    }
4742#endif
4743    /*
4744     * In case of
4745     * - offchan scan, or
4746     * - same channel and RX IQ Cal already available
4747     * disable RX IQ Cal.
4748     */
4749    if (is_scan) {
4750        ahp->ah_skip_rx_iq_cal = AH_TRUE;
4751        HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
4752                "Skip RX IQ Cal due to scanning\n");
4753    } else {
4754#if 0
4755        /* XXX FreeBSD: always just do the RX IQ cal */
4756	/* XXX I think it's just going to speed things up; I don't think it's to avoid chan bugs */
4757        if (ahp->ah_rx_cal_complete &&
4758            ahp->ah_rx_cal_chan == ichan->channel &&
4759            ahp->ah_rx_cal_chan_flag == chan->channel_flags) {
4760            ahp->ah_skip_rx_iq_cal = AH_TRUE;
4761            HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
4762                    "Skip RX IQ Cal due to same channel with completed RX IQ Cal\n");
4763        } else
4764#endif
4765            ahp->ah_skip_rx_iq_cal = AH_FALSE;
4766    }
4767
4768    /* FreeBSD: clear the channel survey data */
4769    ath_hal_survey_clear(ah);
4770
4771    /*
4772     * Fast channel change (Change synthesizer based on channel freq
4773     * without resetting chip)
4774     * Don't do it when
4775     *   - Flag is not set
4776     *   - Chip is just coming out of full sleep
4777     *   - Channel to be set is same as current channel
4778     *   - Channel flags are different, like when moving from 2GHz to 5GHz
4779     *     channels
4780     *   - Merlin: Switching in/out of fast clock enabled channels
4781     *             (not currently coded, since fast clock is enabled
4782     *             across the 5GHz band
4783     *             and we already do a full reset when switching in/out
4784     *             of 5GHz channels)
4785     */
4786#if 0
4787    if (b_channel_change &&
4788        (ahp->ah_chip_full_sleep != AH_TRUE) &&
4789        (AH_PRIVATE(ah)->ah_curchan != AH_NULL) &&
4790        ((chan->channel != AH_PRIVATE(ah)->ah_curchan->channel) &&
4791        (((CHANNEL_ALL|CHANNEL_HALF|CHANNEL_QUARTER) & chan->channel_flags) ==
4792        ((CHANNEL_ALL|CHANNEL_HALF|CHANNEL_QUARTER) & AH_PRIVATE(ah)->ah_curchan->channel_flags))))
4793    {
4794        if (ar9300_channel_change(ah, chan, ichan, macmode)) {
4795            chan->channel_flags = ichan->channel_flags;
4796            chan->priv_flags = ichan->priv_flags;
4797            AH_PRIVATE(ah)->ah_curchan->ah_channel_time = 0;
4798            AH_PRIVATE(ah)->ah_curchan->ah_tsf_last = ar9300_get_tsf64(ah);
4799
4800            /*
4801             * Load the NF from history buffer of the current channel.
4802             * NF is slow time-variant, so it is OK to use a historical value.
4803             */
4804            ar9300_get_nf_hist_base(ah,
4805                AH_PRIVATE(ah)->ah_curchan, is_scan, nf_buf);
4806            ar9300_load_nf(ah, nf_buf);
4807
4808            /* start NF calibration, without updating BB NF register*/
4809            ar9300_start_nf_cal(ah);
4810
4811            /*
4812             * If channel_change completed and DMA was stopped
4813             * successfully - skip the rest of reset
4814             */
4815            if (AH9300(ah)->ah_dma_stuck != AH_TRUE) {
4816                ar9300_disable_pll_lock_detect(ah);
4817#if ATH_SUPPORT_MCI
4818                if (AH_PRIVATE(ah)->ah_caps.halMciSupport && ahp->ah_mci_ready)
4819                {
4820                    ar9300_mci_2g5g_switch(ah, AH_TRUE);
4821                }
4822#endif
4823                return HAL_OK;
4824            }
4825         }
4826    }
4827#endif /* #if 0 */
4828
4829#if ATH_SUPPORT_MCI
4830    if (AH_PRIVATE(ah)->ah_caps.halMciSupport) {
4831        ar9300_mci_disable_interrupt(ah);
4832        if (ahp->ah_mci_ready && !save_full_sleep) {
4833            ar9300_mci_mute_bt(ah);
4834            OS_DELAY(20);
4835            OS_REG_WRITE(ah, AR_BTCOEX_CTRL, 0);
4836        }
4837
4838        ahp->ah_mci_bt_state = MCI_BT_SLEEP;
4839        ahp->ah_mci_ready = AH_FALSE;
4840    }
4841#endif
4842
4843    AH9300(ah)->ah_dma_stuck = AH_FALSE;
4844#ifdef ATH_FORCE_PPM
4845    /* Preserve force ppm state */
4846    save_force_val =
4847        OS_REG_READ(ah, AR_PHY_TIMING2) &
4848        (AR_PHY_TIMING2_USE_FORCE | AR_PHY_TIMING2_FORCE_VAL);
4849#endif
4850    /*
4851     * Preserve the antenna on a channel change
4852     */
4853    save_def_antenna = OS_REG_READ(ah, AR_DEF_ANTENNA);
4854    if (0 == ahp->ah_smartantenna_enable )
4855    {
4856        if (save_def_antenna == 0) {
4857            save_def_antenna = 1;
4858        }
4859    }
4860
4861    /* Save hardware flag before chip reset clears the register */
4862    mac_sta_id1 = OS_REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
4863
4864    /* Save led state from pci config register */
4865    save_led_state = OS_REG_READ(ah, AR_CFG_LED) &
4866        (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
4867        AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
4868
4869    /* Mark PHY inactive prior to reset, to be undone in ar9300_init_bb () */
4870    ar9300_mark_phy_inactive(ah);
4871
4872    if (!ar9300_chip_reset(ah, chan, reset_type)) {
4873        HALDEBUG(ah, HAL_DEBUG_RESET, "%s: chip reset failed\n", __func__);
4874        FAIL(HAL_EIO);
4875    }
4876
4877    OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
4878
4879
4880    /* Disable JTAG */
4881    OS_REG_SET_BIT(ah,
4882        AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL), AR_GPIO_JTAG_DISABLE);
4883
4884    /*
4885     * Note that ar9300_init_chain_masks() is called from within
4886     * ar9300_process_ini() to ensure the swap bit is set before
4887     * the pdadc table is written.
4888     */
4889    ecode = ar9300_process_ini(ah, chan, ichan, macmode);
4890    if (ecode != HAL_OK) {
4891        goto bad;
4892    }
4893
4894    /*
4895     * Configuring WMAC PLL values for 25/40 MHz
4896     */
4897    if(AR_SREV_WASP(ah) || AR_SREV_HONEYBEE(ah) || AR_SREV_SCORPION(ah) ) {
4898        if(clk_25mhz) {
4899            OS_REG_WRITE(ah, AR_RTC_DERIVED_RTC_CLK, (0x17c << 1)); // 32KHz sleep clk
4900        } else {
4901            OS_REG_WRITE(ah, AR_RTC_DERIVED_RTC_CLK, (0x261 << 1)); // 32KHz sleep clk
4902        }
4903        OS_DELAY(100);
4904    }
4905
4906    ahp->ah_immunity_on = AH_FALSE;
4907
4908    if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) {
4909        ahp->tx_iq_cal_enable = OS_REG_READ_FIELD(ah,
4910                                AR_PHY_TX_IQCAL_CONTROL_0(ah),
4911                                AR_PHY_TX_IQCAL_CONTROL_0_ENABLE_TXIQ_CAL) ?
4912                                1 : 0;
4913    }
4914    ahp->tx_cl_cal_enable = (OS_REG_READ(ah, AR_PHY_CL_CAL_CTL) &
4915                                AR_PHY_CL_CAL_ENABLE) ? 1 : 0;
4916
4917    /* For devices with full HW RIFS Rx support (Sowl/Howl/Merlin, etc),
4918     * restore register settings from prior to reset.
4919     */
4920    if ((AH_PRIVATE(ah)->ah_curchan != AH_NULL) &&
4921        (ar9300_get_capability(ah, HAL_CAP_LDPCWAR, 0, AH_NULL) == HAL_OK))
4922    {
4923        /* Re-program RIFS Rx policy after reset */
4924        ar9300_set_rifs_delay(ah, ahp->ah_rifs_enabled);
4925    }
4926
4927#if ATH_SUPPORT_MCI
4928    if (AH_PRIVATE(ah)->ah_caps.halMciSupport) {
4929        ar9300_mci_reset(ah, AH_FALSE, IS_CHAN_2GHZ(ichan), save_full_sleep);
4930    }
4931#endif
4932
4933    /* Initialize Management Frame Protection */
4934    ar9300_init_mfp(ah);
4935
4936    ahp->ah_immunity_vals[0] = OS_REG_READ_FIELD(ah, AR_PHY_SFCORR_LOW,
4937        AR_PHY_SFCORR_LOW_M1_THRESH_LOW);
4938    ahp->ah_immunity_vals[1] = OS_REG_READ_FIELD(ah, AR_PHY_SFCORR_LOW,
4939        AR_PHY_SFCORR_LOW_M2_THRESH_LOW);
4940    ahp->ah_immunity_vals[2] = OS_REG_READ_FIELD(ah, AR_PHY_SFCORR,
4941        AR_PHY_SFCORR_M1_THRESH);
4942    ahp->ah_immunity_vals[3] = OS_REG_READ_FIELD(ah, AR_PHY_SFCORR,
4943        AR_PHY_SFCORR_M2_THRESH);
4944    ahp->ah_immunity_vals[4] = OS_REG_READ_FIELD(ah, AR_PHY_SFCORR,
4945        AR_PHY_SFCORR_M2COUNT_THR);
4946    ahp->ah_immunity_vals[5] = OS_REG_READ_FIELD(ah, AR_PHY_SFCORR_LOW,
4947        AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW);
4948
4949    /* Write delta slope for OFDM enabled modes (A, G, Turbo) */
4950    if (IEEE80211_IS_CHAN_OFDM(chan) || IEEE80211_IS_CHAN_HT(chan)) {
4951        ar9300_set_delta_slope(ah, chan);
4952    }
4953
4954    ar9300_spur_mitigate(ah, chan);
4955    if (!ar9300_eeprom_set_board_values(ah, chan)) {
4956        HALDEBUG(ah, HAL_DEBUG_EEPROM,
4957            "%s: error setting board options\n", __func__);
4958        FAIL(HAL_EIO);
4959    }
4960
4961#ifdef ATH_HAL_WAR_REG16284_APH128
4962    /* temp work around, will be removed. */
4963    if (AR_SREV_WASP(ah)) {
4964        OS_REG_WRITE(ah, 0x16284, 0x1553e000);
4965    }
4966#endif
4967
4968    OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
4969
4970    OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
4971    OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)
4972            | mac_sta_id1
4973            | AR_STA_ID1_RTS_USE_DEF
4974            | (ah->ah_config.ath_hal_6mb_ack ? AR_STA_ID1_ACKCTS_6MB : 0)
4975            | ahp->ah_sta_id1_defaults
4976    );
4977    ar9300_set_operating_mode(ah, opmode);
4978
4979    /* Set Venice BSSID mask according to current state */
4980    OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssid_mask));
4981    OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssid_mask + 4));
4982
4983    /* Restore previous antenna */
4984    OS_REG_WRITE(ah, AR_DEF_ANTENNA, save_def_antenna);
4985#ifdef ATH_FORCE_PPM
4986    /* Restore force ppm state */
4987    tmp_reg = OS_REG_READ(ah, AR_PHY_TIMING2) &
4988        ~(AR_PHY_TIMING2_USE_FORCE | AR_PHY_TIMING2_FORCE_VAL);
4989    OS_REG_WRITE(ah, AR_PHY_TIMING2, tmp_reg | save_force_val);
4990#endif
4991
4992    /* then our BSSID and assocID */
4993    OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
4994    OS_REG_WRITE(ah, AR_BSS_ID1,
4995        LE_READ_2(ahp->ah_bssid + 4) |
4996        ((ahp->ah_assoc_id & 0x3fff) << AR_BSS_ID1_AID_S));
4997
4998    OS_REG_WRITE(ah, AR_ISR, ~0); /* cleared on write */
4999
5000    OS_REG_RMW_FIELD(ah, AR_RSSI_THR, AR_RSSI_THR_BM_THR, INIT_RSSI_THR);
5001
5002    /* HW beacon processing */
5003    /*
5004     * XXX what happens if I just leave filter_interval=0?
