1/*-
2 * SPDX-License-Identifier: BSD-4-Clause
3 *
4 * Copyright (c) 1997, 1998, 1999
5 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 *    must display the following acknowledgement:
17 *	This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34/*
35 * Aironet 4500/4800 802.11 PCMCIA/ISA/PCI driver for FreeBSD.
36 *
37 * Written by Bill Paul <wpaul@ctr.columbia.edu>
38 * Electrical Engineering Department
39 * Columbia University, New York City
40 */
41
42#include <sys/cdefs.h>
43__FBSDID("$FreeBSD: releng/12.0/sys/dev/an/if_an.c 331797 2018-03-30 18:50:13Z brooks $");
44
45/*
46 * The Aironet 4500/4800 series cards come in PCMCIA, ISA and PCI form.
47 * This driver supports all three device types (PCI devices are supported
48 * through an extra PCI shim: /sys/dev/an/if_an_pci.c). ISA devices can be
49 * supported either using hard-coded IO port/IRQ settings or via Plug
50 * and Play. The 4500 series devices support 1Mbps and 2Mbps data rates.
51 * The 4800 devices support 1, 2, 5.5 and 11Mbps rates.
52 *
53 * Like the WaveLAN/IEEE cards, the Aironet NICs are all essentially
54 * PCMCIA devices. The ISA and PCI cards are a combination of a PCMCIA
55 * device and a PCMCIA to ISA or PCMCIA to PCI adapter card. There are
56 * a couple of important differences though:
57 *
58 * - Lucent ISA card looks to the host like a PCMCIA controller with
59 *   a PCMCIA WaveLAN card inserted. This means that even desktop
60 *   machines need to be configured with PCMCIA support in order to
61 *   use WaveLAN/IEEE ISA cards. The Aironet cards on the other hand
62 *   actually look like normal ISA and PCI devices to the host, so
63 *   no PCMCIA controller support is needed
64 *
65 * The latter point results in a small gotcha. The Aironet PCMCIA
66 * cards can be configured for one of two operating modes depending
67 * on how the Vpp1 and Vpp2 programming voltages are set when the
68 * card is activated. In order to put the card in proper PCMCIA
69 * operation (where the CIS table is visible and the interface is
70 * programmed for PCMCIA operation), both Vpp1 and Vpp2 have to be
71 * set to 5 volts. FreeBSD by default doesn't set the Vpp voltages,
72 * which leaves the card in ISA/PCI mode, which prevents it from
73 * being activated as an PCMCIA device.
74 *
75 * Note that some PCMCIA controller software packages for Windows NT
76 * fail to set the voltages as well.
77 *
78 * The Aironet devices can operate in both station mode and access point
79 * mode. Typically, when programmed for station mode, the card can be set
80 * to automatically perform encapsulation/decapsulation of Ethernet II
81 * and 802.3 frames within 802.11 frames so that the host doesn't have
82 * to do it itself. This driver doesn't program the card that way: the
83 * driver handles all of the encapsulation/decapsulation itself.
84 */
85
86#include "opt_inet.h"
87
88#ifdef INET
89#define ANCACHE			/* enable signal strength cache */
90#endif
91
92#include <sys/param.h>
93#include <sys/ctype.h>
94#include <sys/systm.h>
95#include <sys/sockio.h>
96#include <sys/mbuf.h>
97#include <sys/priv.h>
98#include <sys/proc.h>
99#include <sys/kernel.h>
100#include <sys/socket.h>
101#ifdef ANCACHE
102#include <sys/syslog.h>
103#endif
104#include <sys/sysctl.h>
105
106#include <sys/module.h>
107#include <sys/bus.h>
108#include <machine/bus.h>
109#include <sys/rman.h>
110#include <sys/lock.h>
111#include <sys/mutex.h>
112#include <machine/resource.h>
113#include <sys/malloc.h>
114
115#include <net/if.h>
116#include <net/if_var.h>
117#include <net/if_arp.h>
118#include <net/if_dl.h>
119#include <net/ethernet.h>
120#include <net/if_types.h>
121#include <net/if_media.h>
122
123#include <net80211/ieee80211_var.h>
124#include <net80211/ieee80211_ioctl.h>
125
126#ifdef INET
127#include <netinet/in.h>
128#include <netinet/in_systm.h>
129#include <netinet/in_var.h>
130#include <netinet/ip.h>
131#endif
132
133#include <net/bpf.h>
134
135#include <machine/md_var.h>
136
137#include <dev/an/if_aironet_ieee.h>
138#include <dev/an/if_anreg.h>
139
140/* These are global because we need them in sys/pci/if_an_p.c. */
141static void an_reset(struct an_softc *);
142static int an_init_mpi350_desc(struct an_softc *);
143static int an_ioctl(struct ifnet *, u_long, caddr_t);
144static void an_init(void *);
145static void an_init_locked(struct an_softc *);
146static int an_init_tx_ring(struct an_softc *);
147static void an_start(struct ifnet *);
148static void an_start_locked(struct ifnet *);
149static void an_watchdog(struct an_softc *);
150static void an_rxeof(struct an_softc *);
151static void an_txeof(struct an_softc *, int);
152
153static void an_promisc(struct an_softc *, int);
154static int an_cmd(struct an_softc *, int, int);
155static int an_cmd_struct(struct an_softc *, struct an_command *,
156    struct an_reply *);
157static int an_read_record(struct an_softc *, struct an_ltv_gen *);
158static int an_write_record(struct an_softc *, struct an_ltv_gen *);
159static int an_read_data(struct an_softc *, int, int, caddr_t, int);
160static int an_write_data(struct an_softc *, int, int, caddr_t, int);
161static int an_seek(struct an_softc *, int, int, int);
162static int an_alloc_nicmem(struct an_softc *, int, int *);
163static int an_dma_malloc(struct an_softc *, bus_size_t, struct an_dma_alloc *,
164    int);
165static void an_dma_free(struct an_softc *, struct an_dma_alloc *);
166static void an_dma_malloc_cb(void *, bus_dma_segment_t *, int, int);
167static void an_stats_update(void *);
168static void an_setdef(struct an_softc *, struct an_req *);
169#ifdef ANCACHE
170static void an_cache_store(struct an_softc *, struct ether_header *,
171    struct mbuf *, u_int8_t, u_int8_t);
172#endif
173
174/* function definitions for use with the Cisco's Linux configuration
175   utilities
176*/
177
178static int readrids(struct ifnet*, struct aironet_ioctl*);
179static int writerids(struct ifnet*, struct aironet_ioctl*);
180static int flashcard(struct ifnet*, struct aironet_ioctl*);
181
182static int cmdreset(struct ifnet *);
183static int setflashmode(struct ifnet *);
184static int flashgchar(struct ifnet *,int,int);
185static int flashpchar(struct ifnet *,int,int);
186static int flashputbuf(struct ifnet *);
187static int flashrestart(struct ifnet *);
188static int WaitBusy(struct ifnet *, int);
189static int unstickbusy(struct ifnet *);
190
191static void an_dump_record	(struct an_softc *,struct an_ltv_gen *,
192				    char *);
193
194static int an_media_change	(struct ifnet *);
195static void an_media_status	(struct ifnet *, struct ifmediareq *);
196
197static int	an_dump = 0;
198static int	an_cache_mode = 0;
199
200#define DBM 0
201#define PERCENT 1
202#define RAW 2
203
204static char an_conf[256];
205static char an_conf_cache[256];
206
207/* sysctl vars */
208
209static SYSCTL_NODE(_hw, OID_AUTO, an, CTLFLAG_RD, 0,
210    "Wireless driver parameters");
211
212/* XXX violate ethernet/netgraph callback hooks */
213extern	void	(*ng_ether_attach_p)(struct ifnet *ifp);
214extern	void	(*ng_ether_detach_p)(struct ifnet *ifp);
215
216static int
217sysctl_an_dump(SYSCTL_HANDLER_ARGS)
218{
219	int	error, r, last;
220	char 	*s = an_conf;
221
222	last = an_dump;
223
224	switch (an_dump) {
225	case 0:
226		strcpy(an_conf, "off");
227		break;
228	case 1:
229		strcpy(an_conf, "type");
230		break;
231	case 2:
232		strcpy(an_conf, "dump");
233		break;
234	default:
235		snprintf(an_conf, 5, "%x", an_dump);
236		break;
237	}
238
239	error = sysctl_handle_string(oidp, an_conf, sizeof(an_conf), req);
240
241	if (strncmp(an_conf,"off", 3) == 0) {
242		an_dump = 0;
243 	}
244	if (strncmp(an_conf,"dump", 4) == 0) {
245		an_dump = 1;
246	}
247	if (strncmp(an_conf,"type", 4) == 0) {
248		an_dump = 2;
249	}
250	if (*s == 'f') {
251		r = 0;
252		for (;;s++) {
253			if ((*s >= '0') && (*s <= '9')) {
254				r = r * 16 + (*s - '0');
255			} else if ((*s >= 'a') && (*s <= 'f')) {
256				r = r * 16 + (*s - 'a' + 10);
257			} else {
258				break;
259			}
260		}
261		an_dump = r;
262	}
263	if (an_dump != last)
264		printf("Sysctl changed for Aironet driver\n");
265
266	return error;
267}
268
269SYSCTL_PROC(_hw_an, OID_AUTO, an_dump, CTLTYPE_STRING | CTLFLAG_RW,
270	    0, sizeof(an_conf), sysctl_an_dump, "A", "");
271
272static int
273sysctl_an_cache_mode(SYSCTL_HANDLER_ARGS)
274{
275	int	error;
276
277	switch (an_cache_mode) {
278	case 1:
279		strcpy(an_conf_cache, "per");
280		break;
281	case 2:
282		strcpy(an_conf_cache, "raw");
283		break;
284	default:
285		strcpy(an_conf_cache, "dbm");
286		break;
287	}
288
289	error = sysctl_handle_string(oidp, an_conf_cache,
290			sizeof(an_conf_cache), req);
291
292	if (strncmp(an_conf_cache,"dbm", 3) == 0) {
293		an_cache_mode = 0;
294	}
295	if (strncmp(an_conf_cache,"per", 3) == 0) {
296		an_cache_mode = 1;
297 	}
298	if (strncmp(an_conf_cache,"raw", 3) == 0) {
299		an_cache_mode = 2;
300	}
301
302	return error;
303}
304
305SYSCTL_PROC(_hw_an, OID_AUTO, an_cache_mode, CTLTYPE_STRING | CTLFLAG_RW,
306	    0, sizeof(an_conf_cache), sysctl_an_cache_mode, "A", "");
307
308/*
309 * We probe for an Aironet 4500/4800 card by attempting to
310 * read the default SSID list. On reset, the first entry in
311 * the SSID list will contain the name "tsunami." If we don't
312 * find this, then there's no card present.
313 */
314int
315an_probe(device_t dev)
316{
317	struct an_softc *sc = device_get_softc(dev);
318	struct an_ltv_ssidlist_new	ssid;
319	int	error;
320
321	bzero((char *)&ssid, sizeof(ssid));
322
323	error = an_alloc_port(dev, 0, AN_IOSIZ);
324	if (error != 0)
325		return (0);
326
327	/* can't do autoprobing */
328	if (rman_get_start(sc->port_res) == -1)
329		return(0);
330
331	/*
332	 * We need to fake up a softc structure long enough
333	 * to be able to issue commands and call some of the
334	 * other routines.
335	 */
336	ssid.an_len = sizeof(ssid);
337	ssid.an_type = AN_RID_SSIDLIST;
338
339	/* Make sure interrupts are disabled. */
340	sc->mpi350 = 0;
341	CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), 0);
342	CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), 0xFFFF);
343
344	sc->an_dev = dev;
345	mtx_init(&sc->an_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
346	    MTX_DEF);
347	AN_LOCK(sc);
348	an_reset(sc);
349
350	if (an_cmd(sc, AN_CMD_READCFG, 0)) {
351		AN_UNLOCK(sc);
352		goto fail;
353	}
354
355	if (an_read_record(sc, (struct an_ltv_gen *)&ssid)) {
356		AN_UNLOCK(sc);
357		goto fail;
358	}
359
360	/* See if the ssid matches what we expect ... but doesn't have to */
361	if (strcmp(ssid.an_entry[0].an_ssid, AN_DEF_SSID)) {
362		AN_UNLOCK(sc);
363		goto fail;
364	}
365
366	AN_UNLOCK(sc);
367	return(AN_IOSIZ);
368fail:
369	mtx_destroy(&sc->an_mtx);
370	return(0);
371}
372
373/*
374 * Allocate a port resource with the given resource id.
