1/*
2 * Copyright (c) 2013 Qualcomm Atheros, Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
9 * REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
10 * AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
11 * INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
12 * LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
13 * OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
14 * PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include "opt_ah.h"
18
19#include "ah.h"
20#include "ah_internal.h"
21#include "ah_devid.h"
22#ifdef AH_DEBUG
23#include "ah_desc.h"                    /* NB: for HAL_PHYERR* */
24#endif
25#include "ar9300/ar9300.h"
26#include "ar9300/ar9300eep.h"
27#include "ar9300/ar9300template_generic.h"
28#include "ar9300/ar9300template_xb112.h"
29#include "ar9300/ar9300template_hb116.h"
30#include "ar9300/ar9300template_xb113.h"
31#include "ar9300/ar9300template_hb112.h"
32#include "ar9300/ar9300template_ap121.h"
33#include "ar9300/ar9300template_osprey_k31.h"
34#include "ar9300/ar9300template_wasp_2.h"
35#include "ar9300/ar9300template_wasp_k31.h"
36#include "ar9300/ar9300template_aphrodite.h"
37#include "ar9300/ar9300reg.h"
38#include "ar9300/ar9300phy.h"
39
40
41
42#if AH_BYTE_ORDER == AH_BIG_ENDIAN
43void ar9300_swap_eeprom(ar9300_eeprom_t *eep);
44void ar9300_eeprom_template_swap(void);
45#endif
46
47static u_int16_t ar9300_eeprom_get_spur_chan(struct ath_hal *ah,
48    int spur_chan, HAL_BOOL is_2ghz);
49#ifdef UNUSED
50static inline HAL_BOOL ar9300_fill_eeprom(struct ath_hal *ah);
51static inline HAL_STATUS ar9300_check_eeprom(struct ath_hal *ah);
52#endif
53
54static ar9300_eeprom_t *default9300[] =
55{
56    &ar9300_template_generic,
57    &ar9300_template_xb112,
58    &ar9300_template_hb116,
59    &ar9300_template_hb112,
60    &ar9300_template_xb113,
61    &ar9300_template_ap121,
62    &ar9300_template_wasp_2,
63    &ar9300_template_wasp_k31,
64    &ar9300_template_osprey_k31,
65    &ar9300_template_aphrodite,
66};
67
68/*
69 * Different types of memory where the calibration data might be stored.
70 * All types are searched in ar9300_eeprom_restore()
71 * in the order flash, eeprom, otp.
72 * To disable searching a type, set its parameter to 0.
73 */
74
75/*
76 * This is where we look for the calibration data.
77 * must be set before ath_attach() is called
78 */
79static int calibration_data_try = calibration_data_none;
80static int calibration_data_try_address = 0;
81
82/*
83 * Set the type of memory used to store calibration data.
84 * Used by nart to force reading/writing of a specific type.
85 * The driver can normally allow autodetection
86 * by setting source to calibration_data_none=0.
87 */
88void ar9300_calibration_data_set(struct ath_hal *ah, int32_t source)
89{
90    if (ah != 0) {
91        AH9300(ah)->calibration_data_source = source;
92    } else {
93        calibration_data_try = source;
94    }
95}
96
97int32_t ar9300_calibration_data_get(struct ath_hal *ah)
98{
99    if (ah != 0) {
100        return AH9300(ah)->calibration_data_source;
101    } else {
102        return calibration_data_try;
103    }
104}
105
106/*
107 * Set the address of first byte used to store calibration data.
108 * Used by nart to force reading/writing at a specific address.
109 * The driver can normally allow autodetection by setting size=0.
110 */
111void ar9300_calibration_data_address_set(struct ath_hal *ah, int32_t size)
112{
113    if (ah != 0) {
114        AH9300(ah)->calibration_data_source_address = size;
115    } else {
116        calibration_data_try_address = size;
117    }
118}
119
120int32_t ar9300_calibration_data_address_get(struct ath_hal *ah)
121{
122    if (ah != 0) {
123        return AH9300(ah)->calibration_data_source_address;
124    } else {
125        return calibration_data_try_address;
126    }
127}
128
129/*
130 * This is the template that is loaded if ar9300_eeprom_restore()
131 * can't find valid data in the memory.
132 */
133static int Ar9300_eeprom_template_preference = ar9300_eeprom_template_generic;
134
135void ar9300_eeprom_template_preference(int32_t value)
136{
137    Ar9300_eeprom_template_preference = value;
138}
139
140/*
141 * Install the specified default template.
142 * Overwrites any existing calibration and configuration information in memory.
143 */
144int32_t ar9300_eeprom_template_install(struct ath_hal *ah, int32_t value)
145{
146    struct ath_hal_9300 *ahp = AH9300(ah);
147    ar9300_eeprom_t *mptr, *dptr;
148    int mdata_size;
149
150    mptr = &ahp->ah_eeprom;
151    mdata_size = ar9300_eeprom_struct_size();
152    if (mptr != 0) {
153#if 0
154        calibration_data_source = calibration_data_none;
155        calibration_data_source_address = 0;
156#endif
157        dptr = ar9300_eeprom_struct_default_find_by_id(value);
158        if (dptr != 0) {
159            OS_MEMCPY(mptr, dptr, mdata_size);
160            return 0;
161        }
162    }
163    return -1;
164}
165
166static int
167ar9300_eeprom_restore_something(struct ath_hal *ah, ar9300_eeprom_t *mptr,
168    int mdata_size)
169{
170    int it;
171    ar9300_eeprom_t *dptr;
172    int nptr;
173
174    nptr = -1;
175    /*
176     * if we didn't find any blocks in the memory,
177     * put the prefered template in place
178     */
179    if (nptr < 0) {
180        AH9300(ah)->calibration_data_source = calibration_data_none;
181        AH9300(ah)->calibration_data_source_address = 0;
182        dptr = ar9300_eeprom_struct_default_find_by_id(
183            Ar9300_eeprom_template_preference);
184        if (dptr != 0) {
185            OS_MEMCPY(mptr, dptr, mdata_size);
186            nptr = 0;
187        }
188    }
189    /*
190     * if we didn't find the prefered one,
191     * put the normal default template in place
192     */
193    if (nptr < 0) {
194        AH9300(ah)->calibration_data_source = calibration_data_none;
195        AH9300(ah)->calibration_data_source_address = 0;
196        dptr = ar9300_eeprom_struct_default_find_by_id(
197            ar9300_eeprom_template_default);
198        if (dptr != 0) {
199            OS_MEMCPY(mptr, dptr, mdata_size);
200            nptr = 0;
201        }
202    }
203    /*
204     * if we can't find the best template, put any old template in place
205     * presume that newer ones are better, so search backwards
206     */
207    if (nptr < 0) {
208        AH9300(ah)->calibration_data_source = calibration_data_none;
209        AH9300(ah)->calibration_data_source_address = 0;
210        for (it = ar9300_eeprom_struct_default_many() - 1; it >= 0; it--) {
211            dptr = ar9300_eeprom_struct_default(it);
212            if (dptr != 0) {
213                OS_MEMCPY(mptr, dptr, mdata_size);
214                nptr = 0;
215                break;
216            }
217        }
218    }
219    return nptr;
220}
221
222/*
223 * Read 16 bits of data from offset into *data
224 */
225HAL_BOOL
226ar9300_eeprom_read_word(struct ath_hal *ah, u_int off, u_int16_t *data)
227{
228    if (AR_SREV_OSPREY(ah) || AR_SREV_POSEIDON(ah))
229    {
230        (void) OS_REG_READ(ah, AR9300_EEPROM_OFFSET + (off << AR9300_EEPROM_S));
231        if (!ath_hal_wait(ah,
232			  AR_HOSTIF_REG(ah, AR_EEPROM_STATUS_DATA),
233			  AR_EEPROM_STATUS_DATA_BUSY | AR_EEPROM_STATUS_DATA_PROT_ACCESS,
234			  0))
235	{
236            return AH_FALSE;
237	}
238        *data = MS(OS_REG_READ(ah,
239			       AR_HOSTIF_REG(ah, AR_EEPROM_STATUS_DATA)), AR_EEPROM_STATUS_DATA_VAL);
240       return AH_TRUE;
241    }
242    else
243    {
244        *data = 0;
245        return AH_FALSE;
246    }
247}
248
249
250HAL_BOOL
251ar9300_otp_read(struct ath_hal *ah, u_int off, u_int32_t *data, HAL_BOOL is_wifi)
252{
253    int time_out = 1000;
254    int status = 0;
255    u_int32_t addr;
256
257    if (AR_SREV_HONEYBEE(ah)){ /* no OTP for Honeybee */
258        return false;
259    }
260    addr = (AR_SREV_WASP(ah) || AR_SREV_SCORPION(ah))?
261        OTP_MEM_START_ADDRESS_WASP : OTP_MEM_START_ADDRESS;
262	if (!is_wifi) {
263        addr = BTOTP_MEM_START_ADDRESS;
264    }
265    addr += off * 4; /* OTP is 32 bit addressable */
266    (void) OS_REG_READ(ah, addr);
267
268    addr = (AR_SREV_WASP(ah) || AR_SREV_SCORPION(ah)) ?
269        OTP_STATUS0_OTP_SM_BUSY_WASP : OTP_STATUS0_OTP_SM_BUSY;
270	if (!is_wifi) {
271        addr = BTOTP_STATUS0_OTP_SM_BUSY;
272    }
273    while ((time_out > 0) && (!status)) { /* wait for access complete */
274        /* Read data valid, access not busy, sm not busy */
275        status = ((OS_REG_READ(ah, addr) & 0x7) == 0x4) ? 1 : 0;
276        time_out--;
277    }
278    if (time_out == 0) {
279        HALDEBUG(ah, HAL_DEBUG_EEPROM,
280            "%s: Timed out during OTP Status0 validation\n", __func__);
281        return AH_FALSE;
282    }
283
284    addr = (AR_SREV_WASP(ah) || AR_SREV_SCORPION(ah)) ?
285        OTP_STATUS1_EFUSE_READ_DATA_WASP : OTP_STATUS1_EFUSE_READ_DATA;
286	if (!is_wifi) {
287        addr = BTOTP_STATUS1_EFUSE_READ_DATA;
288    }
289    *data = OS_REG_READ(ah, addr);
290    return AH_TRUE;
291}
292
293
294
295
296static HAL_STATUS
297ar9300_flash_map(struct ath_hal *ah)
298{
299    /* XXX disable flash remapping for now (ie, SoC support) */
300    ath_hal_printf(ah, "%s: unimplemented for now\n", __func__);
301#if 0
302    struct ath_hal_9300 *ahp = AH9300(ah);
303#if defined(AR9100) || defined(__NetBSD__)
304    ahp->ah_cal_mem = OS_REMAP(ah, AR9300_EEPROM_START_ADDR, AR9300_EEPROM_MAX);
305#else
306    ahp->ah_cal_mem = OS_REMAP((uintptr_t)(AH_PRIVATE(ah)->ah_st),
307        (AR9300_EEPROM_MAX + AR9300_FLASH_CAL_START_OFFSET));
308#endif
309    if (!ahp->ah_cal_mem) {
310        HALDEBUG(ah, HAL_DEBUG_EEPROM,
311            "%s: cannot remap eeprom region \n", __func__);
312        return HAL_EIO;
313    }
314#endif
315    return HAL_OK;
316}
317
318HAL_BOOL
319ar9300_flash_read(struct ath_hal *ah, u_int off, u_int16_t *data)
320{
321    struct ath_hal_9300 *ahp = AH9300(ah);
322
323    *data = ((u_int16_t *)ahp->ah_cal_mem)[off];
324    return AH_TRUE;
325}
326
327HAL_BOOL
328ar9300_flash_write(struct ath_hal *ah, u_int off, u_int16_t data)
329{
330    struct ath_hal_9300 *ahp = AH9300(ah);
331
332    ((u_int16_t *)ahp->ah_cal_mem)[off] = data;
333    return AH_TRUE;
334}
335
336HAL_STATUS
337ar9300_eeprom_attach(struct ath_hal *ah)
338{
339    struct ath_hal_9300 *ahp = AH9300(ah);
340    ahp->try_dram = 1;
341    ahp->try_eeprom = 1;
342    ahp->try_otp = 1;
343#ifdef ATH_CAL_NAND_FLASH
344    ahp->try_nand = 1;
345#else
346    ahp->try_flash = 1;
347#endif
348    ahp->calibration_data_source = calibration_data_none;
349    ahp->calibration_data_source_address = 0;
350    ahp->calibration_data_try = calibration_data_try;
351    ahp->calibration_data_try_address = 0;
352
353    /*
354     * In case flash will be used for EEPROM. Otherwise ahp->ah_cal_mem
355     * must be set to NULL or the real EEPROM address.
356     */
357    ar9300_flash_map(ah);
358    /*
359     * ###### This function always return NO SPUR.
360     * This is not true for many board designs.
361     * Does anyone use this?
362     */
363    AH_PRIVATE(ah)->ah_getSpurChan = ar9300_eeprom_get_spur_chan;
364
365#ifdef OLDCODE
366    /* XXX Needs to be moved for dynamic selection */
367    ahp->ah_eeprom = *(default9300[ar9300_eeprom_template_default]);
368
369
370    if (AR_SREV_HORNET(ah)) {
371        /* Set default values for Hornet. */
372        ahp->ah_eeprom.base_eep_header.op_cap_flags.op_flags =
373            AR9300_OPFLAGS_11G;
374        ahp->ah_eeprom.base_eep_header.txrx_mask = 0x11;
375    } else if (AR_SREV_POSEIDON(ah)) {
376        /* Set default values for Poseidon. */
377        ahp->ah_eeprom.base_eep_header.op_cap_flags.op_flags =
378            AR9300_OPFLAGS_11G;
379        ahp->ah_eeprom.base_eep_header.txrx_mask = 0x11;
380    }
381
382    if (AH_PRIVATE(ah)->ah_config.ath_hal_skip_eeprom_read) {
383        ahp->ah_emu_eeprom = 1;
384        return HAL_OK;
385    }
386
387    ahp->ah_emu_eeprom = 1;
388
389#ifdef UNUSED
390#endif
391
392    if (!ar9300_fill_eeprom(ah)) {
393        return HAL_EIO;
394    }
395
396    return HAL_OK;
397    /* return ar9300_check_eeprom(ah); */
398#else
399    ahp->ah_emu_eeprom = 1;
400
401#if 0
402/*#ifdef MDK_AP*/ /* MDK_AP is defined only in NART AP build */
403    u_int8_t buffer[10];
404    int caldata_check = 0;
405
406    ar9300_calibration_data_read_flash(
407        ah, FLASH_BASE_CALDATA_OFFSET, buffer, 4);
408    printf("flash caldata:: %x\n", buffer[0]);
409    if (buffer[0] != 0xff) {
410        caldata_check = 1;
411    }
412    if (!caldata_check) {
413        ar9300_eeprom_t *mptr;
414        int mdata_size;
415        if (AR_SREV_HORNET(ah)) {
416            /* XXX: For initial testing */
417            mptr = &ahp->ah_eeprom;
418            mdata_size = ar9300_eeprom_struct_size();
419            ahp->ah_eeprom = ar9300_template_ap121;
420            ahp->ah_emu_eeprom = 1;
421            /* need it to let art save in to flash ????? */
422            calibration_data_source = calibration_data_flash;
423        } else if (AR_SREV_WASP(ah)) {
424            /* XXX: For initial testing */
425            ath_hal_printf(ah, " wasp eep attach\n");
426            mptr = &ahp->ah_eeprom;
427            mdata_size = ar9300_eeprom_struct_size();
428            ahp->ah_eeprom = ar9300_template_generic;
429            ahp->ah_eeprom.mac_addr[0] = 0x00;
430            ahp->ah_eeprom.mac_addr[1] = 0x03;
431            ahp->ah_eeprom.mac_addr[2] = 0x7F;
432            ahp->ah_eeprom.mac_addr[3] = 0xBA;
433            ahp->ah_eeprom.mac_addr[4] = 0xD0;
434            ahp->ah_eeprom.mac_addr[5] = 0x00;
435            ahp->ah_emu_eeprom = 1;
436            ahp->ah_eeprom.base_eep_header.txrx_mask = 0x33;
437            ahp->ah_eeprom.base_eep_header.txrxgain = 0x10;
438            /* need it to let art save in to flash ????? */
439            calibration_data_source = calibration_data_flash;
440        }
441        return HAL_OK;
442    }
443#endif
444    if (AR_SREV_HORNET(ah) || AR_SREV_WASP(ah) || AR_SREV_SCORPION(ah)
445        || AR_SREV_HONEYBEE(ah)) {
446        ahp->try_eeprom = 0;
447    }
448
449    if (AR_SREV_HONEYBEE(ah)) {
450        ahp->try_otp = 0;
451    }
452
453    if (!ar9300_eeprom_restore(ah)) {
454        return HAL_EIO;
455    }
456    return HAL_OK;
457#endif
458}
459
460u_int32_t
461ar9300_eeprom_get(struct ath_hal_9300 *ahp, EEPROM_PARAM param)
462{
463    ar9300_eeprom_t *eep = &ahp->ah_eeprom;
464    OSPREY_BASE_EEP_HEADER *p_base = &eep->base_eep_header;
465    OSPREY_BASE_EXTENSION_1 *base_ext1 = &eep->base_ext1;
466
467    switch (param) {
468#ifdef NOTYET
469    case EEP_NFTHRESH_5:
470        return p_modal[0].noise_floor_thresh_ch[0];
471    case EEP_NFTHRESH_2:
472        return p_modal[1].noise_floor_thresh_ch[0];
473#endif
474    case EEP_MAC_LSW:
475        return eep->mac_addr[0] << 8 | eep->mac_addr[1];
476    case EEP_MAC_MID:
477        return eep->mac_addr[2] << 8 | eep->mac_addr[3];
478    case EEP_MAC_MSW:
479        return eep->mac_addr[4] << 8 | eep->mac_addr[5];
480    case EEP_REG_0:
481        return p_base->reg_dmn[0];
482    case EEP_REG_1:
483        return p_base->reg_dmn[1];
484    case EEP_OP_CAP:
485        return p_base->device_cap;
486    case EEP_OP_MODE:
487        return p_base->op_cap_flags.op_flags;
488    case EEP_RF_SILENT:
489        return p_base->rf_silent;
490#ifdef NOTYET
491    case EEP_OB_5:
492        return p_modal[0].ob;
493    case EEP_DB_5:
494        return p_modal[0].db;
495    case EEP_OB_2:
496        return p_modal[1].ob;
497    case EEP_DB_2:
498        return p_modal[1].db;
499    case EEP_MINOR_REV:
500        return p_base->eeprom_version & AR9300_EEP_VER_MINOR_MASK;
501#endif
502    case EEP_TX_MASK:
503        return (p_base->txrx_mask >> 4) & 0xf;
504    case EEP_RX_MASK:
505        return p_base->txrx_mask & 0xf;
506#ifdef NOTYET
507    case EEP_FSTCLK_5G:
508        return p_base->fast_clk5g;
509    case EEP_RXGAIN_TYPE:
510        return p_base->rx_gain_type;
511#endif
512    case EEP_DRIVE_STRENGTH:
513#define AR9300_EEP_BASE_DRIVE_STRENGTH    0x1
514        return p_base->misc_configuration & AR9300_EEP_BASE_DRIVE_STRENGTH;
515    case EEP_INTERNAL_REGULATOR:
516        /* Bit 4 is internal regulator flag */
517        return ((p_base->feature_enable & 0x10) >> 4);
518    case EEP_SWREG:
519        return (p_base->swreg);
520    case EEP_PAPRD_ENABLED:
521        /* Bit 5 is paprd flag */
522        return ((p_base->feature_enable & 0x20) >> 5);
523    case EEP_ANTDIV_control:
524        return (u_int32_t)(base_ext1->ant_div_control);
525    case EEP_CHAIN_MASK_REDUCE:
526        return ((p_base->misc_configuration >> 3) & 0x1);
527    case EEP_OL_PWRCTRL:
528        return 0;
529     case EEP_DEV_TYPE:
530        return p_base->device_type;
531    default:
532        HALASSERT(0);
533        return 0;
534    }
535}
536
537
538
539/******************************************************************************/
540/*!
541**  \brief EEPROM fixup code for INI values
542**
543** This routine provides a place to insert "fixup" code for specific devices
544** that need to modify INI values based on EEPROM values, BEFORE the INI values
545** are written.
546** Certain registers in the INI file can only be written once without
547** undesired side effects, and this provides a place for EEPROM overrides
548** in these cases.
549**
550** This is called at attach time once.  It should not affect run time
551** performance at all
552**
553**  \param ah       Pointer to HAL object (this)
554**  \param p_eep_data Pointer to (filled in) eeprom data structure
555**  \param reg      register being inspected on this call
556**  \param value    value in INI file
557**
558**  \return Updated value for INI file.
559*/
560u_int32_t
561ar9300_ini_fixup(struct ath_hal *ah, ar9300_eeprom_t *p_eep_data,
562    u_int32_t reg, u_int32_t value)
563{
564    HALDEBUG(AH_NULL, HAL_DEBUG_UNMASKABLE,
565        "ar9300_eeprom_def_ini_fixup: FIXME\n");
566#if 0
567    BASE_EEPDEF_HEADER  *p_base  = &(p_eep_data->base_eep_header);
568
569    switch (AH_PRIVATE(ah)->ah_devid)
570    {
571    case AR9300_DEVID_AR9300_PCI:
572        /*
573        ** Need to set the external/internal regulator bit to the proper value.
574        ** Can only write this ONCE.
575        */
576
577        if ( reg == 0x7894 )
578        {
579            /*
580            ** Check for an EEPROM data structure of "0x0b" or better
581            */
582
583            HALDEBUG(ah, HAL_DEBUG_EEPROM, "ini VAL: %x  EEPROM: %x\n",
584                     value, (p_base->version & 0xff));
585
586            if ( (p_base->version & 0xff) > 0x0a) {
587                HALDEBUG(ah, HAL_DEBUG_EEPROM,
588                    "PWDCLKIND: %d\n", p_base->pwdclkind);
589                value &= ~AR_AN_TOP2_PWDCLKIND;
590                value |=
591                    AR_AN_TOP2_PWDCLKIND &
592                    (p_base->pwdclkind <<  AR_AN_TOP2_PWDCLKIND_S);
593            } else {
594                HALDEBUG(ah, HAL_DEBUG_EEPROM, "PWDCLKIND Earlier Rev\n");
595            }
596
597            HALDEBUG(ah, HAL_DEBUG_EEPROM, "final ini VAL: %x\n", value);
598        }
599        break;
600
601    }
602
603    return (value);
604#else
605    return 0;
606#endif
607}
608
609/*
610 * Returns the interpolated y value corresponding to the specified x value
611 * from the np ordered pairs of data (px,py).
612 * The pairs do not have to be in any order.
613 * If the specified x value is less than any of the px,
614 * the returned y value is equal to the py for the lowest px.
615 * If the specified x value is greater than any of the px,
616 * the returned y value is equal to the py for the highest px.