5005     * it stays disabled?
5006     */
5007    OS_REG_RMW_FIELD(ah, AR_RSSI_THR, AR_RSSI_BCN_WEIGHT,
5008            INIT_RSSI_BEACON_WEIGHT);
5009    OS_REG_SET_BIT(ah, AR_HWBCNPROC1, AR_HWBCNPROC1_CRC_ENABLE |
5010            AR_HWBCNPROC1_EXCLUDE_TIM_ELM);
5011    if (ah->ah_config.ath_hal_beacon_filter_interval) {
5012        OS_REG_RMW_FIELD(ah, AR_HWBCNPROC2, AR_HWBCNPROC2_FILTER_INTERVAL,
5013                ah->ah_config.ath_hal_beacon_filter_interval);
5014        OS_REG_SET_BIT(ah, AR_HWBCNPROC2,
5015                AR_HWBCNPROC2_FILTER_INTERVAL_ENABLE);
5016    }
5017
5018
5019    /*
5020     * Set Channel now modifies bank 6 parameters for FOWL workaround
5021     * to force rf_pwd_icsyndiv bias current as function of synth
5022     * frequency.Thus must be called after ar9300_process_ini() to ensure
5023     * analog register cache is valid.
5024     */
5025    if (!ahp->ah_rf_hal.set_channel(ah, chan)) {
5026        FAIL(HAL_EIO);
5027    }
5028
5029
5030    OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
5031
5032    /* Set 1:1 QCU to DCU mapping for all queues */
5033    for (i = 0; i < AR_NUM_DCU; i++) {
5034        OS_REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
5035    }
5036
5037    ahp->ah_intr_txqs = 0;
5038    for (i = 0; i < AH_PRIVATE(ah)->ah_caps.halTotalQueues; i++) {
5039        ar9300_reset_tx_queue(ah, i);
5040    }
5041
5042    ar9300_init_interrupt_masks(ah, opmode);
5043
5044    /* Reset ier reference count to disabled */
5045//    OS_ATOMIC_SET(&ahp->ah_ier_ref_count, 1);
5046    if (ath_hal_isrfkillenabled(ah)) {
5047        ar9300_enable_rf_kill(ah);
5048    }
5049
5050    /* must be called AFTER ini is processed */
5051    ar9300_ani_init_defaults(ah, macmode);
5052
5053    ar9300_init_qos(ah);
5054
5055    ar9300_init_user_settings(ah);
5056
5057
5058    AH_PRIVATE(ah)->ah_opmode = opmode; /* record operating mode */
5059
5060    OS_MARK(ah, AH_MARK_RESET_DONE, 0);
5061
5062    /*
5063     * disable seq number generation in hw
5064     */
5065    OS_REG_WRITE(ah, AR_STA_ID1,
5066        OS_REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
5067
5068    ar9300_set_dma(ah);
5069
5070    /*
5071     * program OBS bus to see MAC interrupts
5072     */
5073#if ATH_SUPPORT_MCI
5074    if (!AH_PRIVATE(ah)->ah_caps.halMciSupport) {
5075        OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_OBS), 8);
5076    }
5077#else
5078    OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_OBS), 8);
5079#endif
5080
5081
5082    /* enabling AR_GTTM_IGNORE_IDLE in GTTM register so that
5083       GTT timer will not increment if the channel idle indicates
5084       the air is busy or NAV is still counting down */
5085    OS_REG_WRITE(ah, AR_GTTM, AR_GTTM_IGNORE_IDLE);
5086
5087    /*
5088     * GTT debug mode setting
5089     */
5090    /*
5091    OS_REG_WRITE(ah, 0x64, 0x00320000);
5092    OS_REG_WRITE(ah, 0x68, 7);
5093    OS_REG_WRITE(ah, 0x4080, 0xC);
5094     */
5095    /*
5096     * Disable general interrupt mitigation by setting MIRT = 0x0
5097     * Rx and tx interrupt mitigation are conditionally enabled below.
5098     */
5099    OS_REG_WRITE(ah, AR_MIRT, 0);
5100    if (ahp->ah_intr_mitigation_rx) {
5101        /*
5102         * Enable Interrupt Mitigation for Rx.
5103         * If no build-specific limits for the rx interrupt mitigation
5104         * timer have been specified, use conservative defaults.
5105         */
5106        #ifndef AH_RIMT_VAL_LAST
5107            #define AH_RIMT_LAST_MICROSEC 500
5108        #endif
5109        #ifndef AH_RIMT_VAL_FIRST
5110            #define AH_RIMT_FIRST_MICROSEC 2000
5111        #endif
5112#ifndef HOST_OFFLOAD
5113        OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, AH_RIMT_LAST_MICROSEC);
5114        OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, AH_RIMT_FIRST_MICROSEC);
5115#else
5116        /* lower mitigation level to reduce latency for offload arch. */
5117        OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST,
5118            (AH_RIMT_LAST_MICROSEC >> 2));
5119        OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST,
5120            (AH_RIMT_FIRST_MICROSEC >> 2));
5121#endif
5122    }
5123
5124    if (ahp->ah_intr_mitigation_tx) {
5125        /*
5126         * Enable Interrupt Mitigation for Tx.
5127         * If no build-specific limits for the tx interrupt mitigation
5128         * timer have been specified, use the values preferred for
5129         * the carrier group's products.
5130         */
5131        #ifndef AH_TIMT_LAST
5132            #define AH_TIMT_LAST_MICROSEC 300
5133        #endif
5134        #ifndef AH_TIMT_FIRST
5135            #define AH_TIMT_FIRST_MICROSEC 750
5136        #endif
5137        OS_REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, AH_TIMT_LAST_MICROSEC);
5138        OS_REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, AH_TIMT_FIRST_MICROSEC);
5139    }
5140
5141    rx_chainmask = ahp->ah_rx_chainmask;
5142
5143    OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
5144    OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
5145
5146    ar9300_init_bb(ah, chan);
5147
5148    /* BB Step 7: Calibration */
5149    /*
5150     * Only kick off calibration not on offchan.
5151     * If coming back from offchan, restore prevous Cal results
5152     * since chip reset will clear existings.
5153     */
5154    if (!ahp->ah_skip_rx_iq_cal) {
5155        int i;
5156        /* clear existing RX cal data */
5157        for (i=0; i<AR9300_MAX_CHAINS; i++)
5158            ahp->ah_rx_cal_corr[i] = 0;
5159
5160        ahp->ah_rx_cal_complete = AH_FALSE;
5161//        ahp->ah_rx_cal_chan = chan->channel;
5162//        ahp->ah_rx_cal_chan_flag = ichan->channel_flags;
5163        ahp->ah_rx_cal_chan = 0;
5164        ahp->ah_rx_cal_chan_flag = 0; /* XXX FreeBSD */
5165    }
5166    ar9300_invalidate_saved_cals(ah, ichan);
5167    cal_ret = ar9300_init_cal(ah, chan, AH_FALSE, apply_last_iqcorr);
5168
5169#if ATH_SUPPORT_MCI
5170    if (AH_PRIVATE(ah)->ah_caps.halMciSupport && ahp->ah_mci_ready) {
5171        if (IS_CHAN_2GHZ(ichan) &&
5172            (ahp->ah_mci_bt_state == MCI_BT_SLEEP))
5173        {
5174            if (ar9300_mci_check_int(ah, AR_MCI_INTERRUPT_RX_MSG_REMOTE_RESET) ||
5175                ar9300_mci_check_int(ah, AR_MCI_INTERRUPT_RX_MSG_REQ_WAKE))
5176            {
5177                /*
5178                 * BT is sleeping. Check if BT wakes up duing WLAN
5179                 * calibration. If BT wakes up during WLAN calibration, need
5180                 * to go through all message exchanges again and recal.
5181                 */
5182                HALDEBUG(ah, HAL_DEBUG_BT_COEX,
5183                    "(MCI) ### %s: BT wakes up during WLAN calibration.\n",
5184                    __func__);
5185                OS_REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_RAW,
5186                        AR_MCI_INTERRUPT_RX_MSG_REMOTE_RESET |
5187                        AR_MCI_INTERRUPT_RX_MSG_REQ_WAKE);
5188                HALDEBUG(ah, HAL_DEBUG_BT_COEX, "(MCI) send REMOTE_RESET\n");
5189                ar9300_mci_remote_reset(ah, AH_TRUE);
5190                ar9300_mci_send_sys_waking(ah, AH_TRUE);
5191                OS_DELAY(1);
5192                if (IS_CHAN_2GHZ(ichan)) {
5193                    ar9300_mci_send_lna_transfer(ah, AH_TRUE);
5194                }
5195                ahp->ah_mci_bt_state = MCI_BT_AWAKE;
5196
5197                /* Redo calibration */
5198                HALDEBUG(ah, HAL_DEBUG_BT_COEX, "(MCI) %s: Re-calibrate.\n",
5199                    __func__);
5200                ar9300_invalidate_saved_cals(ah, ichan);
5201                cal_ret = ar9300_init_cal(ah, chan, AH_FALSE, apply_last_iqcorr);
5202            }
5203        }
5204        ar9300_mci_enable_interrupt(ah);
5205    }
5206#endif
5207
5208    if (!cal_ret) {
5209        HALDEBUG(ah, HAL_DEBUG_RESET, "%s: Init Cal Failed\n", __func__);
5210        FAIL(HAL_ESELFTEST);
5211    }
5212
5213    ar9300_init_txbf(ah);
5214#if 0
5215    /*
5216     * WAR for owl 1.0 - restore chain mask for 2-chain cfgs after cal
5217     */
5218    rx_chainmask = ahp->ah_rx_chainmask;
5219    if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
5220        OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
5221        OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
5222    }
5223#endif
5224
5225    /* Restore previous led state */
5226    OS_REG_WRITE(ah, AR_CFG_LED, save_led_state | AR_CFG_SCLK_32KHZ);
5227
5228#if ATH_BT_COEX
5229    if (ahp->ah_bt_coex_config_type != HAL_BT_COEX_CFG_NONE) {
5230        ar9300_init_bt_coex(ah);
5231
5232#if ATH_SUPPORT_MCI
5233        if (AH_PRIVATE(ah)->ah_caps.halMciSupport && ahp->ah_mci_ready) {
5234            /* Check BT state again to make sure it's not changed. */
5235            ar9300_mci_sync_bt_state(ah);
5236            ar9300_mci_2g5g_switch(ah, AH_TRUE);
5237
5238            if ((ahp->ah_mci_bt_state == MCI_BT_AWAKE) &&
5239                (ahp->ah_mci_query_bt == AH_TRUE))
5240            {
5241                ahp->ah_mci_need_flush_btinfo = AH_TRUE;
5242            }
5243        }
5244#endif
5245    }
5246#endif
5247
5248    /* Start TSF2 for generic timer 8-15. */
5249    ar9300_start_tsf2(ah);
5250
5251    /* MIMO Power save setting */
5252    if (ar9300_get_capability(ah, HAL_CAP_DYNAMIC_SMPS, 0, AH_NULL) == HAL_OK) {
5253        ar9300_set_sm_power_mode(ah, ahp->ah_sm_power_mode);
5254    }
5255
5256    /*
5257     * For big endian systems turn on swapping for descriptors
5258     */
5259#if AH_BYTE_ORDER == AH_BIG_ENDIAN
5260    if (AR_SREV_HORNET(ah) || AR_SREV_WASP(ah) || AR_SREV_SCORPION(ah) || AR_SREV_HONEYBEE(ah)) {
5261        OS_REG_RMW(ah, AR_CFG, AR_CFG_SWTB | AR_CFG_SWRB, 0);
5262    } else {
5263        ar9300_init_cfg_reg(ah);
5264    }
5265#endif
5266
5267    if ( AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah) || AR_SREV_SCORPION(ah) || AR_SREV_HONEYBEE(ah) ) {
5268        OS_REG_RMW(ah, AR_CFG_LED, AR_CFG_LED_ASSOC_CTL, AR_CFG_LED_ASSOC_CTL);
5269    }
5270
5271#if !(defined(ART_BUILD)) && defined(ATH_SUPPORT_LED)
5272#define REG_WRITE(_reg, _val)   *((volatile u_int32_t *)(_reg)) = (_val);
5273#define REG_READ(_reg)          *((volatile u_int32_t *)(_reg))
5274#define ATH_GPIO_OUT_FUNCTION3  0xB8040038
5275#define ATH_GPIO_OE             0xB8040000
5276    if ( AR_SREV_WASP(ah)) {
5277        if (IS_CHAN_2GHZ((AH_PRIVATE(ah)->ah_curchan))) {
5278            REG_WRITE(ATH_GPIO_OUT_FUNCTION3, ( REG_READ(ATH_GPIO_OUT_FUNCTION3) & (~(0xff << 8))) | (0x33 << 8) );
5279            REG_WRITE(ATH_GPIO_OE, ( REG_READ(ATH_GPIO_OE) & (~(0x1 << 13) )));
5280        }
5281        else {
5282
5283            /* Disable 2G WLAN LED. During ath_open, reset function is called even before channel is set.