375 */
376int
377an_alloc_port(device_t dev, int rid, int size)
378{
379	struct an_softc *sc = device_get_softc(dev);
380	struct resource *res;
381
382	res = bus_alloc_resource_anywhere(dev, SYS_RES_IOPORT, &rid,
383					  size, RF_ACTIVE);
384	if (res) {
385		sc->port_rid = rid;
386		sc->port_res = res;
387		return (0);
388	} else {
389		return (ENOENT);
390	}
391}
392
393/*
394 * Allocate a memory resource with the given resource id.
395 */
396int an_alloc_memory(device_t dev, int rid, int size)
397{
398	struct an_softc *sc = device_get_softc(dev);
399	struct resource *res;
400
401	res = bus_alloc_resource_anywhere(dev, SYS_RES_MEMORY, &rid,
402					  size, RF_ACTIVE);
403	if (res) {
404		sc->mem_rid = rid;
405		sc->mem_res = res;
406		sc->mem_used = size;
407		return (0);
408	} else {
409		return (ENOENT);
410	}
411}
412
413/*
414 * Allocate a auxiliary memory resource with the given resource id.
415 */
416int an_alloc_aux_memory(device_t dev, int rid, int size)
417{
418	struct an_softc *sc = device_get_softc(dev);
419	struct resource *res;
420
421	res = bus_alloc_resource_anywhere(dev, SYS_RES_MEMORY, &rid,
422					  size, RF_ACTIVE);
423	if (res) {
424		sc->mem_aux_rid = rid;
425		sc->mem_aux_res = res;
426		sc->mem_aux_used = size;
427		return (0);
428	} else {
429		return (ENOENT);
430	}
431}
432
433/*
434 * Allocate an irq resource with the given resource id.
435 */
436int
437an_alloc_irq(device_t dev, int rid, int flags)
438{
439	struct an_softc *sc = device_get_softc(dev);
440	struct resource *res;
441
442	res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
443				     (RF_ACTIVE | flags));
444	if (res) {
445		sc->irq_rid = rid;
446		sc->irq_res = res;
447		return (0);
448	} else {
449		return (ENOENT);
450	}
451}
452
453static void
454an_dma_malloc_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
455{
456	bus_addr_t *paddr = (bus_addr_t*) arg;
457	*paddr = segs->ds_addr;
458}
459
460/*
461 * Alloc DMA memory and set the pointer to it
462 */
463static int
464an_dma_malloc(struct an_softc *sc, bus_size_t size, struct an_dma_alloc *dma,
465    int mapflags)
466{
467	int r;
468
469	r = bus_dmamem_alloc(sc->an_dtag, (void**) &dma->an_dma_vaddr,
470			     BUS_DMA_NOWAIT, &dma->an_dma_map);
471	if (r != 0)
472		goto fail_1;
473
474	r = bus_dmamap_load(sc->an_dtag, dma->an_dma_map, dma->an_dma_vaddr,
475			    size,
476			    an_dma_malloc_cb,
477			    &dma->an_dma_paddr,
478			    mapflags | BUS_DMA_NOWAIT);
479	if (r != 0)
480		goto fail_2;
481
482	dma->an_dma_size = size;
483	return (0);
484
485fail_2:
486	bus_dmamap_unload(sc->an_dtag, dma->an_dma_map);
487fail_1:
488	bus_dmamem_free(sc->an_dtag, dma->an_dma_vaddr, dma->an_dma_map);
489	return (r);
490}
491
492static void
493an_dma_free(struct an_softc *sc, struct an_dma_alloc *dma)
494{
495	bus_dmamap_unload(sc->an_dtag, dma->an_dma_map);
496	bus_dmamem_free(sc->an_dtag, dma->an_dma_vaddr, dma->an_dma_map);
497	dma->an_dma_vaddr = 0;
498}
499
500/*
501 * Release all resources
502 */
503void
504an_release_resources(device_t dev)
505{
506	struct an_softc *sc = device_get_softc(dev);
507	int i;
508
509	if (sc->port_res) {
510		bus_release_resource(dev, SYS_RES_IOPORT,
511				     sc->port_rid, sc->port_res);
512		sc->port_res = 0;
513	}
514	if (sc->mem_res) {
515		bus_release_resource(dev, SYS_RES_MEMORY,
516				     sc->mem_rid, sc->mem_res);
517		sc->mem_res = 0;
518	}
519	if (sc->mem_aux_res) {
520		bus_release_resource(dev, SYS_RES_MEMORY,
521				     sc->mem_aux_rid, sc->mem_aux_res);
522		sc->mem_aux_res = 0;
523	}
524	if (sc->irq_res) {
525		bus_release_resource(dev, SYS_RES_IRQ,
526				     sc->irq_rid, sc->irq_res);
527		sc->irq_res = 0;
528	}
529	if (sc->an_rid_buffer.an_dma_paddr) {
530		an_dma_free(sc, &sc->an_rid_buffer);
531	}
532	for (i = 0; i < AN_MAX_RX_DESC; i++)
533		if (sc->an_rx_buffer[i].an_dma_paddr) {
534			an_dma_free(sc, &sc->an_rx_buffer[i]);
535		}
536	for (i = 0; i < AN_MAX_TX_DESC; i++)
537		if (sc->an_tx_buffer[i].an_dma_paddr) {
538			an_dma_free(sc, &sc->an_tx_buffer[i]);
539		}
540	if (sc->an_dtag) {
541		bus_dma_tag_destroy(sc->an_dtag);
542	}
543
544}
545
546int
547an_init_mpi350_desc(struct an_softc *sc)
548{
549	struct an_command	cmd_struct;
550	struct an_reply		reply;
551	struct an_card_rid_desc an_rid_desc;
552	struct an_card_rx_desc	an_rx_desc;
553	struct an_card_tx_desc	an_tx_desc;
554	int			i, desc;
555
556	AN_LOCK_ASSERT(sc);
557	if(!sc->an_rid_buffer.an_dma_paddr)
558		an_dma_malloc(sc, AN_RID_BUFFER_SIZE,
559				 &sc->an_rid_buffer, 0);
560	for (i = 0; i < AN_MAX_RX_DESC; i++)
561		if(!sc->an_rx_buffer[i].an_dma_paddr)
562			an_dma_malloc(sc, AN_RX_BUFFER_SIZE,
563				      &sc->an_rx_buffer[i], 0);
564	for (i = 0; i < AN_MAX_TX_DESC; i++)
565		if(!sc->an_tx_buffer[i].an_dma_paddr)
566			an_dma_malloc(sc, AN_TX_BUFFER_SIZE,
567				      &sc->an_tx_buffer[i], 0);
568
569	/*
570	 * Allocate RX descriptor
571	 */
572	bzero(&reply,sizeof(reply));
573	cmd_struct.an_cmd   = AN_CMD_ALLOC_DESC;
574	cmd_struct.an_parm0 = AN_DESCRIPTOR_RX;
575	cmd_struct.an_parm1 = AN_RX_DESC_OFFSET;
576	cmd_struct.an_parm2 = AN_MAX_RX_DESC;
577	if (an_cmd_struct(sc, &cmd_struct, &reply)) {
578		if_printf(sc->an_ifp, "failed to allocate RX descriptor\n");
579		return(EIO);
580	}
581
582	for (desc = 0; desc < AN_MAX_RX_DESC; desc++) {
583		bzero(&an_rx_desc, sizeof(an_rx_desc));
584		an_rx_desc.an_valid = 1;
585		an_rx_desc.an_len = AN_RX_BUFFER_SIZE;
586		an_rx_desc.an_done = 0;
587		an_rx_desc.an_phys = sc->an_rx_buffer[desc].an_dma_paddr;
588
589		for (i = 0; i < sizeof(an_rx_desc) / 4; i++)
590			CSR_MEM_AUX_WRITE_4(sc, AN_RX_DESC_OFFSET
591			    + (desc * sizeof(an_rx_desc))
592			    + (i * 4),
593			    ((u_int32_t *)(void *)&an_rx_desc)[i]);
594	}
595
596	/*
597	 * Allocate TX descriptor
598	 */
599
600	bzero(&reply,sizeof(reply));
601	cmd_struct.an_cmd   = AN_CMD_ALLOC_DESC;
602	cmd_struct.an_parm0 = AN_DESCRIPTOR_TX;
603	cmd_struct.an_parm1 = AN_TX_DESC_OFFSET;
604	cmd_struct.an_parm2 = AN_MAX_TX_DESC;
605	if (an_cmd_struct(sc, &cmd_struct, &reply)) {
606		if_printf(sc->an_ifp, "failed to allocate TX descriptor\n");
607		return(EIO);
608	}
609
610	for (desc = 0; desc < AN_MAX_TX_DESC; desc++) {
611		bzero(&an_tx_desc, sizeof(an_tx_desc));
612		an_tx_desc.an_offset = 0;
613		an_tx_desc.an_eoc = 0;
614		an_tx_desc.an_valid = 0;
615		an_tx_desc.an_len = 0;
616		an_tx_desc.an_phys = sc->an_tx_buffer[desc].an_dma_paddr;
617
618		for (i = 0; i < sizeof(an_tx_desc) / 4; i++)
619			CSR_MEM_AUX_WRITE_4(sc, AN_TX_DESC_OFFSET
620			    + (desc * sizeof(an_tx_desc))
621			    + (i * 4),
622			    ((u_int32_t *)(void *)&an_tx_desc)[i]);
623	}
624
625	/*
626	 * Allocate RID descriptor
627	 */
628
629	bzero(&reply,sizeof(reply));
630	cmd_struct.an_cmd   = AN_CMD_ALLOC_DESC;
631	cmd_struct.an_parm0 = AN_DESCRIPTOR_HOSTRW;
632	cmd_struct.an_parm1 = AN_HOST_DESC_OFFSET;
633	cmd_struct.an_parm2 = 1;
634	if (an_cmd_struct(sc, &cmd_struct, &reply)) {
635		if_printf(sc->an_ifp, "failed to allocate host descriptor\n");
636		return(EIO);
637	}
638
639	bzero(&an_rid_desc, sizeof(an_rid_desc));
640	an_rid_desc.an_valid = 1;
641	an_rid_desc.an_len = AN_RID_BUFFER_SIZE;
642	an_rid_desc.an_rid = 0;
643	an_rid_desc.an_phys = sc->an_rid_buffer.an_dma_paddr;
644
645	for (i = 0; i < sizeof(an_rid_desc) / 4; i++)
646		CSR_MEM_AUX_WRITE_4(sc, AN_HOST_DESC_OFFSET + i * 4,
647				    ((u_int32_t *)(void *)&an_rid_desc)[i]);
648
649	return(0);
650}
651
652int
653an_attach(struct an_softc *sc, int flags)
654{
655	struct ifnet		*ifp;
656	int			error = EIO;
657	int			i, nrate, mword;
658	u_int8_t		r;
659
660	ifp = sc->an_ifp = if_alloc(IFT_ETHER);
661	if (ifp == NULL) {
662		device_printf(sc->an_dev, "can not if_alloc()\n");
663		goto fail;
664	}
665	ifp->if_softc = sc;
666	if_initname(ifp, device_get_name(sc->an_dev),
667	    device_get_unit(sc->an_dev));
668
669	sc->an_gone = 0;
670	sc->an_associated = 0;
671	sc->an_monitor = 0;
672	sc->an_was_monitor = 0;
673	sc->an_flash_buffer = NULL;
674
675	/* Reset the NIC. */
676	AN_LOCK(sc);
677	an_reset(sc);
678	if (sc->mpi350) {
679		error = an_init_mpi350_desc(sc);
680		if (error)
681			goto fail;
682	}
683
684	/* Load factory config */
685	if (an_cmd(sc, AN_CMD_READCFG, 0)) {
686		device_printf(sc->an_dev, "failed to load config data\n");
687		goto fail;
688	}
689
690	/* Read the current configuration */
691	sc->an_config.an_type = AN_RID_GENCONFIG;
692	sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
693	if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_config)) {
694		device_printf(sc->an_dev, "read record failed\n");
695		goto fail;
696	}
697
698	/* Read the card capabilities */
699	sc->an_caps.an_type = AN_RID_CAPABILITIES;
700	sc->an_caps.an_len = sizeof(struct an_ltv_caps);
701	if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_caps)) {
702		device_printf(sc->an_dev, "read record failed\n");
703		goto fail;
704	}
705
706	/* Read ssid list */
707	sc->an_ssidlist.an_type = AN_RID_SSIDLIST;
708	sc->an_ssidlist.an_len = sizeof(struct an_ltv_ssidlist_new);
709	if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_ssidlist)) {
710		device_printf(sc->an_dev, "read record failed\n");
711		goto fail;
712	}
713
714	/* Read AP list */
715	sc->an_aplist.an_type = AN_RID_APLIST;
716	sc->an_aplist.an_len = sizeof(struct an_ltv_aplist);
717	if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_aplist)) {
718		device_printf(sc->an_dev, "read record failed\n");
719		goto fail;
720	}
721
722#ifdef ANCACHE