617 */
618static int
619interpolate(int32_t x, int32_t *px, int32_t *py, u_int16_t np)
620{
621    int ip = 0;
622    int lx = 0, ly = 0, lhave = 0;
623    int hx = 0, hy = 0, hhave = 0;
624    int dx = 0;
625    int y = 0;
626    int bf, factor, plus;
627
628    lhave = 0;
629    hhave = 0;
630    /*
631     * identify best lower and higher x calibration measurement
632     */
633    for (ip = 0; ip < np; ip++) {
634        dx = x - px[ip];
635        /* this measurement is higher than our desired x */
636        if (dx <= 0) {
637            if (!hhave || dx > (x - hx)) {
638                /* new best higher x measurement */
639                hx = px[ip];
640                hy = py[ip];
641                hhave = 1;
642            }
643        }
644        /* this measurement is lower than our desired x */
645        if (dx >= 0) {
646            if (!lhave || dx < (x - lx)) {
647                /* new best lower x measurement */
648                lx = px[ip];
649                ly = py[ip];
650                lhave = 1;
651            }
652        }
653    }
654    /* the low x is good */
655    if (lhave) {
656        /* so is the high x */
657        if (hhave) {
658            /* they're the same, so just pick one */
659            if (hx == lx) {
660                y = ly;
661            } else {
662                /* interpolate with round off */
663                bf = (2 * (hy - ly) * (x - lx)) / (hx - lx);
664                plus = (bf % 2);
665                factor = bf / 2;
666                y = ly + factor + plus;
667            }
668        } else {
669            /* only low is good, use it */
670            y = ly;
671        }
672    } else if (hhave) {
673        /* only high is good, use it */
674        y = hy;
675    } else {
676        /* nothing is good,this should never happen unless np=0, ????  */
677        y = -(1 << 30);
678    }
679
680    return y;
681}
682
683u_int8_t
684ar9300_eeprom_get_legacy_trgt_pwr(struct ath_hal *ah, u_int16_t rate_index,
685    u_int16_t freq, HAL_BOOL is_2ghz)
686{
687    u_int16_t            num_piers, i;
688    int32_t              target_power_array[OSPREY_NUM_5G_20_TARGET_POWERS];
689    int32_t              freq_array[OSPREY_NUM_5G_20_TARGET_POWERS];
690    u_int8_t             *p_freq_bin;
691    ar9300_eeprom_t      *eep = &AH9300(ah)->ah_eeprom;
692    CAL_TARGET_POWER_LEG *p_eeprom_target_pwr;
693
694    if (is_2ghz) {
695        num_piers = OSPREY_NUM_2G_20_TARGET_POWERS;
696        p_eeprom_target_pwr = eep->cal_target_power_2g;
697        p_freq_bin = eep->cal_target_freqbin_2g;
698    } else {
699        num_piers = OSPREY_NUM_5G_20_TARGET_POWERS;
700        p_eeprom_target_pwr = eep->cal_target_power_5g;
701        p_freq_bin = eep->cal_target_freqbin_5g;
702   }
703
704    /*
705     * create array of channels and targetpower from
706     * targetpower piers stored on eeprom
707     */
708    for (i = 0; i < num_piers; i++) {
709        freq_array[i] = FBIN2FREQ(p_freq_bin[i], is_2ghz);
710        target_power_array[i] = p_eeprom_target_pwr[i].t_pow2x[rate_index];
711    }
712
713    /* interpolate to get target power for given frequency */
714    return
715        ((u_int8_t)interpolate(
716            (int32_t)freq, freq_array, target_power_array, num_piers));
717}
718
719u_int8_t
720ar9300_eeprom_get_ht20_trgt_pwr(struct ath_hal *ah, u_int16_t rate_index,
721    u_int16_t freq, HAL_BOOL is_2ghz)
722{
723    u_int16_t               num_piers, i;
724    int32_t                 target_power_array[OSPREY_NUM_5G_20_TARGET_POWERS];
725    int32_t                 freq_array[OSPREY_NUM_5G_20_TARGET_POWERS];
726    u_int8_t                *p_freq_bin;
727    ar9300_eeprom_t         *eep = &AH9300(ah)->ah_eeprom;
728    OSP_CAL_TARGET_POWER_HT *p_eeprom_target_pwr;
729
730    if (is_2ghz) {
731        num_piers = OSPREY_NUM_2G_20_TARGET_POWERS;
732        p_eeprom_target_pwr = eep->cal_target_power_2g_ht20;
733        p_freq_bin = eep->cal_target_freqbin_2g_ht20;
734    } else {
735        num_piers = OSPREY_NUM_5G_20_TARGET_POWERS;
736        p_eeprom_target_pwr = eep->cal_target_power_5g_ht20;
737        p_freq_bin = eep->cal_target_freqbin_5g_ht20;
738    }
739
740    /*
741     * create array of channels and targetpower from
742     * targetpower piers stored on eeprom
743     */
744    for (i = 0; i < num_piers; i++) {
745        freq_array[i] = FBIN2FREQ(p_freq_bin[i], is_2ghz);
746        target_power_array[i] = p_eeprom_target_pwr[i].t_pow2x[rate_index];
747    }
748
749    /* interpolate to get target power for given frequency */
750    return
751        ((u_int8_t)interpolate(
752            (int32_t)freq, freq_array, target_power_array, num_piers));
753}
754
755u_int8_t
756ar9300_eeprom_get_ht40_trgt_pwr(struct ath_hal *ah, u_int16_t rate_index,
757    u_int16_t freq, HAL_BOOL is_2ghz)
758{
759    u_int16_t               num_piers, i;
760    int32_t                 target_power_array[OSPREY_NUM_5G_40_TARGET_POWERS];
761    int32_t                 freq_array[OSPREY_NUM_5G_40_TARGET_POWERS];
762    u_int8_t                *p_freq_bin;
763    ar9300_eeprom_t         *eep = &AH9300(ah)->ah_eeprom;
764    OSP_CAL_TARGET_POWER_HT *p_eeprom_target_pwr;
765
766    if (is_2ghz) {
767        num_piers = OSPREY_NUM_2G_40_TARGET_POWERS;
768        p_eeprom_target_pwr = eep->cal_target_power_2g_ht40;
769        p_freq_bin = eep->cal_target_freqbin_2g_ht40;
770    } else {
771        num_piers = OSPREY_NUM_5G_40_TARGET_POWERS;
772        p_eeprom_target_pwr = eep->cal_target_power_5g_ht40;
773        p_freq_bin = eep->cal_target_freqbin_5g_ht40;
774    }
775
776    /*
777     * create array of channels and targetpower from
778     * targetpower piers stored on eeprom
779     */
780    for (i = 0; i < num_piers; i++) {
781        freq_array[i] = FBIN2FREQ(p_freq_bin[i], is_2ghz);
782        target_power_array[i] = p_eeprom_target_pwr[i].t_pow2x[rate_index];
783    }
784
785    /* interpolate to get target power for given frequency */
786    return
787        ((u_int8_t)interpolate(
788            (int32_t)freq, freq_array, target_power_array, num_piers));
789}
790
791u_int8_t
792ar9300_eeprom_get_cck_trgt_pwr(struct ath_hal *ah, u_int16_t rate_index,
793    u_int16_t freq)
794{
795    u_int16_t            num_piers = OSPREY_NUM_2G_CCK_TARGET_POWERS, i;
796    int32_t              target_power_array[OSPREY_NUM_2G_CCK_TARGET_POWERS];
797    int32_t              freq_array[OSPREY_NUM_2G_CCK_TARGET_POWERS];
798    ar9300_eeprom_t      *eep = &AH9300(ah)->ah_eeprom;
799    u_int8_t             *p_freq_bin = eep->cal_target_freqbin_cck;
800    CAL_TARGET_POWER_LEG *p_eeprom_target_pwr = eep->cal_target_power_cck;
801
802    /*
803     * create array of channels and targetpower from
804     * targetpower piers stored on eeprom
805     */
806    for (i = 0; i < num_piers; i++) {
807        freq_array[i] = FBIN2FREQ(p_freq_bin[i], 1);
808        target_power_array[i] = p_eeprom_target_pwr[i].t_pow2x[rate_index];
809    }
810
811    /* interpolate to get target power for given frequency */
812    return
813        ((u_int8_t)interpolate(
814            (int32_t)freq, freq_array, target_power_array, num_piers));
815}
816
817/*
818 * Set tx power registers to array of values passed in
819 */
820int
821ar9300_transmit_power_reg_write(struct ath_hal *ah, u_int8_t *p_pwr_array)
822{
823#define POW_SM(_r, _s)     (((_r) & 0x3f) << (_s))
824    /* make sure forced gain is not set */
825#if 0
826    field_write("force_dac_gain", 0);
827    OS_REG_WRITE(ah, 0xa3f8, 0);
828    field_write("force_tx_gain", 0);
829#endif
830
831    OS_REG_WRITE(ah, 0xa458, 0);
832
833    /* Write the OFDM power per rate set */
834    /* 6 (LSB), 9, 12, 18 (MSB) */
835    OS_REG_WRITE(ah, 0xa3c0,
836        POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], 24)
837          | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], 16)
838          | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24],  8)
839          | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24],  0)
840    );
841    /* 24 (LSB), 36, 48, 54 (MSB) */
842    OS_REG_WRITE(ah, 0xa3c4,
843        POW_SM(p_pwr_array[ALL_TARGET_LEGACY_54], 24)
844          | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_48], 16)
845          | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_36],  8)
846          | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24],  0)
847    );
848
849    /* Write the CCK power per rate set */
850    /* 1L (LSB), reserved, 2L, 2S (MSB) */
851    OS_REG_WRITE(ah, 0xa3c8,
852        POW_SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 24)
853          | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],  16)
854/*          | POW_SM(tx_power_times2,  8)*/ /* this is reserved for Osprey */
855          | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],   0)
856    );
857    /* 5.5L (LSB), 5.5S, 11L, 11S (MSB) */
858    OS_REG_WRITE(ah, 0xa3cc,
859        POW_SM(p_pwr_array[ALL_TARGET_LEGACY_11S], 24)
860          | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_11L], 16)
861          | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_5S],  8)
862          | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],  0)
863    );
864
865	/* write the power for duplicated frames - HT40 */
866	/* dup40_cck (LSB), dup40_ofdm, ext20_cck, ext20_ofdm  (MSB) */
867    OS_REG_WRITE(ah, 0xa3e0,
868        POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], 24)
869          | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 16)
870          | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24],  8)
871          | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],  0)
872    );
873
874    /* Write the HT20 power per rate set */
875    /* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
876    OS_REG_WRITE(ah, 0xa3d0,
877        POW_SM(p_pwr_array[ALL_TARGET_HT20_5], 24)
878          | POW_SM(p_pwr_array[ALL_TARGET_HT20_4],  16)
879          | POW_SM(p_pwr_array[ALL_TARGET_HT20_1_3_9_11_17_19],  8)
880          | POW_SM(p_pwr_array[ALL_TARGET_HT20_0_8_16],   0)
881    );
882
883    /* 6 (LSB), 7, 12, 13 (MSB) */
884    OS_REG_WRITE(ah, 0xa3d4,
885        POW_SM(p_pwr_array[ALL_TARGET_HT20_13], 24)
886          | POW_SM(p_pwr_array[ALL_TARGET_HT20_12],  16)
887          | POW_SM(p_pwr_array[ALL_TARGET_HT20_7],  8)
888          | POW_SM(p_pwr_array[ALL_TARGET_HT20_6],   0)
889    );
890
891    /* 14 (LSB), 15, 20, 21 */
892    OS_REG_WRITE(ah, 0xa3e4,
893        POW_SM(p_pwr_array[ALL_TARGET_HT20_21], 24)
894          | POW_SM(p_pwr_array[ALL_TARGET_HT20_20],  16)
895          | POW_SM(p_pwr_array[ALL_TARGET_HT20_15],  8)
896          | POW_SM(p_pwr_array[ALL_TARGET_HT20_14],   0)
897    );
898
899    /* Mixed HT20 and HT40 rates */
900    /* HT20 22 (LSB), HT20 23, HT40 22, HT40 23 (MSB) */
901    OS_REG_WRITE(ah, 0xa3e8,
902        POW_SM(p_pwr_array[ALL_TARGET_HT40_23], 24)
903          | POW_SM(p_pwr_array[ALL_TARGET_HT40_22],  16)
904          | POW_SM(p_pwr_array[ALL_TARGET_HT20_23],  8)
905          | POW_SM(p_pwr_array[ALL_TARGET_HT20_22],   0)
906    );
907
908    /* Write the HT40 power per rate set */
909    /* correct PAR difference between HT40 and HT20/LEGACY */
910    /* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
911    OS_REG_WRITE(ah, 0xa3d8,
912        POW_SM(p_pwr_array[ALL_TARGET_HT40_5], 24)
913          | POW_SM(p_pwr_array[ALL_TARGET_HT40_4],  16)
914          | POW_SM(p_pwr_array[ALL_TARGET_HT40_1_3_9_11_17_19],  8)
915          | POW_SM(p_pwr_array[ALL_TARGET_HT40_0_8_16],   0)
916    );
917
918    /* 6 (LSB), 7, 12, 13 (MSB) */
919    OS_REG_WRITE(ah, 0xa3dc,
920        POW_SM(p_pwr_array[ALL_TARGET_HT40_13], 24)
921          | POW_SM(p_pwr_array[ALL_TARGET_HT40_12],  16)
922          | POW_SM(p_pwr_array[ALL_TARGET_HT40_7], 8)
923          | POW_SM(p_pwr_array[ALL_TARGET_HT40_6], 0)
924    );
925
926    /* 14 (LSB), 15, 20, 21 */
927    OS_REG_WRITE(ah, 0xa3ec,
928        POW_SM(p_pwr_array[ALL_TARGET_HT40_21], 24)
929          | POW_SM(p_pwr_array[ALL_TARGET_HT40_20],  16)
930          | POW_SM(p_pwr_array[ALL_TARGET_HT40_15],  8)
931          | POW_SM(p_pwr_array[ALL_TARGET_HT40_14],   0)
932    );
933
934    return 0;
935#undef POW_SM
936}
937
938static void
939ar9300_selfgen_tpc_reg_write(struct ath_hal *ah, const struct ieee80211_channel *chan,
940                             u_int8_t *p_pwr_array)
941{
942    u_int32_t tpc_reg_val;
943
944    /* Set the target power values for self generated frames (ACK,RTS/CTS) to
945     * be within limits. This is just a safety measure.With per packet TPC mode
946     * enabled the target power value used with self generated frames will be
947     * MIN( TPC reg, BB_powertx_rate register)
948     */
949
950    if (IEEE80211_IS_CHAN_2GHZ(chan)) {
951        tpc_reg_val = (SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], AR_TPC_ACK) |
952                       SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], AR_TPC_CTS) |
953                       SM(0x3f, AR_TPC_CHIRP) |
954                       SM(0x3f, AR_TPC_RPT));
955    } else {
956        tpc_reg_val = (SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], AR_TPC_ACK) |
957                       SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], AR_TPC_CTS) |
958                       SM(0x3f, AR_TPC_CHIRP) |
959                       SM(0x3f, AR_TPC_RPT));
960    }
961    OS_REG_WRITE(ah, AR_TPC, tpc_reg_val);
962}
963
964void
965ar9300_set_target_power_from_eeprom(struct ath_hal *ah, u_int16_t freq,
966    u_int8_t *target_power_val_t2)
967{
968    /* hard code for now, need to get from eeprom struct */
969    u_int8_t ht40_power_inc_for_pdadc = 0;
970    HAL_BOOL  is_2ghz = 0;
971
972    if (freq < 4000) {
973        is_2ghz = 1;
974    }
975
976    target_power_val_t2[ALL_TARGET_LEGACY_6_24] =
977        ar9300_eeprom_get_legacy_trgt_pwr(
978            ah, LEGACY_TARGET_RATE_6_24, freq, is_2ghz);
979    target_power_val_t2[ALL_TARGET_LEGACY_36] =
980        ar9300_eeprom_get_legacy_trgt_pwr(
981            ah, LEGACY_TARGET_RATE_36, freq, is_2ghz);
982    target_power_val_t2[ALL_TARGET_LEGACY_48] =
983        ar9300_eeprom_get_legacy_trgt_pwr(
984            ah, LEGACY_TARGET_RATE_48, freq, is_2ghz);
985    target_power_val_t2[ALL_TARGET_LEGACY_54] =
986        ar9300_eeprom_get_legacy_trgt_pwr(
987            ah, LEGACY_TARGET_RATE_54, freq, is_2ghz);
988    target_power_val_t2[ALL_TARGET_LEGACY_1L_5L] =
989        ar9300_eeprom_get_cck_trgt_pwr(
990            ah, LEGACY_TARGET_RATE_1L_5L, freq);
991    target_power_val_t2[ALL_TARGET_LEGACY_5S] =
992        ar9300_eeprom_get_cck_trgt_pwr(
993            ah, LEGACY_TARGET_RATE_5S, freq);
994    target_power_val_t2[ALL_TARGET_LEGACY_11L] =
995        ar9300_eeprom_get_cck_trgt_pwr(
996            ah, LEGACY_TARGET_RATE_11L, freq);
997    target_power_val_t2[ALL_TARGET_LEGACY_11S] =
998        ar9300_eeprom_get_cck_trgt_pwr(
999            ah, LEGACY_TARGET_RATE_11S, freq);
1000    target_power_val_t2[ALL_TARGET_HT20_0_8_16] =
1001        ar9300_eeprom_get_ht20_trgt_pwr(
1002            ah, HT_TARGET_RATE_0_8_16, freq, is_2ghz);
1003    target_power_val_t2[ALL_TARGET_HT20_1_3_9_11_17_19] =
1004        ar9300_eeprom_get_ht20_trgt_pwr(
1005            ah, HT_TARGET_RATE_1_3_9_11_17_19, freq, is_2ghz);
1006    target_power_val_t2[ALL_TARGET_HT20_4] =
1007        ar9300_eeprom_get_ht20_trgt_pwr(
1008            ah, HT_TARGET_RATE_4, freq, is_2ghz);
1009    target_power_val_t2[ALL_TARGET_HT20_5] =
1010        ar9300_eeprom_get_ht20_trgt_pwr(
1011            ah, HT_TARGET_RATE_5, freq, is_2ghz);
1012    target_power_val_t2[ALL_TARGET_HT20_6] =
1013        ar9300_eeprom_get_ht20_trgt_pwr(
1014            ah, HT_TARGET_RATE_6, freq, is_2ghz);
1015    target_power_val_t2[ALL_TARGET_HT20_7] =
1016        ar9300_eeprom_get_ht20_trgt_pwr(
1017            ah, HT_TARGET_RATE_7, freq, is_2ghz);
1018    target_power_val_t2[ALL_TARGET_HT20_12] =
1019        ar9300_eeprom_get_ht20_trgt_pwr(
1020            ah, HT_TARGET_RATE_12, freq, is_2ghz);
1021    target_power_val_t2[ALL_TARGET_HT20_13] =
1022        ar9300_eeprom_get_ht20_trgt_pwr(
1023            ah, HT_TARGET_RATE_13, freq, is_2ghz);
1024    target_power_val_t2[ALL_TARGET_HT20_14] =
1025        ar9300_eeprom_get_ht20_trgt_pwr(
1026            ah, HT_TARGET_RATE_14, freq, is_2ghz);
1027    target_power_val_t2[ALL_TARGET_HT20_15] =
1028        ar9300_eeprom_get_ht20_trgt_pwr(
1029            ah, HT_TARGET_RATE_15, freq, is_2ghz);
1030    target_power_val_t2[ALL_TARGET_HT20_20] =
1031        ar9300_eeprom_get_ht20_trgt_pwr(
1032            ah, HT_TARGET_RATE_20, freq, is_2ghz);
1033    target_power_val_t2[ALL_TARGET_HT20_21] =
1034        ar9300_eeprom_get_ht20_trgt_pwr(
1035            ah, HT_TARGET_RATE_21, freq, is_2ghz);
1036    target_power_val_t2[ALL_TARGET_HT20_22] =
1037        ar9300_eeprom_get_ht20_trgt_pwr(
1038            ah, HT_TARGET_RATE_22, freq, is_2ghz);
1039    target_power_val_t2[ALL_TARGET_HT20_23] =
1040        ar9300_eeprom_get_ht20_trgt_pwr(
1041            ah, HT_TARGET_RATE_23, freq, is_2ghz);
1042    target_power_val_t2[ALL_TARGET_HT40_0_8_16] =
1043        ar9300_eeprom_get_ht40_trgt_pwr(
1044            ah, HT_TARGET_RATE_0_8_16, freq, is_2ghz) +
1045        ht40_power_inc_for_pdadc;
1046    target_power_val_t2[ALL_TARGET_HT40_1_3_9_11_17_19] =
1047        ar9300_eeprom_get_ht40_trgt_pwr(
1048            ah, HT_TARGET_RATE_1_3_9_11_17_19, freq, is_2ghz) +
1049        ht40_power_inc_for_pdadc;
1050    target_power_val_t2[ALL_TARGET_HT40_4] =
1051        ar9300_eeprom_get_ht40_trgt_pwr(
1052            ah, HT_TARGET_RATE_4, freq, is_2ghz) + ht40_power_inc_for_pdadc;
1053    target_power_val_t2[ALL_TARGET_HT40_5] =
1054        ar9300_eeprom_get_ht40_trgt_pwr(
1055            ah, HT_TARGET_RATE_5, freq, is_2ghz) + ht40_power_inc_for_pdadc;
1056    target_power_val_t2[ALL_TARGET_HT40_6] =
1057        ar9300_eeprom_get_ht40_trgt_pwr(
1058            ah, HT_TARGET_RATE_6, freq, is_2ghz) + ht40_power_inc_for_pdadc;
1059    target_power_val_t2[ALL_TARGET_HT40_7] =
1060        ar9300_eeprom_get_ht40_trgt_pwr(
1061            ah, HT_TARGET_RATE_7, freq, is_2ghz) + ht40_power_inc_for_pdadc;
1062    target_power_val_t2[ALL_TARGET_HT40_12] =
1063        ar9300_eeprom_get_ht40_trgt_pwr(
1064            ah, HT_TARGET_RATE_12, freq, is_2ghz) + ht40_power_inc_for_pdadc;
1065    target_power_val_t2[ALL_TARGET_HT40_13] =
1066        ar9300_eeprom_get_ht40_trgt_pwr(
1067            ah, HT_TARGET_RATE_13, freq, is_2ghz) + ht40_power_inc_for_pdadc;
1068    target_power_val_t2[ALL_TARGET_HT40_14] =
1069        ar9300_eeprom_get_ht40_trgt_pwr(
1070            ah, HT_TARGET_RATE_14, freq, is_2ghz) + ht40_power_inc_for_pdadc;
1071    target_power_val_t2[ALL_TARGET_HT40_15] =
1072        ar9300_eeprom_get_ht40_trgt_pwr(
1073            ah, HT_TARGET_RATE_15, freq, is_2ghz) + ht40_power_inc_for_pdadc;
1074    target_power_val_t2[ALL_TARGET_HT40_20] =
1075        ar9300_eeprom_get_ht40_trgt_pwr(
1076            ah, HT_TARGET_RATE_20, freq, is_2ghz) + ht40_power_inc_for_pdadc;
1077    target_power_val_t2[ALL_TARGET_HT40_21] =
1078        ar9300_eeprom_get_ht40_trgt_pwr(
1079            ah, HT_TARGET_RATE_21, freq, is_2ghz) + ht40_power_inc_for_pdadc;
1080    target_power_val_t2[ALL_TARGET_HT40_22] =
1081        ar9300_eeprom_get_ht40_trgt_pwr(
1082            ah, HT_TARGET_RATE_22, freq, is_2ghz) + ht40_power_inc_for_pdadc;
1083    target_power_val_t2[ALL_TARGET_HT40_23] =
1084        ar9300_eeprom_get_ht40_trgt_pwr(
1085            ah, HT_TARGET_RATE_23, freq, is_2ghz) + ht40_power_inc_for_pdadc;
1086
1087#ifdef AH_DEBUG
1088    {
1089        int  i = 0;
1090
1091        HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: APPLYING TARGET POWERS\n", __func__);
1092        while (i < ar9300_rate_size) {
1093            HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: TPC[%02d] 0x%08x ",
1094                     __func__, i, target_power_val_t2[i]);
1095            i++;
1096			if (i == ar9300_rate_size) {
1097                break;
1098			}
1099            HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: TPC[%02d] 0x%08x ",
1100                     __func__, i, target_power_val_t2[i]);
1101            i++;
1102			if (i == ar9300_rate_size) {
1103                break;
1104			}
1105            HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: TPC[%02d] 0x%08x ",
1106                     __func__, i, target_power_val_t2[i]);
1107            i++;
1108			if (i == ar9300_rate_size) {
1109                break;
1110			}
1111            HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: TPC[%02d] 0x%08x \n",
1112                     __func__, i, target_power_val_t2[i]);
1113            i++;
1114        }
1115    }
1116#endif
1117}
1118
1119u_int16_t *ar9300_regulatory_domain_get(struct ath_hal *ah)
1120{
1121    ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
1122    return eep->base_eep_header.reg_dmn;
1123}
1124
1125
1126int32_t
1127ar9300_eeprom_write_enable_gpio_get(struct ath_hal *ah)
1128{
1129    ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
1130    return eep->base_eep_header.eeprom_write_enable_gpio;
1131}
1132
1133int32_t
1134ar9300_wlan_disable_gpio_get(struct ath_hal *ah)
1135{
1136    ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
1137    return eep->base_eep_header.wlan_disable_gpio;
1138}
1139
1140int32_t
1141ar9300_wlan_led_gpio_get(struct ath_hal *ah)
1142{
1143    ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
1144    return eep->base_eep_header.wlan_led_gpio;
1145}
1146
1147int32_t
1148ar9300_rx_band_select_gpio_get(struct ath_hal *ah)
1149{
1150    ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
1151    return eep->base_eep_header.rx_band_select_gpio;
1152}
1153
1154/*
1155 * since valid noise floor values are negative, returns 1 on error
1156 */
1157int32_t
1158ar9300_noise_floor_cal_or_power_get(struct ath_hal *ah, int32_t frequency,
1159    int32_t ichain, HAL_BOOL use_cal)
1160{
1161    int     nf_use = 1; /* start with an error return value */
1162    int32_t fx[OSPREY_NUM_5G_CAL_PIERS + OSPREY_NUM_2G_CAL_PIERS];
1163    int32_t nf[OSPREY_NUM_5G_CAL_PIERS + OSPREY_NUM_2G_CAL_PIERS];
1164    int     nnf;
1165    int     is_2ghz;
1166    int     ipier, npier;
1167    ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
1168    u_int8_t        *p_cal_pier;
1169    OSP_CAL_DATA_PER_FREQ_OP_LOOP *p_cal_pier_struct;
1170
1171    /*
1172     * check chain value
1173     */
1174    if (ichain < 0 || ichain >= OSPREY_MAX_CHAINS) {
1175        return 1;
1176    }
1177
1178    /* figure out which band we're using */
1179    is_2ghz = (frequency < 4000);
1180    if (is_2ghz) {
1181        npier = OSPREY_NUM_2G_CAL_PIERS;
1182        p_cal_pier = eep->cal_freq_pier_2g;
1183        p_cal_pier_struct = eep->cal_pier_data_2g[ichain];
1184    } else {
1185        npier = OSPREY_NUM_5G_CAL_PIERS;
1186        p_cal_pier = eep->cal_freq_pier_5g;
1187        p_cal_pier_struct = eep->cal_pier_data_5g[ichain];
1188    }
1189    /* look for valid noise floor values */
1190    nnf = 0;
1191    for (ipier = 0; ipier < npier; ipier++) {
1192        fx[nnf] = FBIN2FREQ(p_cal_pier[ipier], is_2ghz);
1193        nf[nnf] = use_cal ?
1194            p_cal_pier_struct[ipier].rx_noisefloor_cal :
1195            p_cal_pier_struct[ipier].rx_noisefloor_power;
1196        if (nf[nnf] < 0) {
1197            nnf++;
1198        }
1199    }
1200    /*
1201     * If we have some valid values, interpolate to find the value
1202     * at the desired frequency.
1203     */
1204    if (nnf > 0) {
1205        nf_use = interpolate(frequency, fx, nf, nnf);
1206    }
1207
1208    return nf_use;
1209}
1210
1211/*
1212 * Return the Rx NF offset for specific channel.
1213 * The values saved in EEPROM/OTP/Flash is converted through the following way:
1214 *     ((_p) - NOISE_PWR_DATA_OFFSET) << 2
1215 * So we need to convert back to the original values.