5284            So 2GHz is taken as default and it also blinks. Hence
5285            to avoid both from blinking, disable 2G led while in 5G mode */
5286
5287            REG_WRITE(ATH_GPIO_OE, ( REG_READ(ATH_GPIO_OE) | (1 << 13) ));
5288            REG_WRITE(ATH_GPIO_OUT_FUNCTION3, ( REG_READ(ATH_GPIO_OUT_FUNCTION3) & (~(0xff))) | (0x33) );
5289            REG_WRITE(ATH_GPIO_OE, ( REG_READ(ATH_GPIO_OE) & (~(0x1 << 12) )));
5290        }
5291
5292    }
5293    else if (AR_SREV_SCORPION(ah)) {
5294        if (IS_CHAN_2GHZ((AH_PRIVATE(ah)->ah_curchan))) {
5295            REG_WRITE(ATH_GPIO_OUT_FUNCTION3, ( REG_READ(ATH_GPIO_OUT_FUNCTION3) & (~(0xff << 8))) | (0x2F << 8) );
5296    	    REG_WRITE(ATH_GPIO_OE, (( REG_READ(ATH_GPIO_OE) & (~(0x1 << 13) )) | (0x1 << 12)));
5297        } else if (IS_CHAN_5GHZ((AH_PRIVATE(ah)->ah_curchan))) {
5298            REG_WRITE(ATH_GPIO_OUT_FUNCTION3, ( REG_READ(ATH_GPIO_OUT_FUNCTION3) & (~(0xff))) | (0x2F) );
5299    	    REG_WRITE(ATH_GPIO_OE, (( REG_READ(ATH_GPIO_OE) & (~(0x1 << 12) )) | (0x1 << 13)));
5300        }
5301    }
5302    else if (AR_SREV_HONEYBEE(ah)) {
5303            REG_WRITE(ATH_GPIO_OUT_FUNCTION3, ( REG_READ(ATH_GPIO_OUT_FUNCTION3) & (~(0xff))) | (0x32) );
5304            REG_WRITE(ATH_GPIO_OE, (( REG_READ(ATH_GPIO_OE) & (~(0x1 << 12) ))));
5305    }
5306#undef REG_READ
5307#undef REG_WRITE
5308#endif
5309
5310    /* XXX FreeBSD What's this? -adrian */
5311#if 0
5312    chan->channel_flags = ichan->channel_flags;
5313    chan->priv_flags = ichan->priv_flags;
5314#endif
5315
5316#if FIX_NOISE_FLOOR
5317    /* XXX FreeBSD is ichan appropariate? It was curchan.. */
5318    ar9300_get_nf_hist_base(ah, ichan, is_scan, nf_buf);
5319    ar9300_load_nf(ah, nf_buf);
5320    /* XXX TODO: handle NF load failure */
5321    if (nf_hist_buff_reset == 1)
5322    {
5323        nf_hist_buff_reset = 0;
5324    #ifndef ATH_NF_PER_CHAN
5325	    if (First_NFCal(ah, ichan, is_scan, chan)){
5326            if (ahp->ah_skip_rx_iq_cal && !is_scan) {
5327                /* restore RX Cal result if existing */
5328                ar9300_rx_iq_cal_restore(ah);
5329                ahp->ah_skip_rx_iq_cal = AH_FALSE;
5330            }
5331        }
5332    #endif /* ATH_NF_PER_CHAN */
5333    }
5334    else{
5335        ar9300_start_nf_cal(ah);
5336    }
5337#endif
5338
5339#ifdef AH_SUPPORT_AR9300
5340    /* BB Panic Watchdog */
5341    if (ar9300_get_capability(ah, HAL_CAP_BB_PANIC_WATCHDOG, 0, AH_NULL) ==
5342        HAL_OK)
5343    {
5344        ar9300_config_bb_panic_watchdog(ah);
5345    }
5346#endif
5347
5348    /* While receiving unsupported rate frame receive state machine
5349     * gets into a state 0xb and if phy_restart happens when rx
5350     * state machine is in 0xb state, BB would go hang, if we
5351     * see 0xb state after first bb panic, make sure that we
5352     * disable the phy_restart.
5353     *
5354     * There may be multiple panics, make sure that we always do
5355     * this if we see this panic at least once. This is required
5356     * because reset seems to be writing from INI file.
5357     */
5358    if ((ar9300_get_capability(ah, HAL_CAP_PHYRESTART_CLR_WAR, 0, AH_NULL)
5359         == HAL_OK) && (((MS((AH9300(ah)->ah_bb_panic_last_status),
5360                AR_PHY_BB_WD_RX_OFDM_SM)) == 0xb) ||
5361            AH9300(ah)->ah_phyrestart_disabled) )
5362    {
5363        ar9300_disable_phy_restart(ah, 1);
5364    }
5365
5366
5367
5368    ahp->ah_radar1 = MS(OS_REG_READ(ah, AR_PHY_RADAR_1),
5369                        AR_PHY_RADAR_1_CF_BIN_THRESH);
5370    ahp->ah_dc_offset = MS(OS_REG_READ(ah, AR_PHY_TIMING2),
5371                        AR_PHY_TIMING2_DC_OFFSET);
5372    ahp->ah_disable_cck = MS(OS_REG_READ(ah, AR_PHY_MODE),
5373                        AR_PHY_MODE_DISABLE_CCK);
5374
5375    if (AH9300(ah)->ah_enable_keysearch_always) {
5376        ar9300_enable_keysearch_always(ah, 1);
5377    }
5378
5379#if ATH_LOW_POWER_ENABLE
5380#define REG_WRITE(_reg, _val)   *((volatile u_int32_t *)(_reg)) = (_val)
5381#define REG_READ(_reg)      *((volatile u_int32_t *)(_reg))
5382    if (AR_SREV_OSPREY(ah)) {
5383        REG_WRITE(0xb4000080, REG_READ(0xb4000080) | 3);
5384        OS_REG_WRITE(ah, AR_RTC_RESET, 1);
5385        OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_PCIE_PM_CTRL),
5386                        AR_PCIE_PM_CTRL_ENA);
5387        OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_SPARE), 0xffffffff);
5388    }
5389#undef REG_READ
5390#undef REG_WRITE
5391#endif  /* ATH_LOW_POWER_ENABLE */
5392
5393    ar9300_disable_pll_lock_detect(ah);
5394
5395    /* H/W Green TX */
5396    ar9300_control_signals_for_green_tx_mode(ah);
5397    /* Smart Antenna, only for 5GHz on Scropion */
5398    if (IEEE80211_IS_CHAN_2GHZ((AH_PRIVATE(ah)->ah_curchan)) && AR_SREV_SCORPION(ah)) {
5399        ahp->ah_smartantenna_enable = 0;
5400    }
5401
5402    ar9300_set_smart_antenna(ah, ahp->ah_smartantenna_enable);
5403
5404    if (AR_SREV_APHRODITE(ah) && ahp->ah_lna_div_use_bt_ant_enable)
5405        OS_REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
5406
5407    if (ahp->ah_skip_rx_iq_cal && !is_scan) {
5408        /* restore RX Cal result if existing */
5409        ar9300_rx_iq_cal_restore(ah);
5410        ahp->ah_skip_rx_iq_cal = AH_FALSE;
5411    }
5412
5413
5414    return AH_TRUE;
5415bad:
5416    OS_MARK(ah, AH_MARK_RESET_DONE, ecode);
5417    *status = ecode;
5418
5419    if (ahp->ah_skip_rx_iq_cal && !is_scan) {
5420        /* restore RX Cal result if existing */
5421        ar9300_rx_iq_cal_restore(ah);
5422        ahp->ah_skip_rx_iq_cal = AH_FALSE;
5423    }
5424
5425    return AH_FALSE;
5426#undef FAIL
5427}
5428
5429void
5430ar9300_green_ap_ps_on_off( struct ath_hal *ah, u_int16_t on_off)
5431{
5432    /* Set/reset the ps flag */
5433    AH9300(ah)->green_ap_ps_on = !!on_off;
5434}
5435
5436/*
5437 * This function returns 1, where it is possible to do
5438 * single-chain power save.
5439 */
5440u_int16_t
5441ar9300_is_single_ant_power_save_possible(struct ath_hal *ah)
5442{
5443    return AH_TRUE;
5444}
5445
5446/* To avoid compilation warnings. Functions not used when EMULATION. */
5447/*
5448 * ar9300_find_mag_approx()
5449 */
5450static int32_t
5451ar9300_find_mag_approx(struct ath_hal *ah, int32_t in_re, int32_t in_im)
5452{
5453    int32_t abs_i = abs(in_re);
5454    int32_t abs_q = abs(in_im);
5455    int32_t max_abs, min_abs;
5456
5457    if (abs_i > abs_q) {
5458        max_abs = abs_i;
5459        min_abs = abs_q;
5460    } else {
5461        max_abs = abs_q;
5462        min_abs = abs_i;
5463    }
5464
5465    return (max_abs - (max_abs / 32) + (min_abs / 8) + (min_abs / 4));
5466}
5467
5468/*
5469 * ar9300_solve_iq_cal()
5470 * solve 4x4 linear equation used in loopback iq cal.