723	/* Read the RSSI <-> dBm map */
724	sc->an_have_rssimap = 0;
725	if (sc->an_caps.an_softcaps & 8) {
726		sc->an_rssimap.an_type = AN_RID_RSSI_MAP;
727		sc->an_rssimap.an_len = sizeof(struct an_ltv_rssi_map);
728		if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_rssimap)) {
729			device_printf(sc->an_dev,
730			    "unable to get RSSI <-> dBM map\n");
731		} else {
732			device_printf(sc->an_dev, "got RSSI <-> dBM map\n");
733			sc->an_have_rssimap = 1;
734		}
735	} else {
736		device_printf(sc->an_dev, "no RSSI <-> dBM map\n");
737	}
738#endif
739	AN_UNLOCK(sc);
740
741	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
742	ifp->if_ioctl = an_ioctl;
743	ifp->if_start = an_start;
744	ifp->if_init = an_init;
745	ifp->if_baudrate = 10000000;
746	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
747	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
748	IFQ_SET_READY(&ifp->if_snd);
749
750	bzero(sc->an_config.an_nodename, sizeof(sc->an_config.an_nodename));
751	bcopy(AN_DEFAULT_NODENAME, sc->an_config.an_nodename,
752	    sizeof(AN_DEFAULT_NODENAME) - 1);
753
754	bzero(sc->an_ssidlist.an_entry[0].an_ssid,
755	      sizeof(sc->an_ssidlist.an_entry[0].an_ssid));
756	bcopy(AN_DEFAULT_NETNAME, sc->an_ssidlist.an_entry[0].an_ssid,
757	    sizeof(AN_DEFAULT_NETNAME) - 1);
758	sc->an_ssidlist.an_entry[0].an_len = strlen(AN_DEFAULT_NETNAME);
759
760	sc->an_config.an_opmode =
761	    AN_OPMODE_INFRASTRUCTURE_STATION;
762
763	sc->an_tx_rate = 0;
764	bzero((char *)&sc->an_stats, sizeof(sc->an_stats));
765
766	nrate = 8;
767
768	ifmedia_init(&sc->an_ifmedia, 0, an_media_change, an_media_status);
769	if_printf(ifp, "supported rates: ");
770#define	ADD(s, o)	ifmedia_add(&sc->an_ifmedia, \
771	IFM_MAKEWORD(IFM_IEEE80211, (s), (o), 0), 0, NULL)
772	ADD(IFM_AUTO, 0);
773	ADD(IFM_AUTO, IFM_IEEE80211_ADHOC);
774	for (i = 0; i < nrate; i++) {
775		r = sc->an_caps.an_rates[i];
776		mword = ieee80211_rate2media(NULL, r, IEEE80211_MODE_AUTO);
777		if (mword == 0)
778			continue;
779		printf("%s%d%sMbps", (i != 0 ? " " : ""),
780		    (r & IEEE80211_RATE_VAL) / 2, ((r & 0x1) != 0 ? ".5" : ""));
781		ADD(mword, 0);
782		ADD(mword, IFM_IEEE80211_ADHOC);
783	}
784	printf("\n");
785	ifmedia_set(&sc->an_ifmedia, IFM_MAKEWORD(IFM_IEEE80211,
786	    IFM_AUTO, 0, 0));
787#undef ADD
788
789	/*
790	 * Call MI attach routine.
791	 */
792
793	ether_ifattach(ifp, sc->an_caps.an_oemaddr);
794	callout_init_mtx(&sc->an_stat_ch, &sc->an_mtx, 0);
795
796	return(0);
797fail:
798	AN_UNLOCK(sc);
799	mtx_destroy(&sc->an_mtx);
800	if (ifp != NULL)
801		if_free(ifp);
802	return(error);
803}
804
805int
806an_detach(device_t dev)
807{
808	struct an_softc		*sc = device_get_softc(dev);
809	struct ifnet		*ifp = sc->an_ifp;
810
811	if (sc->an_gone) {
812		device_printf(dev,"already unloaded\n");
813		return(0);
814	}
815	AN_LOCK(sc);
816	an_stop(sc);
817	sc->an_gone = 1;
818	ifmedia_removeall(&sc->an_ifmedia);
819	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
820	AN_UNLOCK(sc);
821	ether_ifdetach(ifp);
822	bus_teardown_intr(dev, sc->irq_res, sc->irq_handle);
823	callout_drain(&sc->an_stat_ch);
824	if_free(ifp);
825	an_release_resources(dev);
826	mtx_destroy(&sc->an_mtx);
827	return (0);
828}
829
830static void
831an_rxeof(struct an_softc *sc)
832{
833	struct ifnet   *ifp;
834	struct ether_header *eh;
835	struct ieee80211_frame *ih;
836	struct an_rxframe rx_frame;
837	struct an_rxframe_802_3 rx_frame_802_3;
838	struct mbuf    *m;
839	int		len, id, error = 0, i, count = 0;
840	int		ieee80211_header_len;
841	u_char		*bpf_buf;
842	u_short		fc1;
843	struct an_card_rx_desc an_rx_desc;
844	u_int8_t	*buf;
845
846	AN_LOCK_ASSERT(sc);
847
848	ifp = sc->an_ifp;
849
850	if (!sc->mpi350) {
851		id = CSR_READ_2(sc, AN_RX_FID);
852
853		if (sc->an_monitor && (ifp->if_flags & IFF_PROMISC)) {
854			/* read raw 802.11 packet */
855			bpf_buf = sc->buf_802_11;
856
857			/* read header */
858			if (an_read_data(sc, id, 0x0, (caddr_t)&rx_frame,
859					 sizeof(rx_frame))) {
860				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
861				return;
862			}
863
864			/*
865			 * skip beacon by default since this increases the
866			 * system load a lot
867			 */
868
869			if (!(sc->an_monitor & AN_MONITOR_INCLUDE_BEACON) &&
870			    (rx_frame.an_frame_ctl &
871			     IEEE80211_FC0_SUBTYPE_BEACON)) {
872				return;
873			}
874
875			if (sc->an_monitor & AN_MONITOR_AIRONET_HEADER) {
876				len = rx_frame.an_rx_payload_len
877					+ sizeof(rx_frame);
878				/* Check for insane frame length */
879				if (len > sizeof(sc->buf_802_11)) {
880					if_printf(ifp, "oversized packet "
881					       "received (%d, %d)\n",
882					       len, MCLBYTES);
883					if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
884					return;
885				}
886
887				bcopy((char *)&rx_frame,
888				      bpf_buf, sizeof(rx_frame));
889
890				error = an_read_data(sc, id, sizeof(rx_frame),
891					    (caddr_t)bpf_buf+sizeof(rx_frame),
892					    rx_frame.an_rx_payload_len);
893			} else {
894				fc1=rx_frame.an_frame_ctl >> 8;
895				ieee80211_header_len =
896					sizeof(struct ieee80211_frame);
897				if ((fc1 & IEEE80211_FC1_DIR_TODS) &&
898				    (fc1 & IEEE80211_FC1_DIR_FROMDS)) {
899					ieee80211_header_len += ETHER_ADDR_LEN;
900				}
901
902				len = rx_frame.an_rx_payload_len
903					+ ieee80211_header_len;
904				/* Check for insane frame length */
905				if (len > sizeof(sc->buf_802_11)) {
906					if_printf(ifp, "oversized packet "
907					       "received (%d, %d)\n",
908					       len, MCLBYTES);
909					if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
910					return;
911				}
912
913				ih = (struct ieee80211_frame *)bpf_buf;
914
915				bcopy((char *)&rx_frame.an_frame_ctl,
916				      (char *)ih, ieee80211_header_len);
917
918				error = an_read_data(sc, id, sizeof(rx_frame) +
919					    rx_frame.an_gaplen,
920					    (caddr_t)ih +ieee80211_header_len,
921					    rx_frame.an_rx_payload_len);
922			}
923			/* dump raw 802.11 packet to bpf and skip ip stack */
924			BPF_TAP(ifp, bpf_buf, len);
925		} else {
926			MGETHDR(m, M_NOWAIT, MT_DATA);
927			if (m == NULL) {
928				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
929				return;
930			}
931			if (!(MCLGET(m, M_NOWAIT))) {
932				m_freem(m);
933				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
934				return;
935			}
936			m->m_pkthdr.rcvif = ifp;
937			/* Read Ethernet encapsulated packet */
938
939#ifdef ANCACHE
940			/* Read NIC frame header */
941			if (an_read_data(sc, id, 0, (caddr_t)&rx_frame,
942					 sizeof(rx_frame))) {
943				m_freem(m);
944				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
945				return;
946			}
947#endif
948			/* Read in the 802_3 frame header */
949			if (an_read_data(sc, id, 0x34,
950					 (caddr_t)&rx_frame_802_3,
951					 sizeof(rx_frame_802_3))) {
952				m_freem(m);
953				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
954				return;
955			}
956			if (rx_frame_802_3.an_rx_802_3_status != 0) {
957				m_freem(m);
958				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
959				return;
960			}
961			/* Check for insane frame length */
962			len = rx_frame_802_3.an_rx_802_3_payload_len;
963			if (len > sizeof(sc->buf_802_11)) {
964				m_freem(m);
965				if_printf(ifp, "oversized packet "
966				       "received (%d, %d)\n",
967				       len, MCLBYTES);
968				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
969				return;
970			}
971			m->m_pkthdr.len = m->m_len =
972				rx_frame_802_3.an_rx_802_3_payload_len + 12;
973
974			eh = mtod(m, struct ether_header *);
975
976			bcopy((char *)&rx_frame_802_3.an_rx_dst_addr,
977			      (char *)&eh->ether_dhost, ETHER_ADDR_LEN);
978			bcopy((char *)&rx_frame_802_3.an_rx_src_addr,
979			      (char *)&eh->ether_shost, ETHER_ADDR_LEN);
980
981			/* in mbuf header type is just before payload */
982			error = an_read_data(sc, id, 0x44,
983				    (caddr_t)&(eh->ether_type),
984				    rx_frame_802_3.an_rx_802_3_payload_len);
985
986			if (error) {
987				m_freem(m);
988				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
989				return;
990			}
991			if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
992
993			/* Receive packet. */
994#ifdef ANCACHE
995			an_cache_store(sc, eh, m,
996				rx_frame.an_rx_signal_strength,
997				rx_frame.an_rsvd0);
998#endif
999			AN_UNLOCK(sc);
1000			(*ifp->if_input)(ifp, m);
1001			AN_LOCK(sc);
1002		}
1003
1004	} else { /* MPI-350 */
1005		for (count = 0; count < AN_MAX_RX_DESC; count++){
1006			for (i = 0; i < sizeof(an_rx_desc) / 4; i++)
1007				((u_int32_t *)(void *)&an_rx_desc)[i]
1008					= CSR_MEM_AUX_READ_4(sc,
1009						AN_RX_DESC_OFFSET
1010						+ (count * sizeof(an_rx_desc))
1011						+ (i * 4));
1012
1013			if (an_rx_desc.an_done && !an_rx_desc.an_valid) {
1014				buf = sc->an_rx_buffer[count].an_dma_vaddr;
1015
1016				MGETHDR(m, M_NOWAIT, MT_DATA);
1017				if (m == NULL) {
1018					if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1019					return;
1020				}
1021				if (!(MCLGET(m, M_NOWAIT))) {
1022					m_freem(m);
1023					if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1024					return;
1025				}
1026				m->m_pkthdr.rcvif = ifp;
1027				/* Read Ethernet encapsulated packet */
1028
1029				/*
1030				 * No ANCACHE support since we just get back
1031				 * an Ethernet packet no 802.11 info
1032				 */
1033#if 0
1034#ifdef ANCACHE
1035				/* Read NIC frame header */
1036				bcopy(buf, (caddr_t)&rx_frame,
1037				      sizeof(rx_frame));
1038#endif
1039#endif