1216 */
1217int ar9300_get_rx_nf_offset(struct ath_hal *ah, struct ieee80211_channel *chan, int8_t *nf_pwr, int8_t *nf_cal) {
1218    HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
1219    int8_t rx_nf_pwr, rx_nf_cal;
1220    int i;
1221    //HALASSERT(ichan);
1222
1223    /* Fill 0 if valid internal channel is not found */
1224    if (ichan == AH_NULL) {
1225        OS_MEMZERO(nf_pwr, sizeof(nf_pwr[0])*OSPREY_MAX_CHAINS);
1226        OS_MEMZERO(nf_cal, sizeof(nf_cal[0])*OSPREY_MAX_CHAINS);
1227        return -1;
1228    }
1229
1230    for (i = 0; i < OSPREY_MAX_CHAINS; i++) {
1231	    if ((rx_nf_pwr = ar9300_noise_floor_cal_or_power_get(ah, ichan->channel, i, 0)) == 1) {
1232	        nf_pwr[i] = 0;
1233	    } else {
1234	        //printk("%s: raw nf_pwr[%d] = %d\n", __func__, i, rx_nf_pwr);
1235            nf_pwr[i] = NOISE_PWR_DBM_2_INT(rx_nf_pwr);
1236	    }
1237
1238	    if ((rx_nf_cal = ar9300_noise_floor_cal_or_power_get(ah, ichan->channel, i, 1)) == 1) {
1239	        nf_cal[i] = 0;
1240	    } else {
1241	        //printk("%s: raw nf_cal[%d] = %d\n", __func__, i, rx_nf_cal);
1242            nf_cal[i] = NOISE_PWR_DBM_2_INT(rx_nf_cal);
1243	    }
1244    }
1245
1246    return 0;
1247}
1248
1249int32_t ar9300_rx_gain_index_get(struct ath_hal *ah)
1250{
1251    ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
1252
1253    return (eep->base_eep_header.txrxgain) & 0xf;        /* bits 3:0 */
1254}
1255
1256
1257int32_t ar9300_tx_gain_index_get(struct ath_hal *ah)
1258{
1259    ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
1260
1261    return (eep->base_eep_header.txrxgain >> 4) & 0xf;    /* bits 7:4 */
1262}
1263
1264HAL_BOOL ar9300_internal_regulator_apply(struct ath_hal *ah)
1265{
1266    struct ath_hal_9300 *ahp = AH9300(ah);
1267    int internal_regulator = ar9300_eeprom_get(ahp, EEP_INTERNAL_REGULATOR);
1268    int reg_pmu1, reg_pmu2, reg_pmu1_set, reg_pmu2_set;
1269    u_int32_t reg_PMU1, reg_PMU2;
1270    unsigned long eep_addr;
1271    u_int32_t reg_val, reg_usb = 0, reg_pmu = 0;
1272    int usb_valid = 0, pmu_valid = 0;
1273    unsigned char pmu_refv;
1274
1275    if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) {
1276        reg_PMU1 = AR_PHY_PMU1_JUPITER;
1277        reg_PMU2 = AR_PHY_PMU2_JUPITER;
1278    }
1279    else {
1280        reg_PMU1 = AR_PHY_PMU1;
1281        reg_PMU2 = AR_PHY_PMU2;
1282    }
1283
1284    if (internal_regulator) {
1285        if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah)) {
1286            if (AR_SREV_HORNET(ah)) {
1287                /* Read OTP first */
1288                for (eep_addr = 0x14; ; eep_addr -= 0x10) {
1289
1290                    ar9300_otp_read(ah, eep_addr / 4, &reg_val, 1);
1291
1292                    if ((reg_val & 0x80) == 0x80){
1293                        usb_valid = 1;
1294                        reg_usb = reg_val & 0x000000ff;
1295                    }
1296
1297                    if ((reg_val & 0x80000000) == 0x80000000){
1298                        pmu_valid = 1;
1299                        reg_pmu = (reg_val & 0xff000000) >> 24;
1300                    }
1301
1302                    if (eep_addr == 0x4) {
1303                        break;
1304                    }
1305                }
1306
1307                if (pmu_valid) {
1308                    pmu_refv = reg_pmu & 0xf;
1309                } else {
1310                    pmu_refv = 0x8;
1311                }
1312
1313                /*
1314                 * If (valid) {
1315                 *   Usb_phy_ctrl2_tx_cal_en -> 0
1316                 *   Usb_phy_ctrl2_tx_cal_sel -> 0
1317                 *   Usb_phy_ctrl2_tx_man_cal -> 0, 1, 3, 7 or 15 from OTP
1318                 * }
1319                 */
1320                if (usb_valid) {
1321                    OS_REG_RMW_FIELD(ah, 0x16c88, AR_PHY_CTRL2_TX_CAL_EN, 0x0);
1322                    OS_REG_RMW_FIELD(ah, 0x16c88, AR_PHY_CTRL2_TX_CAL_SEL, 0x0);
1323                    OS_REG_RMW_FIELD(ah, 0x16c88,
1324                        AR_PHY_CTRL2_TX_MAN_CAL, (reg_usb & 0xf));
1325                }
1326
1327            } else {
1328                pmu_refv = 0x8;
1329            }
1330            /*#ifndef USE_HIF*/
1331            /* Follow the MDK settings for Hornet PMU.
1332             * my $pwd               = 0x0;
1333             * my $Nfdiv             = 0x3;  # xtal_freq = 25MHz
1334             * my $Nfdiv             = 0x4;  # xtal_freq = 40MHz
1335             * my $Refv              = 0x7;  # 0x5:1.22V; 0x8:1.29V
1336             * my $Gm1               = 0x3;  #Poseidon $Gm1=1
1337             * my $classb            = 0x0;
1338             * my $Cc                = 0x1;  #Poseidon $Cc=7
1339             * my $Rc                = 0x6;
1340             * my $ramp_slope        = 0x1;
1341             * my $Segm              = 0x3;
1342             * my $use_local_osc     = 0x0;
1343             * my $force_xosc_stable = 0x0;
1344             * my $Selfb             = 0x0;  #Poseidon $Selfb=1
1345             * my $Filterfb          = 0x3;  #Poseidon $Filterfb=0
1346             * my $Filtervc          = 0x0;
1347             * my $disc              = 0x0;
1348             * my $discdel           = 0x4;
1349             * my $spare             = 0x0;
1350             * $reg_PMU1 =
1351             *     $pwd | ($Nfdiv<<1) | ($Refv<<4) | ($Gm1<<8) |
1352             *     ($classb<<11) | ($Cc<<14) | ($Rc<<17) | ($ramp_slope<<20) |
1353             *     ($Segm<<24) | ($use_local_osc<<26) |
1354             *     ($force_xosc_stable<<27) | ($Selfb<<28) | ($Filterfb<<29);
1355             * $reg_PMU2 = $handle->reg_rd("ch0_PMU2");
1356             * $reg_PMU2 = ($reg_PMU2 & 0xfe3fffff) | ($Filtervc<<22);
1357             * $reg_PMU2 = ($reg_PMU2 & 0xe3ffffff) | ($discdel<<26);
1358             * $reg_PMU2 = ($reg_PMU2 & 0x1fffffff) | ($spare<<29);
1359             */
1360            if (ahp->clk_25mhz) {
1361                reg_pmu1_set = 0 |
1362                    (3 <<  1) | (pmu_refv << 4) | (3 <<  8) | (0 << 11) |
1363                    (1 << 14) | (6 << 17) | (1 << 20) | (3 << 24) |
1364                    (0 << 26) | (0 << 27) | (0 << 28) | (0 << 29);
1365            } else {
1366                if (AR_SREV_POSEIDON(ah)) {
1367                    reg_pmu1_set = 0 |
1368                        (5 <<  1) | (7 <<  4) | (2 <<  8) | (0 << 11) |
1369                        (2 << 14) | (6 << 17) | (1 << 20) | (3 << 24) |
1370                        (0 << 26) | (0 << 27) | (1 << 28) | (0 << 29) ;
1371                } else {
1372                    reg_pmu1_set = 0 |
1373                        (4 <<  1) | (7 <<  4) | (3 <<  8) | (0 << 11) |
1374                        (1 << 14) | (6 << 17) | (1 << 20) | (3 << 24) |
1375                        (0 << 26) | (0 << 27) | (0 << 28) | (0 << 29) ;
1376                }
1377            }
1378            OS_REG_RMW_FIELD(ah, reg_PMU2, AR_PHY_PMU2_PGM, 0x0);
1379
1380            OS_REG_WRITE(ah, reg_PMU1, reg_pmu1_set);   /* 0x638c8376 */
1381            reg_pmu1 = OS_REG_READ(ah, reg_PMU1);
1382            while (reg_pmu1 != reg_pmu1_set) {
1383                OS_REG_WRITE(ah, reg_PMU1, reg_pmu1_set);  /* 0x638c8376 */
1384                OS_DELAY(10);
1385                reg_pmu1 = OS_REG_READ(ah, reg_PMU1);
1386            }
1387
1388            reg_pmu2_set =
1389                 (OS_REG_READ(ah, reg_PMU2) & (~0xFFC00000)) | (4 << 26);
1390            OS_REG_WRITE(ah, reg_PMU2, reg_pmu2_set);
1391            reg_pmu2 = OS_REG_READ(ah, reg_PMU2);
1392            while (reg_pmu2 != reg_pmu2_set) {
1393                OS_REG_WRITE(ah, reg_PMU2, reg_pmu2_set);
1394                OS_DELAY(10);
1395                reg_pmu2 = OS_REG_READ(ah, reg_PMU2);
1396            }
1397            reg_pmu2_set =
1398                 (OS_REG_READ(ah, reg_PMU2) & (~0x00200000)) | (1 << 21);
1399            OS_REG_WRITE(ah, reg_PMU2, reg_pmu2_set);
1400            reg_pmu2 = OS_REG_READ(ah, reg_PMU2);
1401            while (reg_pmu2 != reg_pmu2_set) {
1402                OS_REG_WRITE(ah, reg_PMU2, reg_pmu2_set);
1403                OS_DELAY(10);
1404                reg_pmu2 = OS_REG_READ(ah, reg_PMU2);
1405            }
1406            /*#endif*/
1407        } else if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) {
1408            /* Internal regulator is ON. Write swreg register. */
1409            int swreg = ar9300_eeprom_get(ahp, EEP_SWREG);
1410            OS_REG_WRITE(ah, reg_PMU1, swreg);
1411        } else {
1412            /* Internal regulator is ON. Write swreg register. */
1413            int swreg = ar9300_eeprom_get(ahp, EEP_SWREG);
1414            OS_REG_WRITE(ah, AR_RTC_REG_CONTROL1,
1415                         OS_REG_READ(ah, AR_RTC_REG_CONTROL1) &
1416                         (~AR_RTC_REG_CONTROL1_SWREG_PROGRAM));
1417            OS_REG_WRITE(ah, AR_RTC_REG_CONTROL0, swreg);
1418            /* Set REG_CONTROL1.SWREG_PROGRAM */
1419            OS_REG_WRITE(ah, AR_RTC_REG_CONTROL1,
1420                OS_REG_READ(ah, AR_RTC_REG_CONTROL1) |
1421                AR_RTC_REG_CONTROL1_SWREG_PROGRAM);
1422        }
1423    } else {
1424        if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah)) {
1425            OS_REG_RMW_FIELD(ah, reg_PMU2, AR_PHY_PMU2_PGM, 0x0);
1426            reg_pmu2 = OS_REG_READ_FIELD(ah, reg_PMU2, AR_PHY_PMU2_PGM);
1427            while (reg_pmu2) {
1428                OS_DELAY(10);
1429                reg_pmu2 = OS_REG_READ_FIELD(ah, reg_PMU2, AR_PHY_PMU2_PGM);
1430            }
1431            OS_REG_RMW_FIELD(ah, reg_PMU1, AR_PHY_PMU1_PWD, 0x1);
1432            reg_pmu1 = OS_REG_READ_FIELD(ah, reg_PMU1, AR_PHY_PMU1_PWD);
1433            while (!reg_pmu1) {
1434                OS_DELAY(10);
1435                reg_pmu1 = OS_REG_READ_FIELD(ah, reg_PMU1, AR_PHY_PMU1_PWD);
1436            }
1437            OS_REG_RMW_FIELD(ah, reg_PMU2, AR_PHY_PMU2_PGM, 0x1);
1438            reg_pmu2 = OS_REG_READ_FIELD(ah, reg_PMU2, AR_PHY_PMU2_PGM);
1439            while (!reg_pmu2) {
1440                OS_DELAY(10);
1441                reg_pmu2 = OS_REG_READ_FIELD(ah, reg_PMU2, AR_PHY_PMU2_PGM);
1442            }
1443        } else if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) {
1444            OS_REG_RMW_FIELD(ah, reg_PMU1, AR_PHY_PMU1_PWD, 0x1);
1445        } else {
1446            OS_REG_WRITE(ah, AR_RTC_SLEEP_CLK,
1447                (OS_REG_READ(ah, AR_RTC_SLEEP_CLK) |
1448                AR_RTC_FORCE_SWREG_PRD | AR_RTC_PCIE_RST_PWDN_EN));
1449        }
1450    }
1451
1452    return 0;
1453}
1454
1455HAL_BOOL ar9300_drive_strength_apply(struct ath_hal *ah)
1456{
1457    struct ath_hal_9300 *ahp = AH9300(ah);
1458    int drive_strength;
1459    unsigned long reg;
1460
1461    drive_strength = ar9300_eeprom_get(ahp, EEP_DRIVE_STRENGTH);
1462    if (drive_strength) {
1463        reg = OS_REG_READ(ah, AR_PHY_65NM_CH0_BIAS1);
1464        reg &= ~0x00ffffc0;
1465        reg |= 0x5 << 21;
1466        reg |= 0x5 << 18;
1467        reg |= 0x5 << 15;
1468        reg |= 0x5 << 12;
1469        reg |= 0x5 << 9;
1470        reg |= 0x5 << 6;
1471        OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS1, reg);
1472
1473        reg = OS_REG_READ(ah, AR_PHY_65NM_CH0_BIAS2);
1474        reg &= ~0xffffffe0;
1475        reg |= 0x5 << 29;
1476        reg |= 0x5 << 26;
1477        reg |= 0x5 << 23;
1478        reg |= 0x5 << 20;
1479        reg |= 0x5 << 17;
1480        reg |= 0x5 << 14;
1481        reg |= 0x5 << 11;
1482        reg |= 0x5 << 8;
1483        reg |= 0x5 << 5;
1484        OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS2, reg);
1485
1486        reg = OS_REG_READ(ah, AR_PHY_65NM_CH0_BIAS4);
1487        reg &= ~0xff800000;
1488        reg |= 0x5 << 29;
1489        reg |= 0x5 << 26;
1490        reg |= 0x5 << 23;
1491        OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS4, reg);
1492    }
1493    return 0;
1494}
1495
1496int32_t ar9300_xpa_bias_level_get(struct ath_hal *ah, HAL_BOOL is_2ghz)
1497{
1498    ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
1499    if (is_2ghz) {
1500        return eep->modal_header_2g.xpa_bias_lvl;
1501    } else {
1502        return eep->modal_header_5g.xpa_bias_lvl;
1503    }
1504}
1505
1506HAL_BOOL ar9300_xpa_bias_level_apply(struct ath_hal *ah, HAL_BOOL is_2ghz)
1507{
1508    /*
1509     * In ar9330 emu, we can't access radio registers,
1510     * merlin is used for radio part.
1511     */
1512    int bias;
1513    bias = ar9300_xpa_bias_level_get(ah, is_2ghz);
1514
1515    if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_WASP(ah)) {
1516        OS_REG_RMW_FIELD(ah,
1517            AR_HORNET_CH0_TOP2, AR_HORNET_CH0_TOP2_XPABIASLVL, bias);
1518    } else if (AR_SREV_SCORPION(ah)) {
1519        OS_REG_RMW_FIELD(ah,
1520            AR_SCORPION_CH0_TOP, AR_SCORPION_CH0_TOP_XPABIASLVL, bias);
1521    } else if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) {
1522        OS_REG_RMW_FIELD(ah,
1523            AR_PHY_65NM_CH0_TOP_JUPITER, AR_PHY_65NM_CH0_TOP_XPABIASLVL, bias);
1524    } else {
1525        OS_REG_RMW_FIELD(ah,
1526            AR_PHY_65NM_CH0_TOP, AR_PHY_65NM_CH0_TOP_XPABIASLVL, bias);
1527        OS_REG_RMW_FIELD(ah,
1528            AR_PHY_65NM_CH0_THERM, AR_PHY_65NM_CH0_THERM_XPABIASLVL_MSB,
1529            bias >> 2);
1530        OS_REG_RMW_FIELD(ah,
1531            AR_PHY_65NM_CH0_THERM, AR_PHY_65NM_CH0_THERM_XPASHORT2GND, 1);
1532    }
1533    return 0;
1534}
1535
1536u_int32_t ar9300_ant_ctrl_common_get(struct ath_hal *ah, HAL_BOOL is_2ghz)
1537{
1538    ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
1539    if (is_2ghz) {
1540        return eep->modal_header_2g.ant_ctrl_common;
1541    } else {
1542        return eep->modal_header_5g.ant_ctrl_common;
1543    }
1544}
1545static u_int16_t
1546ar9300_switch_com_spdt_get(struct ath_hal *ah, HAL_BOOL is_2ghz)
1547{
1548    ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
1549    if (is_2ghz) {
1550        return eep->modal_header_2g.switchcomspdt;
1551    } else {
1552        return eep->modal_header_5g.switchcomspdt;
1553    }
1554}
1555u_int32_t ar9300_ant_ctrl_common2_get(struct ath_hal *ah, HAL_BOOL is_2ghz)
1556{
1557    ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
1558    if (is_2ghz) {
1559        return eep->modal_header_2g.ant_ctrl_common2;
1560    } else {
1561        return eep->modal_header_5g.ant_ctrl_common2;
1562    }
1563}
1564
1565u_int16_t ar9300_ant_ctrl_chain_get(struct ath_hal *ah, int chain,
1566    HAL_BOOL is_2ghz)
1567{
1568    ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
1569    if (chain >= 0 && chain < OSPREY_MAX_CHAINS) {
1570        if (is_2ghz) {
1571            return eep->modal_header_2g.ant_ctrl_chain[chain];
1572        } else {
1573            return eep->modal_header_5g.ant_ctrl_chain[chain];
1574        }
1575    }
1576    return 0;
1577}
1578
1579/*
1580 * Select the usage of antenna via the RF switch.
1581 * Default values are loaded from eeprom.
1582 */
1583HAL_BOOL ar9300_ant_swcom_sel(struct ath_hal *ah, u_int8_t ops,
1584                        u_int32_t *common_tbl1, u_int32_t *common_tbl2)
1585{
1586    ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
1587    struct ath_hal_private  *ap  = AH_PRIVATE(ah);
1588    const struct ieee80211_channel *curchan = ap->ah_curchan;
1589    enum {
1590        ANT_SELECT_OPS_GET,
1591        ANT_SELECT_OPS_SET,
1592    };
1593
1594    if (AR_SREV_JUPITER(ah) || AR_SREV_SCORPION(ah))
1595        return AH_FALSE;
1596
1597    if (!curchan)
1598        return AH_FALSE;
1599
1600#define AR_SWITCH_TABLE_COM_ALL (0xffff)
1601#define AR_SWITCH_TABLE_COM_ALL_S (0)
1602#define AR_SWITCH_TABLE_COM2_ALL (0xffffff)
1603#define AR_SWITCH_TABLE_COM2_ALL_S (0)
1604    switch (ops) {
1605    case ANT_SELECT_OPS_GET:
1606        *common_tbl1 = OS_REG_READ_FIELD(ah, AR_PHY_SWITCH_COM,
1607                            AR_SWITCH_TABLE_COM_ALL);
1608        *common_tbl2 = OS_REG_READ_FIELD(ah, AR_PHY_SWITCH_COM_2,
1609                            AR_SWITCH_TABLE_COM2_ALL);
1610        break;
1611    case ANT_SELECT_OPS_SET:
1612        OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
1613            AR_SWITCH_TABLE_COM_ALL, *common_tbl1);
1614        OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM_2,
1615            AR_SWITCH_TABLE_COM2_ALL, *common_tbl2);
1616
1617        /* write back to eeprom */
1618        if (IEEE80211_IS_CHAN_2GHZ(curchan)) {
1619            eep->modal_header_2g.ant_ctrl_common = *common_tbl1;
1620            eep->modal_header_2g.ant_ctrl_common2 = *common_tbl2;
1621        } else {
1622            eep->modal_header_5g.ant_ctrl_common = *common_tbl1;
1623            eep->modal_header_5g.ant_ctrl_common2 = *common_tbl2;
1624        }
1625
1626        break;
1627    default:
1628        break;
1629    }
1630
1631    return AH_TRUE;
1632}
1633
1634HAL_BOOL ar9300_ant_ctrl_apply(struct ath_hal *ah, HAL_BOOL is_2ghz)
1635{
1636    u_int32_t value;
1637    struct ath_hal_9300 *ahp = AH9300(ah);
1638    u_int32_t regval;
1639    struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
1640#if ATH_ANT_DIV_COMB
1641    HAL_CAPABILITIES *pcap = &ahpriv->ah_caps;
1642#endif  /* ATH_ANT_DIV_COMB */
1643    u_int32_t xlan_gpio_cfg;
1644    u_int8_t  i;
1645
1646    HALDEBUG(ah, HAL_DEBUG_BT_COEX, "%s: use_bt_ant_enable=%d\n",
1647      __func__, ahp->ah_lna_div_use_bt_ant_enable);
1648
1649    /* XXX TODO: only if rx_gain_idx == 0 */
1650    if (AR_SREV_POSEIDON(ah)) {
1651        xlan_gpio_cfg = ah->ah_config.ath_hal_ext_lna_ctl_gpio;
1652        if (xlan_gpio_cfg) {
1653            for (i = 0; i < 32; i++) {
1654                if (xlan_gpio_cfg & (1 << i)) {
1655                    ath_hal_gpioCfgOutput(ah, i,
1656                        HAL_GPIO_OUTPUT_MUX_PCIE_ATTENTION_LED);
1657                }
1658            }
1659        }
1660    }
1661#define AR_SWITCH_TABLE_COM_ALL (0xffff)
1662#define AR_SWITCH_TABLE_COM_ALL_S (0)
1663#define AR_SWITCH_TABLE_COM_JUPITER_ALL (0xffffff)
1664#define AR_SWITCH_TABLE_COM_JUPITER_ALL_S (0)
1665#define AR_SWITCH_TABLE_COM_SCORPION_ALL (0xffffff)
1666#define AR_SWITCH_TABLE_COM_SCORPION_ALL_S (0)
1667#define AR_SWITCH_TABLE_COM_HONEYBEE_ALL (0xffffff)
1668#define AR_SWITCH_TABLE_COM_HONEYBEE_ALL_S (0)
1669#define AR_SWITCH_TABLE_COM_SPDT (0x00f00000)
1670    value = ar9300_ant_ctrl_common_get(ah, is_2ghz);
1671    if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) {
1672        if (AR_SREV_JUPITER_10(ah)) {
1673            /* Force SPDT setting for Jupiter 1.0 chips. */
1674            value &= ~AR_SWITCH_TABLE_COM_SPDT;
1675            value |= 0x00100000;
1676        }
1677        OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
1678            AR_SWITCH_TABLE_COM_JUPITER_ALL, value);
1679    }
1680    else if (AR_SREV_SCORPION(ah)) {
1681        OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
1682            AR_SWITCH_TABLE_COM_SCORPION_ALL, value);
1683    }
1684    else if (AR_SREV_HONEYBEE(ah)) {
1685        OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
1686            AR_SWITCH_TABLE_COM_HONEYBEE_ALL, value);
1687    }
1688    else {
1689        OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
1690            AR_SWITCH_TABLE_COM_ALL, value);
1691    }
1692/*
1693*   Jupiter2.0 defines new switch table for BT/WLAN,
1694*	here's new field name in WB222.ref for both 2G and 5G.