5471 */
5472static HAL_BOOL
5473ar9300_solve_iq_cal(
5474    struct ath_hal *ah,
5475    int32_t sin_2phi_1,
5476    int32_t cos_2phi_1,
5477    int32_t sin_2phi_2,
5478    int32_t cos_2phi_2,
5479    int32_t mag_a0_d0,
5480    int32_t phs_a0_d0,
5481    int32_t mag_a1_d0,
5482    int32_t phs_a1_d0,
5483    int32_t solved_eq[])
5484{
5485    int32_t f1 = cos_2phi_1 - cos_2phi_2;
5486    int32_t f3 = sin_2phi_1 - sin_2phi_2;
5487    int32_t f2;
5488    int32_t mag_tx, phs_tx, mag_rx, phs_rx;
5489    const int32_t result_shift = 1 << 15;
5490
5491    f2 = (((int64_t)f1 * (int64_t)f1) / result_shift) + (((int64_t)f3 * (int64_t)f3) / result_shift);
5492
5493    if (0 == f2) {
5494        HALDEBUG(ah, HAL_DEBUG_CALIBRATE, "%s: Divide by 0(%d).\n",
5495            __func__, __LINE__);
5496        return AH_FALSE;
5497    }
5498
5499    /* magnitude mismatch, tx */
5500    mag_tx = f1 * (mag_a0_d0  - mag_a1_d0) + f3 * (phs_a0_d0 - phs_a1_d0);
5501    /* phase mismatch, tx */
5502    phs_tx = f3 * (-mag_a0_d0 + mag_a1_d0) + f1 * (phs_a0_d0 - phs_a1_d0);
5503
5504    mag_tx = (mag_tx / f2);
5505    phs_tx = (phs_tx / f2);
5506
5507    /* magnitude mismatch, rx */
5508    mag_rx =
5509        mag_a0_d0 - (cos_2phi_1 * mag_tx + sin_2phi_1 * phs_tx) / result_shift;
5510    /* phase mismatch, rx */
5511    phs_rx =
5512        phs_a0_d0 + (sin_2phi_1 * mag_tx - cos_2phi_1 * phs_tx) / result_shift;
5513
5514    solved_eq[0] = mag_tx;
5515    solved_eq[1] = phs_tx;
5516    solved_eq[2] = mag_rx;
5517    solved_eq[3] = phs_rx;
5518
5519    return AH_TRUE;
5520}
5521
5522/*
5523 * ar9300_calc_iq_corr()
5524 */
5525static HAL_BOOL
5526ar9300_calc_iq_corr(struct ath_hal *ah, int32_t chain_idx,
5527    const int32_t iq_res[], int32_t iqc_coeff[])
5528{
5529    int32_t i2_m_q2_a0_d0, i2_p_q2_a0_d0, iq_corr_a0_d0;
5530    int32_t i2_m_q2_a0_d1, i2_p_q2_a0_d1, iq_corr_a0_d1;
5531    int32_t i2_m_q2_a1_d0, i2_p_q2_a1_d0, iq_corr_a1_d0;
5532    int32_t i2_m_q2_a1_d1, i2_p_q2_a1_d1, iq_corr_a1_d1;
5533    int32_t mag_a0_d0, mag_a1_d0, mag_a0_d1, mag_a1_d1;
5534    int32_t phs_a0_d0, phs_a1_d0, phs_a0_d1, phs_a1_d1;
5535    int32_t sin_2phi_1, cos_2phi_1, sin_2phi_2, cos_2phi_2;
5536    int32_t mag_tx, phs_tx, mag_rx, phs_rx;
5537    int32_t solved_eq[4], mag_corr_tx, phs_corr_tx, mag_corr_rx, phs_corr_rx;
5538    int32_t q_q_coff, q_i_coff;
5539    const int32_t res_scale = 1 << 15;
5540    const int32_t delpt_shift = 1 << 8;
5541    int32_t mag1, mag2;
5542
5543    i2_m_q2_a0_d0 = iq_res[0] & 0xfff;
5544    i2_p_q2_a0_d0 = (iq_res[0] >> 12) & 0xfff;
5545    iq_corr_a0_d0 = ((iq_res[0] >> 24) & 0xff) + ((iq_res[1] & 0xf) << 8);
5546
5547    if (i2_m_q2_a0_d0 > 0x800)  {
5548        i2_m_q2_a0_d0 = -((0xfff - i2_m_q2_a0_d0) + 1);
5549    }
5550    if (iq_corr_a0_d0 > 0x800)  {
5551        iq_corr_a0_d0 = -((0xfff - iq_corr_a0_d0) + 1);
5552    }
5553
5554    i2_m_q2_a0_d1 = (iq_res[1] >> 4) & 0xfff;
5555    i2_p_q2_a0_d1 = (iq_res[2] & 0xfff);
5556    iq_corr_a0_d1 = (iq_res[2] >> 12) & 0xfff;
5557
5558    if (i2_m_q2_a0_d1 > 0x800)  {
5559        i2_m_q2_a0_d1 = -((0xfff - i2_m_q2_a0_d1) + 1);
5560    }
5561    if (iq_corr_a0_d1 > 0x800)  {
5562        iq_corr_a0_d1 = -((0xfff - iq_corr_a0_d1) + 1);
5563    }
5564
5565    i2_m_q2_a1_d0 = ((iq_res[2] >> 24) & 0xff) + ((iq_res[3] & 0xf) << 8);
5566    i2_p_q2_a1_d0 = (iq_res[3] >> 4) & 0xfff;
5567    iq_corr_a1_d0 = iq_res[4] & 0xfff;
5568
5569    if (i2_m_q2_a1_d0 > 0x800)  {
5570        i2_m_q2_a1_d0 = -((0xfff - i2_m_q2_a1_d0) + 1);
5571    }
5572    if (iq_corr_a1_d0 > 0x800)  {
5573        iq_corr_a1_d0 = -((0xfff - iq_corr_a1_d0) + 1);
5574    }
5575
5576    i2_m_q2_a1_d1 = (iq_res[4] >> 12) & 0xfff;
5577    i2_p_q2_a1_d1 = ((iq_res[4] >> 24) & 0xff) + ((iq_res[5] & 0xf) << 8);
5578    iq_corr_a1_d1 = (iq_res[5] >> 4) & 0xfff;
5579
5580    if (i2_m_q2_a1_d1 > 0x800)  {
5581        i2_m_q2_a1_d1 = -((0xfff - i2_m_q2_a1_d1) + 1);
5582    }
5583    if (iq_corr_a1_d1 > 0x800)  {
5584        iq_corr_a1_d1 = -((0xfff - iq_corr_a1_d1) + 1);
5585    }
5586
5587    if ((i2_p_q2_a0_d0 == 0) ||
5588        (i2_p_q2_a0_d1 == 0) ||
5589        (i2_p_q2_a1_d0 == 0) ||
5590        (i2_p_q2_a1_d1 == 0)) {
5591        HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
5592            "%s: Divide by 0(%d):\na0_d0=%d\na0_d1=%d\na2_d0=%d\na1_d1=%d\n",
5593            __func__, __LINE__,
5594            i2_p_q2_a0_d0, i2_p_q2_a0_d1, i2_p_q2_a1_d0, i2_p_q2_a1_d1);
5595        return AH_FALSE;
5596    }
5597
5598    if ((i2_p_q2_a0_d0 <= 1024) || (i2_p_q2_a0_d0 > 2047) ||
5599            (i2_p_q2_a1_d0 < 0) || (i2_p_q2_a1_d1 < 0) ||
5600            (i2_p_q2_a0_d0 <= i2_m_q2_a0_d0) ||
5601            (i2_p_q2_a0_d0 <= iq_corr_a0_d0) ||
5602            (i2_p_q2_a0_d1 <= i2_m_q2_a0_d1) ||
5603            (i2_p_q2_a0_d1 <= iq_corr_a0_d1) ||
5604            (i2_p_q2_a1_d0 <= i2_m_q2_a1_d0) ||
5605            (i2_p_q2_a1_d0 <= iq_corr_a1_d0) ||
5606            (i2_p_q2_a1_d1 <= i2_m_q2_a1_d1) ||
5607            (i2_p_q2_a1_d1 <= iq_corr_a1_d1)) {
5608        return AH_FALSE;
5609    }
5610
5611    mag_a0_d0 = (i2_m_q2_a0_d0 * res_scale) / i2_p_q2_a0_d0;
5612    phs_a0_d0 = (iq_corr_a0_d0 * res_scale) / i2_p_q2_a0_d0;
5613
5614    mag_a0_d1 = (i2_m_q2_a0_d1 * res_scale) / i2_p_q2_a0_d1;
5615    phs_a0_d1 = (iq_corr_a0_d1 * res_scale) / i2_p_q2_a0_d1;
5616
5617    mag_a1_d0 = (i2_m_q2_a1_d0 * res_scale) / i2_p_q2_a1_d0;
5618    phs_a1_d0 = (iq_corr_a1_d0 * res_scale) / i2_p_q2_a1_d0;
5619
5620    mag_a1_d1 = (i2_m_q2_a1_d1 * res_scale) / i2_p_q2_a1_d1;
5621    phs_a1_d1 = (iq_corr_a1_d1 * res_scale) / i2_p_q2_a1_d1;
5622
5623    /* without analog phase shift */
5624    sin_2phi_1 = (((mag_a0_d0 - mag_a0_d1) * delpt_shift) / DELPT);
5625    /* without analog phase shift */
5626    cos_2phi_1 = (((phs_a0_d1 - phs_a0_d0) * delpt_shift) / DELPT);
5627    /* with  analog phase shift */
5628    sin_2phi_2 = (((mag_a1_d0 - mag_a1_d1) * delpt_shift) / DELPT);
5629    /* with analog phase shift */
5630    cos_2phi_2 = (((phs_a1_d1 - phs_a1_d0) * delpt_shift) / DELPT);
5631
5632    /* force sin^2 + cos^2 = 1; */
5633    /* find magnitude by approximation */
5634    mag1 = ar9300_find_mag_approx(ah, cos_2phi_1, sin_2phi_1);
5635    mag2 = ar9300_find_mag_approx(ah, cos_2phi_2, sin_2phi_2);
5636
5637    if ((mag1 == 0) || (mag2 == 0)) {
5638        HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
5639            "%s: Divide by 0(%d): mag1=%d, mag2=%d\n",
5640            __func__, __LINE__, mag1, mag2);
5641        return AH_FALSE;
5642    }
5643
5644    /* normalization sin and cos by mag */
5645    sin_2phi_1 = (sin_2phi_1 * res_scale / mag1);
5646    cos_2phi_1 = (cos_2phi_1 * res_scale / mag1);
5647    sin_2phi_2 = (sin_2phi_2 * res_scale / mag2);
5648    cos_2phi_2 = (cos_2phi_2 * res_scale / mag2);
5649
5650    /* calculate IQ mismatch */
5651    if (AH_FALSE == ar9300_solve_iq_cal(ah,
5652            sin_2phi_1, cos_2phi_1, sin_2phi_2, cos_2phi_2, mag_a0_d0,
5653            phs_a0_d0, mag_a1_d0, phs_a1_d0, solved_eq))
5654    {
5655        HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
5656            "%s: Call to ar9300_solve_iq_cal failed.\n", __func__);
5657        return AH_FALSE;
5658    }
5659
5660    mag_tx = solved_eq[0];
5661    phs_tx = solved_eq[1];
5662    mag_rx = solved_eq[2];
5663    phs_rx = solved_eq[3];
5664
5665    HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
5666        "%s: chain %d: mag mismatch=%d phase mismatch=%d\n",
5667        __func__, chain_idx, mag_tx / res_scale, phs_tx / res_scale);
5668
5669    if (res_scale == mag_tx) {
5670        HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
5671            "%s: Divide by 0(%d): mag_tx=%d, res_scale=%d\n",
5672            __func__, __LINE__, mag_tx, res_scale);
5673        return AH_FALSE;
5674    }
5675
5676    /* calculate and quantize Tx IQ correction factor */
5677    mag_corr_tx = (mag_tx * res_scale) / (res_scale - mag_tx);
5678    phs_corr_tx = -phs_tx;
5679
5680    q_q_coff = (mag_corr_tx * 128 / res_scale);
5681    q_i_coff = (phs_corr_tx * 256 / res_scale);
5682
5683    HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
5684        "%s: tx chain %d: mag corr=%d  phase corr=%d\n",
5685        __func__, chain_idx, q_q_coff, q_i_coff);
5686
5687    if (q_i_coff < -63) {
5688        q_i_coff = -63;
5689    }
5690    if (q_i_coff > 63) {
5691        q_i_coff = 63;
5692    }
5693    if (q_q_coff < -63) {
5694        q_q_coff = -63;
5695    }
5696    if (q_q_coff > 63) {
5697        q_q_coff = 63;
5698    }
5699
5700    iqc_coeff[0] = (q_q_coff * 128) + (0x7f & q_i_coff);
5701