1040				/* Check for insane frame length */
1041				len = an_rx_desc.an_len + 12;
1042				if (len > MCLBYTES) {
1043					m_freem(m);
1044					if_printf(ifp, "oversized packet "
1045					       "received (%d, %d)\n",
1046					       len, MCLBYTES);
1047					if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1048					return;
1049				}
1050
1051				m->m_pkthdr.len = m->m_len =
1052					an_rx_desc.an_len + 12;
1053
1054				eh = mtod(m, struct ether_header *);
1055
1056				bcopy(buf, (char *)eh,
1057				      m->m_pkthdr.len);
1058
1059				if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1060
1061				/* Receive packet. */
1062#if 0
1063#ifdef ANCACHE
1064				an_cache_store(sc, eh, m,
1065					rx_frame.an_rx_signal_strength,
1066					rx_frame.an_rsvd0);
1067#endif
1068#endif
1069				AN_UNLOCK(sc);
1070				(*ifp->if_input)(ifp, m);
1071				AN_LOCK(sc);
1072
1073				an_rx_desc.an_valid = 1;
1074				an_rx_desc.an_len = AN_RX_BUFFER_SIZE;
1075				an_rx_desc.an_done = 0;
1076				an_rx_desc.an_phys =
1077					sc->an_rx_buffer[count].an_dma_paddr;
1078
1079				for (i = 0; i < sizeof(an_rx_desc) / 4; i++)
1080					CSR_MEM_AUX_WRITE_4(sc,
1081					    AN_RX_DESC_OFFSET
1082					    + (count * sizeof(an_rx_desc))
1083					    + (i * 4),
1084					    ((u_int32_t *)(void *)&an_rx_desc)[i]);
1085
1086			} else {
1087				if_printf(ifp, "Didn't get valid RX packet "
1088				       "%x %x %d\n",
1089				       an_rx_desc.an_done,
1090				       an_rx_desc.an_valid, an_rx_desc.an_len);
1091			}
1092		}
1093	}
1094}
1095
1096static void
1097an_txeof(struct an_softc *sc, int status)
1098{
1099	struct ifnet		*ifp;
1100	int			id, i;
1101
1102	AN_LOCK_ASSERT(sc);
1103	ifp = sc->an_ifp;
1104
1105	sc->an_timer = 0;
1106	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1107
1108	if (!sc->mpi350) {
1109		id = CSR_READ_2(sc, AN_TX_CMP_FID(sc->mpi350));
1110
1111		if (status & AN_EV_TX_EXC) {
1112			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1113		} else
1114			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1115
1116		for (i = 0; i < AN_TX_RING_CNT; i++) {
1117			if (id == sc->an_rdata.an_tx_ring[i]) {
1118				sc->an_rdata.an_tx_ring[i] = 0;
1119				break;
1120			}
1121		}
1122
1123		AN_INC(sc->an_rdata.an_tx_cons, AN_TX_RING_CNT);
1124	} else { /* MPI 350 */
1125		id = CSR_READ_2(sc, AN_TX_CMP_FID(sc->mpi350));
1126		if (!sc->an_rdata.an_tx_empty){
1127			if (status & AN_EV_TX_EXC) {
1128				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1129			} else
1130				if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1131			AN_INC(sc->an_rdata.an_tx_cons, AN_MAX_TX_DESC);
1132			if (sc->an_rdata.an_tx_prod ==
1133			    sc->an_rdata.an_tx_cons)
1134				sc->an_rdata.an_tx_empty = 1;
1135		}
1136	}
1137
1138	return;
1139}
1140
1141/*
1142 * We abuse the stats updater to check the current NIC status. This
1143 * is important because we don't want to allow transmissions until
1144 * the NIC has synchronized to the current cell (either as the master
1145 * in an ad-hoc group, or as a station connected to an access point).
1146 *
1147 * Note that this function will be called via callout(9) with a lock held.
1148 */
1149static void
1150an_stats_update(void *xsc)
1151{
1152	struct an_softc		*sc;
1153	struct ifnet		*ifp;
1154
1155	sc = xsc;
1156	AN_LOCK_ASSERT(sc);
1157	ifp = sc->an_ifp;
1158	if (sc->an_timer > 0 && --sc->an_timer == 0)
1159		an_watchdog(sc);
1160
1161	sc->an_status.an_type = AN_RID_STATUS;
1162	sc->an_status.an_len = sizeof(struct an_ltv_status);
1163	if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_status))
1164		return;
1165
1166	if (sc->an_status.an_opmode & AN_STATUS_OPMODE_IN_SYNC)
1167		sc->an_associated = 1;
1168	else
1169		sc->an_associated = 0;
1170
1171	/* Don't do this while we're transmitting */
1172	if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
1173		callout_reset(&sc->an_stat_ch, hz, an_stats_update, sc);
1174		return;
1175	}
1176
1177	sc->an_stats.an_len = sizeof(struct an_ltv_stats);
1178	sc->an_stats.an_type = AN_RID_32BITS_CUM;
1179	if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_stats.an_len))
1180		return;
1181
1182	callout_reset(&sc->an_stat_ch, hz, an_stats_update, sc);
1183
1184	return;
1185}
1186
1187void
1188an_intr(void *xsc)
1189{
1190	struct an_softc		*sc;
1191	struct ifnet		*ifp;
1192	u_int16_t		status;
1193
1194	sc = (struct an_softc*)xsc;
1195
1196	AN_LOCK(sc);
1197
1198	if (sc->an_gone) {
1199		AN_UNLOCK(sc);
1200		return;
1201	}
1202
1203	ifp = sc->an_ifp;
1204
1205	/* Disable interrupts. */
1206	CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), 0);
1207
1208	status = CSR_READ_2(sc, AN_EVENT_STAT(sc->mpi350));
1209	CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), ~AN_INTRS(sc->mpi350));
1210
1211	if (status & AN_EV_MIC) {
1212		CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_MIC);
1213	}
1214
1215	if (status & AN_EV_LINKSTAT) {
1216		if (CSR_READ_2(sc, AN_LINKSTAT(sc->mpi350))
1217		    == AN_LINKSTAT_ASSOCIATED)
1218			sc->an_associated = 1;
1219		else
1220			sc->an_associated = 0;
1221		CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_LINKSTAT);
1222	}
1223
1224	if (status & AN_EV_RX) {
1225		an_rxeof(sc);
1226		CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_RX);
1227	}
1228
1229	if (sc->mpi350 && status & AN_EV_TX_CPY) {
1230		an_txeof(sc, status);
1231		CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_TX_CPY);
1232	}
1233
1234	if (status & AN_EV_TX) {
1235		an_txeof(sc, status);
1236		CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_TX);
1237	}
1238
1239	if (status & AN_EV_TX_EXC) {
1240		an_txeof(sc, status);
1241		CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_TX_EXC);
1242	}
1243
1244	if (status & AN_EV_ALLOC)
1245		CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_ALLOC);
1246
1247	/* Re-enable interrupts. */
1248	CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), AN_INTRS(sc->mpi350));
1249
1250	if ((ifp->if_flags & IFF_UP) && !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1251		an_start_locked(ifp);
1252
1253	AN_UNLOCK(sc);
1254
1255	return;
1256}
1257
1258
1259static int
1260an_cmd_struct(struct an_softc *sc, struct an_command *cmd,
1261    struct an_reply *reply)
1262{
1263	int			i;
1264
1265	AN_LOCK_ASSERT(sc);
1266	for (i = 0; i != AN_TIMEOUT; i++) {
1267		if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) & AN_CMD_BUSY) {
1268			DELAY(1000);
1269		} else
1270			break;
1271	}
1272
1273	if( i == AN_TIMEOUT) {
1274		printf("BUSY\n");
1275		return(ETIMEDOUT);
1276	}
1277
1278	CSR_WRITE_2(sc, AN_PARAM0(sc->mpi350), cmd->an_parm0);
1279	CSR_WRITE_2(sc, AN_PARAM1(sc->mpi350), cmd->an_parm1);
1280	CSR_WRITE_2(sc, AN_PARAM2(sc->mpi350), cmd->an_parm2);
1281	CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), cmd->an_cmd);
1282
1283	for (i = 0; i < AN_TIMEOUT; i++) {
1284		if (CSR_READ_2(sc, AN_EVENT_STAT(sc->mpi350)) & AN_EV_CMD)
1285			break;
1286		DELAY(1000);
1287	}
1288
1289	reply->an_resp0 = CSR_READ_2(sc, AN_RESP0(sc->mpi350));
1290	reply->an_resp1 = CSR_READ_2(sc, AN_RESP1(sc->mpi350));
1291	reply->an_resp2 = CSR_READ_2(sc, AN_RESP2(sc->mpi350));
1292	reply->an_status = CSR_READ_2(sc, AN_STATUS(sc->mpi350));
1293
1294	if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) & AN_CMD_BUSY)
1295		CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350),
1296		    AN_EV_CLR_STUCK_BUSY);
1297
1298	/* Ack the command */
1299	CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_CMD);
1300
1301	if (i == AN_TIMEOUT)
1302		return(ETIMEDOUT);
1303
1304	return(0);
1305}
1306
1307static int
1308an_cmd(struct an_softc *sc, int cmd, int val)
1309{
1310	int			i, s = 0;
1311
1312	AN_LOCK_ASSERT(sc);
1313	CSR_WRITE_2(sc, AN_PARAM0(sc->mpi350), val);
1314	CSR_WRITE_2(sc, AN_PARAM1(sc->mpi350), 0);
1315	CSR_WRITE_2(sc, AN_PARAM2(sc->mpi350), 0);
1316	CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), cmd);
1317
1318	for (i = 0; i < AN_TIMEOUT; i++) {
1319		if (CSR_READ_2(sc, AN_EVENT_STAT(sc->mpi350)) & AN_EV_CMD)
1320			break;
1321		else {
1322			if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) == cmd)
1323				CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), cmd);
1324		}
1325	}
1326
1327	for (i = 0; i < AN_TIMEOUT; i++) {
1328		CSR_READ_2(sc, AN_RESP0(sc->mpi350));
1329		CSR_READ_2(sc, AN_RESP1(sc->mpi350));
1330		CSR_READ_2(sc, AN_RESP2(sc->mpi350));
1331		s = CSR_READ_2(sc, AN_STATUS(sc->mpi350));
1332		if ((s & AN_STAT_CMD_CODE) == (cmd & AN_STAT_CMD_CODE))
1333			break;
1334	}
1335
1336	/* Ack the command */
1337	CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_CMD);
1338
1339	if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) & AN_CMD_BUSY)
1340		CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_CLR_STUCK_BUSY);
1341
1342	if (i == AN_TIMEOUT)
1343		return(ETIMEDOUT);
1344
1345	return(0);
1346}
1347
1348/*
1349 * This reset sequence may look a little strange, but this is the
1350 * most reliable method I've found to really kick the NIC in the
1351 * head and force it to reboot correctly.
1352 */
1353static void
1354an_reset(struct an_softc *sc)
1355{
1356	if (sc->an_gone)
1357		return;
1358
1359	AN_LOCK_ASSERT(sc);
1360	an_cmd(sc, AN_CMD_ENABLE, 0);
1361	an_cmd(sc, AN_CMD_FW_RESTART, 0);
1362	an_cmd(sc, AN_CMD_NOOP2, 0);
1363
1364	if (an_cmd(sc, AN_CMD_FORCE_SYNCLOSS, 0) == ETIMEDOUT)
1365		device_printf(sc->an_dev, "reset failed\n");
1366
1367	an_cmd(sc, AN_CMD_DISABLE, 0);
1368
1369	return;
1370}
1371
1372/*
1373 * Read an LTV record from the NIC.