1695*   Register: [GLB_CONTROL] GLB_CONTROL (@0x20044)
1696*   15:12	R/W	SWITCH_TABLE_COM_SPDT_WLAN_RX	SWITCH_TABLE_COM_SPDT_WLAN_RX
1697*   11:8	R/W	SWITCH_TABLE_COM_SPDT_WLAN_TX	SWITCH_TABLE_COM_SPDT_WLAN_TX
1698*   7:4	R/W	SWITCH_TABLE_COM_SPDT_WLAN_IDLE	SWITCH_TABLE_COM_SPDT_WLAN_IDLE
1699*/
1700#define AR_SWITCH_TABLE_COM_SPDT_ALL (0x0000fff0)
1701#define AR_SWITCH_TABLE_COM_SPDT_ALL_S (4)
1702    if (AR_SREV_JUPITER_20_OR_LATER(ah) || AR_SREV_APHRODITE(ah)) {
1703        value = ar9300_switch_com_spdt_get(ah, is_2ghz);
1704        OS_REG_RMW_FIELD(ah, AR_GLB_CONTROL,
1705            AR_SWITCH_TABLE_COM_SPDT_ALL, value);
1706
1707        OS_REG_SET_BIT(ah, AR_GLB_CONTROL,
1708            AR_BTCOEX_CTRL_SPDT_ENABLE);
1709        //OS_REG_SET_BIT(ah, AR_GLB_CONTROL,
1710        //    AR_BTCOEX_CTRL_BT_OWN_SPDT_CTRL);
1711    }
1712
1713#define AR_SWITCH_TABLE_COM2_ALL (0xffffff)
1714#define AR_SWITCH_TABLE_COM2_ALL_S (0)
1715    value = ar9300_ant_ctrl_common2_get(ah, is_2ghz);
1716#if ATH_ANT_DIV_COMB
1717    if ( AR_SREV_POSEIDON(ah) && (ahp->ah_lna_div_use_bt_ant_enable == TRUE) ) {
1718        value &= ~AR_SWITCH_TABLE_COM2_ALL;
1719        value |= ah->ah_config.ath_hal_ant_ctrl_comm2g_switch_enable;
1720	HALDEBUG(ah, HAL_DEBUG_RESET, "%s: com2=0x%08x\n", __func__, value)
1721    }
1722#endif  /* ATH_ANT_DIV_COMB */
1723    OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM_2, AR_SWITCH_TABLE_COM2_ALL, value);
1724
1725#define AR_SWITCH_TABLE_ALL (0xfff)
1726#define AR_SWITCH_TABLE_ALL_S (0)
1727    value = ar9300_ant_ctrl_chain_get(ah, 0, is_2ghz);
1728    OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_CHAIN_0, AR_SWITCH_TABLE_ALL, value);
1729
1730    if (!AR_SREV_HORNET(ah) && !AR_SREV_POSEIDON(ah) && !AR_SREV_APHRODITE(ah)) {
1731        value = ar9300_ant_ctrl_chain_get(ah, 1, is_2ghz);
1732        OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_CHAIN_1, AR_SWITCH_TABLE_ALL, value);
1733
1734        if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah) && !AR_SREV_HONEYBEE(ah)) {
1735            value = ar9300_ant_ctrl_chain_get(ah, 2, is_2ghz);
1736            OS_REG_RMW_FIELD(ah,
1737                AR_PHY_SWITCH_CHAIN_2, AR_SWITCH_TABLE_ALL, value);
1738        }
1739    }
1740    if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah)) {
1741        value = ar9300_eeprom_get(ahp, EEP_ANTDIV_control);
1742        /* main_lnaconf, alt_lnaconf, main_tb, alt_tb */
1743        regval = OS_REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
1744        regval &= (~ANT_DIV_CONTROL_ALL); /* clear bit 25~30 */
1745        regval |= (value & 0x3f) << ANT_DIV_CONTROL_ALL_S;
1746        /* enable_lnadiv */
1747        regval &= (~MULTICHAIN_GAIN_CTRL__ENABLE_ANT_DIV_LNADIV__MASK);
1748        regval |= ((value >> 6) & 0x1) <<
1749                  MULTICHAIN_GAIN_CTRL__ENABLE_ANT_DIV_LNADIV__SHIFT;
1750#if ATH_ANT_DIV_COMB
1751        if ( AR_SREV_POSEIDON(ah) && (ahp->ah_lna_div_use_bt_ant_enable == TRUE) ) {
1752            regval |= ANT_DIV_ENABLE;
1753        }
1754        if (AR_SREV_APHRODITE(ah)) {
1755                if (ahp->ah_lna_div_use_bt_ant_enable) {
1756                        regval |= (1 << MULTICHAIN_GAIN_CTRL__ENABLE_ANT_SW_RX_PROT__SHIFT);
1757
1758                        OS_REG_SET_BIT(ah, AR_PHY_RESTART,
1759                                    RESTART__ENABLE_ANT_FAST_DIV_M2FLAG__MASK);
1760
1761                        /* Force WLAN LNA diversity ON */
1762                        OS_REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV,
1763                                    AR_BTCOEX_WL_LNADIV_FORCE_ON);
1764                } else {
1765                        regval &= ~(1 << MULTICHAIN_GAIN_CTRL__ENABLE_ANT_DIV_LNADIV__SHIFT);
1766                        regval &= ~(1 << MULTICHAIN_GAIN_CTRL__ENABLE_ANT_SW_RX_PROT__SHIFT);
1767
1768                        OS_REG_CLR_BIT(ah, AR_PHY_MC_GAIN_CTRL,
1769                                    (1 << MULTICHAIN_GAIN_CTRL__ENABLE_ANT_SW_RX_PROT__SHIFT));
1770
1771                        /* Force WLAN LNA diversity OFF */
1772                        OS_REG_CLR_BIT(ah, AR_BTCOEX_WL_LNADIV,
1773                                    AR_BTCOEX_WL_LNADIV_FORCE_ON);
1774                }
1775        }
1776
1777#endif  /* ATH_ANT_DIV_COMB */
1778        OS_REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
1779
1780        /* enable fast_div */
1781        regval = OS_REG_READ(ah, AR_PHY_CCK_DETECT);
1782        regval &= (~BBB_SIG_DETECT__ENABLE_ANT_FAST_DIV__MASK);
1783        regval |= ((value >> 7) & 0x1) <<
1784                  BBB_SIG_DETECT__ENABLE_ANT_FAST_DIV__SHIFT;
1785#if ATH_ANT_DIV_COMB
1786        if ((AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah))
1787          && (ahp->ah_lna_div_use_bt_ant_enable == TRUE) ) {
1788            regval |= FAST_DIV_ENABLE;
1789        }
1790#endif  /* ATH_ANT_DIV_COMB */
1791        OS_REG_WRITE(ah, AR_PHY_CCK_DETECT, regval);
1792    }
1793
1794#if ATH_ANT_DIV_COMB
1795    if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON_11_OR_LATER(ah)) {
1796        if (pcap->halAntDivCombSupport) {
1797            /* If support DivComb, set MAIN to LNA1, ALT to LNA2 at beginning */
1798            regval = OS_REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
1799            /* clear bit 25~30 main_lnaconf, alt_lnaconf, main_tb, alt_tb */
1800            regval &= (~(MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_LNACONF__MASK |
1801                         MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_LNACONF__MASK |
1802                         MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_GAINTB__MASK |
1803                         MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_GAINTB__MASK));
1804            regval |= (HAL_ANT_DIV_COMB_LNA1 <<
1805                       MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_LNACONF__SHIFT);
1806            regval |= (HAL_ANT_DIV_COMB_LNA2 <<
1807                       MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_LNACONF__SHIFT);
1808            OS_REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
1809        }
1810
1811    }
1812#endif /* ATH_ANT_DIV_COMB */
1813    if (AR_SREV_POSEIDON(ah) && ( ahp->ah_diversity_control == HAL_ANT_FIXED_A
1814	     || ahp->ah_diversity_control == HAL_ANT_FIXED_B))
1815    {
1816        u_int32_t reg_val = OS_REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
1817        reg_val &=  ~(MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_LNACONF__MASK |
1818                    MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_LNACONF__MASK |
1819                    MULTICHAIN_GAIN_CTRL__ANT_FAST_DIV_BIAS__MASK |
1820    		        MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_GAINTB__MASK |
1821    		        MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_GAINTB__MASK );
1822
1823        switch (ahp->ah_diversity_control) {
1824        case HAL_ANT_FIXED_A:
1825            /* Enable first antenna only */
1826            reg_val |= (HAL_ANT_DIV_COMB_LNA1 <<
1827                       MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_LNACONF__SHIFT);
1828            reg_val |= (HAL_ANT_DIV_COMB_LNA2 <<
1829                       MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_LNACONF__SHIFT);
1830            /* main/alt gain table and Fast Div Bias all set to 0 */
1831            OS_REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, reg_val);
1832            regval = OS_REG_READ(ah, AR_PHY_CCK_DETECT);
1833            regval &= (~BBB_SIG_DETECT__ENABLE_ANT_FAST_DIV__MASK);
1834            OS_REG_WRITE(ah, AR_PHY_CCK_DETECT, regval);
1835            break;
1836        case HAL_ANT_FIXED_B:
1837            /* Enable second antenna only, after checking capability */
1838            reg_val |= (HAL_ANT_DIV_COMB_LNA2 <<
1839                       MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_LNACONF__SHIFT);
1840            reg_val |= (HAL_ANT_DIV_COMB_LNA1 <<
1841                       MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_LNACONF__SHIFT);
1842            /* main/alt gain table and Fast Div all set to 0 */
1843            OS_REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, reg_val);
1844            regval = OS_REG_READ(ah, AR_PHY_CCK_DETECT);
1845            regval &= (~BBB_SIG_DETECT__ENABLE_ANT_FAST_DIV__MASK);
1846            OS_REG_WRITE(ah, AR_PHY_CCK_DETECT, regval);
1847            /* For WB225, need to swith ANT2 from BT to Wifi
1848             * This will not affect HB125 LNA diversity feature.
1849             */
1850	     HALDEBUG(ah, HAL_DEBUG_RESET, "%s: com2=0x%08x\n", __func__,
1851	         ah->ah_config.ath_hal_ant_ctrl_comm2g_switch_enable)
1852            OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM_2, AR_SWITCH_TABLE_COM2_ALL,
1853                ah->ah_config.ath_hal_ant_ctrl_comm2g_switch_enable);
1854            break;
1855        default:
1856            break;
1857        }
1858    }
1859    return 0;
1860}
1861
1862static u_int16_t
1863ar9300_attenuation_chain_get(struct ath_hal *ah, int chain, u_int16_t channel)
1864{
1865    int32_t f[3], t[3];
1866    u_int16_t value;
1867    ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
1868    if (chain >= 0 && chain < OSPREY_MAX_CHAINS) {
1869        if (channel < 4000) {
1870            return eep->modal_header_2g.xatten1_db[chain];
1871        } else {
1872            if (eep->base_ext2.xatten1_db_low[chain] != 0) {
1873                t[0] = eep->base_ext2.xatten1_db_low[chain];
1874                f[0] = 5180;
1875                t[1] = eep->modal_header_5g.xatten1_db[chain];
1876                f[1] = 5500;
1877                t[2] = eep->base_ext2.xatten1_db_high[chain];
1878                f[2] = 5785;
1879                value = interpolate(channel, f, t, 3);
1880                return value;
1881            } else {
1882                return eep->modal_header_5g.xatten1_db[chain];
1883            }
1884        }
1885    }
1886    return 0;
1887}
1888
1889static u_int16_t
1890ar9300_attenuation_margin_chain_get(struct ath_hal *ah, int chain,
1891    u_int16_t channel)
1892{
1893    int32_t f[3], t[3];
1894    u_int16_t value;
1895    ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
1896    if (chain >= 0 && chain < OSPREY_MAX_CHAINS) {
1897        if (channel < 4000) {
1898            return eep->modal_header_2g.xatten1_margin[chain];
1899        } else {
1900            if (eep->base_ext2.xatten1_margin_low[chain] != 0) {
1901                t[0] = eep->base_ext2.xatten1_margin_low[chain];
1902                f[0] = 5180;
1903                t[1] = eep->modal_header_5g.xatten1_margin[chain];
1904                f[1] = 5500;
1905                t[2] = eep->base_ext2.xatten1_margin_high[chain];
1906                f[2] = 5785;
1907                value = interpolate(channel, f, t, 3);
1908                return value;
1909            } else {
1910                return eep->modal_header_5g.xatten1_margin[chain];
1911            }
1912        }
1913    }
1914    return 0;
1915}
1916
1917#if 0
1918HAL_BOOL ar9300_attenuation_apply(struct ath_hal *ah, u_int16_t channel)
1919{
1920    u_int32_t value;
1921//    struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
1922
1923    /* Test value. if 0 then attenuation is unused. Don't load anything. */
1924    value = ar9300_attenuation_chain_get(ah, 0, channel);
1925    OS_REG_RMW_FIELD(ah,
1926        AR_PHY_EXT_ATTEN_CTL_0, AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value);
1927    value = ar9300_attenuation_margin_chain_get(ah, 0, channel);
1928    if (ar9300_rx_gain_index_get(ah) == 0
1929        && ah->ah_config.ath_hal_ext_atten_margin_cfg)
1930    {
1931        value = 5;
1932    }
1933    OS_REG_RMW_FIELD(ah,
1934        AR_PHY_EXT_ATTEN_CTL_0, AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN, value);
1935
1936    if (!AR_SREV_HORNET(ah) && !AR_SREV_POSEIDON(ah)) {
1937        value = ar9300_attenuation_chain_get(ah, 1, channel);
1938        OS_REG_RMW_FIELD(ah,
1939            AR_PHY_EXT_ATTEN_CTL_1, AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value);
1940        value = ar9300_attenuation_margin_chain_get(ah, 1, channel);
1941        OS_REG_RMW_FIELD(ah,
1942            AR_PHY_EXT_ATTEN_CTL_1, AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
1943            value);
1944        if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah)&& !AR_SREV_HONEYBEE(ah) ) {
1945            value = ar9300_attenuation_chain_get(ah, 2, channel);
1946            OS_REG_RMW_FIELD(ah,
1947                AR_PHY_EXT_ATTEN_CTL_2, AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value);
1948            value = ar9300_attenuation_margin_chain_get(ah, 2, channel);
1949            OS_REG_RMW_FIELD(ah,
1950                AR_PHY_EXT_ATTEN_CTL_2, AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
1951                value);
1952        }
1953    }
1954    return 0;
1955}
1956#endif
1957HAL_BOOL
1958ar9300_attenuation_apply(struct ath_hal *ah, u_int16_t channel)
1959{
1960	int i;
1961	uint32_t value;
1962	uint32_t ext_atten_reg[3] = {
1963	    AR_PHY_EXT_ATTEN_CTL_0,
1964	    AR_PHY_EXT_ATTEN_CTL_1,
1965	    AR_PHY_EXT_ATTEN_CTL_2
1966	};
1967
1968	/*
1969	 * If it's an AR9462 and we're receiving on the second
1970	 * chain only, set the chain 0 details from chain 1
1971	 * calibration.
1972	 *
1973	 * This is from ath9k.
1974	 */
1975	if (AR_SREV_JUPITER(ah) && (AH9300(ah)->ah_rx_chainmask == 0x2)) {
1976		value = ar9300_attenuation_chain_get(ah, 1, channel);
1977		OS_REG_RMW_FIELD(ah, ext_atten_reg[0],
1978		    AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value);
1979		value = ar9300_attenuation_margin_chain_get(ah, 1, channel);
1980		OS_REG_RMW_FIELD(ah, ext_atten_reg[0],
1981		    AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN, value);
1982	}
1983
1984	/*
1985	 * Now, loop over the configured transmit chains and
1986	 * load in the attenuation/margin settings as appropriate.
1987	 */
1988	for (i = 0; i < 3; i++) {
1989		if ((AH9300(ah)->ah_tx_chainmask & (1 << i)) == 0)
1990			continue;
1991
1992		value = ar9300_attenuation_chain_get(ah, i, channel);
1993		OS_REG_RMW_FIELD(ah, ext_atten_reg[i],
1994		    AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB,
1995		    value);
1996
1997		if (AR_SREV_POSEIDON(ah) &&
1998		    (ar9300_rx_gain_index_get(ah) == 0) &&
1999		    ah->ah_config.ath_hal_ext_atten_margin_cfg) {
2000			value = 5;
2001		} else {
2002			value = ar9300_attenuation_margin_chain_get(ah, 0,
2003			    channel);
2004		}
2005
2006		/*
2007		 * I'm not sure why it's loading in this setting into
2008		 * the chain 0 margin regardless of the current chain.
2009		 */
2010		if (ah->ah_config.ath_hal_min_gainidx)
2011			OS_REG_RMW_FIELD(ah,
2012			    AR_PHY_EXT_ATTEN_CTL_0,
2013			    AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
2014			    value);
2015
2016		OS_REG_RMW_FIELD(ah,
2017		    ext_atten_reg[i],
2018		    AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
2019		    value);
2020	}
2021
2022	return (0);
2023}
2024
2025
2026static u_int16_t ar9300_quick_drop_get(struct ath_hal *ah,
2027								int chain, u_int16_t channel)
2028{
2029    int32_t f[3], t[3];
2030    u_int16_t value;
2031    ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
2032
2033    if (channel < 4000) {
2034        return eep->modal_header_2g.quick_drop;
2035    } else {
2036        t[0] = eep->base_ext1.quick_drop_low;
2037        f[0] = 5180;
2038        t[1] = eep->modal_header_5g.quick_drop;
2039        f[1] = 5500;
2040        t[2] = eep->base_ext1.quick_drop_high;
2041        f[2] = 5785;
2042        value = interpolate(channel, f, t, 3);
2043        return value;
2044    }
2045}
2046
2047
2048static HAL_BOOL ar9300_quick_drop_apply(struct ath_hal *ah, u_int16_t channel)
2049{
2050    ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
2051    u_int32_t value;
2052    //
2053    // Test value. if 0 then quickDrop is unused. Don't load anything.
2054    //
2055    if (eep->base_eep_header.misc_configuration & 0x10)
2056	{
2057        if (AR_SREV_OSPREY(ah) || AR_SREV_AR9580(ah) || AR_SREV_WASP(ah))
2058        {
2059            value = ar9300_quick_drop_get(ah, 0, channel);
2060            OS_REG_RMW_FIELD(ah, AR_PHY_AGC, AR_PHY_AGC_QUICK_DROP, value);
2061        }
2062    }
2063    return 0;
2064}
2065
2066static u_int16_t ar9300_tx_end_to_xpa_off_get(struct ath_hal *ah, u_int16_t channel)
2067{
2068    ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
2069
2070    if (channel < 4000) {
2071        return eep->modal_header_2g.tx_end_to_xpa_off;
2072    } else {
2073        return eep->modal_header_5g.tx_end_to_xpa_off;
2074    }
2075}
2076
2077static HAL_BOOL ar9300_tx_end_to_xpab_off_apply(struct ath_hal *ah, u_int16_t channel)
2078{
2079    u_int32_t value;
2080
2081    value = ar9300_tx_end_to_xpa_off_get(ah, channel);
2082    /* Apply to both xpaa and xpab */
2083    if (AR_SREV_OSPREY(ah) || AR_SREV_AR9580(ah) || AR_SREV_WASP(ah))
2084    {
2085        OS_REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
2086            AR_PHY_XPA_TIMING_CTL_TX_END_XPAB_OFF, value);
2087        OS_REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
2088            AR_PHY_XPA_TIMING_CTL_TX_END_XPAA_OFF, value);
2089    }
2090    return 0;
2091}
2092
2093static int
2094ar9300_eeprom_cal_pier_get(struct ath_hal *ah, int mode, int ipier, int ichain,
2095    int *pfrequency, int *pcorrection, int *ptemperature, int *pvoltage)
2096{
2097    u_int8_t *p_cal_pier;
2098    OSP_CAL_DATA_PER_FREQ_OP_LOOP *p_cal_pier_struct;
2099    int is_2ghz;
2100    ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
2101
2102    if (ichain >= OSPREY_MAX_CHAINS) {
2103        HALDEBUG(ah, HAL_DEBUG_EEPROM,
2104            "%s: Invalid chain index, must be less than %d\n",
2105            __func__, OSPREY_MAX_CHAINS);
2106        return -1;
2107    }
2108
2109    if (mode) {/* 5GHz */
2110        if (ipier >= OSPREY_NUM_5G_CAL_PIERS){
2111            HALDEBUG(ah, HAL_DEBUG_EEPROM,
2112                "%s: Invalid 5GHz cal pier index, must be less than %d\n",
2113                __func__, OSPREY_NUM_5G_CAL_PIERS);
2114            return -1;
2115        }
2116        p_cal_pier = &(eep->cal_freq_pier_5g[ipier]);
2117        p_cal_pier_struct = &(eep->cal_pier_data_5g[ichain][ipier]);
2118        is_2ghz = 0;
2119    } else {
2120        if (ipier >= OSPREY_NUM_2G_CAL_PIERS){
2121            HALDEBUG(ah, HAL_DEBUG_EEPROM,
2122                "%s: Invalid 2GHz cal pier index, must be less than %d\n",
2123                __func__, OSPREY_NUM_2G_CAL_PIERS);
2124            return -1;
2125        }
2126
2127        p_cal_pier = &(eep->cal_freq_pier_2g[ipier]);
2128        p_cal_pier_struct = &(eep->cal_pier_data_2g[ichain][ipier]);
2129        is_2ghz = 1;
2130    }
2131    *pfrequency = FBIN2FREQ(*p_cal_pier, is_2ghz);
2132    *pcorrection = p_cal_pier_struct->ref_power;
2133    *ptemperature = p_cal_pier_struct->temp_meas;
2134    *pvoltage = p_cal_pier_struct->volt_meas;
2135    return 0;
2136}
2137
2138/*
2139 * Apply the recorded correction values.
2140 */
2141static int
2142ar9300_calibration_apply(struct ath_hal *ah, int frequency)
2143{
2144    struct ath_hal_9300 *ahp = AH9300(ah);
2145
2146    int ichain, ipier, npier;
2147    int mode;
2148    int fdiff;
2149    int pfrequency, pcorrection, ptemperature, pvoltage;
2150    int bf, factor, plus;
2151
2152    int lfrequency[AR9300_MAX_CHAINS];
2153    int hfrequency[AR9300_MAX_CHAINS];
2154
2155    int lcorrection[AR9300_MAX_CHAINS];
2156    int hcorrection[AR9300_MAX_CHAINS];
2157    int correction[AR9300_MAX_CHAINS];
2158
2159    int ltemperature[AR9300_MAX_CHAINS];
2160    int htemperature[AR9300_MAX_CHAINS];
2161    int temperature[AR9300_MAX_CHAINS];
2162
2163    int lvoltage[AR9300_MAX_CHAINS];
2164    int hvoltage[AR9300_MAX_CHAINS];
2165    int voltage[AR9300_MAX_CHAINS];
2166
2167    mode = (frequency >= 4000);
2168    npier = (mode) ?  OSPREY_NUM_5G_CAL_PIERS : OSPREY_NUM_2G_CAL_PIERS;
2169
2170    for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
2171        lfrequency[ichain] = 0;
2172        hfrequency[ichain] = 100000;
2173    }
2174    /*
2175     * identify best lower and higher frequency calibration measurement
2176     */
2177    for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
2178        for (ipier = 0; ipier < npier; ipier++) {
2179            if (ar9300_eeprom_cal_pier_get(
2180                    ah, mode, ipier, ichain,
2181                    &pfrequency, &pcorrection, &ptemperature, &pvoltage) == 0)
2182            {
2183                fdiff = frequency - pfrequency;
2184                /*
2185                 * this measurement is higher than our desired frequency
2186                 */
2187                if (fdiff <= 0) {
2188                    if (hfrequency[ichain] <= 0 ||
2189                        hfrequency[ichain] >= 100000 ||
2190                        fdiff > (frequency - hfrequency[ichain]))
2191                    {
2192                        /*
2193                         * new best higher frequency measurement
2194                         */
2195                        hfrequency[ichain] = pfrequency;
2196                        hcorrection[ichain] = pcorrection;
2197                        htemperature[ichain] = ptemperature;
2198                        hvoltage[ichain] = pvoltage;
2199                    }
2200                }
2201                if (fdiff >= 0) {
2202                    if (lfrequency[ichain] <= 0 ||
2203                        fdiff < (frequency - lfrequency[ichain]))
2204                    {
2205                        /*
2206                         * new best lower frequency measurement
2207                         */
2208                        lfrequency[ichain] = pfrequency;
2209                        lcorrection[ichain] = pcorrection;
2210                        ltemperature[ichain] = ptemperature;
2211                        lvoltage[ichain] = pvoltage;
2212                    }
2213                }
2214            }
2215        }
2216    }
2217    /* interpolate */
2218    for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
2219        HALDEBUG(ah, HAL_DEBUG_EEPROM,
2220            "%s: ch=%d f=%d low=%d %d h=%d %d\n",
2221            __func__, ichain, frequency,
2222            lfrequency[ichain], lcorrection[ichain],
2223            hfrequency[ichain], hcorrection[ichain]);
2224        /*
2225         * they're the same, so just pick one
2226         */
2227        if (hfrequency[ichain] == lfrequency[ichain]) {
2228            correction[ichain] = lcorrection[ichain];
2229            voltage[ichain] = lvoltage[ichain];
2230            temperature[ichain] = ltemperature[ichain];
2231        } else if (frequency - lfrequency[ichain] < 1000) {
2232            /* the low frequency is good */
2233            if (hfrequency[ichain] - frequency < 1000) {
2234                /*
2235                 * The high frequency is good too -
2236                 * interpolate with round off.