5702    HALDEBUG(ah, HAL_DEBUG_CALIBRATE, "%s: tx chain %d: iq corr coeff=%x\n",
5703        __func__, chain_idx, iqc_coeff[0]);
5704
5705    if (-mag_rx == res_scale) {
5706        HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
5707            "%s: Divide by 0(%d): mag_rx=%d, res_scale=%d\n",
5708            __func__, __LINE__, mag_rx, res_scale);
5709        return AH_FALSE;
5710    }
5711
5712    /* calculate and quantize Rx IQ correction factors */
5713    mag_corr_rx = (-mag_rx * res_scale) / (res_scale + mag_rx);
5714    phs_corr_rx = -phs_rx;
5715
5716    q_q_coff = (mag_corr_rx * 128 / res_scale);
5717    q_i_coff = (phs_corr_rx * 256 / res_scale);
5718
5719    HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
5720        "%s: rx chain %d: mag corr=%d  phase corr=%d\n",
5721        __func__, chain_idx, q_q_coff, q_i_coff);
5722
5723    if (q_i_coff < -63) {
5724        q_i_coff = -63;
5725    }
5726    if (q_i_coff > 63) {
5727        q_i_coff = 63;
5728    }
5729    if (q_q_coff < -63) {
5730        q_q_coff = -63;
5731    }
5732    if (q_q_coff > 63) {
5733        q_q_coff = 63;
5734    }
5735
5736    iqc_coeff[1] = (q_q_coff * 128) + (0x7f & q_i_coff);
5737
5738    HALDEBUG(ah, HAL_DEBUG_CALIBRATE, "%s: rx chain %d: iq corr coeff=%x\n",
5739        __func__, chain_idx, iqc_coeff[1]);
5740
5741    return AH_TRUE;
5742}
5743
5744#define MAX_MAG_DELTA 11 //maximum magnitude mismatch delta across gains
5745#define MAX_PHS_DELTA 10 //maximum phase mismatch delta across gains
5746#define ABS(x) ((x) >= 0 ? (x) : (-(x)))
5747
5748    u_int32_t tx_corr_coeff[MAX_MEASUREMENT][AR9300_MAX_CHAINS] = {
5749    {   AR_PHY_TX_IQCAL_CORR_COEFF_01_B0,
5750        AR_PHY_TX_IQCAL_CORR_COEFF_01_B1,
5751        AR_PHY_TX_IQCAL_CORR_COEFF_01_B2},
5752    {   AR_PHY_TX_IQCAL_CORR_COEFF_01_B0,
5753        AR_PHY_TX_IQCAL_CORR_COEFF_01_B1,
5754        AR_PHY_TX_IQCAL_CORR_COEFF_01_B2},
5755    {   AR_PHY_TX_IQCAL_CORR_COEFF_23_B0,
5756        AR_PHY_TX_IQCAL_CORR_COEFF_23_B1,
5757        AR_PHY_TX_IQCAL_CORR_COEFF_23_B2},
5758    {   AR_PHY_TX_IQCAL_CORR_COEFF_23_B0,
5759        AR_PHY_TX_IQCAL_CORR_COEFF_23_B1,
5760        AR_PHY_TX_IQCAL_CORR_COEFF_23_B2},
5761    {   AR_PHY_TX_IQCAL_CORR_COEFF_45_B0,
5762        AR_PHY_TX_IQCAL_CORR_COEFF_45_B1,
5763        AR_PHY_TX_IQCAL_CORR_COEFF_45_B2},
5764    {   AR_PHY_TX_IQCAL_CORR_COEFF_45_B0,
5765        AR_PHY_TX_IQCAL_CORR_COEFF_45_B1,
5766        AR_PHY_TX_IQCAL_CORR_COEFF_45_B2},
5767    {   AR_PHY_TX_IQCAL_CORR_COEFF_67_B0,
5768        AR_PHY_TX_IQCAL_CORR_COEFF_67_B1,
5769        AR_PHY_TX_IQCAL_CORR_COEFF_67_B2},
5770    {   AR_PHY_TX_IQCAL_CORR_COEFF_67_B0,
5771        AR_PHY_TX_IQCAL_CORR_COEFF_67_B1,
5772        AR_PHY_TX_IQCAL_CORR_COEFF_67_B2},
5773    };
5774
5775static void
5776ar9300_tx_iq_cal_outlier_detection(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *ichan, u_int32_t num_chains,
5777    struct coeff_t *coeff, HAL_BOOL is_cal_reusable)
5778{
5779    int nmeasurement, ch_idx, im;
5780    int32_t magnitude, phase;
5781    int32_t magnitude_max, phase_max;
5782    int32_t magnitude_min, phase_min;
5783
5784    int32_t magnitude_max_idx, phase_max_idx;
5785    int32_t magnitude_min_idx, phase_min_idx;
5786
5787    int32_t magnitude_avg, phase_avg;
5788    int32_t outlier_mag_idx = 0;
5789    int32_t outlier_phs_idx = 0;
5790
5791
5792    if (AR_SREV_POSEIDON(ah)) {
5793        HALASSERT(num_chains == 0x1);
5794
5795        tx_corr_coeff[0][0] = AR_PHY_TX_IQCAL_CORR_COEFF_01_B0_POSEIDON;
5796        tx_corr_coeff[1][0] = AR_PHY_TX_IQCAL_CORR_COEFF_01_B0_POSEIDON;
5797        tx_corr_coeff[2][0] = AR_PHY_TX_IQCAL_CORR_COEFF_23_B0_POSEIDON;
5798        tx_corr_coeff[3][0] = AR_PHY_TX_IQCAL_CORR_COEFF_23_B0_POSEIDON;
5799        tx_corr_coeff[4][0] = AR_PHY_TX_IQCAL_CORR_COEFF_45_B0_POSEIDON;
5800        tx_corr_coeff[5][0] = AR_PHY_TX_IQCAL_CORR_COEFF_45_B0_POSEIDON;
5801        tx_corr_coeff[6][0] = AR_PHY_TX_IQCAL_CORR_COEFF_67_B0_POSEIDON;
5802        tx_corr_coeff[7][0] = AR_PHY_TX_IQCAL_CORR_COEFF_67_B0_POSEIDON;
5803    }
5804
5805    for (ch_idx = 0; ch_idx < num_chains; ch_idx++) {
5806        nmeasurement = OS_REG_READ_FIELD(ah,
5807            AR_PHY_TX_IQCAL_STATUS_B0(ah), AR_PHY_CALIBRATED_GAINS_0);
5808        if (nmeasurement > MAX_MEASUREMENT) {
5809            nmeasurement = MAX_MEASUREMENT;
5810        }
5811
5812        if (!AR_SREV_SCORPION(ah)) {
5813            /*
5814             * reset max/min variable to min/max values so that
5815             * we always start with 1st calibrated gain value
5816             */
5817            magnitude_max = -64;
5818            phase_max     = -64;
5819            magnitude_min = 63;
5820            phase_min     = 63;
5821            magnitude_avg = 0;
5822            phase_avg     = 0;
5823            magnitude_max_idx = 0;
5824            magnitude_min_idx = 0;
5825            phase_max_idx = 0;
5826            phase_min_idx = 0;
5827
5828            /* detect outlier only if nmeasurement > 1 */
5829            if (nmeasurement > 1) {
5830                /* printf("----------- start outlier detection -----------\n"); */
5831                /*
5832                 * find max/min and phase/mag mismatch across all calibrated gains
5833                 */
5834                for (im = 0; im < nmeasurement; im++) {
5835                    magnitude = coeff->mag_coeff[ch_idx][im][0];
5836                    phase = coeff->phs_coeff[ch_idx][im][0];
5837
5838                    magnitude_avg = magnitude_avg + magnitude;
5839                    phase_avg = phase_avg + phase;
5840                    if (magnitude > magnitude_max) {
5841                        magnitude_max = magnitude;
5842                        magnitude_max_idx = im;
5843                    }
5844                    if (magnitude < magnitude_min) {
5845                        magnitude_min = magnitude;
5846                        magnitude_min_idx = im;
5847                    }
5848                    if (phase > phase_max) {
5849                        phase_max = phase;
5850                        phase_max_idx = im;
5851                    }
5852                    if (phase < phase_min) {
5853                        phase_min = phase;
5854                        phase_min_idx = im;
5855                    }
5856                }
5857                /* find average (exclude max abs value) */
5858                for (im = 0; im < nmeasurement; im++) {
5859                    magnitude = coeff->mag_coeff[ch_idx][im][0];
5860                    phase = coeff->phs_coeff[ch_idx][im][0];
5861                    if ((ABS(magnitude) < ABS(magnitude_max)) ||
5862                        (ABS(magnitude) < ABS(magnitude_min)))
5863                    {
5864                        magnitude_avg = magnitude_avg + magnitude;
5865                    }
5866                    if ((ABS(phase) < ABS(phase_max)) ||
5867                        (ABS(phase) < ABS(phase_min)))
5868                    {
5869                        phase_avg = phase_avg + phase;
5870                    }
5871                }
5872                magnitude_avg = magnitude_avg / (nmeasurement - 1);
5873                phase_avg = phase_avg / (nmeasurement - 1);
5874
5875                /* detect magnitude outlier */
5876                if (ABS(magnitude_max - magnitude_min) > MAX_MAG_DELTA) {
5877                    if (ABS(magnitude_max - magnitude_avg) >
5878                        ABS(magnitude_min - magnitude_avg))
5879                    {
5880                        /* max is outlier, force to avg */
5881                        outlier_mag_idx = magnitude_max_idx;
5882                    } else {
5883                        /* min is outlier, force to avg */
5884                        outlier_mag_idx = magnitude_min_idx;
5885                    }
5886                    coeff->mag_coeff[ch_idx][outlier_mag_idx][0] = magnitude_avg;
5887                    coeff->phs_coeff[ch_idx][outlier_mag_idx][0] = phase_avg;
5888                    HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
5889                        "[ch%d][outlier mag gain%d]:: "
5890                        "mag_avg = %d (/128), phase_avg = %d (/256)\n",
5891                        ch_idx, outlier_mag_idx, magnitude_avg, phase_avg);
5892                }
5893                /* detect phase outlier */
5894                if (ABS(phase_max - phase_min) > MAX_PHS_DELTA) {
5895                    if (ABS(phase_max-phase_avg) > ABS(phase_min - phase_avg)) {
5896                        /* max is outlier, force to avg */
5897                        outlier_phs_idx = phase_max_idx;
5898                    } else{