1374 */
1375static int
1376an_read_record(struct an_softc *sc, struct an_ltv_gen *ltv)
1377{
1378	struct an_ltv_gen	*an_ltv;
1379	struct an_card_rid_desc an_rid_desc;
1380	struct an_command	cmd;
1381	struct an_reply		reply;
1382	struct ifnet		*ifp;
1383	u_int16_t		*ptr;
1384	u_int8_t		*ptr2;
1385	int			i, len;
1386
1387	AN_LOCK_ASSERT(sc);
1388	if (ltv->an_len < 4 || ltv->an_type == 0)
1389		return(EINVAL);
1390
1391	ifp = sc->an_ifp;
1392	if (!sc->mpi350){
1393		/* Tell the NIC to enter record read mode. */
1394		if (an_cmd(sc, AN_CMD_ACCESS|AN_ACCESS_READ, ltv->an_type)) {
1395			if_printf(ifp, "RID access failed\n");
1396			return(EIO);
1397		}
1398
1399		/* Seek to the record. */
1400		if (an_seek(sc, ltv->an_type, 0, AN_BAP1)) {
1401			if_printf(ifp, "seek to record failed\n");
1402			return(EIO);
1403		}
1404
1405		/*
1406		 * Read the length and record type and make sure they
1407		 * match what we expect (this verifies that we have enough
1408		 * room to hold all of the returned data).
1409		 * Length includes type but not length.
1410		 */
1411		len = CSR_READ_2(sc, AN_DATA1);
1412		if (len > (ltv->an_len - 2)) {
1413			if_printf(ifp, "record length mismatch -- expected %d, "
1414			       "got %d for Rid %x\n",
1415			       ltv->an_len - 2, len, ltv->an_type);
1416			len = ltv->an_len - 2;
1417		} else {
1418			ltv->an_len = len + 2;
1419		}
1420
1421		/* Now read the data. */
1422		len -= 2;	/* skip the type */
1423		ptr = &ltv->an_val;
1424		for (i = len; i > 1; i -= 2)
1425			*ptr++ = CSR_READ_2(sc, AN_DATA1);
1426		if (i) {
1427			ptr2 = (u_int8_t *)ptr;
1428			*ptr2 = CSR_READ_1(sc, AN_DATA1);
1429		}
1430	} else { /* MPI-350 */
1431		if (!sc->an_rid_buffer.an_dma_vaddr)
1432			return(EIO);
1433		an_rid_desc.an_valid = 1;
1434		an_rid_desc.an_len = AN_RID_BUFFER_SIZE;
1435		an_rid_desc.an_rid = 0;
1436		an_rid_desc.an_phys = sc->an_rid_buffer.an_dma_paddr;
1437		bzero(sc->an_rid_buffer.an_dma_vaddr, AN_RID_BUFFER_SIZE);
1438
1439		bzero(&cmd, sizeof(cmd));
1440		bzero(&reply, sizeof(reply));
1441		cmd.an_cmd = AN_CMD_ACCESS|AN_ACCESS_READ;
1442		cmd.an_parm0 = ltv->an_type;
1443
1444		for (i = 0; i < sizeof(an_rid_desc) / 4; i++)
1445			CSR_MEM_AUX_WRITE_4(sc, AN_HOST_DESC_OFFSET + i * 4,
1446			    ((u_int32_t *)(void *)&an_rid_desc)[i]);
1447
1448		if (an_cmd_struct(sc, &cmd, &reply)
1449		    || reply.an_status & AN_CMD_QUAL_MASK) {
1450			if_printf(ifp, "failed to read RID %x %x %x %x %x, %d\n",
1451			       ltv->an_type,
1452			       reply.an_status,
1453			       reply.an_resp0,
1454			       reply.an_resp1,
1455			       reply.an_resp2,
1456			       i);
1457			return(EIO);
1458		}
1459
1460		an_ltv = (struct an_ltv_gen *)sc->an_rid_buffer.an_dma_vaddr;
1461		if (an_ltv->an_len + 2 < an_rid_desc.an_len) {
1462			an_rid_desc.an_len = an_ltv->an_len;
1463		}
1464
1465		len = an_rid_desc.an_len;
1466		if (len > (ltv->an_len - 2)) {
1467			if_printf(ifp, "record length mismatch -- expected %d, "
1468			       "got %d for Rid %x\n",
1469			       ltv->an_len - 2, len, ltv->an_type);
1470			len = ltv->an_len - 2;
1471		} else {
1472			ltv->an_len = len + 2;
1473		}
1474		bcopy(&an_ltv->an_type,
1475		    &ltv->an_val,
1476		    len);
1477	}
1478
1479	if (an_dump)
1480		an_dump_record(sc, ltv, "Read");
1481
1482	return(0);
1483}
1484
1485/*
1486 * Same as read, except we inject data instead of reading it.
1487 */
1488static int
1489an_write_record(struct an_softc *sc, struct an_ltv_gen *ltv)
1490{
1491	struct an_card_rid_desc an_rid_desc;
1492	struct an_command	cmd;
1493	struct an_reply		reply;
1494	u_int16_t		*ptr;
1495	u_int8_t		*ptr2;
1496	int			i, len;
1497
1498	AN_LOCK_ASSERT(sc);
1499	if (an_dump)
1500		an_dump_record(sc, ltv, "Write");
1501
1502	if (!sc->mpi350){
1503		if (an_cmd(sc, AN_CMD_ACCESS|AN_ACCESS_READ, ltv->an_type))
1504			return(EIO);
1505
1506		if (an_seek(sc, ltv->an_type, 0, AN_BAP1))
1507			return(EIO);
1508
1509		/*
1510		 * Length includes type but not length.
1511		 */
1512		len = ltv->an_len - 2;
1513		CSR_WRITE_2(sc, AN_DATA1, len);
1514
1515		len -= 2;	/* skip the type */
1516		ptr = &ltv->an_val;
1517		for (i = len; i > 1; i -= 2)
1518			CSR_WRITE_2(sc, AN_DATA1, *ptr++);
1519		if (i) {
1520			ptr2 = (u_int8_t *)ptr;
1521			CSR_WRITE_1(sc, AN_DATA0, *ptr2);
1522		}
1523
1524		if (an_cmd(sc, AN_CMD_ACCESS|AN_ACCESS_WRITE, ltv->an_type))
1525			return(EIO);
1526	} else {
1527		/* MPI-350 */
1528
1529		for (i = 0; i != AN_TIMEOUT; i++) {
1530			if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350))
1531			    & AN_CMD_BUSY) {
1532				DELAY(10);
1533			} else
1534				break;
1535		}
1536		if (i == AN_TIMEOUT) {
1537			printf("BUSY\n");
1538		}
1539
1540		an_rid_desc.an_valid = 1;
1541		an_rid_desc.an_len = ltv->an_len - 2;
1542		an_rid_desc.an_rid = ltv->an_type;
1543		an_rid_desc.an_phys = sc->an_rid_buffer.an_dma_paddr;
1544
1545		bcopy(&ltv->an_type, sc->an_rid_buffer.an_dma_vaddr,
1546		      an_rid_desc.an_len);
1547
1548		bzero(&cmd,sizeof(cmd));
1549		bzero(&reply,sizeof(reply));
1550		cmd.an_cmd = AN_CMD_ACCESS|AN_ACCESS_WRITE;
1551		cmd.an_parm0 = ltv->an_type;
1552
1553		for (i = 0; i < sizeof(an_rid_desc) / 4; i++)
1554			CSR_MEM_AUX_WRITE_4(sc, AN_HOST_DESC_OFFSET + i * 4,
1555			    ((u_int32_t *)(void *)&an_rid_desc)[i]);
1556
1557		DELAY(100000);
1558
1559		if ((i = an_cmd_struct(sc, &cmd, &reply))) {
1560			if_printf(sc->an_ifp,
1561			    "failed to write RID 1 %x %x %x %x %x, %d\n",
1562			    ltv->an_type,
1563			    reply.an_status,
1564			    reply.an_resp0,
1565			    reply.an_resp1,
1566			    reply.an_resp2,
1567			    i);
1568			return(EIO);
1569		}
1570
1571
1572		if (reply.an_status & AN_CMD_QUAL_MASK) {
1573			if_printf(sc->an_ifp,
1574			    "failed to write RID 2 %x %x %x %x %x, %d\n",
1575			    ltv->an_type,
1576			    reply.an_status,
1577			    reply.an_resp0,
1578			    reply.an_resp1,
1579			    reply.an_resp2,
1580			    i);
1581			return(EIO);
1582		}
1583		DELAY(100000);
1584	}
1585
1586	return(0);
1587}
1588
1589static void
1590an_dump_record(struct an_softc *sc, struct an_ltv_gen *ltv, char *string)
1591{
1592	u_int8_t		*ptr2;
1593	int			len;
1594	int			i;
1595	int			count = 0;
1596	char			buf[17], temp;
1597
1598	len = ltv->an_len - 4;
1599	if_printf(sc->an_ifp, "RID %4x, Length %4d, Mode %s\n",
1600		ltv->an_type, ltv->an_len - 4, string);
1601
1602	if (an_dump == 1 || (an_dump == ltv->an_type)) {
1603		if_printf(sc->an_ifp, "\t");
1604		bzero(buf,sizeof(buf));
1605
1606		ptr2 = (u_int8_t *)&ltv->an_val;
1607		for (i = len; i > 0; i--) {
1608			printf("%02x ", *ptr2);
1609
1610			temp = *ptr2++;
1611			if (isprint(temp))
1612				buf[count] = temp;
1613			else
1614				buf[count] = '.';
1615			if (++count == 16) {
1616				count = 0;
1617				printf("%s\n",buf);
1618				if_printf(sc->an_ifp, "\t");
1619				bzero(buf,sizeof(buf));
1620			}
1621		}
1622		for (; count != 16; count++) {
1623			printf("   ");
1624		}
1625		printf(" %s\n",buf);
1626	}
1627}
1628
1629static int
1630an_seek(struct an_softc *sc, int id, int off, int chan)
1631{
1632	int			i;
1633	int			selreg, offreg;
1634
1635	switch (chan) {
1636	case AN_BAP0:
1637		selreg = AN_SEL0;
1638		offreg = AN_OFF0;
1639		break;
1640	case AN_BAP1:
1641		selreg = AN_SEL1;
1642		offreg = AN_OFF1;
1643		break;
1644	default:
1645		if_printf(sc->an_ifp, "invalid data path: %x\n", chan);
1646		return(EIO);
1647	}
1648
1649	CSR_WRITE_2(sc, selreg, id);
1650	CSR_WRITE_2(sc, offreg, off);
1651
1652	for (i = 0; i < AN_TIMEOUT; i++) {
1653		if (!(CSR_READ_2(sc, offreg) & (AN_OFF_BUSY|AN_OFF_ERR)))
1654			break;
1655	}
1656
1657	if (i == AN_TIMEOUT)
1658		return(ETIMEDOUT);
1659
1660	return(0);
1661}
1662
1663static int
1664an_read_data(struct an_softc *sc, int id, int off, caddr_t buf, int len)
1665{
1666	int			i;
1667	u_int16_t		*ptr;
1668	u_int8_t		*ptr2;
1669
1670	if (off != -1) {
1671		if (an_seek(sc, id, off, AN_BAP1))
1672			return(EIO);
1673	}
1674
1675	ptr = (u_int16_t *)buf;
1676	for (i = len; i > 1; i -= 2)
1677		*ptr++ = CSR_READ_2(sc, AN_DATA1);
1678	if (i) {
1679		ptr2 = (u_int8_t *)ptr;
1680		*ptr2 = CSR_READ_1(sc, AN_DATA1);
1681	}
1682
1683	return(0);
1684}
1685
1686static int
1687an_write_data(struct an_softc *sc, int id, int off, caddr_t buf, int len)
1688{
1689	int			i;
1690	u_int16_t		*ptr;
1691	u_int8_t		*ptr2;
1692
1693	if (off != -1) {
1694		if (an_seek(sc, id, off, AN_BAP0))
1695			return(EIO);
1696	}
1697
1698	ptr = (u_int16_t *)buf;
1699	for (i = len; i > 1; i -= 2)
1700		CSR_WRITE_2(sc, AN_DATA0, *ptr++);
1701	if (i) {
1702		ptr2 = (u_int8_t *)ptr;
1703		CSR_WRITE_1(sc, AN_DATA0, *ptr2);
1704	}
1705
1706	return(0);
1707}
1708
1709/*
1710 * Allocate a region of memory inside the NIC and zero
1711 * it out.