2237                 */
2238                int mult, div, diff;
2239                mult = frequency - lfrequency[ichain];
2240                div = hfrequency[ichain] - lfrequency[ichain];
2241
2242                diff = hcorrection[ichain] - lcorrection[ichain];
2243                bf = 2 * diff * mult / div;
2244                plus = (bf % 2);
2245                factor = bf / 2;
2246                correction[ichain] = lcorrection[ichain] + factor + plus;
2247
2248                diff = htemperature[ichain] - ltemperature[ichain];
2249                bf = 2 * diff * mult / div;
2250                plus = (bf % 2);
2251                factor = bf / 2;
2252                temperature[ichain] = ltemperature[ichain] + factor + plus;
2253
2254                diff = hvoltage[ichain] - lvoltage[ichain];
2255                bf = 2 * diff * mult / div;
2256                plus = (bf % 2);
2257                factor = bf / 2;
2258                voltage[ichain] = lvoltage[ichain] + factor + plus;
2259            } else {
2260                /* only low is good, use it */
2261                correction[ichain] = lcorrection[ichain];
2262                temperature[ichain] = ltemperature[ichain];
2263                voltage[ichain] = lvoltage[ichain];
2264            }
2265        } else if (hfrequency[ichain] - frequency < 1000) {
2266            /* only high is good, use it */
2267            correction[ichain] = hcorrection[ichain];
2268            temperature[ichain] = htemperature[ichain];
2269            voltage[ichain] = hvoltage[ichain];
2270        } else {
2271            /* nothing is good, presume 0???? */
2272            correction[ichain] = 0;
2273            temperature[ichain] = 0;
2274            voltage[ichain] = 0;
2275        }
2276    }
2277
2278    /* GreenTx isn't currently supported */
2279    /* GreenTx */
2280    if (ah->ah_config.ath_hal_sta_update_tx_pwr_enable) {
2281        if (AR_SREV_POSEIDON(ah)) {
2282            /* Get calibrated OLPC gain delta value for GreenTx */
2283            ahp->ah_db2[POSEIDON_STORED_REG_G2_OLPC_OFFSET] =
2284                (u_int32_t) correction[0];
2285        }
2286    }
2287
2288    ar9300_power_control_override(
2289        ah, frequency, correction, voltage, temperature);
2290    HALDEBUG(ah, HAL_DEBUG_EEPROM,
2291        "%s: for frequency=%d, calibration correction = %d %d %d\n",
2292         __func__, frequency, correction[0], correction[1], correction[2]);
2293
2294    return 0;
2295}
2296
2297int
2298ar9300_power_control_override(struct ath_hal *ah, int frequency,
2299    int *correction, int *voltage, int *temperature)
2300{
2301    int temp_slope = 0;
2302    int temp_slope_1 = 0;
2303    int temp_slope_2 = 0;
2304    ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
2305    int32_t f[8], t[8],t1[3], t2[3];
2306	int i;
2307
2308    OS_REG_RMW(ah, AR_PHY_TPC_11_B0,
2309        (correction[0] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
2310        AR_PHY_TPC_OLPC_GAIN_DELTA);
2311    if (!AR_SREV_POSEIDON(ah)) {
2312        OS_REG_RMW(ah, AR_PHY_TPC_11_B1,
2313            (correction[1] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
2314            AR_PHY_TPC_OLPC_GAIN_DELTA);
2315        if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah) && !AR_SREV_HONEYBEE(ah) ) {
2316            OS_REG_RMW(ah, AR_PHY_TPC_11_B2,
2317                (correction[2] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
2318                AR_PHY_TPC_OLPC_GAIN_DELTA);
2319        }
2320    }
2321    /*
2322     * enable open loop power control on chip
2323     */
2324    OS_REG_RMW(ah, AR_PHY_TPC_6_B0,
2325        (3 << AR_PHY_TPC_6_ERROR_EST_MODE_S), AR_PHY_TPC_6_ERROR_EST_MODE);
2326    if (!AR_SREV_POSEIDON(ah)) {
2327        OS_REG_RMW(ah, AR_PHY_TPC_6_B1,
2328            (3 << AR_PHY_TPC_6_ERROR_EST_MODE_S), AR_PHY_TPC_6_ERROR_EST_MODE);
2329        if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah) && !AR_SREV_HONEYBEE(ah)  ) {
2330            OS_REG_RMW(ah, AR_PHY_TPC_6_B2,
2331                (3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
2332                AR_PHY_TPC_6_ERROR_EST_MODE);
2333        }
2334    }
2335
2336    /*
2337     * Enable temperature compensation
2338     * Need to use register names
2339     */
2340    if (frequency < 4000) {
2341        temp_slope = eep->modal_header_2g.temp_slope;
2342    } else {
2343		if ((eep->base_eep_header.misc_configuration & 0x20) != 0)
2344		{
2345				for(i=0;i<8;i++)
2346				{
2347					t[i]=eep->base_ext1.tempslopextension[i];
2348					f[i]=FBIN2FREQ(eep->cal_freq_pier_5g[i], 0);
2349				}
2350				temp_slope=interpolate(frequency,f,t,8);
2351		}
2352		else
2353		{
2354        if(!AR_SREV_SCORPION(ah)) {
2355          if (eep->base_ext2.temp_slope_low != 0) {
2356             t[0] = eep->base_ext2.temp_slope_low;
2357             f[0] = 5180;
2358             t[1] = eep->modal_header_5g.temp_slope;
2359             f[1] = 5500;
2360             t[2] = eep->base_ext2.temp_slope_high;
2361             f[2] = 5785;
2362             temp_slope = interpolate(frequency, f, t, 3);
2363           } else {
2364             temp_slope = eep->modal_header_5g.temp_slope;
2365           }
2366         } else {
2367            /*
2368             * Scorpion has individual chain tempslope values
2369             */
2370             t[0] = eep->base_ext1.tempslopextension[2];
2371             t1[0]= eep->base_ext1.tempslopextension[3];
2372             t2[0]= eep->base_ext1.tempslopextension[4];
2373             f[0] = 5180;
2374             t[1] = eep->modal_header_5g.temp_slope;
2375             t1[1]= eep->base_ext1.tempslopextension[0];
2376             t2[1]= eep->base_ext1.tempslopextension[1];
2377             f[1] = 5500;
2378             t[2] = eep->base_ext1.tempslopextension[5];
2379             t1[2]= eep->base_ext1.tempslopextension[6];
2380             t2[2]= eep->base_ext1.tempslopextension[7];
2381             f[2] = 5785;
2382             temp_slope = interpolate(frequency, f, t, 3);
2383             temp_slope_1=interpolate(frequency, f, t1,3);
2384             temp_slope_2=interpolate(frequency, f, t2,3);
2385       }
2386	 }
2387  }
2388
2389    if (!AR_SREV_SCORPION(ah) && !AR_SREV_HONEYBEE(ah)) {
2390        OS_REG_RMW_FIELD(ah,
2391            AR_PHY_TPC_19, AR_PHY_TPC_19_ALPHA_THERM, temp_slope);
2392    } else {
2393        /*Scorpion and Honeybee has tempSlope register for each chain*/
2394        /*Check whether temp_compensation feature is enabled or not*/
2395        if (eep->base_eep_header.feature_enable & 0x1){
2396	    if(frequency < 4000) {
2397		if (((eep->base_eep_header.txrx_mask & 0xf0) >> 4) & 0x1) {
2398		    OS_REG_RMW_FIELD(ah,
2399				    AR_PHY_TPC_19, AR_PHY_TPC_19_ALPHA_THERM,
2400				    eep->base_ext2.temp_slope_low);
2401		    }
2402		if (((eep->base_eep_header.txrx_mask & 0xf0) >> 4) & 0x2) {
2403		    OS_REG_RMW_FIELD(ah,
2404				    AR_SCORPION_PHY_TPC_19_B1, AR_PHY_TPC_19_ALPHA_THERM,
2405				    temp_slope);
2406		    }
2407		if (((eep->base_eep_header.txrx_mask & 0xf0) >> 4) & 0x4) {
2408		    OS_REG_RMW_FIELD(ah,
2409				    AR_SCORPION_PHY_TPC_19_B2, AR_PHY_TPC_19_ALPHA_THERM,
2410				    eep->base_ext2.temp_slope_high);
2411		     }
2412	    } else {
2413		if (((eep->base_eep_header.txrx_mask & 0xf0) >> 4) & 0x1) {
2414		    OS_REG_RMW_FIELD(ah,
2415				    AR_PHY_TPC_19, AR_PHY_TPC_19_ALPHA_THERM,
2416				    temp_slope);
2417			}
2418		if (((eep->base_eep_header.txrx_mask & 0xf0) >> 4) & 0x2) {
2419		    OS_REG_RMW_FIELD(ah,
2420				    AR_SCORPION_PHY_TPC_19_B1, AR_PHY_TPC_19_ALPHA_THERM,
2421				    temp_slope_1);
2422		}
2423		if (((eep->base_eep_header.txrx_mask & 0xf0) >> 4) & 0x4) {
2424		    OS_REG_RMW_FIELD(ah,
2425				    AR_SCORPION_PHY_TPC_19_B2, AR_PHY_TPC_19_ALPHA_THERM,
2426				    temp_slope_2);
2427			}
2428	    }
2429        }else {
2430        	/* If temp compensation is not enabled, set all registers to 0*/
2431		if (((eep->base_eep_header.txrx_mask & 0xf0) >> 4) & 0x1) {
2432            OS_REG_RMW_FIELD(ah,
2433                AR_PHY_TPC_19, AR_PHY_TPC_19_ALPHA_THERM, 0);
2434		    }
2435		if (((eep->base_eep_header.txrx_mask & 0xf0) >> 4) & 0x2) {
2436            OS_REG_RMW_FIELD(ah,
2437                AR_SCORPION_PHY_TPC_19_B1, AR_PHY_TPC_19_ALPHA_THERM, 0);
2438		    }
2439		if (((eep->base_eep_header.txrx_mask & 0xf0) >> 4) & 0x4) {
2440            OS_REG_RMW_FIELD(ah,
2441                AR_SCORPION_PHY_TPC_19_B2, AR_PHY_TPC_19_ALPHA_THERM, 0);
2442		}
2443        }
2444    }
2445    OS_REG_RMW_FIELD(ah,
2446        AR_PHY_TPC_18, AR_PHY_TPC_18_THERM_CAL_VALUE, temperature[0]);
2447
2448    return 0;
2449}
2450
2451/**************************************************************
2452 * ar9300_eep_def_get_max_edge_power
2453 *
2454 * Find the maximum conformance test limit for the given channel and CTL info
2455 */
2456static inline u_int16_t
2457ar9300_eep_def_get_max_edge_power(ar9300_eeprom_t *p_eep_data, u_int16_t freq,
2458    int idx, HAL_BOOL is_2ghz)
2459{
2460    u_int16_t twice_max_edge_power = AR9300_MAX_RATE_POWER;
2461    u_int8_t *ctl_freqbin = is_2ghz ?
2462        &p_eep_data->ctl_freqbin_2G[idx][0] :
2463        &p_eep_data->ctl_freqbin_5G[idx][0];
2464    u_int16_t num_edges = is_2ghz ?
2465        OSPREY_NUM_BAND_EDGES_2G : OSPREY_NUM_BAND_EDGES_5G;
2466    int i;
2467
2468    /* Get the edge power */
2469    for (i = 0; (i < num_edges) && (ctl_freqbin[i] != AR9300_BCHAN_UNUSED); i++)
2470    {
2471        /*
2472         * If there's an exact channel match or an inband flag set
2473         * on the lower channel use the given rd_edge_power
2474         */
2475        if (freq == fbin2freq(ctl_freqbin[i], is_2ghz)) {
2476            if (is_2ghz) {
2477                twice_max_edge_power =
2478                    p_eep_data->ctl_power_data_2g[idx].ctl_edges[i].t_power;
2479            } else {
2480                twice_max_edge_power =
2481                    p_eep_data->ctl_power_data_5g[idx].ctl_edges[i].t_power;
2482            }
2483            break;
2484        } else if ((i > 0) && (freq < fbin2freq(ctl_freqbin[i], is_2ghz))) {
2485            if (is_2ghz) {
2486                if (fbin2freq(ctl_freqbin[i - 1], 1) < freq &&
2487                    p_eep_data->ctl_power_data_2g[idx].ctl_edges[i - 1].flag)
2488                {
2489                    twice_max_edge_power =
2490                        p_eep_data->ctl_power_data_2g[idx].
2491                            ctl_edges[i - 1].t_power;
2492                }
2493            } else {
2494                if (fbin2freq(ctl_freqbin[i - 1], 0) < freq &&
2495                    p_eep_data->ctl_power_data_5g[idx].ctl_edges[i - 1].flag)
2496                {
2497                    twice_max_edge_power =
2498                        p_eep_data->ctl_power_data_5g[idx].
2499                            ctl_edges[i - 1].t_power;
2500                }
2501            }
2502            /*
2503             * Leave loop - no more affecting edges possible
2504             * in this monotonic increasing list
2505             */
2506            break;
2507        }
2508    }
2509    /*
2510     * EV89475: EEPROM might contain 0 txpower in CTL table for certain
2511     * 2.4GHz channels. We workaround it by overwriting 60 (30 dBm) here.
2512     */
2513    if (is_2ghz && (twice_max_edge_power == 0)) {
2514        twice_max_edge_power = 60;
2515    }
2516
2517    HALASSERT(twice_max_edge_power > 0);
2518    return twice_max_edge_power;
2519}
2520
2521HAL_BOOL
2522ar9300_eeprom_set_power_per_rate_table(
2523    struct ath_hal *ah,
2524    ar9300_eeprom_t *p_eep_data,
2525    const struct ieee80211_channel *chan,
2526    u_int8_t *p_pwr_array,
2527    u_int16_t cfg_ctl,
2528    u_int16_t antenna_reduction,
2529    u_int16_t twice_max_regulatory_power,
2530    u_int16_t power_limit,
2531    u_int8_t chainmask)
2532{
2533    /* Local defines to distinguish between extension and control CTL's */
2534#define EXT_ADDITIVE (0x8000)
2535#define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
2536#define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
2537#define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
2538#define REDUCE_SCALED_POWER_BY_TWO_CHAIN     6  /* 10*log10(2)*2 */
2539#define REDUCE_SCALED_POWER_BY_THREE_CHAIN  10  /* 10*log10(3)*2 */
2540#define PWRINCR_3_TO_1_CHAIN      9             /* 10*log(3)*2 */
2541#define PWRINCR_3_TO_2_CHAIN      3             /* floor(10*log(3/2)*2) */
2542#define PWRINCR_2_TO_1_CHAIN      6             /* 10*log(2)*2 */
2543
2544    static const u_int16_t tp_scale_reduction_table[5] =
2545        { 0, 3, 6, 9, AR9300_MAX_RATE_POWER };
2546    int i;
2547    int16_t twice_largest_antenna;
2548    u_int16_t twice_antenna_reduction = 2*antenna_reduction ;
2549    int16_t scaled_power = 0, min_ctl_power, max_reg_allowed_power;
2550#define SUB_NUM_CTL_MODES_AT_5G_40 2    /* excluding HT40, EXT-OFDM */
2551#define SUB_NUM_CTL_MODES_AT_2G_40 3    /* excluding HT40, EXT-OFDM, EXT-CCK */
2552    u_int16_t ctl_modes_for11a[] =
2553        {CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40};
2554    u_int16_t ctl_modes_for11g[] =
2555        {CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40};
2556    u_int16_t num_ctl_modes, *p_ctl_mode, ctl_mode, freq;
2557    CHAN_CENTERS centers;
2558    int tx_chainmask;
2559    struct ath_hal_9300 *ahp = AH9300(ah);
2560    u_int8_t *ctl_index;
2561    u_int8_t ctl_num;
2562    u_int16_t twice_min_edge_power;
2563    u_int16_t twice_max_edge_power = AR9300_MAX_RATE_POWER;
2564#ifdef	AH_DEBUG
2565    HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
2566#endif
2567
2568    if (chainmask)
2569        tx_chainmask = chainmask;
2570    else
2571        tx_chainmask = ahp->ah_tx_chainmaskopt ?
2572                            ahp->ah_tx_chainmaskopt :ahp->ah_tx_chainmask;
2573
2574    ar9300_get_channel_centers(ah, chan, &centers);
2575
2576#if 1
2577    if (IEEE80211_IS_CHAN_2GHZ(chan)) {
2578        ahp->twice_antenna_gain = p_eep_data->modal_header_2g.antenna_gain;
2579    } else {
2580        ahp->twice_antenna_gain = p_eep_data->modal_header_5g.antenna_gain;
2581    }
2582
2583#else
2584    if (IEEE80211_IS_CHAN_2GHZ(chan)) {
2585        ahp->twice_antenna_gain = AH_MAX(p_eep_data->modal_header_2g.antenna_gain,
2586                                         AH_PRIVATE(ah)->ah_antenna_gain_2g);
2587    } else {
2588        ahp->twice_antenna_gain = AH_MAX(p_eep_data->modal_header_5g.antenna_gain,
2589                                         AH_PRIVATE(ah)->ah_antenna_gain_5g);
2590    }
2591#endif
2592
2593    /* Save max allowed antenna gain to ease future lookups */
2594    ahp->twice_antenna_reduction = twice_antenna_reduction;
2595
2596    /*  Deduct antenna gain from  EIRP to get the upper limit */
2597    twice_largest_antenna = (int16_t)AH_MIN((twice_antenna_reduction -
2598                                       ahp->twice_antenna_gain), 0);
2599    max_reg_allowed_power = twice_max_regulatory_power + twice_largest_antenna;
2600
2601    /* Use ah_tp_scale - see bug 30070. */
2602    if (AH_PRIVATE(ah)->ah_tpScale != HAL_TP_SCALE_MAX) {
2603        max_reg_allowed_power -=
2604            (tp_scale_reduction_table[(AH_PRIVATE(ah)->ah_tpScale)] * 2);
2605    }
2606
2607    scaled_power = AH_MIN(power_limit, max_reg_allowed_power);
2608
2609    /*
2610     * Reduce scaled Power by number of chains active to get to
2611     * per chain tx power level
2612     */
2613    /* TODO: better value than these? */
2614    switch (ar9300_get_ntxchains(tx_chainmask)) {
2615    case 1:
2616        ahp->upper_limit[0] = AH_MAX(0, scaled_power);
2617        break;
2618    case 2:
2619        scaled_power -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
2620        ahp->upper_limit[1] = AH_MAX(0, scaled_power);
2621        break;
2622    case 3:
2623        scaled_power -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
2624        ahp->upper_limit[2] = AH_MAX(0, scaled_power);
2625        break;
2626    default:
2627        HALASSERT(0); /* Unsupported number of chains */
2628    }
2629
2630    scaled_power = AH_MAX(0, scaled_power);
2631
2632    /* Get target powers from EEPROM - our baseline for TX Power */
2633    if (IEEE80211_IS_CHAN_2GHZ(chan)) {
2634        /* Setup for CTL modes */
2635        /* CTL_11B, CTL_11G, CTL_2GHT20 */
2636        num_ctl_modes =
2637            ARRAY_LENGTH(ctl_modes_for11g) - SUB_NUM_CTL_MODES_AT_2G_40;
2638        p_ctl_mode = ctl_modes_for11g;
2639
2640        if (IEEE80211_IS_CHAN_HT40(chan)) {
2641            num_ctl_modes = ARRAY_LENGTH(ctl_modes_for11g); /* All 2G CTL's */
2642        }
2643    } else {
2644        /* Setup for CTL modes */
2645        /* CTL_11A, CTL_5GHT20 */
2646        num_ctl_modes =
2647            ARRAY_LENGTH(ctl_modes_for11a) - SUB_NUM_CTL_MODES_AT_5G_40;
2648        p_ctl_mode = ctl_modes_for11a;
2649
2650        if (IEEE80211_IS_CHAN_HT40(chan)) {
2651            num_ctl_modes = ARRAY_LENGTH(ctl_modes_for11a); /* All 5G CTL's */
2652        }
2653    }
2654
2655    /*
2656     * For MIMO, need to apply regulatory caps individually across dynamically
2657     * running modes: CCK, OFDM, HT20, HT40
2658     *
2659     * The outer loop walks through each possible applicable runtime mode.
2660     * The inner loop walks through each ctl_index entry in EEPROM.
2661     * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
2662     *
2663     */
2664    for (ctl_mode = 0; ctl_mode < num_ctl_modes; ctl_mode++) {
2665        HAL_BOOL is_ht40_ctl_mode =
2666            (p_ctl_mode[ctl_mode] == CTL_5GHT40) ||
2667            (p_ctl_mode[ctl_mode] == CTL_2GHT40);
2668        if (is_ht40_ctl_mode) {
2669            freq = centers.synth_center;
2670        } else if (p_ctl_mode[ctl_mode] & EXT_ADDITIVE) {
2671            freq = centers.ext_center;
2672        } else {
2673            freq = centers.ctl_center;
2674        }
2675
2676        HALDEBUG(ah, HAL_DEBUG_POWER_MGMT,
2677            "LOOP-Mode ctl_mode %d < %d, "
2678            "is_ht40_ctl_mode %d, EXT_ADDITIVE %d\n",
2679            ctl_mode, num_ctl_modes, is_ht40_ctl_mode,
2680            (p_ctl_mode[ctl_mode] & EXT_ADDITIVE));
2681        /* walk through each CTL index stored in EEPROM */
2682        if (IEEE80211_IS_CHAN_2GHZ(chan)) {
2683            ctl_index = p_eep_data->ctl_index_2g;
2684            ctl_num = OSPREY_NUM_CTLS_2G;
2685        } else {
2686            ctl_index = p_eep_data->ctl_index_5g;
2687            ctl_num = OSPREY_NUM_CTLS_5G;
2688        }
2689
2690        for (i = 0; (i < ctl_num) && ctl_index[i]; i++) {
2691            HALDEBUG(ah, HAL_DEBUG_POWER_MGMT,
2692                "  LOOP-Ctlidx %d: cfg_ctl 0x%2.2x p_ctl_mode 0x%2.2x "
2693                "ctl_index 0x%2.2x chan %d chanctl 0x%x\n",
2694                i, cfg_ctl, p_ctl_mode[ctl_mode], ctl_index[i],
2695                ichan->channel, ath_hal_getctl(ah, chan));
2696
2697
2698            /*
2699             * compare test group from regulatory channel list
2700             * with test mode from p_ctl_mode list
2701             */
2702            if ((((cfg_ctl & ~CTL_MODE_M) |
2703                  (p_ctl_mode[ctl_mode] & CTL_MODE_M)) == ctl_index[i]) ||
2704                (((cfg_ctl & ~CTL_MODE_M) |
2705                  (p_ctl_mode[ctl_mode] & CTL_MODE_M)) ==
2706                 ((ctl_index[i] & CTL_MODE_M) | SD_NO_CTL)))
2707            {
2708                twice_min_edge_power =
2709                    ar9300_eep_def_get_max_edge_power(
2710                        p_eep_data, freq, i, IEEE80211_IS_CHAN_2GHZ(chan));
2711
2712                HALDEBUG(ah, HAL_DEBUG_POWER_MGMT,
2713                    "    MATCH-EE_IDX %d: ch %d is2 %d "
2714                    "2xMinEdge %d chainmask %d chains %d\n",
2715                    i, freq, IEEE80211_IS_CHAN_2GHZ(chan),
2716                    twice_min_edge_power, tx_chainmask,
2717                    ar9300_get_ntxchains(tx_chainmask));
2718
2719                if ((cfg_ctl & ~CTL_MODE_M) == SD_NO_CTL) {
2720                    /*
2721                     * Find the minimum of all CTL edge powers
2722                     * that apply to this channel
2723                     */
2724                    twice_max_edge_power =
2725                        AH_MIN(twice_max_edge_power, twice_min_edge_power);
2726                } else {
2727                    /* specific */
2728                    twice_max_edge_power = twice_min_edge_power;
2729                    break;
2730                }
2731            }
2732        }
2733
2734        min_ctl_power = (u_int8_t)AH_MIN(twice_max_edge_power, scaled_power);
2735
2736        HALDEBUG(ah, HAL_DEBUG_POWER_MGMT,
2737            "    SEL-Min ctl_mode %d p_ctl_mode %d "
2738            "2xMaxEdge %d sP %d min_ctl_pwr %d\n",
2739            ctl_mode, p_ctl_mode[ctl_mode],
2740            twice_max_edge_power, scaled_power, min_ctl_power);
2741
2742        /* Apply ctl mode to correct target power set */
2743        switch (p_ctl_mode[ctl_mode]) {
2744        case CTL_11B:
2745            for (i = ALL_TARGET_LEGACY_1L_5L; i <= ALL_TARGET_LEGACY_11S; i++) {
2746                p_pwr_array[i] =
2747                    (u_int8_t)AH_MIN(p_pwr_array[i], min_ctl_power);
2748            }
2749            break;
2750        case CTL_11A:
2751        case CTL_11G:
2752            for (i = ALL_TARGET_LEGACY_6_24; i <= ALL_TARGET_LEGACY_54; i++) {
2753                p_pwr_array[i] =
2754                    (u_int8_t)AH_MIN(p_pwr_array[i], min_ctl_power);
2755#ifdef ATH_BT_COEX
2756                if ((ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_3WIRE) ||
2757                    (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_MCI))
2758                {
2759                    if ((ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_LOWER_TX_PWR)
2760                        && (ahp->ah_bt_wlan_isolation
2761                         < HAL_BT_COEX_ISOLATION_FOR_NO_COEX))
2762                    {
2763
2764                        u_int8_t reduce_pow;
2765
2766                        reduce_pow = (HAL_BT_COEX_ISOLATION_FOR_NO_COEX
2767                                     - ahp->ah_bt_wlan_isolation) << 1;
2768
2769                        if (reduce_pow <= p_pwr_array[i]) {
2770                            p_pwr_array[i] -= reduce_pow;
2771                        }
2772                    }
2773                    if ((ahp->ah_bt_coex_flag &
2774                          HAL_BT_COEX_FLAG_LOW_ACK_PWR) &&
2775                          (i != ALL_TARGET_LEGACY_36) &&
2776                          (i != ALL_TARGET_LEGACY_48) &&
2777                          (i != ALL_TARGET_LEGACY_54) &&
2778                          (p_ctl_mode[ctl_mode] == CTL_11G))
2779                    {
2780                        p_pwr_array[i] = 0;
2781                    }
2782                }
2783#endif
2784            }
2785            break;
2786        case CTL_5GHT20:
2787        case CTL_2GHT20:
2788            for (i = ALL_TARGET_HT20_0_8_16; i <= ALL_TARGET_HT20_23; i++) {
2789                p_pwr_array[i] =
2790                    (u_int8_t)AH_MIN(p_pwr_array[i], min_ctl_power);
2791#ifdef ATH_BT_COEX
2792                if (((ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_3WIRE) ||
2793                     (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_MCI)) &&
2794                    (ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_LOWER_TX_PWR) &&
2795                    (ahp->ah_bt_wlan_isolation
2796                        < HAL_BT_COEX_ISOLATION_FOR_NO_COEX)) {
2797
2798                    u_int8_t reduce_pow = (HAL_BT_COEX_ISOLATION_FOR_NO_COEX
2799                                           - ahp->ah_bt_wlan_isolation) << 1;
2800
2801                    if (reduce_pow <= p_pwr_array[i]) {
2802                        p_pwr_array[i] -= reduce_pow;
2803                    }
2804                }
2805#if ATH_SUPPORT_MCI
2806                else if ((ahp->ah_bt_coex_flag &
2807                          HAL_BT_COEX_FLAG_MCI_MAX_TX_PWR) &&
2808                         (p_ctl_mode[ctl_mode] == CTL_2GHT20) &&
2809                         (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_MCI))
2810                {
2811                    u_int8_t max_pwr;
2812
2813                    max_pwr = MS(mci_concur_tx_max_pwr[2][1],
2814                                 ATH_MCI_CONCUR_TX_LOWEST_PWR_MASK);
2815                    if (p_pwr_array[i] > max_pwr) {
2816                        p_pwr_array[i] = max_pwr;
2817                    }
2818                }
2819#endif
2820#endif
2821            }
2822            break;
2823        case CTL_11B_EXT:
2824#ifdef NOT_YET
2825            target_power_cck_ext.t_pow2x[0] = (u_int8_t)
2826                AH_MIN(target_power_cck_ext.t_pow2x[0], min_ctl_power);
2827#endif /* NOT_YET */
2828            break;
2829        case CTL_11A_EXT:
2830        case CTL_11G_EXT:
2831#ifdef NOT_YET
2832            target_power_ofdm_ext.t_pow2x[0] = (u_int8_t)
2833                AH_MIN(target_power_ofdm_ext.t_pow2x[0], min_ctl_power);
2834#endif /* NOT_YET */
2835            break;
2836        case CTL_5GHT40:
2837        case CTL_2GHT40:
2838            for (i = ALL_TARGET_HT40_0_8_16; i <= ALL_TARGET_HT40_23; i++) {
2839                p_pwr_array[i] = (u_int8_t)
2840                    AH_MIN(p_pwr_array[i], min_ctl_power);
2841#ifdef ATH_BT_COEX
2842                if (((ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_3WIRE) ||
2843                     (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_MCI)) &&
2844                    (ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_LOWER_TX_PWR) &&
2845                    (ahp->ah_bt_wlan_isolation
2846                        < HAL_BT_COEX_ISOLATION_FOR_NO_COEX)) {
2847
2848                    u_int8_t reduce_pow = (HAL_BT_COEX_ISOLATION_FOR_NO_COEX
2849                                              - ahp->ah_bt_wlan_isolation) << 1;
2850
2851                    if (reduce_pow <= p_pwr_array[i]) {
2852                        p_pwr_array[i] -= reduce_pow;
2853                    }
2854                }
2855#if ATH_SUPPORT_MCI
2856                else if ((ahp->ah_bt_coex_flag &
2857                          HAL_BT_COEX_FLAG_MCI_MAX_TX_PWR) &&
2858                         (p_ctl_mode[ctl_mode] == CTL_2GHT40) &&
2859                         (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_MCI))
2860                {
2861                    u_int8_t max_pwr;
2862
2863                    max_pwr = MS(mci_concur_tx_max_pwr[3][1],
2864                                 ATH_MCI_CONCUR_TX_LOWEST_PWR_MASK);
2865                    if (p_pwr_array[i] > max_pwr) {
2866                        p_pwr_array[i] = max_pwr;
2867                    }
2868                }
2869#endif
2870#endif
2871            }
2872            break;
2873        default:
2874            HALASSERT(0);
2875            break;
2876        }
2877    } /* end ctl mode checking */
2878
2879    return AH_TRUE;
2880#undef EXT_ADDITIVE
2881#undef CTL_11A_EXT
2882#undef CTL_11G_EXT
2883#undef CTL_11B_EXT
2884#undef REDUCE_SCALED_POWER_BY_TWO_CHAIN
2885#undef REDUCE_SCALED_POWER_BY_THREE_CHAIN
2886}
2887
2888/**************************************************************
2889 * ar9300_eeprom_set_transmit_power
2890 *
2891 * Set the transmit power in the baseband for the given
2892 * operating channel and mode.