5899                        /* min is outlier, force to avg */
5900                        outlier_phs_idx = phase_min_idx;
5901                    }
5902                    coeff->mag_coeff[ch_idx][outlier_phs_idx][0] = magnitude_avg;
5903                    coeff->phs_coeff[ch_idx][outlier_phs_idx][0] = phase_avg;
5904                    HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
5905                        "[ch%d][outlier phs gain%d]:: "
5906                        "mag_avg = %d (/128), phase_avg = %d (/256)\n",
5907                        ch_idx, outlier_phs_idx, magnitude_avg, phase_avg);
5908                }
5909            }
5910        }
5911
5912        /*printf("------------ after outlier detection -------------\n");*/
5913        for (im = 0; im < nmeasurement; im++) {
5914            magnitude = coeff->mag_coeff[ch_idx][im][0];
5915            phase = coeff->phs_coeff[ch_idx][im][0];
5916
5917            #if 0
5918            printf("[ch%d][gain%d]:: mag = %d (/128), phase = %d (/256)\n",
5919                ch_idx, im, magnitude, phase);
5920            #endif
5921
5922            coeff->iqc_coeff[0] = (phase & 0x7f) | ((magnitude & 0x7f) << 7);
5923
5924            if ((im % 2) == 0) {
5925                OS_REG_RMW_FIELD(ah,
5926                    tx_corr_coeff[im][ch_idx],
5927                    AR_PHY_TX_IQCAL_CORR_COEFF_00_COEFF_TABLE,
5928                    coeff->iqc_coeff[0]);
5929            } else {
5930                OS_REG_RMW_FIELD(ah,
5931                    tx_corr_coeff[im][ch_idx],
5932                    AR_PHY_TX_IQCAL_CORR_COEFF_01_COEFF_TABLE,
5933                    coeff->iqc_coeff[0]);
5934            }
5935#if ATH_SUPPORT_CAL_REUSE
5936            ichan->tx_corr_coeff[im][ch_idx] = coeff->iqc_coeff[0];
5937#endif
5938        }
5939#if ATH_SUPPORT_CAL_REUSE
5940        ichan->num_measures[ch_idx] = nmeasurement;
5941#endif
5942    }
5943
5944    OS_REG_RMW_FIELD(ah, AR_PHY_TX_IQCAL_CONTROL_3,
5945                     AR_PHY_TX_IQCAL_CONTROL_3_IQCORR_EN, 0x1);
5946    OS_REG_RMW_FIELD(ah, AR_PHY_RX_IQCAL_CORR_B0,
5947                     AR_PHY_RX_IQCAL_CORR_B0_LOOPBACK_IQCORR_EN, 0x1);
5948
5949#if ATH_SUPPORT_CAL_REUSE
5950    if (is_cal_reusable) {
5951        ichan->one_time_txiqcal_done = AH_TRUE;
5952        HALDEBUG(ah, HAL_DEBUG_FCS_RTT,
5953            "(FCS) TXIQCAL saved - %d\n", ichan->channel);
5954    }
5955#endif
5956}
5957
5958#if ATH_SUPPORT_CAL_REUSE
5959static void
5960ar9300_tx_iq_cal_apply(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *ichan)
5961{
5962    struct ath_hal_9300 *ahp = AH9300(ah);
5963    int nmeasurement, ch_idx, im;
5964
5965    u_int32_t tx_corr_coeff[MAX_MEASUREMENT][AR9300_MAX_CHAINS] = {
5966        {   AR_PHY_TX_IQCAL_CORR_COEFF_01_B0,
5967            AR_PHY_TX_IQCAL_CORR_COEFF_01_B1,
5968            AR_PHY_TX_IQCAL_CORR_COEFF_01_B2},
5969        {   AR_PHY_TX_IQCAL_CORR_COEFF_01_B0,
5970            AR_PHY_TX_IQCAL_CORR_COEFF_01_B1,
5971            AR_PHY_TX_IQCAL_CORR_COEFF_01_B2},
5972        {   AR_PHY_TX_IQCAL_CORR_COEFF_23_B0,
5973            AR_PHY_TX_IQCAL_CORR_COEFF_23_B1,
5974            AR_PHY_TX_IQCAL_CORR_COEFF_23_B2},
5975        {   AR_PHY_TX_IQCAL_CORR_COEFF_23_B0,
5976            AR_PHY_TX_IQCAL_CORR_COEFF_23_B1,
5977            AR_PHY_TX_IQCAL_CORR_COEFF_23_B2},
5978        {   AR_PHY_TX_IQCAL_CORR_COEFF_45_B0,
5979            AR_PHY_TX_IQCAL_CORR_COEFF_45_B1,
5980            AR_PHY_TX_IQCAL_CORR_COEFF_45_B2},
5981        {   AR_PHY_TX_IQCAL_CORR_COEFF_45_B0,
5982            AR_PHY_TX_IQCAL_CORR_COEFF_45_B1,
5983            AR_PHY_TX_IQCAL_CORR_COEFF_45_B2},
5984        {   AR_PHY_TX_IQCAL_CORR_COEFF_67_B0,
5985            AR_PHY_TX_IQCAL_CORR_COEFF_67_B1,
5986            AR_PHY_TX_IQCAL_CORR_COEFF_67_B2},
5987        {   AR_PHY_TX_IQCAL_CORR_COEFF_67_B0,
5988            AR_PHY_TX_IQCAL_CORR_COEFF_67_B1,
5989            AR_PHY_TX_IQCAL_CORR_COEFF_67_B2},
5990    };
5991
5992    if (AR_SREV_POSEIDON(ah)) {
5993        HALASSERT(ahp->ah_tx_cal_chainmask == 0x1);
5994
5995        tx_corr_coeff[0][0] = AR_PHY_TX_IQCAL_CORR_COEFF_01_B0_POSEIDON;
5996        tx_corr_coeff[1][0] = AR_PHY_TX_IQCAL_CORR_COEFF_01_B0_POSEIDON;
5997        tx_corr_coeff[2][0] = AR_PHY_TX_IQCAL_CORR_COEFF_23_B0_POSEIDON;
5998        tx_corr_coeff[3][0] = AR_PHY_TX_IQCAL_CORR_COEFF_23_B0_POSEIDON;
5999        tx_corr_coeff[4][0] = AR_PHY_TX_IQCAL_CORR_COEFF_45_B0_POSEIDON;
6000        tx_corr_coeff[5][0] = AR_PHY_TX_IQCAL_CORR_COEFF_45_B0_POSEIDON;
6001        tx_corr_coeff[6][0] = AR_PHY_TX_IQCAL_CORR_COEFF_67_B0_POSEIDON;
6002        tx_corr_coeff[7][0] = AR_PHY_TX_IQCAL_CORR_COEFF_67_B0_POSEIDON;
6003    }
6004
6005    for (ch_idx = 0; ch_idx < AR9300_MAX_CHAINS; ch_idx++) {
6006        if ((ahp->ah_tx_cal_chainmask & (1 << ch_idx)) == 0) {
6007            continue;
6008        }
6009        nmeasurement = ichan->num_measures[ch_idx];
6010
6011        for (im = 0; im < nmeasurement; im++) {
6012            if ((im % 2) == 0) {
6013                OS_REG_RMW_FIELD(ah,
6014                    tx_corr_coeff[im][ch_idx],
6015                    AR_PHY_TX_IQCAL_CORR_COEFF_00_COEFF_TABLE,
6016                    ichan->tx_corr_coeff[im][ch_idx]);
6017            } else {
6018                OS_REG_RMW_FIELD(ah,
6019                    tx_corr_coeff[im][ch_idx],
6020                    AR_PHY_TX_IQCAL_CORR_COEFF_01_COEFF_TABLE,
6021                    ichan->tx_corr_coeff[im][ch_idx]);
6022            }
6023        }
6024    }
6025
6026    OS_REG_RMW_FIELD(ah, AR_PHY_TX_IQCAL_CONTROL_3,
6027                     AR_PHY_TX_IQCAL_CONTROL_3_IQCORR_EN, 0x1);
6028    OS_REG_RMW_FIELD(ah, AR_PHY_RX_IQCAL_CORR_B0,
6029                     AR_PHY_RX_IQCAL_CORR_B0_LOOPBACK_IQCORR_EN, 0x1);
6030}
6031#endif
6032
6033/*
6034 * ar9300_tx_iq_cal_hw_run is only needed for osprey/wasp/hornet
6035 * It is not needed for jupiter/poseidon.
6036 */
6037HAL_BOOL
6038ar9300_tx_iq_cal_hw_run(struct ath_hal *ah)
6039{
6040    int is_tx_gain_forced;
6041
6042    is_tx_gain_forced = OS_REG_READ_FIELD(ah,
6043        AR_PHY_TX_FORCED_GAIN, AR_PHY_TXGAIN_FORCE);
6044    if (is_tx_gain_forced) {
6045        /*printf("Tx gain can not be forced during tx I/Q cal!\n");*/
6046        OS_REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, AR_PHY_TXGAIN_FORCE, 0);
6047    }
6048
6049    /* enable tx IQ cal */
6050    OS_REG_RMW_FIELD(ah, AR_PHY_TX_IQCAL_START(ah),
6051        AR_PHY_TX_IQCAL_START_DO_CAL, AR_PHY_TX_IQCAL_START_DO_CAL);
6052
6053    if (!ath_hal_wait(ah,
6054            AR_PHY_TX_IQCAL_START(ah), AR_PHY_TX_IQCAL_START_DO_CAL, 0))
6055    {
6056        HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
6057            "%s: Tx IQ Cal is never completed.\n", __func__);
6058        return AH_FALSE;
6059    }
6060    return AH_TRUE;
6061}
6062
6063static void
6064ar9300_tx_iq_cal_post_proc(struct ath_hal *ah,HAL_CHANNEL_INTERNAL *ichan,
6065                           int iqcal_idx, int max_iqcal,HAL_BOOL is_cal_reusable, HAL_BOOL apply_last_corr)
6066{
6067    int nmeasurement=0, im, ix, iy, temp;
6068    struct ath_hal_9300     *ahp = AH9300(ah);
6069    u_int32_t txiqcal_status[AR9300_MAX_CHAINS] = {
6070        AR_PHY_TX_IQCAL_STATUS_B0(ah),
6071        AR_PHY_TX_IQCAL_STATUS_B1,
6072        AR_PHY_TX_IQCAL_STATUS_B2,
6073    };
6074    const u_int32_t chan_info_tab[] = {
6075        AR_PHY_CHAN_INFO_TAB_0,
6076        AR_PHY_CHAN_INFO_TAB_1,
6077        AR_PHY_CHAN_INFO_TAB_2,
6078    };
6079    int32_t iq_res[6];
6080    int32_t ch_idx, j;
6081    u_int32_t num_chains = 0;
6082    static struct coeff_t coeff;
6083    txiqcal_status[0] = AR_PHY_TX_IQCAL_STATUS_B0(ah);
6084
6085    for (ch_idx = 0; ch_idx < AR9300_MAX_CHAINS; ch_idx++) {
6086        if (ahp->ah_tx_chainmask & (1 << ch_idx)) {
6087            num_chains++;
6088        }
6089    }
6090
6091    if (apply_last_corr) {
6092	    if (coeff.last_cal == AH_TRUE) {
6093		    int32_t magnitude, phase;
6094		    int ch_idx, im;
6095		    u_int32_t tx_corr_coeff[MAX_MEASUREMENT][AR9300_MAX_CHAINS] = {
6096			    {   AR_PHY_TX_IQCAL_CORR_COEFF_01_B0,
6097				    AR_PHY_TX_IQCAL_CORR_COEFF_01_B1,
6098				    AR_PHY_TX_IQCAL_CORR_COEFF_01_B2},
6099			    {   AR_PHY_TX_IQCAL_CORR_COEFF_01_B0,
6100				    AR_PHY_TX_IQCAL_CORR_COEFF_01_B1,
6101				    AR_PHY_TX_IQCAL_CORR_COEFF_01_B2},
6102			    {   AR_PHY_TX_IQCAL_CORR_COEFF_23_B0,
6103				    AR_PHY_TX_IQCAL_CORR_COEFF_23_B1,
6104				    AR_PHY_TX_IQCAL_CORR_COEFF_23_B2},
6105			    {   AR_PHY_TX_IQCAL_CORR_COEFF_23_B0,
6106				    AR_PHY_TX_IQCAL_CORR_COEFF_23_B1,
6107				    AR_PHY_TX_IQCAL_CORR_COEFF_23_B2},
6108			    {   AR_PHY_TX_IQCAL_CORR_COEFF_45_B0,