1712 */
1713static int
1714an_alloc_nicmem(struct an_softc *sc, int len, int *id)
1715{
1716	int			i;
1717
1718	if (an_cmd(sc, AN_CMD_ALLOC_MEM, len)) {
1719		if_printf(sc->an_ifp, "failed to allocate %d bytes on NIC\n",
1720		    len);
1721		return(ENOMEM);
1722	}
1723
1724	for (i = 0; i < AN_TIMEOUT; i++) {
1725		if (CSR_READ_2(sc, AN_EVENT_STAT(sc->mpi350)) & AN_EV_ALLOC)
1726			break;
1727	}
1728
1729	if (i == AN_TIMEOUT)
1730		return(ETIMEDOUT);
1731
1732	CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_ALLOC);
1733	*id = CSR_READ_2(sc, AN_ALLOC_FID);
1734
1735	if (an_seek(sc, *id, 0, AN_BAP0))
1736		return(EIO);
1737
1738	for (i = 0; i < len / 2; i++)
1739		CSR_WRITE_2(sc, AN_DATA0, 0);
1740
1741	return(0);
1742}
1743
1744static void
1745an_setdef(struct an_softc *sc, struct an_req *areq)
1746{
1747	struct ifnet		*ifp;
1748	struct an_ltv_genconfig	*cfg;
1749	struct an_ltv_ssidlist_new	*ssid;
1750	struct an_ltv_aplist	*ap;
1751	struct an_ltv_gen	*sp;
1752
1753	ifp = sc->an_ifp;
1754
1755	AN_LOCK_ASSERT(sc);
1756	switch (areq->an_type) {
1757	case AN_RID_GENCONFIG:
1758		cfg = (struct an_ltv_genconfig *)areq;
1759
1760		bcopy((char *)&cfg->an_macaddr, IF_LLADDR(sc->an_ifp),
1761		    ETHER_ADDR_LEN);
1762
1763		bcopy((char *)cfg, (char *)&sc->an_config,
1764			sizeof(struct an_ltv_genconfig));
1765		break;
1766	case AN_RID_SSIDLIST:
1767		ssid = (struct an_ltv_ssidlist_new *)areq;
1768		bcopy((char *)ssid, (char *)&sc->an_ssidlist,
1769			sizeof(struct an_ltv_ssidlist_new));
1770		break;
1771	case AN_RID_APLIST:
1772		ap = (struct an_ltv_aplist *)areq;
1773		bcopy((char *)ap, (char *)&sc->an_aplist,
1774			sizeof(struct an_ltv_aplist));
1775		break;
1776	case AN_RID_TX_SPEED:
1777		sp = (struct an_ltv_gen *)areq;
1778		sc->an_tx_rate = sp->an_val;
1779
1780		/* Read the current configuration */
1781		sc->an_config.an_type = AN_RID_GENCONFIG;
1782		sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
1783		an_read_record(sc, (struct an_ltv_gen *)&sc->an_config);
1784		cfg = &sc->an_config;
1785
1786		/* clear other rates and set the only one we want */
1787		bzero(cfg->an_rates, sizeof(cfg->an_rates));
1788		cfg->an_rates[0] = sc->an_tx_rate;
1789
1790		/* Save the new rate */
1791		sc->an_config.an_type = AN_RID_GENCONFIG;
1792		sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
1793		break;
1794	case AN_RID_WEP_TEMP:
1795		/* Cache the temp keys */
1796		bcopy(areq,
1797		    &sc->an_temp_keys[((struct an_ltv_key *)areq)->kindex],
1798		    sizeof(struct an_ltv_key));
1799	case AN_RID_WEP_PERM:
1800	case AN_RID_LEAPUSERNAME:
1801	case AN_RID_LEAPPASSWORD:
1802		an_init_locked(sc);
1803
1804		/* Disable the MAC. */
1805		an_cmd(sc, AN_CMD_DISABLE, 0);
1806
1807		/* Write the key */
1808		an_write_record(sc, (struct an_ltv_gen *)areq);
1809
1810		/* Turn the MAC back on. */
1811		an_cmd(sc, AN_CMD_ENABLE, 0);
1812
1813		break;
1814	case AN_RID_MONITOR_MODE:
1815		cfg = (struct an_ltv_genconfig *)areq;
1816		bpfdetach(ifp);
1817		if (ng_ether_detach_p != NULL)
1818			(*ng_ether_detach_p) (ifp);
1819		sc->an_monitor = cfg->an_len;
1820
1821		if (sc->an_monitor & AN_MONITOR) {
1822			if (sc->an_monitor & AN_MONITOR_AIRONET_HEADER) {
1823				bpfattach(ifp, DLT_AIRONET_HEADER,
1824					sizeof(struct ether_header));
1825			} else {
1826				bpfattach(ifp, DLT_IEEE802_11,
1827					sizeof(struct ether_header));
1828			}
1829		} else {
1830			bpfattach(ifp, DLT_EN10MB,
1831				  sizeof(struct ether_header));
1832			if (ng_ether_attach_p != NULL)
1833				(*ng_ether_attach_p) (ifp);
1834		}
1835		break;
1836	default:
1837		if_printf(ifp, "unknown RID: %x\n", areq->an_type);
1838		return;
1839	}
1840
1841
1842	/* Reinitialize the card. */
1843	if (ifp->if_flags)
1844		an_init_locked(sc);
1845
1846	return;
1847}
1848
1849/*
1850 * Derived from Linux driver to enable promiscious mode.
1851 */
1852
1853static void
1854an_promisc(struct an_softc *sc, int promisc)
1855{
1856	AN_LOCK_ASSERT(sc);
1857	if (sc->an_was_monitor) {
1858		an_reset(sc);
1859		if (sc->mpi350)
1860			an_init_mpi350_desc(sc);
1861	}
1862	if (sc->an_monitor || sc->an_was_monitor)
1863		an_init_locked(sc);
1864
1865	sc->an_was_monitor = sc->an_monitor;
1866	an_cmd(sc, AN_CMD_SET_MODE, promisc ? 0xffff : 0);
1867
1868	return;
1869}
1870
1871static int
1872an_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1873{
1874	int			error = 0;
1875	int			len;
1876	int			i, max;
1877	struct an_softc		*sc;
1878	struct ifreq		*ifr;
1879	struct thread		*td = curthread;
1880	struct ieee80211req	*ireq;
1881	struct ieee80211_channel	ch;
1882	u_int8_t		tmpstr[IEEE80211_NWID_LEN*2];
1883	u_int8_t		*tmpptr;
1884	struct an_ltv_genconfig	*config;
1885	struct an_ltv_key	*key;
1886	struct an_ltv_status	*status;
1887	struct an_ltv_ssidlist_new	*ssids;
1888	int			mode;
1889	struct aironet_ioctl	l_ioctl;
1890
1891	sc = ifp->if_softc;
1892	ifr = (struct ifreq *)data;
1893	ireq = (struct ieee80211req *)data;
1894
1895	config = (struct an_ltv_genconfig *)&sc->areq;
1896	key = (struct an_ltv_key *)&sc->areq;
1897	status = (struct an_ltv_status *)&sc->areq;
1898	ssids = (struct an_ltv_ssidlist_new *)&sc->areq;
1899
1900	if (sc->an_gone) {
1901		error = ENODEV;
1902		goto out;
1903	}
1904
1905	switch (command) {
1906	case SIOCSIFFLAGS:
1907		AN_LOCK(sc);
1908		if (ifp->if_flags & IFF_UP) {
1909			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
1910			    ifp->if_flags & IFF_PROMISC &&
1911			    !(sc->an_if_flags & IFF_PROMISC)) {
1912				an_promisc(sc, 1);
1913			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
1914			    !(ifp->if_flags & IFF_PROMISC) &&
1915			    sc->an_if_flags & IFF_PROMISC) {
1916				an_promisc(sc, 0);
1917			} else
1918				an_init_locked(sc);
1919		} else {
1920			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1921				an_stop(sc);
1922		}
1923		sc->an_if_flags = ifp->if_flags;
1924		AN_UNLOCK(sc);
1925		error = 0;
1926		break;
1927	case SIOCSIFMEDIA:
1928	case SIOCGIFMEDIA:
1929		error = ifmedia_ioctl(ifp, ifr, &sc->an_ifmedia, command);
1930		break;
1931	case SIOCADDMULTI:
1932	case SIOCDELMULTI:
1933		/* The Aironet has no multicast filter. */
1934		error = 0;
1935		break;
1936	case SIOCGAIRONET:
1937		error = copyin(ifr_data_get_ptr(ifr), &sc->areq,
1938		    sizeof(sc->areq));
1939		if (error != 0)
1940			break;
1941		AN_LOCK(sc);
1942#ifdef ANCACHE
1943		if (sc->areq.an_type == AN_RID_ZERO_CACHE) {
1944			error = priv_check(td, PRIV_DRIVER);
1945			if (error)
1946				break;
1947			sc->an_sigitems = sc->an_nextitem = 0;
1948			break;
1949		} else if (sc->areq.an_type == AN_RID_READ_CACHE) {
1950			char *pt = (char *)&sc->areq.an_val;
1951			bcopy((char *)&sc->an_sigitems, (char *)pt,
1952			    sizeof(int));
1953			pt += sizeof(int);
1954			sc->areq.an_len = sizeof(int) / 2;
1955			bcopy((char *)&sc->an_sigcache, (char *)pt,
1956			    sizeof(struct an_sigcache) * sc->an_sigitems);
1957			sc->areq.an_len += ((sizeof(struct an_sigcache) *
1958			    sc->an_sigitems) / 2) + 1;
1959		} else
1960#endif
1961		if (an_read_record(sc, (struct an_ltv_gen *)&sc->areq)) {
1962			AN_UNLOCK(sc);
1963			error = EINVAL;
1964			break;
1965		}
1966		AN_UNLOCK(sc);
1967		error = copyout(&sc->areq, ifr_data_get_ptr(ifr),
1968		    sizeof(sc->areq));
1969		break;
1970	case SIOCSAIRONET:
1971		if ((error = priv_check(td, PRIV_DRIVER)))
1972			goto out;
1973		AN_LOCK(sc);
1974		error = copyin(ifr_data_get_ptr(ifr), &sc->areq,
1975		    sizeof(sc->areq));
1976		if (error != 0)
1977			break;
1978		an_setdef(sc, &sc->areq);
1979		AN_UNLOCK(sc);
1980		break;
1981	case SIOCGPRIVATE_0:		/* used by Cisco client utility */
1982		if ((error = priv_check(td, PRIV_DRIVER)))
1983			goto out;
1984		error = copyin(ifr_data_get_ptr(ifr), &l_ioctl,
1985		    sizeof(l_ioctl));
1986		if (error)
1987			goto out;
1988		mode = l_ioctl.command;
1989
1990		AN_LOCK(sc);
1991		if (mode >= AIROGCAP && mode <= AIROGSTATSD32) {
1992			error = readrids(ifp, &l_ioctl);
1993		} else if (mode >= AIROPCAP && mode <= AIROPLEAPUSR) {
1994			error = writerids(ifp, &l_ioctl);
1995		} else if (mode >= AIROFLSHRST && mode <= AIRORESTART) {
1996			error = flashcard(ifp, &l_ioctl);
1997		} else {
1998			error =-1;
1999		}
2000		AN_UNLOCK(sc);
2001		if (!error) {
2002			/* copy out the updated command info */
2003			error = copyout(&l_ioctl, ifr_data_get_ptr(ifr),
2004			    sizeof(l_ioctl));
2005		}
2006		break;
2007	case SIOCGPRIVATE_1:		/* used by Cisco client utility */
2008		if ((error = priv_check(td, PRIV_DRIVER)))
2009			goto out;
2010		error = copyin(ifr_data_get_ptr(ifr), &l_ioctl,
2011		    sizeof(l_ioctl));
2012		if (error)
2013			goto out;
2014		l_ioctl.command = 0;
2015		error = AIROMAGIC;
2016		(void) copyout(&error, l_ioctl.data, sizeof(error));
2017		error = 0;
2018		break;
2019	case SIOCG80211:
2020		sc->areq.an_len = sizeof(sc->areq);
2021		/* was that a good idea DJA we are doing a short-cut */
2022		switch (ireq->i_type) {