2893 */
2894HAL_STATUS
2895ar9300_eeprom_set_transmit_power(struct ath_hal *ah,
2896    ar9300_eeprom_t *p_eep_data, const struct ieee80211_channel *chan, u_int16_t cfg_ctl,
2897    u_int16_t antenna_reduction, u_int16_t twice_max_regulatory_power,
2898    u_int16_t power_limit)
2899{
2900#define ABS(_x, _y) ((int)_x > (int)_y ? (int)_x - (int)_y : (int)_y - (int)_x)
2901#define INCREASE_MAXPOW_BY_TWO_CHAIN     6  /* 10*log10(2)*2 */
2902#define INCREASE_MAXPOW_BY_THREE_CHAIN   10 /* 10*log10(3)*2 */
2903    u_int8_t target_power_val_t2[ar9300_rate_size];
2904    u_int8_t target_power_val_t2_eep[ar9300_rate_size];
2905    int16_t twice_array_gain = 0, max_power_level = 0;
2906    struct ath_hal_9300 *ahp = AH9300(ah);
2907    int  i = 0;
2908    u_int32_t tmp_paprd_rate_mask = 0, *tmp_ptr = NULL;
2909    int      paprd_scale_factor = 5;
2910    HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
2911
2912    u_int8_t *ptr_mcs_rate2power_table_index;
2913    u_int8_t mcs_rate2power_table_index_ht20[24] =
2914    {
2915        ALL_TARGET_HT20_0_8_16,
2916        ALL_TARGET_HT20_1_3_9_11_17_19,
2917        ALL_TARGET_HT20_1_3_9_11_17_19,
2918        ALL_TARGET_HT20_1_3_9_11_17_19,
2919        ALL_TARGET_HT20_4,
2920        ALL_TARGET_HT20_5,
2921        ALL_TARGET_HT20_6,
2922        ALL_TARGET_HT20_7,
2923        ALL_TARGET_HT20_0_8_16,
2924        ALL_TARGET_HT20_1_3_9_11_17_19,
2925        ALL_TARGET_HT20_1_3_9_11_17_19,
2926        ALL_TARGET_HT20_1_3_9_11_17_19,
2927        ALL_TARGET_HT20_12,
2928        ALL_TARGET_HT20_13,
2929        ALL_TARGET_HT20_14,
2930        ALL_TARGET_HT20_15,
2931        ALL_TARGET_HT20_0_8_16,
2932        ALL_TARGET_HT20_1_3_9_11_17_19,
2933        ALL_TARGET_HT20_1_3_9_11_17_19,
2934        ALL_TARGET_HT20_1_3_9_11_17_19,
2935        ALL_TARGET_HT20_20,
2936        ALL_TARGET_HT20_21,
2937        ALL_TARGET_HT20_22,
2938        ALL_TARGET_HT20_23
2939    };
2940
2941    u_int8_t mcs_rate2power_table_index_ht40[24] =
2942    {
2943        ALL_TARGET_HT40_0_8_16,
2944        ALL_TARGET_HT40_1_3_9_11_17_19,
2945        ALL_TARGET_HT40_1_3_9_11_17_19,
2946        ALL_TARGET_HT40_1_3_9_11_17_19,
2947        ALL_TARGET_HT40_4,
2948        ALL_TARGET_HT40_5,
2949        ALL_TARGET_HT40_6,
2950        ALL_TARGET_HT40_7,
2951        ALL_TARGET_HT40_0_8_16,
2952        ALL_TARGET_HT40_1_3_9_11_17_19,
2953        ALL_TARGET_HT40_1_3_9_11_17_19,
2954        ALL_TARGET_HT40_1_3_9_11_17_19,
2955        ALL_TARGET_HT40_12,
2956        ALL_TARGET_HT40_13,
2957        ALL_TARGET_HT40_14,
2958        ALL_TARGET_HT40_15,
2959        ALL_TARGET_HT40_0_8_16,
2960        ALL_TARGET_HT40_1_3_9_11_17_19,
2961        ALL_TARGET_HT40_1_3_9_11_17_19,
2962        ALL_TARGET_HT40_1_3_9_11_17_19,
2963        ALL_TARGET_HT40_20,
2964        ALL_TARGET_HT40_21,
2965        ALL_TARGET_HT40_22,
2966        ALL_TARGET_HT40_23,
2967    };
2968
2969    HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
2970        "%s[%d] +++chan %d,cfgctl 0x%04x  "
2971        "antenna_reduction 0x%04x, twice_max_regulatory_power 0x%04x "
2972        "power_limit 0x%04x\n",
2973        __func__, __LINE__, ichan->channel, cfg_ctl,
2974        antenna_reduction, twice_max_regulatory_power, power_limit);
2975    ar9300_set_target_power_from_eeprom(ah, ichan->channel, target_power_val_t2);
2976
2977    if (ar9300_eeprom_get(ahp, EEP_PAPRD_ENABLED)) {
2978        if (IEEE80211_IS_CHAN_2GHZ(chan)) {
2979            if (IEEE80211_IS_CHAN_HT40(chan)) {
2980                tmp_paprd_rate_mask =
2981                    p_eep_data->modal_header_2g.paprd_rate_mask_ht40;
2982                tmp_ptr = &AH9300(ah)->ah_2g_paprd_rate_mask_ht40;
2983            } else {
2984                tmp_paprd_rate_mask =
2985                    p_eep_data->modal_header_2g.paprd_rate_mask_ht20;
2986                tmp_ptr = &AH9300(ah)->ah_2g_paprd_rate_mask_ht20;
2987            }
2988        } else {
2989            if (IEEE80211_IS_CHAN_HT40(chan)) {
2990                tmp_paprd_rate_mask =
2991                    p_eep_data->modal_header_5g.paprd_rate_mask_ht40;
2992                tmp_ptr = &AH9300(ah)->ah_5g_paprd_rate_mask_ht40;
2993            } else {
2994                tmp_paprd_rate_mask =
2995                    p_eep_data->modal_header_5g.paprd_rate_mask_ht20;
2996                tmp_ptr = &AH9300(ah)->ah_5g_paprd_rate_mask_ht20;
2997            }
2998        }
2999        AH_PAPRD_GET_SCALE_FACTOR(
3000            paprd_scale_factor, p_eep_data, IEEE80211_IS_CHAN_2GHZ(chan), ichan->channel);
3001        HALDEBUG(ah, HAL_DEBUG_CALIBRATE, "%s[%d] paprd_scale_factor %d\n",
3002            __func__, __LINE__, paprd_scale_factor);
3003        /* PAPRD is not done yet, Scale down the EEP power */
3004        if (IEEE80211_IS_CHAN_HT40(chan)) {
3005            ptr_mcs_rate2power_table_index =
3006                &mcs_rate2power_table_index_ht40[0];
3007        } else {
3008            ptr_mcs_rate2power_table_index =
3009                &mcs_rate2power_table_index_ht20[0];
3010        }
3011        if (! ichan->paprd_table_write_done) {
3012            for (i = 0;  i < 24; i++) {
3013                /* PAPRD is done yet, so Scale down Power for PAPRD Rates*/
3014                if (tmp_paprd_rate_mask & (1 << i)) {
3015                    target_power_val_t2[ptr_mcs_rate2power_table_index[i]] -=
3016                        paprd_scale_factor;
3017                    HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
3018                        "%s[%d]: Chan %d "
3019                        "Scale down target_power_val_t2[%d] = 0x%04x\n",
3020                        __func__, __LINE__,
3021                        ichan->channel, i, target_power_val_t2[i]);
3022                }
3023            }
3024        } else {
3025            HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
3026                "%s[%d]: PAPRD Done No TGT PWR Scaling\n", __func__, __LINE__);
3027        }
3028    }
3029
3030    /* Save the Target power for future use */
3031    OS_MEMCPY(target_power_val_t2_eep, target_power_val_t2,
3032                                   sizeof(target_power_val_t2));
3033    ar9300_eeprom_set_power_per_rate_table(ah, p_eep_data, chan,
3034                                     target_power_val_t2, cfg_ctl,
3035                                     antenna_reduction,
3036                                     twice_max_regulatory_power,
3037                                     power_limit, 0);
3038
3039    /* Save this for quick lookup */
3040    ahp->reg_dmn = ath_hal_getctl(ah, chan);
3041
3042    /*
3043     * Always use CDD/direct per rate power table for register based approach.
3044     * For FCC, CDD calculations should factor in the array gain, hence
3045     * this adjust call. ETSI and MKK does not have this requirement.
3046     */
3047    if (is_reg_dmn_fcc(ahp->reg_dmn)) {
3048        HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
3049            "%s: FCC regdomain, calling reg_txpower_cdd\n",
3050            __func__);
3051        ar9300_adjust_reg_txpower_cdd(ah, target_power_val_t2);
3052    }
3053
3054    if (ar9300_eeprom_get(ahp, EEP_PAPRD_ENABLED)) {
3055        for (i = 0;  i < ar9300_rate_size; i++) {
3056            /*
3057             * EEPROM TGT PWR is not same as current TGT PWR,
3058             * so Disable PAPRD for this rate.
3059             * Some of APs might ask to reduce Target Power,
3060             * if target power drops significantly,
3061             * disable PAPRD for that rate.
3062             */
3063            if (tmp_paprd_rate_mask & (1 << i)) {
3064                if (ABS(target_power_val_t2_eep[i], target_power_val_t2[i]) >
3065                    paprd_scale_factor)
3066                {
3067                    tmp_paprd_rate_mask &= ~(1 << i);
3068                    HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
3069                        "%s: EEP TPC[%02d] 0x%08x "
3070                        "Curr TPC[%02d] 0x%08x mask = 0x%08x\n",
3071                        __func__, i, target_power_val_t2_eep[i], i,
3072                        target_power_val_t2[i], tmp_paprd_rate_mask);
3073                }
3074            }
3075
3076        }
3077        HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
3078            "%s: Chan %d After tmp_paprd_rate_mask = 0x%08x\n",
3079            __func__, ichan->channel, tmp_paprd_rate_mask);
3080        if (tmp_ptr) {
3081            *tmp_ptr = tmp_paprd_rate_mask;
3082        }
3083    }
3084
3085    /* Write target power array to registers */
3086    ar9300_transmit_power_reg_write(ah, target_power_val_t2);
3087
3088    /* Write target power for self generated frames to the TPC register */
3089    ar9300_selfgen_tpc_reg_write(ah, chan, target_power_val_t2);
3090
3091    /* GreenTx or Paprd */
3092    if (ah->ah_config.ath_hal_sta_update_tx_pwr_enable ||
3093        AH_PRIVATE(ah)->ah_caps.halPaprdEnabled)
3094    {
3095        if (AR_SREV_POSEIDON(ah)) {
3096            /*For HAL_RSSI_TX_POWER_NONE array*/
3097            OS_MEMCPY(ahp->ah_default_tx_power,
3098                target_power_val_t2,
3099                sizeof(target_power_val_t2));
3100            /* Get defautl tx related register setting for GreenTx */
3101            /* Record OB/DB */
3102            ahp->ah_ob_db1[POSEIDON_STORED_REG_OBDB] =
3103                OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF2);
3104            /* Record TPC settting */
3105            ahp->ah_ob_db1[POSEIDON_STORED_REG_TPC] =
3106                OS_REG_READ(ah, AR_TPC);
3107            /* Record BB_powertx_rate9 setting */
3108            ahp->ah_ob_db1[POSEIDON_STORED_REG_BB_PWRTX_RATE9] =
3109                OS_REG_READ(ah, AR_PHY_BB_POWERTX_RATE9);
3110        }
3111    }
3112
3113    /*
3114     * Return tx power used to iwconfig.
3115     * Since power is rate dependent, use one of the indices from the
3116     * AR9300_Rates enum to select an entry from target_power_val_t2[]
3117     * to report.
3118     * Currently returns the power for HT40 MCS 0, HT20 MCS 0, or OFDM 6 Mbps
3119     * as CCK power is less interesting (?).
3120     */
3121    i = ALL_TARGET_LEGACY_6_24;         /* legacy */
3122    if (IEEE80211_IS_CHAN_HT40(chan)) {
3123        i = ALL_TARGET_HT40_0_8_16;     /* ht40 */
3124    } else if (IEEE80211_IS_CHAN_HT20(chan)) {
3125        i = ALL_TARGET_HT20_0_8_16;     /* ht20 */
3126    }
3127    max_power_level = target_power_val_t2[i];
3128    /* Adjusting the ah_max_power_level based on chains and antennaGain*/
3129    switch (ar9300_get_ntxchains(((ahp->ah_tx_chainmaskopt > 0) ?
3130                                    ahp->ah_tx_chainmaskopt : ahp->ah_tx_chainmask)))
3131    {
3132        case 1:
3133            break;
3134        case 2:
3135            twice_array_gain = (ahp->twice_antenna_gain >= ahp->twice_antenna_reduction)? 0:
3136                               ((int16_t)AH_MIN((ahp->twice_antenna_reduction -
3137                                   (ahp->twice_antenna_gain + INCREASE_MAXPOW_BY_TWO_CHAIN)), 0));
3138            /* Adjusting maxpower with antennaGain */
3139            max_power_level -= twice_array_gain;
3140            /* Adjusting maxpower based on chain */
3141            max_power_level += INCREASE_MAXPOW_BY_TWO_CHAIN;
3142            break;
3143        case 3:
3144            twice_array_gain = (ahp->twice_antenna_gain >= ahp->twice_antenna_reduction)? 0:
3145                               ((int16_t)AH_MIN((ahp->twice_antenna_reduction -
3146                                   (ahp->twice_antenna_gain + INCREASE_MAXPOW_BY_THREE_CHAIN)), 0));
3147
3148            /* Adjusting maxpower with antennaGain */
3149            max_power_level -= twice_array_gain;
3150            /* Adjusting maxpower based on chain */
3151            max_power_level += INCREASE_MAXPOW_BY_THREE_CHAIN;
3152            break;
3153        default:
3154            HALASSERT(0); /* Unsupported number of chains */
3155    }
3156    AH_PRIVATE(ah)->ah_maxPowerLevel = (int8_t)max_power_level;
3157
3158    ar9300_calibration_apply(ah, ichan->channel);
3159#undef ABS
3160
3161    /* Handle per packet TPC initializations */
3162    if (ah->ah_config.ath_hal_desc_tpc) {
3163        /* Transmit Power per-rate per-chain  are  computed here. A separate
3164         * power table is maintained for different MIMO modes (i.e. TXBF ON,
3165         * STBC) to enable easy lookup during packet transmit.
3166         * The reason for maintaing each of these tables per chain is that
3167         * the transmit power used for different number of chains is different
3168         * depending on whether the power has been limited by the target power,
3169         * the regulatory domain  or the CTL limits.
3170         */
3171        u_int mode = ath_hal_get_curmode(ah, chan);
3172        u_int32_t val = 0;
3173        u_int8_t chainmasks[AR9300_MAX_CHAINS] =
3174            {OSPREY_1_CHAINMASK, OSPREY_2LOHI_CHAINMASK, OSPREY_3_CHAINMASK};
3175        for (i = 0; i < AR9300_MAX_CHAINS; i++) {
3176            OS_MEMCPY(target_power_val_t2, target_power_val_t2_eep,
3177                                   sizeof(target_power_val_t2_eep));
3178            ar9300_eeprom_set_power_per_rate_table(ah, p_eep_data, chan,
3179                                     target_power_val_t2, cfg_ctl,
3180                                     antenna_reduction,
3181                                     twice_max_regulatory_power,
3182                                     power_limit, chainmasks[i]);
3183            HALDEBUG(ah, HAL_DEBUG_POWER_MGMT,
3184                 " Channel = %d Chainmask = %d, Upper Limit = [%2d.%1d dBm]\n",
3185                                       ichan->channel, i, ahp->upper_limit[i]/2,
3186                                       ahp->upper_limit[i]%2 * 5);
3187            ar9300_init_rate_txpower(ah, mode, chan, target_power_val_t2,
3188                                                           chainmasks[i]);
3189
3190        }
3191
3192        /* Enable TPC */
3193        OS_REG_WRITE(ah, AR_PHY_PWRTX_MAX, AR_PHY_PWRTX_MAX_TPC_ENABLE);
3194        /*
3195         * Disable per chain power reduction since we are already
3196         * accounting for this in our calculations
3197         */
3198        val = OS_REG_READ(ah, AR_PHY_POWER_TX_SUB);
3199        if (AR_SREV_WASP(ah)) {
3200            OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
3201                       val & AR_PHY_POWER_TX_SUB_2_DISABLE);
3202        } else {
3203            OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
3204                       val & AR_PHY_POWER_TX_SUB_3_DISABLE);
3205        }
3206    }
3207
3208    return HAL_OK;
3209}
3210
3211/**************************************************************
3212 * ar9300_eeprom_set_addac
3213 *
3214 * Set the ADDAC from eeprom.
3215 */
3216void
3217ar9300_eeprom_set_addac(struct ath_hal *ah, struct ieee80211_channel *chan)
3218{
3219
3220    HALDEBUG(AH_NULL, HAL_DEBUG_UNMASKABLE,
3221                 "FIXME: ar9300_eeprom_def_set_addac called\n");
3222#if 0
3223    MODAL_EEPDEF_HEADER *p_modal;
3224    struct ath_hal_9300 *ahp = AH9300(ah);
3225    ar9300_eeprom_t *eep = &ahp->ah_eeprom.def;
3226    u_int8_t biaslevel;
3227
3228    if (AH_PRIVATE(ah)->ah_macVersion != AR_SREV_VERSION_SOWL) {
3229        return;
3230    }
3231
3232    HALASSERT(owl_get_eepdef_ver(ahp) == AR9300_EEP_VER);
3233
3234    /* Xpa bias levels in eeprom are valid from rev 14.7 */
3235    if (owl_get_eepdef_rev(ahp) < AR9300_EEP_MINOR_VER_7) {
3236        return;
3237    }
3238
3239    if (ahp->ah_emu_eeprom) {
3240        return;
3241    }
3242
3243    p_modal = &(eep->modal_header[IEEE80211_IS_CHAN_2GHZ(chan)]);
3244
3245    if (p_modal->xpa_bias_lvl != 0xff) {
3246        biaslevel = p_modal->xpa_bias_lvl;
3247    } else {
3248        /* Use freqeuncy specific xpa bias level */
3249        u_int16_t reset_freq_bin, freq_bin, freq_count = 0;
3250        CHAN_CENTERS centers;
3251
3252        ar9300_get_channel_centers(ah, chan, &centers);
3253
3254        reset_freq_bin = FREQ2FBIN(centers.synth_center, IEEE80211_IS_CHAN_2GHZ(chan));
3255        freq_bin = p_modal->xpa_bias_lvl_freq[0] & 0xff;
3256        biaslevel = (u_int8_t)(p_modal->xpa_bias_lvl_freq[0] >> 14);
3257
3258        freq_count++;
3259
3260        while (freq_count < 3) {
3261            if (p_modal->xpa_bias_lvl_freq[freq_count] == 0x0) {
3262                break;
3263            }
3264
3265            freq_bin = p_modal->xpa_bias_lvl_freq[freq_count] & 0xff;
3266            if (reset_freq_bin >= freq_bin) {
3267                biaslevel =
3268                    (u_int8_t)(p_modal->xpa_bias_lvl_freq[freq_count] >> 14);
3269            } else {
3270                break;
3271            }
3272            freq_count++;
3273        }
3274    }
3275
3276    /* Apply bias level to the ADDAC values in the INI array */
3277    if (IEEE80211_IS_CHAN_2GHZ(chan)) {
3278        INI_RA(&ahp->ah_ini_addac, 7, 1) =
3279            (INI_RA(&ahp->ah_ini_addac, 7, 1) & (~0x18)) | biaslevel << 3;
3280    } else {
3281        INI_RA(&ahp->ah_ini_addac, 6, 1) =
3282            (INI_RA(&ahp->ah_ini_addac, 6, 1) & (~0xc0)) | biaslevel << 6;
3283    }
3284#endif
3285}
3286
3287u_int
3288ar9300_eeprom_dump_support(struct ath_hal *ah, void **pp_e)
3289{
3290    *pp_e = &(AH9300(ah)->ah_eeprom);
3291    return sizeof(ar9300_eeprom_t);
3292}
3293
3294u_int8_t
3295ar9300_eeprom_get_num_ant_config(struct ath_hal_9300 *ahp,
3296    HAL_FREQ_BAND freq_band)
3297{
3298#if 0
3299    ar9300_eeprom_t  *eep = &ahp->ah_eeprom.def;
3300    MODAL_EEPDEF_HEADER *p_modal =
3301        &(eep->modal_header[HAL_FREQ_BAND_2GHZ == freq_band]);
3302    BASE_EEPDEF_HEADER  *p_base  = &eep->base_eep_header;
3303    u_int8_t         num_ant_config;
3304
3305    num_ant_config = 1; /* default antenna configuration */
3306
3307    if (p_base->version >= 0x0E0D) {
3308        if (p_modal->use_ant1) {
3309            num_ant_config += 1;
3310        }
3311    }
3312
3313    return num_ant_config;
3314#else
3315    return 1;
3316#endif
3317}
3318
3319HAL_STATUS
3320ar9300_eeprom_get_ant_cfg(struct ath_hal_9300 *ahp,
3321  const struct ieee80211_channel *chan,
3322  u_int8_t index, u_int16_t *config)
3323{
3324#if 0
3325    ar9300_eeprom_t  *eep = &ahp->ah_eeprom.def;
3326    MODAL_EEPDEF_HEADER *p_modal = &(eep->modal_header[IEEE80211_IS_CHAN_2GHZ(chan)]);
3327    BASE_EEPDEF_HEADER  *p_base  = &eep->base_eep_header;
3328
3329    switch (index) {
3330    case 0:
3331        *config = p_modal->ant_ctrl_common & 0xFFFF;
3332        return HAL_OK;
3333    case 1:
3334        if (p_base->version >= 0x0E0D) {
3335            if (p_modal->use_ant1) {
3336                *config = ((p_modal->ant_ctrl_common & 0xFFFF0000) >> 16);
3337                return HAL_OK;
3338            }
3339        }
3340        break;
3341    default:
3342        break;
3343    }
3344#endif
3345    return HAL_EINVAL;
3346}
3347
3348u_int8_t*
3349ar9300_eeprom_get_cust_data(struct ath_hal_9300 *ahp)
3350{
3351    return (u_int8_t *)ahp;
3352}
3353
3354#ifdef UNUSED
3355static inline HAL_STATUS
3356ar9300_check_eeprom(struct ath_hal *ah)
3357{
3358#if 0
3359    u_int32_t sum = 0, el;
3360    u_int16_t *eepdata;
3361    int i;
3362    struct ath_hal_9300 *ahp = AH9300(ah);
3363    HAL_BOOL need_swap = AH_FALSE;
3364    ar9300_eeprom_t *eep = (ar9300_eeprom_t *)&ahp->ah_eeprom.def;
3365    u_int16_t magic, magic2;
3366    int addr;
3367    u_int16_t temp;
3368
3369    /*
3370    ** We need to check the EEPROM data regardless of if it's in flash or
3371    ** in EEPROM.
3372    */
3373
3374    if (!ahp->ah_priv.priv.ah_eeprom_read(
3375            ah, AR9300_EEPROM_MAGIC_OFFSET, &magic))
3376    {
3377        HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: Reading Magic # failed\n", __func__);
3378        return AH_FALSE;
3379    }
3380
3381    HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: Read Magic = 0x%04X\n", __func__, magic);
3382
3383    if (!ar9300_eep_data_in_flash(ah)) {
3384
3385        if (magic != AR9300_EEPROM_MAGIC) {
3386            magic2 = SWAP16(magic);
3387
3388            if (magic2 == AR9300_EEPROM_MAGIC) {
3389                need_swap = AH_TRUE;
3390                eepdata = (u_int16_t *)(&ahp->ah_eeprom);
3391
3392                for (addr = 0;
3393                     addr < sizeof(ar9300_eeprom_t) / sizeof(u_int16_t);
3394                     addr++)
3395                {
3396                    temp = SWAP16(*eepdata);
3397                    *eepdata = temp;
3398                    eepdata++;
3399
3400                    HALDEBUG(ah, HAL_DEBUG_EEPROM_DUMP, "0x%04X  ", *eepdata);
3401                    if (((addr + 1) % 6) == 0) {
3402                        HALDEBUG(ah, HAL_DEBUG_EEPROM_DUMP, "\n");
3403                    }
3404                }
3405            } else {
3406                HALDEBUG(ah, HAL_DEBUG_EEPROM,
3407                    "Invalid EEPROM Magic. endianness missmatch.\n");
3408                return HAL_EEBADSUM;
3409            }
3410        }
3411    } else {
3412        HALDEBUG(ah, HAL_DEBUG_EEPROM,
3413                 "EEPROM being read from flash @0x%p\n", AH_PRIVATE(ah)->ah_st);
3414    }
3415
3416    HALDEBUG(ah, HAL_DEBUG_EEPROM, "need_swap = %s.\n", need_swap?"True":"False");
3417
3418    if (need_swap) {
3419        el = SWAP16(ahp->ah_eeprom.def.base_eep_header.length);
3420    } else {
3421        el = ahp->ah_eeprom.def.base_eep_header.length;
3422    }
3423
3424    eepdata = (u_int16_t *)(&ahp->ah_eeprom.def);
3425    for (i = 0;
3426         i < AH_MIN(el, sizeof(ar9300_eeprom_t)) / sizeof(u_int16_t);
3427         i++) {
3428        sum ^= *eepdata++;
3429    }
3430
3431    if (need_swap) {
3432        /*
3433        *  preddy: EEPROM endianness does not match. So change it
3434        *  8bit values in eeprom data structure does not need to be swapped
3435        *  Only >8bits (16 & 32) values need to be swapped
3436        *  If a new 16 or 32 bit field is added to the EEPROM contents,
3437        *  please make sure to swap the field here
3438        */
3439        u_int32_t integer, j;
3440        u_int16_t word;
3441
3442        HALDEBUG(ah, HAL_DEBUG_EEPROM,
3443            "EEPROM Endianness is not native.. Changing \n");
3444
3445        /* convert Base Eep header */
3446        word = SWAP16(eep->base_eep_header.length);
3447        eep->base_eep_header.length = word;
3448
3449        word = SWAP16(eep->base_eep_header.checksum);
3450        eep->base_eep_header.checksum = word;
3451
3452        word = SWAP16(eep->base_eep_header.version);
3453        eep->base_eep_header.version = word;
3454
3455        word = SWAP16(eep->base_eep_header.reg_dmn[0]);
3456        eep->base_eep_header.reg_dmn[0] = word;
3457
3458        word = SWAP16(eep->base_eep_header.reg_dmn[1]);
3459        eep->base_eep_header.reg_dmn[1] = word;
3460
3461        word = SWAP16(eep->base_eep_header.rf_silent);
3462        eep->base_eep_header.rf_silent = word;
3463
3464        word = SWAP16(eep->base_eep_header.blue_tooth_options);
3465        eep->base_eep_header.blue_tooth_options = word;
3466
3467        word = SWAP16(eep->base_eep_header.device_cap);
3468        eep->base_eep_header.device_cap = word;
3469
3470        /* convert Modal Eep header */
3471        for (j = 0; j < ARRAY_LENGTH(eep->modal_header); j++) {
3472            MODAL_EEPDEF_HEADER *p_modal = &eep->modal_header[j];
3473            integer = SWAP32(p_modal->ant_ctrl_common);
3474            p_modal->ant_ctrl_common = integer;
3475
3476            for (i = 0; i < AR9300_MAX_CHAINS; i++) {
3477                integer = SWAP32(p_modal->ant_ctrl_chain[i]);
3478                p_modal->ant_ctrl_chain[i] = integer;
3479            }
3480
3481            for (i = 0; i < AR9300_EEPROM_MODAL_SPURS; i++) {
3482                word = SWAP16(p_modal->spur_chans[i].spur_chan);
3483                p_modal->spur_chans[i].spur_chan = word;
3484            }
3485        }
3486    }
3487
3488    /* Check CRC - Attach should fail on a bad checksum */
3489    if (sum != 0xffff || owl_get_eepdef_ver(ahp) != AR9300_EEP_VER ||
3490        owl_get_eepdef_rev(ahp) < AR9300_EEP_NO_BACK_VER) {
3491        HALDEBUG(ah, HAL_DEBUG_EEPROM,
3492            "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
3493            sum, owl_get_eepdef_ver(ahp));
3494        return HAL_EEBADSUM;
3495    }
3496#ifdef EEPROM_DUMP
3497    ar9300_eeprom_def_dump(ah, eep);
3498#endif
3499
3500#if 0
3501#ifdef AH_AR9300_OVRD_TGT_PWR
3502
3503    /*
3504     * 14.4 EEPROM contains low target powers.