6109				    AR_PHY_TX_IQCAL_CORR_COEFF_45_B1,
6110				    AR_PHY_TX_IQCAL_CORR_COEFF_45_B2},
6111			    {   AR_PHY_TX_IQCAL_CORR_COEFF_45_B0,
6112				    AR_PHY_TX_IQCAL_CORR_COEFF_45_B1,
6113				    AR_PHY_TX_IQCAL_CORR_COEFF_45_B2},
6114			    {   AR_PHY_TX_IQCAL_CORR_COEFF_67_B0,
6115				    AR_PHY_TX_IQCAL_CORR_COEFF_67_B1,
6116				    AR_PHY_TX_IQCAL_CORR_COEFF_67_B2},
6117			    {   AR_PHY_TX_IQCAL_CORR_COEFF_67_B0,
6118				    AR_PHY_TX_IQCAL_CORR_COEFF_67_B1,
6119				    AR_PHY_TX_IQCAL_CORR_COEFF_67_B2},
6120		    };
6121		    for (ch_idx = 0; ch_idx < num_chains; ch_idx++) {
6122			    for (im = 0; im < coeff.last_nmeasurement; im++) {
6123				    magnitude = coeff.mag_coeff[ch_idx][im][0];
6124				    phase = coeff.phs_coeff[ch_idx][im][0];
6125
6126#if 0
6127				    printf("[ch%d][gain%d]:: mag = %d (/128), phase = %d (/256)\n",
6128						    ch_idx, im, magnitude, phase);
6129#endif
6130
6131				    coeff.iqc_coeff[0] = (phase & 0x7f) | ((magnitude & 0x7f) << 7);
6132				    if ((im % 2) == 0) {
6133					    OS_REG_RMW_FIELD(ah,
6134							    tx_corr_coeff[im][ch_idx],
6135							    AR_PHY_TX_IQCAL_CORR_COEFF_00_COEFF_TABLE,
6136							    coeff.iqc_coeff[0]);
6137				    } else {
6138					    OS_REG_RMW_FIELD(ah,
6139							    tx_corr_coeff[im][ch_idx],
6140							    AR_PHY_TX_IQCAL_CORR_COEFF_01_COEFF_TABLE,
6141							    coeff.iqc_coeff[0]);
6142				    }
6143			    }
6144		    }
6145		    OS_REG_RMW_FIELD(ah, AR_PHY_TX_IQCAL_CONTROL_3,
6146				    AR_PHY_TX_IQCAL_CONTROL_3_IQCORR_EN, 0x1);
6147	    }
6148	    return;
6149    }
6150
6151
6152    for (ch_idx = 0; ch_idx < num_chains; ch_idx++) {
6153        nmeasurement = OS_REG_READ_FIELD(ah,
6154            AR_PHY_TX_IQCAL_STATUS_B0(ah), AR_PHY_CALIBRATED_GAINS_0);
6155        if (nmeasurement > MAX_MEASUREMENT) {
6156            nmeasurement = MAX_MEASUREMENT;
6157        }
6158
6159        for (im = 0; im < nmeasurement; im++) {
6160            HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
6161                "%s: Doing Tx IQ Cal for chain %d.\n", __func__, ch_idx);
6162            if (OS_REG_READ(ah, txiqcal_status[ch_idx]) &
6163                AR_PHY_TX_IQCAL_STATUS_FAILED)
6164            {
6165                HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
6166                    "%s: Tx IQ Cal failed for chain %d.\n", __func__, ch_idx);
6167                goto TX_IQ_CAL_FAILED_;
6168            }
6169
6170            for (j = 0; j < 3; j++) {
6171                u_int32_t idx = 2 * j;
6172                /* 3 registers for each calibration result */
6173                u_int32_t offset = 4 * (3 * im + j);
6174
6175                OS_REG_RMW_FIELD(ah, AR_PHY_CHAN_INFO_MEMORY,
6176                    AR_PHY_CHAN_INFO_TAB_S2_READ, 0);
6177                /* 32 bits */
6178                iq_res[idx] = OS_REG_READ(ah, chan_info_tab[ch_idx] + offset);
6179                OS_REG_RMW_FIELD(ah, AR_PHY_CHAN_INFO_MEMORY,
6180                    AR_PHY_CHAN_INFO_TAB_S2_READ, 1);
6181                /* 16 bits */
6182                iq_res[idx + 1] = 0xffff &
6183                    OS_REG_READ(ah, chan_info_tab[ch_idx] + offset);
6184
6185                HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
6186                    "%s: IQ RES[%d]=0x%x IQ_RES[%d]=0x%x\n",
6187                    __func__, idx, iq_res[idx], idx + 1, iq_res[idx + 1]);
6188            }
6189
6190            if (AH_FALSE == ar9300_calc_iq_corr(
6191                             ah, ch_idx, iq_res, coeff.iqc_coeff))
6192            {
6193                HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
6194                    "%s: Failed in calculation of IQ correction.\n",
6195                     __func__);
6196                goto TX_IQ_CAL_FAILED_;
6197            }
6198
6199            coeff.phs_coeff[ch_idx][im][iqcal_idx-1] = coeff.iqc_coeff[0] & 0x7f;
6200            coeff.mag_coeff[ch_idx][im][iqcal_idx-1] = (coeff.iqc_coeff[0] >> 7) & 0x7f;
6201            if (coeff.mag_coeff[ch_idx][im][iqcal_idx-1] > 63) {
6202                coeff.mag_coeff[ch_idx][im][iqcal_idx-1] -= 128;
6203            }
6204            if (coeff.phs_coeff[ch_idx][im][iqcal_idx-1] > 63) {
6205                coeff.phs_coeff[ch_idx][im][iqcal_idx-1] -= 128;
6206            }
6207#if 0
6208            ath_hal_printf(ah, "IQCAL::[ch%d][gain%d]:: mag = %d phase = %d \n",
6209                ch_idx, im, coeff.mag_coeff[ch_idx][im][iqcal_idx-1],
6210                coeff.phs_coeff[ch_idx][im][iqcal_idx-1]);
6211#endif
6212        }
6213    }
6214    //last iteration; calculate mag and phs
6215    if (iqcal_idx == max_iqcal) {
6216        if (max_iqcal>1) {
6217            for (ch_idx = 0; ch_idx < num_chains; ch_idx++) {
6218                for (im = 0; im < nmeasurement; im++) {
6219                    //sort mag and phs
6220                    for( ix=0;ix<max_iqcal-1;ix++){
6221                        for( iy=ix+1;iy<=max_iqcal-1;iy++){
6222                            if(coeff.mag_coeff[ch_idx][im][iy] <
6223                                coeff.mag_coeff[ch_idx][im][ix]) {
6224                                //swap
6225                                temp=coeff.mag_coeff[ch_idx][im][ix];
6226                                coeff.mag_coeff[ch_idx][im][ix] = coeff.mag_coeff[ch_idx][im][iy];
6227                                coeff.mag_coeff[ch_idx][im][iy] = temp;
6228                            }
6229                            if(coeff.phs_coeff[ch_idx][im][iy] <
6230                                coeff.phs_coeff[ch_idx][im][ix]){
6231                                //swap
6232                                temp=coeff.phs_coeff[ch_idx][im][ix];
6233                                coeff.phs_coeff[ch_idx][im][ix]=coeff.phs_coeff[ch_idx][im][iy];
6234                                coeff.phs_coeff[ch_idx][im][iy]=temp;
6235                            }
6236                        }
6237                    }
6238                    //select median; 3rd entry in the sorted array
6239                    coeff.mag_coeff[ch_idx][im][0] =
6240                        coeff.mag_coeff[ch_idx][im][max_iqcal/2];
6241                    coeff.phs_coeff[ch_idx][im][0] =
6242                        coeff.phs_coeff[ch_idx][im][max_iqcal/2];
6243                    HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
6244                        "IQCAL: Median [ch%d][gain%d]:: mag = %d phase = %d \n",
6245                        ch_idx, im,coeff.mag_coeff[ch_idx][im][0],
6246                        coeff.phs_coeff[ch_idx][im][0]);
6247                }
6248            }
6249        }
6250        ar9300_tx_iq_cal_outlier_detection(ah,ichan, num_chains, &coeff,is_cal_reusable);
6251    }
6252
6253
6254    coeff.last_nmeasurement = nmeasurement;
6255    coeff.last_cal = AH_TRUE;
6256
6257    return;
6258
6259TX_IQ_CAL_FAILED_:
6260    /* no need to print this, it is AGC failure not chip stuck */
6261    /*ath_hal_printf(ah, "Tx IQ Cal failed(%d)\n", line);*/
6262    coeff.last_cal = AH_FALSE;
6263    return;
6264}
6265
6266
6267/*
6268 * ar9300_disable_phy_restart
6269 *
6270 * In some BBpanics, we can disable the phyrestart
6271 * disable_phy_restart
6272 *      != 0, disable the phy restart in h/w
6273 *      == 0, enable the phy restart in h/w
6274 */
6275void ar9300_disable_phy_restart(struct ath_hal *ah, int disable_phy_restart)
6276{
6277    u_int32_t val;
6278
6279    val = OS_REG_READ(ah, AR_PHY_RESTART);
6280    if (disable_phy_restart) {
6281        val &= ~AR_PHY_RESTART_ENA;
6282        AH9300(ah)->ah_phyrestart_disabled = 1;
6283    } else {
6284        val |= AR_PHY_RESTART_ENA;
6285        AH9300(ah)->ah_phyrestart_disabled = 0;
6286    }
6287    OS_REG_WRITE(ah, AR_PHY_RESTART, val);
6288
6289    val = OS_REG_READ(ah, AR_PHY_RESTART);
6290}
6291
6292HAL_BOOL
6293ar9300_interference_is_present(struct ath_hal *ah)
6294{
6295    int i;
6296	HAL_NFCAL_HIST_FULL *h;
6297    struct ath_hal_private  *ahpriv = AH_PRIVATE(ah);
6298    const struct ieee80211_channel *chan = ahpriv->ah_curchan;
6299    HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
6300
6301    if (ichan == NULL) {
6302        ath_hal_printf(ah, "%s: called with ichan=NULL\n", __func__);
6303        return AH_FALSE;
6304    }
6305
6306    /* This function is called after a stuck beacon, if EACS is enabled.
6307     * If CW interference is severe, then HW goes into a loop of continuous
6308     * stuck beacons and resets. On reset the NF cal history is cleared.
6309     * So the median value of the history cannot be used -
6310     * hence check if any value (Chain 0/Primary Channel)
6311     * is outside the bounds.