2023		case IEEE80211_IOC_SSID:
2024			AN_LOCK(sc);
2025			if (ireq->i_val == -1) {
2026				sc->areq.an_type = AN_RID_STATUS;
2027				if (an_read_record(sc,
2028				    (struct an_ltv_gen *)&sc->areq)) {
2029					error = EINVAL;
2030					AN_UNLOCK(sc);
2031					break;
2032				}
2033				len = status->an_ssidlen;
2034				tmpptr = status->an_ssid;
2035			} else if (ireq->i_val >= 0) {
2036				sc->areq.an_type = AN_RID_SSIDLIST;
2037				if (an_read_record(sc,
2038				    (struct an_ltv_gen *)&sc->areq)) {
2039					error = EINVAL;
2040					AN_UNLOCK(sc);
2041					break;
2042				}
2043				max = (sc->areq.an_len - 4)
2044				    / sizeof(struct an_ltv_ssid_entry);
2045				if ( max > MAX_SSIDS ) {
2046					printf("To many SSIDs only using "
2047					    "%d of %d\n",
2048					    MAX_SSIDS, max);
2049					max = MAX_SSIDS;
2050				}
2051				if (ireq->i_val > max) {
2052					error = EINVAL;
2053					AN_UNLOCK(sc);
2054					break;
2055				} else {
2056					len = ssids->an_entry[ireq->i_val].an_len;
2057					tmpptr = ssids->an_entry[ireq->i_val].an_ssid;
2058				}
2059			} else {
2060				error = EINVAL;
2061				AN_UNLOCK(sc);
2062				break;
2063			}
2064			if (len > IEEE80211_NWID_LEN) {
2065				error = EINVAL;
2066				AN_UNLOCK(sc);
2067				break;
2068			}
2069			AN_UNLOCK(sc);
2070			ireq->i_len = len;
2071			bzero(tmpstr, IEEE80211_NWID_LEN);
2072			bcopy(tmpptr, tmpstr, len);
2073			error = copyout(tmpstr, ireq->i_data,
2074			    IEEE80211_NWID_LEN);
2075			break;
2076		case IEEE80211_IOC_NUMSSIDS:
2077			AN_LOCK(sc);
2078			sc->areq.an_len = sizeof(sc->areq);
2079			sc->areq.an_type = AN_RID_SSIDLIST;
2080			if (an_read_record(sc,
2081			    (struct an_ltv_gen *)&sc->areq)) {
2082				AN_UNLOCK(sc);
2083				error = EINVAL;
2084				break;
2085			}
2086			max = (sc->areq.an_len - 4)
2087			    / sizeof(struct an_ltv_ssid_entry);
2088			AN_UNLOCK(sc);
2089			if ( max > MAX_SSIDS ) {
2090				printf("To many SSIDs only using "
2091				    "%d of %d\n",
2092				    MAX_SSIDS, max);
2093				max = MAX_SSIDS;
2094			}
2095			ireq->i_val = max;
2096			break;
2097		case IEEE80211_IOC_WEP:
2098			AN_LOCK(sc);
2099			sc->areq.an_type = AN_RID_ACTUALCFG;
2100			if (an_read_record(sc,
2101			    (struct an_ltv_gen *)&sc->areq)) {
2102				error = EINVAL;
2103				AN_UNLOCK(sc);
2104				break;
2105			}
2106			AN_UNLOCK(sc);
2107			if (config->an_authtype & AN_AUTHTYPE_PRIVACY_IN_USE) {
2108				if (config->an_authtype &
2109				    AN_AUTHTYPE_ALLOW_UNENCRYPTED)
2110					ireq->i_val = IEEE80211_WEP_MIXED;
2111				else
2112					ireq->i_val = IEEE80211_WEP_ON;
2113			} else {
2114				ireq->i_val = IEEE80211_WEP_OFF;
2115			}
2116			break;
2117		case IEEE80211_IOC_WEPKEY:
2118			/*
2119			 * XXX: I'm not entierly convinced this is
2120			 * correct, but it's what is implemented in
2121			 * ancontrol so it will have to do until we get
2122			 * access to actual Cisco code.
2123			 */
2124			if (ireq->i_val < 0 || ireq->i_val > 8) {
2125				error = EINVAL;
2126				break;
2127			}
2128			len = 0;
2129			if (ireq->i_val < 5) {
2130				AN_LOCK(sc);
2131				sc->areq.an_type = AN_RID_WEP_TEMP;
2132				for (i = 0; i < 5; i++) {
2133					if (an_read_record(sc,
2134					    (struct an_ltv_gen *)&sc->areq)) {
2135						error = EINVAL;
2136						break;
2137					}
2138					if (key->kindex == 0xffff)
2139						break;
2140					if (key->kindex == ireq->i_val)
2141						len = key->klen;
2142					/* Required to get next entry */
2143					sc->areq.an_type = AN_RID_WEP_PERM;
2144				}
2145				AN_UNLOCK(sc);
2146				if (error != 0) {
2147					break;
2148				}
2149			}
2150			/* We aren't allowed to read the value of the
2151			 * key from the card so we just output zeros
2152			 * like we would if we could read the card, but
2153			 * denied the user access.
2154			 */
2155			bzero(tmpstr, len);
2156			ireq->i_len = len;
2157			error = copyout(tmpstr, ireq->i_data, len);
2158			break;
2159		case IEEE80211_IOC_NUMWEPKEYS:
2160			ireq->i_val = 9; /* include home key */
2161			break;
2162		case IEEE80211_IOC_WEPTXKEY:
2163			/*
2164			 * For some strange reason, you have to read all
2165			 * keys before you can read the txkey.
2166			 */
2167			AN_LOCK(sc);
2168			sc->areq.an_type = AN_RID_WEP_TEMP;
2169			for (i = 0; i < 5; i++) {
2170				if (an_read_record(sc,
2171				    (struct an_ltv_gen *) &sc->areq)) {
2172					error = EINVAL;
2173					break;
2174				}
2175				if (key->kindex == 0xffff) {
2176					break;
2177				}
2178				/* Required to get next entry */
2179				sc->areq.an_type = AN_RID_WEP_PERM;
2180			}
2181			if (error != 0) {
2182				AN_UNLOCK(sc);
2183				break;
2184			}
2185
2186			sc->areq.an_type = AN_RID_WEP_PERM;
2187			key->kindex = 0xffff;
2188			if (an_read_record(sc,
2189			    (struct an_ltv_gen *)&sc->areq)) {
2190				error = EINVAL;
2191				AN_UNLOCK(sc);
2192				break;
2193			}
2194			ireq->i_val = key->mac[0];
2195			/*
2196			 * Check for home mode.  Map home mode into
2197			 * 5th key since that is how it is stored on
2198			 * the card
2199			 */
2200			sc->areq.an_len  = sizeof(struct an_ltv_genconfig);
2201			sc->areq.an_type = AN_RID_GENCONFIG;
2202			if (an_read_record(sc,
2203			    (struct an_ltv_gen *)&sc->areq)) {
2204				error = EINVAL;
2205				AN_UNLOCK(sc);
2206				break;
2207			}
2208			if (config->an_home_product & AN_HOME_NETWORK)
2209				ireq->i_val = 4;
2210			AN_UNLOCK(sc);
2211			break;
2212		case IEEE80211_IOC_AUTHMODE:
2213			AN_LOCK(sc);
2214			sc->areq.an_type = AN_RID_ACTUALCFG;
2215			if (an_read_record(sc,
2216			    (struct an_ltv_gen *)&sc->areq)) {
2217				error = EINVAL;
2218				AN_UNLOCK(sc);
2219				break;
2220			}
2221			AN_UNLOCK(sc);
2222			if ((config->an_authtype & AN_AUTHTYPE_MASK) ==
2223			    AN_AUTHTYPE_NONE) {
2224			    ireq->i_val = IEEE80211_AUTH_NONE;
2225			} else if ((config->an_authtype & AN_AUTHTYPE_MASK) ==
2226			    AN_AUTHTYPE_OPEN) {
2227			    ireq->i_val = IEEE80211_AUTH_OPEN;
2228			} else if ((config->an_authtype & AN_AUTHTYPE_MASK) ==
2229			    AN_AUTHTYPE_SHAREDKEY) {
2230			    ireq->i_val = IEEE80211_AUTH_SHARED;
2231			} else
2232				error = EINVAL;
2233			break;
2234		case IEEE80211_IOC_STATIONNAME:
2235			AN_LOCK(sc);
2236			sc->areq.an_type = AN_RID_ACTUALCFG;
2237			if (an_read_record(sc,
2238			    (struct an_ltv_gen *)&sc->areq)) {
2239				error = EINVAL;
2240				AN_UNLOCK(sc);
2241				break;
2242			}
2243			AN_UNLOCK(sc);
2244			ireq->i_len = sizeof(config->an_nodename);
2245			tmpptr = config->an_nodename;
2246			bzero(tmpstr, IEEE80211_NWID_LEN);
2247			bcopy(tmpptr, tmpstr, ireq->i_len);
2248			error = copyout(tmpstr, ireq->i_data,
2249			    IEEE80211_NWID_LEN);
2250			break;
2251		case IEEE80211_IOC_CHANNEL:
2252			AN_LOCK(sc);
2253			sc->areq.an_type = AN_RID_STATUS;
2254			if (an_read_record(sc,
2255			    (struct an_ltv_gen *)&sc->areq)) {
2256				error = EINVAL;
2257				AN_UNLOCK(sc);
2258				break;
2259			}
2260			AN_UNLOCK(sc);
2261			ireq->i_val = status->an_cur_channel;
2262			break;
2263		case IEEE80211_IOC_CURCHAN:
2264			AN_LOCK(sc);
2265			sc->areq.an_type = AN_RID_STATUS;
2266			if (an_read_record(sc,
2267			    (struct an_ltv_gen *)&sc->areq)) {
2268				error = EINVAL;
2269				AN_UNLOCK(sc);
2270				break;
2271			}
2272			AN_UNLOCK(sc);
2273			bzero(&ch, sizeof(ch));
2274			ch.ic_freq = ieee80211_ieee2mhz(status->an_cur_channel,
2275			    IEEE80211_CHAN_B);
2276			ch.ic_flags = IEEE80211_CHAN_B;
2277			ch.ic_ieee = status->an_cur_channel;
2278			error = copyout(&ch, ireq->i_data, sizeof(ch));
2279			break;
2280		case IEEE80211_IOC_POWERSAVE:
2281			AN_LOCK(sc);
2282			sc->areq.an_type = AN_RID_ACTUALCFG;
2283			if (an_read_record(sc,
2284			    (struct an_ltv_gen *)&sc->areq)) {
2285				error = EINVAL;
2286				AN_UNLOCK(sc);
2287				break;
2288			}
2289			AN_UNLOCK(sc);
2290			if (config->an_psave_mode == AN_PSAVE_NONE) {
2291				ireq->i_val = IEEE80211_POWERSAVE_OFF;
2292			} else if (config->an_psave_mode == AN_PSAVE_CAM) {
2293				ireq->i_val = IEEE80211_POWERSAVE_CAM;
2294			} else if (config->an_psave_mode == AN_PSAVE_PSP) {
2295				ireq->i_val = IEEE80211_POWERSAVE_PSP;
2296			} else if (config->an_psave_mode == AN_PSAVE_PSP_CAM) {
2297				ireq->i_val = IEEE80211_POWERSAVE_PSP_CAM;
2298			} else
2299				error = EINVAL;
2300			break;
2301		case IEEE80211_IOC_POWERSAVESLEEP:
2302			AN_LOCK(sc);
2303			sc->areq.an_type = AN_RID_ACTUALCFG;
2304			if (an_read_record(sc,
2305			    (struct an_ltv_gen *)&sc->areq)) {
2306				error = EINVAL;
2307				AN_UNLOCK(sc);
2308				break;
2309			}
2310			AN_UNLOCK(sc);
2311			ireq->i_val = config->an_listen_interval;
2312			break;
2313		}
2314		break;
2315	case SIOCS80211:
2316		if ((error = priv_check(td, PRIV_NET80211_MANAGE)))
2317			goto out;
2318		AN_LOCK(sc);
2319		sc->areq.an_len = sizeof(sc->areq);
2320		/*
2321		 * We need a config structure for everything but the WEP
2322		 * key management and SSIDs so we get it now so avoid
2323		 * duplicating this code every time.