3505     * Hardcode until EEPROM > 14.4
3506     */
3507    if (owl_get_eepdef_ver(ahp) == 14 && owl_get_eepdef_rev(ahp) <= 4) {
3508        MODAL_EEPDEF_HEADER *p_modal;
3509
3510#ifdef EEPROM_DUMP
3511        HALDEBUG(ah,  HAL_DEBUG_POWER_OVERRIDE, "Original Target Powers\n");
3512        ar9300_eep_def_dump_tgt_power(ah, eep);
3513#endif
3514        HALDEBUG(ah,  HAL_DEBUG_POWER_OVERRIDE,
3515                "Override Target Powers. EEPROM Version is %d.%d, "
3516                "Device Type %d\n",
3517                owl_get_eepdef_ver(ahp),
3518                owl_get_eepdef_rev(ahp),
3519                eep->base_eep_header.device_type);
3520
3521
3522        ar9300_eep_def_override_tgt_power(ah, eep);
3523
3524        if (eep->base_eep_header.device_type == 5) {
3525            /* for xb72 only: improve transmit EVM for interop */
3526            p_modal = &eep->modal_header[1];
3527            p_modal->tx_frame_to_data_start = 0x23;
3528            p_modal->tx_frame_to_xpa_on = 0x23;
3529            p_modal->tx_frame_to_pa_on = 0x23;
3530    }
3531
3532#ifdef EEPROM_DUMP
3533        HALDEBUG(ah, HAL_DEBUG_POWER_OVERRIDE, "Modified Target Powers\n");
3534        ar9300_eep_def_dump_tgt_power(ah, eep);
3535#endif
3536        }
3537#endif /* AH_AR9300_OVRD_TGT_PWR */
3538#endif
3539#endif
3540    return HAL_OK;
3541}
3542#endif
3543
3544static u_int16_t
3545ar9300_eeprom_get_spur_chan(struct ath_hal *ah, int i, HAL_BOOL is_2ghz)
3546{
3547    u_int16_t   spur_val = AR_NO_SPUR;
3548#if 0
3549    struct ath_hal_9300 *ahp = AH9300(ah);
3550    ar9300_eeprom_t *eep = (ar9300_eeprom_t *)&ahp->ah_eeprom;
3551
3552    HALASSERT(i <  AR_EEPROM_MODAL_SPURS );
3553
3554    HALDEBUG(ah, HAL_DEBUG_ANI,
3555             "Getting spur idx %d is2Ghz. %d val %x\n",
3556             i, is_2ghz,
3557             AH_PRIVATE(ah)->ah_config.ath_hal_spur_chans[i][is_2ghz]);
3558
3559    switch (AH_PRIVATE(ah)->ah_config.ath_hal_spur_mode) {
3560    case SPUR_DISABLE:
3561        /* returns AR_NO_SPUR */
3562        break;
3563    case SPUR_ENABLE_IOCTL:
3564        spur_val = AH_PRIVATE(ah)->ah_config.ath_hal_spur_chans[i][is_2ghz];
3565        HALDEBUG(ah, HAL_DEBUG_ANI,
3566            "Getting spur val from new loc. %d\n", spur_val);
3567        break;
3568    case SPUR_ENABLE_EEPROM:
3569        spur_val = eep->modal_header[is_2ghz].spur_chans[i].spur_chan;
3570        break;
3571
3572    }
3573#endif
3574    return spur_val;
3575}
3576
3577#ifdef UNUSED
3578static inline HAL_BOOL
3579ar9300_fill_eeprom(struct ath_hal *ah)
3580{
3581    return ar9300_eeprom_restore(ah);
3582}
3583#endif
3584
3585u_int16_t
3586ar9300_eeprom_struct_size(void)
3587{
3588    return sizeof(ar9300_eeprom_t);
3589}
3590
3591int ar9300_eeprom_struct_default_many(void)
3592{
3593    return ARRAY_LENGTH(default9300);
3594}
3595
3596
3597ar9300_eeprom_t *
3598ar9300_eeprom_struct_default(int default_index)
3599{
3600    if (default_index >= 0 &&
3601        default_index < ARRAY_LENGTH(default9300))
3602    {
3603        return default9300[default_index];
3604    } else {
3605        return 0;
3606    }
3607}
3608
3609ar9300_eeprom_t *
3610ar9300_eeprom_struct_default_find_by_id(int id)
3611{
3612    int it;
3613
3614    for (it = 0; it < ARRAY_LENGTH(default9300); it++) {
3615        if (default9300[it] != 0 && default9300[it]->template_version == id) {
3616            return default9300[it];
3617        }
3618    }
3619    return 0;
3620}
3621
3622
3623HAL_BOOL
3624ar9300_calibration_data_read_flash(struct ath_hal *ah, long address,
3625    u_int8_t *buffer, int many)
3626{
3627
3628    if (((address) < 0) || ((address + many) > AR9300_EEPROM_SIZE - 1)) {
3629        return AH_FALSE;
3630    }
3631    return AH_FALSE;
3632}
3633
3634HAL_BOOL
3635ar9300_calibration_data_read_eeprom(struct ath_hal *ah, long address,
3636    u_int8_t *buffer, int many)
3637{
3638    int i;
3639    u_int8_t value[2];
3640    unsigned long eep_addr;
3641    unsigned long byte_addr;
3642    u_int16_t *svalue;
3643
3644    if (((address) < 0) || ((address + many) > AR9300_EEPROM_SIZE)) {
3645        return AH_FALSE;
3646    }
3647
3648    for (i = 0; i < many; i++) {
3649        eep_addr = (u_int16_t) (address + i) / 2;
3650        byte_addr = (u_int16_t) (address + i) % 2;
3651        svalue = (u_int16_t *) value;
3652        if (! ath_hal_eepromRead(ah, eep_addr, svalue)) {
3653            HALDEBUG(ah, HAL_DEBUG_EEPROM,
3654                "%s: Unable to read eeprom region \n", __func__);
3655            return AH_FALSE;
3656        }
3657        buffer[i] = (*svalue >> (8 * byte_addr)) & 0xff;
3658    }
3659    return AH_TRUE;
3660}
3661
3662HAL_BOOL
3663ar9300_calibration_data_read_otp(struct ath_hal *ah, long address,
3664    u_int8_t *buffer, int many, HAL_BOOL is_wifi)
3665{
3666    int i;
3667    unsigned long eep_addr;
3668    unsigned long byte_addr;
3669    u_int32_t svalue;
3670
3671    if (((address) < 0) || ((address + many) > 0x400)) {
3672        return AH_FALSE;
3673    }
3674
3675    for (i = 0; i < many; i++) {
3676        eep_addr = (u_int16_t) (address + i) / 4; /* otp is 4 bytes long???? */
3677        byte_addr = (u_int16_t) (address + i) % 4;
3678        if (!ar9300_otp_read(ah, eep_addr, &svalue, is_wifi)) {
3679            HALDEBUG(ah, HAL_DEBUG_EEPROM,
3680                "%s: Unable to read otp region \n", __func__);
3681            return AH_FALSE;
3682        }
3683        buffer[i] = (svalue >> (8 * byte_addr)) & 0xff;
3684    }
3685    return AH_TRUE;
3686}
3687
3688#ifdef ATH_CAL_NAND_FLASH
3689HAL_BOOL
3690ar9300_calibration_data_read_nand(struct ath_hal *ah, long address,
3691    u_int8_t *buffer, int many)
3692{
3693    int ret_len;
3694    int ret_val = 1;
3695
3696      /* Calling OS based API to read NAND */
3697    ret_val = OS_NAND_FLASH_READ(ATH_CAL_NAND_PARTITION, address, many, &ret_len, buffer);
3698
3699    return (ret_val ? AH_FALSE: AH_TRUE);
3700}
3701#endif
3702
3703HAL_BOOL
3704ar9300_calibration_data_read(struct ath_hal *ah, long address,
3705    u_int8_t *buffer, int many)
3706{
3707    switch (AH9300(ah)->calibration_data_source) {
3708    case calibration_data_flash:
3709        return ar9300_calibration_data_read_flash(ah, address, buffer, many);
3710    case calibration_data_eeprom:
3711        return ar9300_calibration_data_read_eeprom(ah, address, buffer, many);
3712    case calibration_data_otp:
3713        return ar9300_calibration_data_read_otp(ah, address, buffer, many, 1);
3714#ifdef ATH_CAL_NAND_FLASH
3715    case calibration_data_nand:
3716        return ar9300_calibration_data_read_nand(ah,address,buffer,many);
3717#endif
3718
3719    }
3720    return AH_FALSE;
3721}
3722
3723
3724HAL_BOOL
3725ar9300_calibration_data_read_array(struct ath_hal *ah, int address,
3726    u_int8_t *buffer, int many)
3727{
3728    int it;
3729
3730    for (it = 0; it < many; it++) {
3731        (void)ar9300_calibration_data_read(ah, address - it, buffer + it, 1);
3732    }
3733    return AH_TRUE;
3734}
3735
3736
3737/*
3738 * the address where the first configuration block is written
3739 */
3740static const int base_address = 0x3ff;                /* 1KB */
3741static const int base_address_512 = 0x1ff;            /* 512Bytes */
3742
3743/*
3744 * the address where the NAND first configuration block is written
3745 */
3746#ifdef ATH_CAL_NAND_FLASH
3747static const int base_address_nand = AR9300_FLASH_CAL_START_OFFSET;
3748#endif
3749
3750
3751/*
3752 * the lower limit on configuration data
3753 */
3754static const int low_limit = 0x040;
3755
3756/*
3757 * returns size of the physical eeprom in bytes.
3758 * 1024 and 2048 are normal sizes.
3759 * 0 means there is no eeprom.
3760 */
3761int32_t
3762ar9300_eeprom_size(struct ath_hal *ah)
3763{
3764    u_int16_t data;
3765    /*
3766     * first we'll try for 4096 bytes eeprom
3767     */
3768    if (ar9300_eeprom_read_word(ah, 2047, &data)) {
3769        if (data != 0) {
3770            return 4096;
3771        }
3772    }
3773    /*
3774     * then we'll try for 2048 bytes eeprom
3775     */
3776    if (ar9300_eeprom_read_word(ah, 1023, &data)) {
3777        if (data != 0) {
3778            return 2048;
3779        }
3780    }
3781    /*
3782     * then we'll try for 1024 bytes eeprom
3783     */
3784    if (ar9300_eeprom_read_word(ah, 511, &data)) {
3785        if (data != 0) {
3786            return 1024;
3787        }
3788    }
3789    return 0;
3790}
3791
3792/*
3793 * returns size of the physical otp in bytes.
3794 * 1024 and 2048 are normal sizes.
3795 * 0 means there is no eeprom.
3796 */
3797int32_t
3798ar9300_otp_size(struct ath_hal *ah)
3799{
3800    if (AR_SREV_POSEIDON(ah) || AR_SREV_HORNET(ah)) {
3801        return base_address_512+1;
3802    } else {
3803        return base_address+1;
3804    }
3805}
3806
3807
3808/*
3809 * find top of memory
3810 */
3811int
3812ar9300_eeprom_base_address(struct ath_hal *ah)
3813{
3814    int size;
3815
3816    if (AH9300(ah)->calibration_data_source == calibration_data_otp) {
3817		return ar9300_otp_size(ah)-1;
3818	}
3819	else
3820	{
3821		size = ar9300_eeprom_size(ah);
3822		if (size > 0) {
3823			return size - 1;
3824		} else {
3825			return ar9300_otp_size(ah)-1;
3826		}
3827	}
3828}
3829
3830int
3831ar9300_eeprom_volatile(struct ath_hal *ah)
3832{
3833    if (AH9300(ah)->calibration_data_source == calibration_data_otp) {
3834        return 0;        /* no eeprom, use otp */
3835    } else {
3836        return 1;        /* board has eeprom or flash */
3837    }
3838}
3839
3840/*
3841 * need to change this to look for the pcie data in the low parts of memory
3842 * cal data needs to stop a few locations above
3843 */
3844int
3845ar9300_eeprom_low_limit(struct ath_hal *ah)
3846{
3847    return low_limit;
3848}
3849
3850u_int16_t
3851ar9300_compression_checksum(u_int8_t *data, int dsize)
3852{
3853    int it;
3854    int checksum = 0;
3855
3856    for (it = 0; it < dsize; it++) {
3857        checksum += data[it];
3858        checksum &= 0xffff;
3859    }
3860
3861    return checksum;
3862}
3863
3864int
3865ar9300_compression_header_unpack(u_int8_t *best, int *code, int *reference,
3866    int *length, int *major, int *minor)
3867{
3868    unsigned long value[4];
3869
3870    value[0] = best[0];
3871    value[1] = best[1];
3872    value[2] = best[2];
3873    value[3] = best[3];
3874    *code = ((value[0] >> 5) & 0x0007);
3875    *reference = (value[0] & 0x001f) | ((value[1] >> 2) & 0x0020);
3876    *length = ((value[1] << 4) & 0x07f0) | ((value[2] >> 4) & 0x000f);
3877    *major = (value[2] & 0x000f);
3878    *minor = (value[3] & 0x00ff);
3879
3880    return 4;
3881}
3882
3883
3884static HAL_BOOL
3885ar9300_uncompress_block(struct ath_hal *ah, u_int8_t *mptr, int mdata_size,
3886    u_int8_t *block, int size)
3887{
3888    int it;
3889    int spot;
3890    int offset;
3891    int length;
3892
3893    spot = 0;
3894    for (it = 0; it < size; it += (length + 2)) {
3895        offset = block[it];
3896        offset &= 0xff;
3897        spot += offset;
3898        length = block[it + 1];
3899        length &= 0xff;
3900        if (length > 0 && spot >= 0 && spot + length <= mdata_size) {
3901            HALDEBUG(ah, HAL_DEBUG_EEPROM,
3902                "%s: Restore at %d: spot=%d offset=%d length=%d\n",
3903                __func__, it, spot, offset, length);
3904            OS_MEMCPY(&mptr[spot], &block[it + 2], length);
3905            spot += length;
3906        } else if (length > 0) {
3907            HALDEBUG(ah, HAL_DEBUG_EEPROM,
3908                "%s: Bad restore at %d: spot=%d offset=%d length=%d\n",
3909                __func__, it, spot, offset, length);
3910            return AH_FALSE;
3911        }
3912    }
3913    return AH_TRUE;
3914}
3915
3916static int
3917ar9300_eeprom_restore_internal_address(struct ath_hal *ah,
3918    ar9300_eeprom_t *mptr, int mdata_size, int cptr, u_int8_t blank)
3919{
3920    u_int8_t word[MOUTPUT];
3921    ar9300_eeprom_t *dptr; /* was uint8 */
3922    int code;
3923    int reference, length, major, minor;
3924    int osize;
3925    int it;
3926    int restored;
3927    u_int16_t checksum, mchecksum;
3928
3929    restored = 0;
3930    for (it = 0; it < MSTATE; it++) {
3931        (void) ar9300_calibration_data_read_array(
3932            ah, cptr, word, compression_header_length);
3933        if (word[0] == blank && word[1] == blank && word[2] == blank && word[3] == blank)
3934        {
3935            break;
3936        }
3937        ar9300_compression_header_unpack(
3938            word, &code, &reference, &length, &major, &minor);
3939        HALDEBUG(ah, HAL_DEBUG_EEPROM,
3940            "%s: Found block at %x: "
3941            "code=%d ref=%d length=%d major=%d minor=%d\n",
3942            __func__, cptr, code, reference, length, major, minor);
3943#ifdef DONTUSE
3944        if (length >= 1024) {
3945            HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: Skipping bad header\n", __func__);
3946            cptr -= compression_header_length;
3947            continue;
3948        }
3949#endif
3950        osize = length;
3951        (void) ar9300_calibration_data_read_array(
3952            ah, cptr, word,
3953            compression_header_length + osize + compression_checksum_length);
3954        checksum = ar9300_compression_checksum(
3955            &word[compression_header_length], length);
3956        mchecksum =
3957            word[compression_header_length + osize] |
3958            (word[compression_header_length + osize + 1] << 8);
3959        HALDEBUG(ah, HAL_DEBUG_EEPROM,
3960            "%s: checksum %x %x\n", __func__, checksum, mchecksum);
3961        if (checksum == mchecksum) {
3962            switch (code) {
3963            case _compress_none:
3964                if (length != mdata_size) {
3965                    HALDEBUG(ah, HAL_DEBUG_EEPROM,
3966                        "%s: EEPROM structure size mismatch "
3967                        "memory=%d eeprom=%d\n", __func__, mdata_size, length);
3968                    return -1;
3969                }
3970                OS_MEMCPY((u_int8_t *)mptr,
3971                    (u_int8_t *)(word + compression_header_length), length);
3972                HALDEBUG(ah, HAL_DEBUG_EEPROM,
3973                    "%s: restored eeprom %d: uncompressed, length %d\n",
3974                    __func__, it, length);
3975                restored = 1;
3976                break;
3977#ifdef UNUSED
3978            case _compress_lzma:
3979                if (reference == reference_current) {
3980                    dptr = mptr;
3981                } else {
3982                    dptr = (u_int8_t *)ar9300_eeprom_struct_default_find_by_id(
3983                        reference);
3984                    if (dptr == 0) {
3985                        HALDEBUG(ah, HAL_DEBUG_EEPROM,
3986                            "%s: Can't find reference eeprom struct %d\n",
3987                            __func__, reference);
3988                        goto done;
3989                    }
3990                }
3991                usize = -1;
3992                if (usize != mdata_size) {
3993                    HALDEBUG(ah, HAL_DEBUG_EEPROM,
3994                        "%s: uncompressed data is wrong size %d %d\n",
3995                        __func__, usize, mdata_size);
3996                    goto done;
3997                }
3998
3999                for (ib = 0; ib < mdata_size; ib++) {
4000                    mptr[ib] = dptr[ib] ^ word[ib + overhead];
4001                }
4002                HALDEBUG(ah, HAL_DEBUG_EEPROM,
4003                    "%s: restored eeprom %d: compressed, "
4004                    "reference %d, length %d\n",
4005                    __func__, it, reference, length);
4006                break;
4007            case _compress_pairs:
4008                if (reference == reference_current) {
4009                    dptr = mptr;
4010                } else {
4011                    dptr = (u_int8_t *)ar9300_eeprom_struct_default_find_by_id(
4012                        reference);
4013                    if (dptr == 0) {
4014                        HALDEBUG(ah, HAL_DEBUG_EEPROM,
4015                            "%s: Can't find the reference "
4016                            "eeprom structure %d\n",
4017                            __func__, reference);
4018                        goto done;
4019                    }
4020                }
4021                HALDEBUG(ah, HAL_DEBUG_EEPROM,
4022                    "%s: restored eeprom %d: "
4023                    "pairs, reference %d, length %d,\n",
4024                    __func__, it, reference, length);
4025                break;
4026#endif
4027            case _compress_block:
4028                if (reference == reference_current) {
4029                    dptr = mptr;
4030                } else {
4031                    dptr = ar9300_eeprom_struct_default_find_by_id(reference);
4032                    if (dptr == 0) {
4033                        HALDEBUG(ah, HAL_DEBUG_EEPROM,
4034                            "%s: cant find reference eeprom struct %d\n",
4035                            __func__, reference);
4036                        break;
4037                    }
4038                    OS_MEMCPY(mptr, dptr, mdata_size);
4039                }
4040
4041                HALDEBUG(ah, HAL_DEBUG_EEPROM,
4042                    "%s: restore eeprom %d: block, reference %d, length %d\n",
4043                    __func__, it, reference, length);
4044                (void) ar9300_uncompress_block(ah,
4045                    (u_int8_t *) mptr, mdata_size,
4046                    (u_int8_t *) (word + compression_header_length), length);
4047                restored = 1;
4048                break;
4049            default:
4050                HALDEBUG(ah, HAL_DEBUG_EEPROM,
4051                    "%s: unknown compression code %d\n", __func__, code);
4052                break;
4053            }
4054        } else {
4055            HALDEBUG(ah, HAL_DEBUG_EEPROM,
4056                "%s: skipping block with bad checksum\n", __func__);
4057        }
4058        cptr -= compression_header_length + osize + compression_checksum_length;
4059    }
4060
4061    if (!restored) {
4062        cptr = -1;
4063    }
4064    return cptr;
4065}
4066
4067static int
4068ar9300_eeprom_restore_from_dram(struct ath_hal *ah, ar9300_eeprom_t *mptr,
4069    int mdata_size)
4070{
4071    struct ath_hal_9300 *ahp = AH9300(ah);
4072#if !defined(USE_PLATFORM_FRAMEWORK)
4073    char *cal_ptr;
4074#endif
4075
4076    HALASSERT(mdata_size > 0);
4077
4078    /* if cal_in_flash is AH_TRUE, the address sent by LMAC to HAL
4079       (i.e. ah->ah_st) is corresponding to Flash. so return from
4080       here if ar9300_eep_data_in_flash(ah) returns AH_TRUE */
4081    if(ar9300_eep_data_in_flash(ah))
4082        return -1;
4083
4084#if 0
4085    /* check if LMAC sent DRAM address is valid */
4086    if (!(uintptr_t)(AH_PRIVATE(ah)->ah_st)) {
4087        return -1;
4088    }
4089#endif
4090
4091    /* When calibration data is from host, Host will copy the
4092       compressed data to the predefined DRAM location saved at ah->ah_st */
4093#if 0
4094    ath_hal_printf(ah, "Restoring Cal data from DRAM\n");
4095    ahp->ah_cal_mem = OS_REMAP((uintptr_t)(AH_PRIVATE(ah)->ah_st),
4096							HOST_CALDATA_SIZE);
4097#endif
4098    if (!ahp->ah_cal_mem)
4099    {
4100       HALDEBUG(ah, HAL_DEBUG_EEPROM,"%s: can't remap dram region\n", __func__);
4101       return -1;
4102    }
4103#if !defined(USE_PLATFORM_FRAMEWORK)
4104    cal_ptr = &((char *)(ahp->ah_cal_mem))[AR9300_FLASH_CAL_START_OFFSET];
4105    OS_MEMCPY(mptr, cal_ptr, mdata_size);
4106#else
4107    OS_MEMCPY(mptr, ahp->ah_cal_mem, mdata_size);
4108#endif
4109
4110    if (mptr->eeprom_version   == 0xff ||
4111        mptr->template_version == 0xff ||
4112        mptr->eeprom_version   == 0    ||
4113        mptr->template_version == 0)
4114    {
4115        /* The board is uncalibrated */
4116        return -1;
4117    }
4118    if (mptr->eeprom_version != 0x2)
4119    {
4120        return -1;
4121    }
4122
4123    return mdata_size;
4124
4125}
4126
4127static int
4128ar9300_eeprom_restore_from_flash(struct ath_hal *ah, ar9300_eeprom_t *mptr,
4129    int mdata_size)
4130{
4131    struct ath_hal_9300 *ahp = AH9300(ah);
4132    char *cal_ptr;
4133
4134    HALASSERT(mdata_size > 0);
4135
4136    if (!ahp->ah_cal_mem) {
4137        return -1;
4138    }
4139
4140    ath_hal_printf(ah, "Restoring Cal data from Flash\n");
4141    /*
4142     * When calibration data is saved in flash, read
4143     * uncompressed eeprom structure from flash and return
4144     */
4145    cal_ptr = &((char *)(ahp->ah_cal_mem))[AR9300_FLASH_CAL_START_OFFSET];
4146    OS_MEMCPY(mptr, cal_ptr, mdata_size);
4147#if 0
4148    ar9300_swap_eeprom((ar9300_eeprom_t *)mptr); DONE IN ar9300_restore()
4149#endif
4150    if (mptr->eeprom_version   == 0xff ||
4151        mptr->template_version == 0xff ||
4152        mptr->eeprom_version   == 0    ||
4153        mptr->template_version == 0)
4154    {
4155        /* The board is uncalibrated */
4156        return -1;
4157    }
4158    if (mptr->eeprom_version != 0x2)
4159    {
4160        return -1;
4161    }
4162    return mdata_size;
4163}
4164
4165/*
4166 * Read the configuration data from the storage. We try the order with:
4167 * EEPROM, Flash, OTP. If all of above failed, use the default template.
4168 * The data can be put in any specified memory buffer.
4169 *
4170 * Returns -1 on error.
4171 * Returns address of next memory location on success.