6312     */
6313    h = AH_HOME_CHAN_NFCAL_HIST(ah, ichan);
6314    for (i = 0; i < HAL_NF_CAL_HIST_LEN_FULL; i++) {
6315        if (h->nf_cal_buffer[i][0] >
6316            AH9300(ah)->nfp->nominal + AH9300(ah)->nf_cw_int_delta)
6317        {
6318            return AH_TRUE;
6319        }
6320
6321    }
6322    return AH_FALSE;
6323}
6324
6325#if ATH_SUPPORT_CRDC
6326void
6327ar9300_crdc_rx_notify(struct ath_hal *ah, struct ath_rx_status *rxs)
6328{
6329    struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
6330    int rssi_index;
6331
6332    if ((!AR_SREV_WASP(ah)) ||
6333        (!ahpriv->ah_config.ath_hal_crdc_enable)) {
6334        return;
6335    }
6336
6337    if (rxs->rs_isaggr && rxs->rs_moreaggr) {
6338        return;
6339    }
6340
6341    if ((rxs->rs_rssi_ctl0 >= HAL_RSSI_BAD) ||
6342        (rxs->rs_rssi_ctl1 >= HAL_RSSI_BAD)) {
6343        return;
6344    }
6345
6346    rssi_index = ah->ah_crdc_rssi_ptr % HAL_MAX_CRDC_RSSI_SAMPLE;
6347
6348    ah->ah_crdc_rssi_sample[0][rssi_index] = rxs->rs_rssi_ctl0;
6349    ah->ah_crdc_rssi_sample[1][rssi_index] = rxs->rs_rssi_ctl1;
6350
6351    ah->ah_crdc_rssi_ptr++;
6352}
6353
6354static int
6355ar9300_crdc_avg_rssi(struct ath_hal *ah, int chain)
6356{
6357    int crdc_rssi_sum = 0;
6358    int crdc_rssi_ptr = ah->ah_crdc_rssi_ptr, i;
6359    struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
6360    int crdc_window = ahpriv->ah_config.ath_hal_crdc_window;
6361
6362    if (crdc_window > HAL_MAX_CRDC_RSSI_SAMPLE) {
6363        crdc_window = HAL_MAX_CRDC_RSSI_SAMPLE;
6364    }
6365
6366    for (i = 1; i <= crdc_window; i++) {
6367        crdc_rssi_sum +=
6368            ah->ah_crdc_rssi_sample[chain]
6369            [(crdc_rssi_ptr - i) % HAL_MAX_CRDC_RSSI_SAMPLE];
6370    }
6371
6372    return crdc_rssi_sum / crdc_window;
6373}
6374
6375static void
6376ar9300_crdc_activate(struct ath_hal *ah, int rssi_diff, int enable)
6377{
6378    int val, orig_val;
6379    struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
6380    int crdc_numerator = ahpriv->ah_config.ath_hal_crdc_numerator;
6381    int crdc_denominator = ahpriv->ah_config.ath_hal_crdc_denominator;
6382    int c = (rssi_diff * crdc_numerator) / crdc_denominator;
6383
6384    val = orig_val = OS_REG_READ(ah, AR_PHY_MULTICHAIN_CTRL);
6385    val &= 0xffffff00;
6386    if (enable) {
6387        val |= 0x1;
6388        val |= ((c << 1) & 0xff);
6389    }
6390    OS_REG_WRITE(ah, AR_PHY_MULTICHAIN_CTRL, val);
6391    HALDEBUG(ah, HAL_DEBUG_CALIBRATE, "diff: %02d comp: %02d reg: %08x %08x\n",
6392        rssi_diff, c, orig_val, val);
6393}
6394
6395
6396void ar9300_chain_rssi_diff_compensation(struct ath_hal *ah)
6397{
6398    struct ath_hal_private  *ahpriv = AH_PRIVATE(ah);
6399    int crdc_window = ahpriv->ah_config.ath_hal_crdc_window;
6400    int crdc_rssi_ptr = ah->ah_crdc_rssi_ptr;
6401    int crdc_rssi_thresh = ahpriv->ah_config.ath_hal_crdc_rssithresh;
6402    int crdc_diff_thresh = ahpriv->ah_config.ath_hal_crdc_diffthresh;
6403    int avg_rssi[2], avg_rssi_diff;
6404
6405    if ((!AR_SREV_WASP(ah)) ||
6406        (!ahpriv->ah_config.ath_hal_crdc_enable)) {
6407        if (ah->ah_crdc_rssi_ptr) {
6408            ar9300_crdc_activate(ah, 0, 0);
6409            ah->ah_crdc_rssi_ptr = 0;
6410        }
6411        return;
6412    }
6413
6414    if (crdc_window > HAL_MAX_CRDC_RSSI_SAMPLE) {
6415        crdc_window = HAL_MAX_CRDC_RSSI_SAMPLE;
6416    }
6417
6418    if (crdc_rssi_ptr < crdc_window) {
6419        return;
6420    }
6421
6422    avg_rssi[0] = ar9300_crdc_avg_rssi(ah, 0);
6423    avg_rssi[1] = ar9300_crdc_avg_rssi(ah, 1);
6424    avg_rssi_diff = avg_rssi[1] - avg_rssi[0];
6425
6426    HALDEBUG(ah, HAL_DEBUG_CALIBRATE, "crdc: avg: %02d %02d ",
6427        avg_rssi[0], avg_rssi[1]);
6428
6429    if ((avg_rssi[0] < crdc_rssi_thresh) &&
6430        (avg_rssi[1] < crdc_rssi_thresh)) {
6431        ar9300_crdc_activate(ah, 0, 0);
6432    } else {
6433        if (ABS(avg_rssi_diff) >= crdc_diff_thresh) {
6434            ar9300_crdc_activate(ah, avg_rssi_diff, 1);
6435        } else {
6436            ar9300_crdc_activate(ah, 0, 1);
6437        }
6438    }
6439}
6440#endif
6441
6442#if ATH_ANT_DIV_COMB
6443HAL_BOOL
6444ar9300_ant_ctrl_set_lna_div_use_bt_ant(struct ath_hal *ah, HAL_BOOL enable, const struct ieee80211_channel *chan)
6445{
6446    u_int32_t value;
6447    u_int32_t regval;
6448    struct ath_hal_9300 *ahp = AH9300(ah);
6449    HAL_CHANNEL_INTERNAL *ichan;
6450    struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
6451    HAL_CAPABILITIES *pcap = &ahpriv->ah_caps;
6452
6453    HALDEBUG(ah, HAL_DEBUG_RESET | HAL_DEBUG_BT_COEX,
6454      "%s: called; enable=%d\n", __func__, enable);
6455
6456    if (AR_SREV_POSEIDON(ah)) {
6457        // Make sure this scheme is only used for WB225(Astra)
6458        ahp->ah_lna_div_use_bt_ant_enable = enable;
6459
6460        ichan = ar9300_check_chan(ah, chan);
6461        if ( ichan == AH_NULL ) {
6462            HALDEBUG(ah, HAL_DEBUG_CHANNEL, "%s: invalid channel %u/0x%x; no mapping\n",
6463                     __func__, chan->ic_freq, chan->ic_flags);
6464            return AH_FALSE;
6465        }
6466
6467        if ( enable == TRUE ) {
6468            pcap->halAntDivCombSupport = TRUE;
6469        } else {
6470            pcap->halAntDivCombSupport = pcap->halAntDivCombSupportOrg;
6471        }
6472
6473#define AR_SWITCH_TABLE_COM2_ALL (0xffffff)
6474#define AR_SWITCH_TABLE_COM2_ALL_S (0)
6475        value = ar9300_ant_ctrl_common2_get(ah, IS_CHAN_2GHZ(ichan));
6476        if ( enable == TRUE ) {
6477            value &= ~AR_SWITCH_TABLE_COM2_ALL;
6478            value |= ah->ah_config.ath_hal_ant_ctrl_comm2g_switch_enable;
6479        }
6480	HALDEBUG(ah, HAL_DEBUG_RESET, "%s: com2=0x%08x\n", __func__, value);
6481        OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM_2, AR_SWITCH_TABLE_COM2_ALL, value);
6482
6483        value = ar9300_eeprom_get(ahp, EEP_ANTDIV_control);
6484        /* main_lnaconf, alt_lnaconf, main_tb, alt_tb */
6485        regval = OS_REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
6486        regval &= (~ANT_DIV_CONTROL_ALL); /* clear bit 25~30 */
6487        regval |= (value & 0x3f) << ANT_DIV_CONTROL_ALL_S;
6488        /* enable_lnadiv */
6489        regval &= (~MULTICHAIN_GAIN_CTRL__ENABLE_ANT_DIV_LNADIV__MASK);
6490        regval |= ((value >> 6) & 0x1) <<
6491                  MULTICHAIN_GAIN_CTRL__ENABLE_ANT_DIV_LNADIV__SHIFT;
6492        if ( enable == TRUE ) {
6493            regval |= ANT_DIV_ENABLE;
6494        }
6495        OS_REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
6496
6497        /* enable fast_div */
6498        regval = OS_REG_READ(ah, AR_PHY_CCK_DETECT);
6499        regval &= (~BBB_SIG_DETECT__ENABLE_ANT_FAST_DIV__MASK);
6500        regval |= ((value >> 7) & 0x1) <<
6501                  BBB_SIG_DETECT__ENABLE_ANT_FAST_DIV__SHIFT;
6502        if ( enable == TRUE ) {
6503            regval |= FAST_DIV_ENABLE;
6504        }
6505        OS_REG_WRITE(ah, AR_PHY_CCK_DETECT, regval);
6506
6507        if ( AR_SREV_POSEIDON_11_OR_LATER(ah) ) {
6508            if (pcap->halAntDivCombSupport) {
6509                /* If support DivComb, set MAIN to LNA1 and ALT to LNA2 at the first beginning */
6510                regval = OS_REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
6511                /* clear bit 25~30 main_lnaconf, alt_lnaconf, main_tb, alt_tb */
6512                regval &= (~(MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_LNACONF__MASK |
6513                             MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_LNACONF__MASK |
6514                             MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_GAINTB__MASK |
6515                             MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_GAINTB__MASK));
6516                regval |= (HAL_ANT_DIV_COMB_LNA1 <<
6517                           MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_LNACONF__SHIFT);
6518                regval |= (HAL_ANT_DIV_COMB_LNA2 <<
6519                           MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_LNACONF__SHIFT);
6520                OS_REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
6521            }
6522        }
6523
6524        return AH_TRUE;
6525    } else if (AR_SREV_APHRODITE(ah)) {
6526        ahp->ah_lna_div_use_bt_ant_enable = enable;
6527        if (enable) {
6528                OS_REG_SET_BIT(ah, AR_PHY_MC_GAIN_CTRL, ANT_DIV_ENABLE);
6529                OS_REG_SET_BIT(ah, AR_PHY_MC_GAIN_CTRL, (1 << MULTICHAIN_GAIN_CTRL__ENABLE_ANT_SW_RX_PROT__SHIFT));
6530                OS_REG_SET_BIT(ah, AR_PHY_CCK_DETECT, AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
6531                OS_REG_SET_BIT(ah, AR_PHY_RESTART, RESTART__ENABLE_ANT_FAST_DIV_M2FLAG__MASK);
6532                OS_REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
6533        } else {
6534                OS_REG_CLR_BIT(ah, AR_PHY_MC_GAIN_CTRL, ANT_DIV_ENABLE);
6535                OS_REG_CLR_BIT(ah, AR_PHY_MC_GAIN_CTRL, (1 << MULTICHAIN_GAIN_CTRL__ENABLE_ANT_SW_RX_PROT__SHIFT));
6536                OS_REG_CLR_BIT(ah, AR_PHY_CCK_DETECT, AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
6537                OS_REG_CLR_BIT(ah, AR_PHY_RESTART, RESTART__ENABLE_ANT_FAST_DIV_M2FLAG__MASK);
6538                OS_REG_CLR_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
6539
6540                regval = OS_REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
6541                regval &= (~(MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_LNACONF__MASK |
6542                             MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_LNACONF__MASK |
6543                             MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_GAINTB__MASK |
6544                             MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_GAINTB__MASK));
6545                regval |= (HAL_ANT_DIV_COMB_LNA1 <<
6546                           MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_LNACONF__SHIFT);
6547                regval |= (HAL_ANT_DIV_COMB_LNA2 <<
6548                           MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_LNACONF__SHIFT);
6549
6550                OS_REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
6551        }
6552        return AH_TRUE;
6553    }
6554    return AH_TRUE;
6555}
6556#endif /* ATH_ANT_DIV_COMB */
6557