4172 */
4173int
4174ar9300_eeprom_restore_internal(struct ath_hal *ah, ar9300_eeprom_t *mptr,
4175    int mdata_size)
4176{
4177    int nptr;
4178
4179    nptr = -1;
4180
4181    if ((AH9300(ah)->calibration_data_try == calibration_data_none ||
4182         AH9300(ah)->calibration_data_try == calibration_data_dram) &&
4183         AH9300(ah)->try_dram && nptr < 0)
4184    {
4185        ath_hal_printf(ah, "Restoring Cal data from DRAM\n");
4186        AH9300(ah)->calibration_data_source = calibration_data_dram;
4187        AH9300(ah)->calibration_data_source_address = 0;
4188        nptr = ar9300_eeprom_restore_from_dram(ah, mptr, mdata_size);
4189        if (nptr < 0) {
4190            AH9300(ah)->calibration_data_source = calibration_data_none;
4191            AH9300(ah)->calibration_data_source_address = 0;
4192        }
4193    }
4194
4195    if ((AH9300(ah)->calibration_data_try == calibration_data_none ||
4196         AH9300(ah)->calibration_data_try == calibration_data_eeprom) &&
4197        AH9300(ah)->try_eeprom && nptr < 0)
4198    {
4199        /*
4200         * need to look at highest eeprom address as well as at
4201         * base_address=0x3ff where we used to write the data
4202         */
4203        ath_hal_printf(ah, "Restoring Cal data from EEPROM\n");
4204        AH9300(ah)->calibration_data_source = calibration_data_eeprom;
4205        if (AH9300(ah)->calibration_data_try_address != 0) {
4206            AH9300(ah)->calibration_data_source_address =
4207                AH9300(ah)->calibration_data_try_address;
4208            nptr = ar9300_eeprom_restore_internal_address(
4209                ah, mptr, mdata_size,
4210                AH9300(ah)->calibration_data_source_address, 0xff);
4211        } else {
4212            AH9300(ah)->calibration_data_source_address =
4213                ar9300_eeprom_base_address(ah);
4214            nptr = ar9300_eeprom_restore_internal_address(
4215                ah, mptr, mdata_size,
4216                AH9300(ah)->calibration_data_source_address, 0xff);
4217            if (nptr < 0 &&
4218                AH9300(ah)->calibration_data_source_address != base_address)
4219            {
4220                AH9300(ah)->calibration_data_source_address = base_address;
4221                nptr = ar9300_eeprom_restore_internal_address(
4222                    ah, mptr, mdata_size,
4223                    AH9300(ah)->calibration_data_source_address, 0xff);
4224            }
4225        }
4226        if (nptr < 0) {
4227            AH9300(ah)->calibration_data_source = calibration_data_none;
4228            AH9300(ah)->calibration_data_source_address = 0;
4229        }
4230    }
4231
4232    /*
4233     * ##### should be an ifdef test for any AP usage,
4234     * either in driver or in nart
4235     */
4236    if ((AH9300(ah)->calibration_data_try == calibration_data_none ||
4237         AH9300(ah)->calibration_data_try == calibration_data_flash) &&
4238        AH9300(ah)->try_flash && nptr < 0)
4239    {
4240        ath_hal_printf(ah, "Restoring Cal data from Flash\n");
4241        AH9300(ah)->calibration_data_source = calibration_data_flash;
4242        /* how are we supposed to set this for flash? */
4243        AH9300(ah)->calibration_data_source_address = 0;
4244        nptr = ar9300_eeprom_restore_from_flash(ah, mptr, mdata_size);
4245        if (nptr < 0) {
4246            AH9300(ah)->calibration_data_source = calibration_data_none;
4247            AH9300(ah)->calibration_data_source_address = 0;
4248        }
4249    }
4250
4251    if ((AH9300(ah)->calibration_data_try == calibration_data_none ||
4252         AH9300(ah)->calibration_data_try == calibration_data_otp) &&
4253        AH9300(ah)->try_otp && nptr < 0)
4254    {
4255        ath_hal_printf(ah, "Restoring Cal data from OTP\n");
4256        AH9300(ah)->calibration_data_source = calibration_data_otp;
4257        if (AH9300(ah)->calibration_data_try_address != 0) {
4258            AH9300(ah)->calibration_data_source_address =
4259                AH9300(ah)->calibration_data_try_address;
4260		} else {
4261            AH9300(ah)->calibration_data_source_address =
4262                ar9300_eeprom_base_address(ah);
4263		}
4264        nptr = ar9300_eeprom_restore_internal_address(
4265            ah, mptr, mdata_size, AH9300(ah)->calibration_data_source_address, 0);
4266        if (nptr < 0) {
4267            AH9300(ah)->calibration_data_source = calibration_data_none;
4268            AH9300(ah)->calibration_data_source_address = 0;
4269        }
4270    }
4271
4272#ifdef ATH_CAL_NAND_FLASH
4273    if ((AH9300(ah)->calibration_data_try == calibration_data_none ||
4274         AH9300(ah)->calibration_data_try == calibration_data_nand) &&
4275        AH9300(ah)->try_nand && nptr < 0)
4276    {
4277        AH9300(ah)->calibration_data_source = calibration_data_nand;
4278        AH9300(ah)->calibration_data_source_address = ((unsigned int)(AH_PRIVATE(ah)->ah_st)) + base_address_nand;
4279        if(ar9300_calibration_data_read(
4280            ah, AH9300(ah)->calibration_data_source_address,
4281            (u_int8_t *)mptr, mdata_size) == AH_TRUE)
4282        {
4283            nptr = mdata_size;
4284        }
4285        /*nptr=ar9300EepromRestoreInternalAddress(ah, mptr, mdataSize, CalibrationDataSourceAddress);*/
4286        if(nptr < 0)
4287        {
4288            AH9300(ah)->calibration_data_source = calibration_data_none;
4289            AH9300(ah)->calibration_data_source_address = 0;
4290        }
4291    }
4292#endif
4293    if (nptr < 0) {
4294        ath_hal_printf(ah, "%s[%d] No vaid CAL, calling default template\n",
4295            __func__, __LINE__);
4296        nptr = ar9300_eeprom_restore_something(ah, mptr, mdata_size);
4297    }
4298
4299    return nptr;
4300}
4301
4302/******************************************************************************/
4303/*!
4304**  \brief Eeprom Swapping Function
4305**
4306**  This function will swap the contents of the "longer" EEPROM data items
4307**  to ensure they are consistent with the endian requirements for the platform
4308**  they are being compiled for
4309**
4310**  \param eh    Pointer to the EEPROM data structure
4311**  \return N/A
4312*/
4313#if AH_BYTE_ORDER == AH_BIG_ENDIAN
4314void
4315ar9300_swap_eeprom(ar9300_eeprom_t *eep)
4316{
4317    u_int32_t dword;
4318    u_int16_t word;
4319    int          i;
4320
4321    word = __bswap16(eep->base_eep_header.reg_dmn[0]);
4322    eep->base_eep_header.reg_dmn[0] = word;
4323
4324    word = __bswap16(eep->base_eep_header.reg_dmn[1]);
4325    eep->base_eep_header.reg_dmn[1] = word;
4326
4327    dword = __bswap32(eep->base_eep_header.swreg);
4328    eep->base_eep_header.swreg = dword;
4329
4330    dword = __bswap32(eep->modal_header_2g.ant_ctrl_common);
4331    eep->modal_header_2g.ant_ctrl_common = dword;
4332
4333    dword = __bswap32(eep->modal_header_2g.ant_ctrl_common2);
4334    eep->modal_header_2g.ant_ctrl_common2 = dword;
4335
4336    dword = __bswap32(eep->modal_header_2g.paprd_rate_mask_ht20);
4337    eep->modal_header_2g.paprd_rate_mask_ht20 = dword;
4338
4339    dword = __bswap32(eep->modal_header_2g.paprd_rate_mask_ht40);
4340    eep->modal_header_2g.paprd_rate_mask_ht40 = dword;
4341
4342    dword = __bswap32(eep->modal_header_5g.ant_ctrl_common);
4343    eep->modal_header_5g.ant_ctrl_common = dword;
4344
4345    dword = __bswap32(eep->modal_header_5g.ant_ctrl_common2);
4346    eep->modal_header_5g.ant_ctrl_common2 = dword;
4347
4348    dword = __bswap32(eep->modal_header_5g.paprd_rate_mask_ht20);
4349    eep->modal_header_5g.paprd_rate_mask_ht20 = dword;
4350
4351    dword = __bswap32(eep->modal_header_5g.paprd_rate_mask_ht40);
4352    eep->modal_header_5g.paprd_rate_mask_ht40 = dword;
4353
4354    for (i = 0; i < OSPREY_MAX_CHAINS; i++) {
4355        word = __bswap16(eep->modal_header_2g.ant_ctrl_chain[i]);
4356        eep->modal_header_2g.ant_ctrl_chain[i] = word;
4357
4358        word = __bswap16(eep->modal_header_5g.ant_ctrl_chain[i]);
4359        eep->modal_header_5g.ant_ctrl_chain[i] = word;
4360    }
4361}
4362
4363void ar9300_eeprom_template_swap(void)
4364{
4365    int it;
4366    ar9300_eeprom_t *dptr;
4367
4368    for (it = 0; it < ARRAY_LENGTH(default9300); it++) {
4369        dptr = ar9300_eeprom_struct_default(it);
4370        if (dptr != 0) {
4371            ar9300_swap_eeprom(dptr);
4372        }
4373    }
4374}
4375#endif
4376
4377
4378/*
4379 * Restore the configuration structure by reading the eeprom.
4380 * This function destroys any existing in-memory structure content.
4381 */
4382HAL_BOOL
4383ar9300_eeprom_restore(struct ath_hal *ah)
4384{
4385    struct ath_hal_9300 *ahp = AH9300(ah);
4386    ar9300_eeprom_t *mptr;
4387    int mdata_size;
4388    HAL_BOOL status = AH_FALSE;
4389
4390    mptr = &ahp->ah_eeprom;
4391    mdata_size = ar9300_eeprom_struct_size();
4392
4393    if (mptr != 0 && mdata_size > 0) {
4394#if AH_BYTE_ORDER == AH_BIG_ENDIAN
4395        ar9300_eeprom_template_swap();
4396        ar9300_swap_eeprom(mptr);
4397#endif
4398        /*
4399         * At this point, mptr points to the eeprom data structure
4400         * in its "default" state.  If this is big endian, swap the
4401         * data structures back to "little endian" form.
4402         */
4403        if (ar9300_eeprom_restore_internal(ah, mptr, mdata_size) >= 0) {
4404            status = AH_TRUE;
4405        }
4406
4407#if AH_BYTE_ORDER == AH_BIG_ENDIAN
4408        /* Second Swap, back to Big Endian */
4409        ar9300_eeprom_template_swap();
4410        ar9300_swap_eeprom(mptr);
4411#endif
4412
4413    }
4414    ahp->ah_2g_paprd_rate_mask_ht40 =
4415        mptr->modal_header_2g.paprd_rate_mask_ht40;
4416    ahp->ah_2g_paprd_rate_mask_ht20 =
4417        mptr->modal_header_2g.paprd_rate_mask_ht20;
4418    ahp->ah_5g_paprd_rate_mask_ht40 =
4419        mptr->modal_header_5g.paprd_rate_mask_ht40;
4420    ahp->ah_5g_paprd_rate_mask_ht20 =
4421        mptr->modal_header_5g.paprd_rate_mask_ht20;
4422    return status;
4423}
4424
4425int32_t ar9300_thermometer_get(struct ath_hal *ah)
4426{
4427    struct ath_hal_9300 *ahp = AH9300(ah);
4428    int thermometer;
4429    thermometer =
4430        (ahp->ah_eeprom.base_eep_header.misc_configuration >> 1) & 0x3;
4431    thermometer--;
4432    return thermometer;
4433}
4434
4435HAL_BOOL ar9300_thermometer_apply(struct ath_hal *ah)
4436{
4437    int thermometer = ar9300_thermometer_get(ah);
4438
4439/* ch0_RXTX4 */
4440/*#define AR_PHY_65NM_CH0_RXTX4       AR_PHY_65NM(ch0_RXTX4)*/
4441#define AR_PHY_65NM_CH1_RXTX4       AR_PHY_65NM(ch1_RXTX4)
4442#define AR_PHY_65NM_CH2_RXTX4       AR_PHY_65NM(ch2_RXTX4)
4443/*#define AR_PHY_65NM_CH0_RXTX4_THERM_ON          0x10000000*/
4444/*#define AR_PHY_65NM_CH0_RXTX4_THERM_ON_S        28*/
4445#define AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR_S      29
4446#define AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR        \
4447    (0x1<<AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR_S)
4448
4449    if (thermometer < 0) {
4450        OS_REG_RMW_FIELD(ah,
4451            AR_PHY_65NM_CH0_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, 0);
4452        if (!AR_SREV_HORNET(ah) && !AR_SREV_POSEIDON(ah)) {
4453            OS_REG_RMW_FIELD(ah,
4454                AR_PHY_65NM_CH1_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, 0);
4455            if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah) && !AR_SREV_HONEYBEE(ah)  ) {
4456                OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4,
4457                    AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, 0);
4458            }
4459        }
4460        OS_REG_RMW_FIELD(ah,
4461            AR_PHY_65NM_CH0_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON, 0);
4462        if (!AR_SREV_HORNET(ah) && !AR_SREV_POSEIDON(ah)) {
4463            OS_REG_RMW_FIELD(ah,
4464                AR_PHY_65NM_CH1_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON, 0);
4465            if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah) && !AR_SREV_HONEYBEE(ah) ) {
4466                OS_REG_RMW_FIELD(ah,
4467                    AR_PHY_65NM_CH2_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON, 0);
4468            }
4469        }
4470    } else {
4471        OS_REG_RMW_FIELD(ah,
4472            AR_PHY_65NM_CH0_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, 1);
4473        if (!AR_SREV_HORNET(ah) && !AR_SREV_POSEIDON(ah)) {
4474            OS_REG_RMW_FIELD(ah,
4475                AR_PHY_65NM_CH1_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, 1);
4476            if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah) && !AR_SREV_HONEYBEE(ah)  ) {
4477                OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4,
4478                    AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, 1);
4479            }
4480        }
4481        if (thermometer == 0) {
4482            OS_REG_RMW_FIELD(ah,
4483                AR_PHY_65NM_CH0_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON, 1);
4484            if (!AR_SREV_HORNET(ah) && !AR_SREV_POSEIDON(ah)) {
4485                OS_REG_RMW_FIELD(ah,
4486                    AR_PHY_65NM_CH1_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON, 0);
4487                if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah) && !AR_SREV_HONEYBEE(ah) ) {
4488                    OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4,
4489                        AR_PHY_65NM_CH0_RXTX4_THERM_ON, 0);
4490                }
4491            }
4492        } else if (thermometer == 1) {
4493            OS_REG_RMW_FIELD(ah,
4494                AR_PHY_65NM_CH0_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON, 0);
4495            if (!AR_SREV_HORNET(ah) && !AR_SREV_POSEIDON(ah)) {
4496                OS_REG_RMW_FIELD(ah,
4497                    AR_PHY_65NM_CH1_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON, 1);
4498                if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah) && !AR_SREV_HONEYBEE(ah) ) {
4499                    OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4,
4500                        AR_PHY_65NM_CH0_RXTX4_THERM_ON, 0);
4501                }
4502            }
4503        } else if (thermometer == 2) {
4504            OS_REG_RMW_FIELD(ah,
4505                AR_PHY_65NM_CH0_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON, 0);
4506            if (!AR_SREV_HORNET(ah) && !AR_SREV_POSEIDON(ah)) {
4507                OS_REG_RMW_FIELD(ah,
4508                    AR_PHY_65NM_CH1_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON, 0);
4509                if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah) && !AR_SREV_HONEYBEE(ah) ) {
4510                    OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4,
4511                        AR_PHY_65NM_CH0_RXTX4_THERM_ON, 1);
4512                }
4513            }
4514        }
4515    }
4516    return AH_TRUE;
4517}
4518
4519static int32_t ar9300_tuning_caps_params_get(struct ath_hal *ah)
4520{
4521    int tuning_caps_params;
4522    ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
4523    tuning_caps_params = eep->base_eep_header.params_for_tuning_caps[0];
4524    return tuning_caps_params;
4525}
4526
4527/*
4528 * Read the tuning caps params from eeprom and set to correct register.
4529 * To regulation the frequency accuracy.
4530 */
4531HAL_BOOL ar9300_tuning_caps_apply(struct ath_hal *ah)
4532{
4533    int tuning_caps_params;
4534    ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
4535    tuning_caps_params = ar9300_tuning_caps_params_get(ah);
4536    if ((eep->base_eep_header.feature_enable & 0x40) >> 6) {
4537        tuning_caps_params &= 0x7f;
4538
4539        if (AR_SREV_POSEIDON(ah) || AR_SREV_WASP(ah) || AR_SREV_HONEYBEE(ah)) {
4540            return true;
4541        } else if (AR_SREV_HORNET(ah)) {
4542            OS_REG_RMW_FIELD(ah,
4543                AR_HORNET_CH0_XTAL, AR_OSPREY_CHO_XTAL_CAPINDAC,
4544                tuning_caps_params);
4545            OS_REG_RMW_FIELD(ah,
4546                AR_HORNET_CH0_XTAL, AR_OSPREY_CHO_XTAL_CAPOUTDAC,
4547                tuning_caps_params);
4548        } else if (AR_SREV_SCORPION(ah)) {
4549            OS_REG_RMW_FIELD(ah,
4550                AR_SCORPION_CH0_XTAL, AR_OSPREY_CHO_XTAL_CAPINDAC,
4551                tuning_caps_params);
4552            OS_REG_RMW_FIELD(ah,
4553                AR_SCORPION_CH0_XTAL, AR_OSPREY_CHO_XTAL_CAPOUTDAC,
4554                tuning_caps_params);
4555        } else {
4556            OS_REG_RMW_FIELD(ah,
4557                AR_OSPREY_CH0_XTAL, AR_OSPREY_CHO_XTAL_CAPINDAC,
4558                tuning_caps_params);
4559            OS_REG_RMW_FIELD(ah,
4560                AR_OSPREY_CH0_XTAL, AR_OSPREY_CHO_XTAL_CAPOUTDAC,
4561                tuning_caps_params);
4562        }
4563
4564    }
4565    return AH_TRUE;
4566}
4567
4568/*
4569 * Read the tx_frame_to_xpa_on param from eeprom and apply the value to
4570 * correct register.
4571 */
4572HAL_BOOL ar9300_xpa_timing_control_apply(struct ath_hal *ah, HAL_BOOL is_2ghz)
4573{
4574    u_int8_t xpa_timing_control;
4575    ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
4576    if ((eep->base_eep_header.feature_enable & 0x80) >> 7) {
4577		if (AR_SREV_OSPREY(ah) || AR_SREV_AR9580(ah) || AR_SREV_WASP(ah) || AR_SREV_HONEYBEE(ah)) {
4578			if (is_2ghz) {
4579                xpa_timing_control = eep->modal_header_2g.tx_frame_to_xpa_on;
4580                OS_REG_RMW_FIELD(ah,
4581						AR_PHY_XPA_TIMING_CTL, AR_PHY_XPA_TIMING_CTL_FRAME_XPAB_ON,
4582						xpa_timing_control);
4583			} else {
4584                xpa_timing_control = eep->modal_header_5g.tx_frame_to_xpa_on;
4585                OS_REG_RMW_FIELD(ah,
4586						AR_PHY_XPA_TIMING_CTL, AR_PHY_XPA_TIMING_CTL_FRAME_XPAA_ON,
4587						xpa_timing_control);
4588			}
4589		}
4590	}
4591    return AH_TRUE;
4592}
4593
4594
4595/*
4596 * Read the xLNA_bias_strength param from eeprom and apply the value to
4597 * correct register.
4598 */
4599HAL_BOOL ar9300_x_lNA_bias_strength_apply(struct ath_hal *ah, HAL_BOOL is_2ghz)
4600{
4601    u_int8_t x_lNABias;
4602    u_int32_t value = 0;
4603    ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
4604
4605    if ((eep->base_eep_header.misc_configuration & 0x40) >> 6) {
4606        if (AR_SREV_OSPREY(ah)) {
4607            if (is_2ghz) {
4608                x_lNABias = eep->modal_header_2g.xLNA_bias_strength;
4609            } else {
4610                x_lNABias = eep->modal_header_5g.xLNA_bias_strength;
4611            }
4612            value = x_lNABias & ( 0x03 );	// bit0,1 for chain0
4613            OS_REG_RMW_FIELD(ah,
4614					AR_PHY_65NM_CH0_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS, value);
4615            value = (x_lNABias >> 2) & ( 0x03 );	// bit2,3 for chain1
4616            OS_REG_RMW_FIELD(ah,
4617					AR_PHY_65NM_CH1_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS, value);
4618            value = (x_lNABias >> 4) & ( 0x03 );	// bit4,5 for chain2
4619            OS_REG_RMW_FIELD(ah,
4620					AR_PHY_65NM_CH2_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS, value);
4621        }
4622    }
4623    return AH_TRUE;
4624}
4625
4626
4627/*
4628 * Read EEPROM header info and program the device for correct operation
4629 * given the channel value.
4630 */
4631HAL_BOOL
4632ar9300_eeprom_set_board_values(struct ath_hal *ah, const struct ieee80211_channel *chan)
4633{
4634    HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
4635
4636    ar9300_xpa_bias_level_apply(ah, IEEE80211_IS_CHAN_2GHZ(chan));
4637
4638    ar9300_xpa_timing_control_apply(ah, IEEE80211_IS_CHAN_2GHZ(chan));
4639
4640    ar9300_ant_ctrl_apply(ah, IEEE80211_IS_CHAN_2GHZ(chan));
4641    ar9300_drive_strength_apply(ah);
4642
4643    ar9300_x_lNA_bias_strength_apply(ah, IEEE80211_IS_CHAN_2GHZ(chan));
4644
4645	/* wait for Poseidon internal regular turnning */
4646    /* for Hornet we move it before initPLL to avoid an access issue */
4647    /* Function not used when EMULATION. */
4648    if (!AR_SREV_HORNET(ah) && !AR_SREV_WASP(ah) && !AR_SREV_HONEYBEE(ah)) {
4649        ar9300_internal_regulator_apply(ah);
4650    }
4651
4652    ar9300_attenuation_apply(ah, ichan->channel);
4653    ar9300_quick_drop_apply(ah, ichan->channel);
4654    ar9300_thermometer_apply(ah);
4655    if(!AR_SREV_WASP(ah))
4656    {
4657        ar9300_tuning_caps_apply(ah);
4658    }
4659
4660    ar9300_tx_end_to_xpab_off_apply(ah, ichan->channel);
4661
4662    return AH_TRUE;
4663}
4664
4665u_int8_t *
4666ar9300_eeprom_get_spur_chans_ptr(struct ath_hal *ah, HAL_BOOL is_2ghz)
4667{
4668    ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
4669
4670    if (is_2ghz) {
4671        return &(eep->modal_header_2g.spur_chans[0]);
4672    } else {
4673        return &(eep->modal_header_5g.spur_chans[0]);
4674    }
4675}
4676
4677static u_int8_t ar9300_eeprom_get_tx_gain_table_number_max(struct ath_hal *ah)
4678{
4679    unsigned long tx_gain_table_max;
4680    tx_gain_table_max = OS_REG_READ_FIELD(ah,
4681        AR_PHY_TPC_7, AR_PHY_TPC_7_TX_GAIN_TABLE_MAX);
4682    return tx_gain_table_max;
4683}
4684
4685u_int8_t ar9300_eeprom_tx_gain_table_index_max_apply(struct ath_hal *ah, u_int16_t channel)
4686{
4687    unsigned int index;
4688    ar9300_eeprom_t *ahp_Eeprom;
4689    struct ath_hal_9300 *ahp = AH9300(ah);
4690
4691    ahp_Eeprom = &ahp->ah_eeprom;
4692
4693    if (ahp_Eeprom->base_ext1.misc_enable == 0)
4694        return AH_FALSE;
4695
4696    if (channel < 4000)
4697    {
4698        index = ahp_Eeprom->modal_header_2g.tx_gain_cap;
4699    }
4700    else
4701    {
4702        index = ahp_Eeprom->modal_header_5g.tx_gain_cap;
4703    }
4704
4705    OS_REG_RMW_FIELD(ah,
4706        AR_PHY_TPC_7, AR_PHY_TPC_7_TX_GAIN_TABLE_MAX, index);
4707    return AH_TRUE;
4708}
4709
4710static u_int8_t ar9300_eeprom_get_pcdac_tx_gain_table_i(struct ath_hal *ah,
4711                                               int i, u_int8_t *pcdac)
4712{
4713    unsigned long tx_gain;
4714    u_int8_t tx_gain_table_max;
4715    tx_gain_table_max = ar9300_eeprom_get_tx_gain_table_number_max(ah);
4716    if (i <= 0 || i > tx_gain_table_max) {
4717        *pcdac = 0;
4718        return AH_FALSE;
4719    }
4720
4721    tx_gain = OS_REG_READ(ah, AR_PHY_TXGAIN_TAB(1) + i * 4);
4722    *pcdac = ((tx_gain >> 24) & 0xff);
4723    return AH_TRUE;
4724}
4725
4726u_int8_t ar9300_eeprom_set_tx_gain_cap(struct ath_hal *ah,
4727                                               int *tx_gain_max)
4728// pcdac read back from reg, read back value depends on reset 2GHz/5GHz ini
4729// tx_gain_table, this function will be called twice after each
4730// band's calibration.
4731// after 2GHz cal, tx_gain_max[0] has 2GHz, calibration max txgain,
4732// tx_gain_max[1]=-100
4733// after 5GHz cal, tx_gain_max[0],tx_gain_max[1] have calibration
4734// value for both band
4735// reset is on 5GHz, reg reading from tx_gain_table is for 5GHz,
4736// so program can't recalculate 2g.tx_gain_cap at this point.
4737{
4738    int i = 0, ig, im = 0;
4739    u_int8_t pcdac = 0;
4740    u_int8_t tx_gain_table_max;
4741    ar9300_eeprom_t *ahp_Eeprom;
4742    struct ath_hal_9300 *ahp = AH9300(ah);
4743
4744    ahp_Eeprom = &ahp->ah_eeprom;
4745
4746    if (ahp_Eeprom->base_ext1.misc_enable == 0)
4747        return AH_FALSE;
4748
4749    tx_gain_table_max = ar9300_eeprom_get_tx_gain_table_number_max(ah);
4750
4751    for (i = 0; i < 2; i++) {
4752        if (tx_gain_max[i]>-100) {	// -100 didn't cal that band.
4753            if ( i== 0) {
4754                if (tx_gain_max[1]>-100) {
4755                    continue;
4756                    // both band are calibrated, skip 2GHz 2g.tx_gain_cap reset
4757                }
4758            }
4759            for (ig = 1; ig <= tx_gain_table_max; ig++) {
4760                if (ah != 0 && ah->ah_reset != 0)
4761                {
4762                    ar9300_eeprom_get_pcdac_tx_gain_table_i(ah, ig, &pcdac);
4763                    if (pcdac >= tx_gain_max[i])
4764                        break;
4765                }
4766            }
4767            if (ig+1 <= tx_gain_table_max) {
4768                if (pcdac == tx_gain_max[i])
4769                    im = ig;
4770                else
4771                    im = ig + 1;
4772                if (i == 0) {
4773                    ahp_Eeprom->modal_header_2g.tx_gain_cap = im;
4774                } else {
4775                    ahp_Eeprom->modal_header_5g.tx_gain_cap = im;
4776                }
4777            } else {
4778                if (i == 0) {
4779                    ahp_Eeprom->modal_header_2g.tx_gain_cap = ig;
4780                } else {
4781                    ahp_Eeprom->modal_header_5g.tx_gain_cap = ig;
4782                }
4783            }
4784        }
4785    }
4786    return AH_TRUE;
4787}
4788