2324		 */
2325		if (ireq->i_type != IEEE80211_IOC_SSID &&
2326		    ireq->i_type != IEEE80211_IOC_WEPKEY &&
2327		    ireq->i_type != IEEE80211_IOC_WEPTXKEY) {
2328			sc->areq.an_type = AN_RID_GENCONFIG;
2329			if (an_read_record(sc,
2330			    (struct an_ltv_gen *)&sc->areq)) {
2331				error = EINVAL;
2332				AN_UNLOCK(sc);
2333				break;
2334			}
2335		}
2336		switch (ireq->i_type) {
2337		case IEEE80211_IOC_SSID:
2338			sc->areq.an_len = sizeof(sc->areq);
2339			sc->areq.an_type = AN_RID_SSIDLIST;
2340			if (an_read_record(sc,
2341			    (struct an_ltv_gen *)&sc->areq)) {
2342				error = EINVAL;
2343				AN_UNLOCK(sc);
2344				break;
2345			}
2346			if (ireq->i_len > IEEE80211_NWID_LEN) {
2347				error = EINVAL;
2348				AN_UNLOCK(sc);
2349				break;
2350			}
2351			max = (sc->areq.an_len - 4)
2352			    / sizeof(struct an_ltv_ssid_entry);
2353			if ( max > MAX_SSIDS ) {
2354				printf("To many SSIDs only using "
2355				    "%d of %d\n",
2356				    MAX_SSIDS, max);
2357				max = MAX_SSIDS;
2358			}
2359			if (ireq->i_val > max) {
2360				error = EINVAL;
2361				AN_UNLOCK(sc);
2362				break;
2363			} else {
2364				error = copyin(ireq->i_data,
2365				    ssids->an_entry[ireq->i_val].an_ssid,
2366				    ireq->i_len);
2367				ssids->an_entry[ireq->i_val].an_len
2368				    = ireq->i_len;
2369				sc->areq.an_len = sizeof(sc->areq);
2370				sc->areq.an_type = AN_RID_SSIDLIST;
2371				an_setdef(sc, &sc->areq);
2372				AN_UNLOCK(sc);
2373				break;
2374			}
2375			break;
2376		case IEEE80211_IOC_WEP:
2377			switch (ireq->i_val) {
2378			case IEEE80211_WEP_OFF:
2379				config->an_authtype &=
2380				    ~(AN_AUTHTYPE_PRIVACY_IN_USE |
2381				    AN_AUTHTYPE_ALLOW_UNENCRYPTED);
2382				break;
2383			case IEEE80211_WEP_ON:
2384				config->an_authtype |=
2385				    AN_AUTHTYPE_PRIVACY_IN_USE;
2386				config->an_authtype &=
2387				    ~AN_AUTHTYPE_ALLOW_UNENCRYPTED;
2388				break;
2389			case IEEE80211_WEP_MIXED:
2390				config->an_authtype |=
2391				    AN_AUTHTYPE_PRIVACY_IN_USE |
2392				    AN_AUTHTYPE_ALLOW_UNENCRYPTED;
2393				break;
2394			default:
2395				error = EINVAL;
2396				break;
2397			}
2398			if (error != EINVAL)
2399				an_setdef(sc, &sc->areq);
2400			AN_UNLOCK(sc);
2401			break;
2402		case IEEE80211_IOC_WEPKEY:
2403			if (ireq->i_val < 0 || ireq->i_val > 8 ||
2404			    ireq->i_len > 13) {
2405				error = EINVAL;
2406				AN_UNLOCK(sc);
2407				break;
2408			}
2409			error = copyin(ireq->i_data, tmpstr, 13);
2410			if (error != 0) {
2411				AN_UNLOCK(sc);
2412				break;
2413			}
2414			/*
2415			 * Map the 9th key into the home mode
2416			 * since that is how it is stored on
2417			 * the card
2418			 */
2419			bzero(&sc->areq, sizeof(struct an_ltv_key));
2420			sc->areq.an_len = sizeof(struct an_ltv_key);
2421			key->mac[0] = 1;	/* The others are 0. */
2422			if (ireq->i_val < 4) {
2423				sc->areq.an_type = AN_RID_WEP_TEMP;
2424				key->kindex = ireq->i_val;
2425			} else {
2426				sc->areq.an_type = AN_RID_WEP_PERM;
2427				key->kindex = ireq->i_val - 4;
2428			}
2429			key->klen = ireq->i_len;
2430			bcopy(tmpstr, key->key, key->klen);
2431			an_setdef(sc, &sc->areq);
2432			AN_UNLOCK(sc);
2433			break;
2434		case IEEE80211_IOC_WEPTXKEY:
2435			if (ireq->i_val < 0 || ireq->i_val > 4) {
2436				error = EINVAL;
2437				AN_UNLOCK(sc);
2438				break;
2439			}
2440
2441			/*
2442			 * Map the 5th key into the home mode
2443			 * since that is how it is stored on
2444			 * the card
2445			 */
2446			sc->areq.an_len  = sizeof(struct an_ltv_genconfig);
2447			sc->areq.an_type = AN_RID_ACTUALCFG;
2448			if (an_read_record(sc,
2449			    (struct an_ltv_gen *)&sc->areq)) {
2450				error = EINVAL;
2451				AN_UNLOCK(sc);
2452				break;
2453			}
2454			if (ireq->i_val ==  4) {
2455				config->an_home_product |= AN_HOME_NETWORK;
2456				ireq->i_val = 0;
2457			} else {
2458				config->an_home_product &= ~AN_HOME_NETWORK;
2459			}
2460
2461			sc->an_config.an_home_product
2462				= config->an_home_product;
2463
2464			/* update configuration */
2465			an_init_locked(sc);
2466
2467			bzero(&sc->areq, sizeof(struct an_ltv_key));
2468			sc->areq.an_len = sizeof(struct an_ltv_key);
2469			sc->areq.an_type = AN_RID_WEP_PERM;
2470			key->kindex = 0xffff;
2471			key->mac[0] = ireq->i_val;
2472			an_setdef(sc, &sc->areq);
2473			AN_UNLOCK(sc);
2474			break;
2475		case IEEE80211_IOC_AUTHMODE:
2476			switch (ireq->i_val) {
2477			case IEEE80211_AUTH_NONE:
2478				config->an_authtype = AN_AUTHTYPE_NONE |
2479				    (config->an_authtype & ~AN_AUTHTYPE_MASK);
2480				break;
2481			case IEEE80211_AUTH_OPEN:
2482				config->an_authtype = AN_AUTHTYPE_OPEN |
2483				    (config->an_authtype & ~AN_AUTHTYPE_MASK);
2484				break;
2485			case IEEE80211_AUTH_SHARED:
2486				config->an_authtype = AN_AUTHTYPE_SHAREDKEY |
2487				    (config->an_authtype & ~AN_AUTHTYPE_MASK);
2488				break;
2489			default:
2490				error = EINVAL;
2491			}
2492			if (error != EINVAL) {
2493				an_setdef(sc, &sc->areq);
2494			}
2495			AN_UNLOCK(sc);
2496			break;
2497		case IEEE80211_IOC_STATIONNAME:
2498			if (ireq->i_len > 16) {
2499				error = EINVAL;
2500				AN_UNLOCK(sc);
2501				break;
2502			}
2503			bzero(config->an_nodename, 16);
2504			error = copyin(ireq->i_data,
2505			    config->an_nodename, ireq->i_len);
2506			an_setdef(sc, &sc->areq);
2507			AN_UNLOCK(sc);
2508			break;
2509		case IEEE80211_IOC_CHANNEL:
2510			/*
2511			 * The actual range is 1-14, but if you set it
2512			 * to 0 you get the default so we let that work
2513			 * too.
2514			 */
2515			if (ireq->i_val < 0 || ireq->i_val >14) {
2516				error = EINVAL;
2517				AN_UNLOCK(sc);
2518				break;
2519			}
2520			config->an_ds_channel = ireq->i_val;
2521			an_setdef(sc, &sc->areq);
2522			AN_UNLOCK(sc);
2523			break;
2524		case IEEE80211_IOC_POWERSAVE:
2525			switch (ireq->i_val) {
2526			case IEEE80211_POWERSAVE_OFF:
2527				config->an_psave_mode = AN_PSAVE_NONE;
2528				break;
2529			case IEEE80211_POWERSAVE_CAM:
2530				config->an_psave_mode = AN_PSAVE_CAM;
2531				break;
2532			case IEEE80211_POWERSAVE_PSP:
2533				config->an_psave_mode = AN_PSAVE_PSP;
2534				break;
2535			case IEEE80211_POWERSAVE_PSP_CAM:
2536				config->an_psave_mode = AN_PSAVE_PSP_CAM;
2537				break;
2538			default:
2539				error = EINVAL;
2540				break;
2541			}
2542			an_setdef(sc, &sc->areq);
2543			AN_UNLOCK(sc);
2544			break;
2545		case IEEE80211_IOC_POWERSAVESLEEP:
2546			config->an_listen_interval = ireq->i_val;
2547			an_setdef(sc, &sc->areq);
2548			AN_UNLOCK(sc);
2549			break;
2550		default:
2551			AN_UNLOCK(sc);
2552			break;
2553		}
2554
2555		/*
2556		if (!error) {
2557			AN_LOCK(sc);
2558			an_setdef(sc, &sc->areq);
2559			AN_UNLOCK(sc);
2560		}
2561		*/
2562		break;
2563	default:
2564		error = ether_ioctl(ifp, command, data);
2565		break;
2566	}
2567out:
2568
2569	return(error != 0);
2570}
2571
2572static int
2573an_init_tx_ring(struct an_softc *sc)
2574{
2575	int			i;
2576	int			id;
2577
2578	if (sc->an_gone)
2579		return (0);
2580
2581	if (!sc->mpi350) {
2582		for (i = 0; i < AN_TX_RING_CNT; i++) {
2583			if (an_alloc_nicmem(sc, 1518 +
2584			    0x44, &id))
2585				return(ENOMEM);
2586			sc->an_rdata.an_tx_fids[i] = id;
2587			sc->an_rdata.an_tx_ring[i] = 0;
2588		}
2589	}
2590
2591	sc->an_rdata.an_tx_prod = 0;
2592	sc->an_rdata.an_tx_cons = 0;
2593	sc->an_rdata.an_tx_empty = 1;
2594
2595	return(0);
2596}
2597
2598static void
2599an_init(void *xsc)
2600{
2601	struct an_softc		*sc = xsc;
2602
2603	AN_LOCK(sc);
2604	an_init_locked(sc);
2605	AN_UNLOCK(sc);
2606}
2607
2608static void
2609an_init_locked(struct an_softc *sc)
2610{
2611	struct ifnet *ifp;
2612
2613	AN_LOCK_ASSERT(sc);
2614	ifp = sc->an_ifp;
2615	if (sc->an_gone)
2616		return;
2617
2618	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2619		an_stop(sc);
2620
2621	sc->an_associated = 0;
2622
2623	/* Allocate the TX buffers */
2624	if (an_init_tx_ring(sc)) {
2625		an_reset(sc);
2626		if (sc->mpi350)
2627			an_init_mpi350_desc(sc);
2628		if (an_init_tx_ring(sc)) {
2629			if_printf(ifp, "tx buffer allocation failed\n");
2630			return;
2631		}
2632	}
2633
2634	/* Set our MAC address. */
2635	bcopy((char *)IF_LLADDR(sc->an_ifp),
2636	    (char *)&sc->an_config.an_macaddr, ETHER_ADDR_LEN);
2637
2638	if (ifp->if_flags & IFF_BROADCAST)
2639		sc->an_config.an_rxmode = AN_RXMODE_BC_ADDR;
2640	else
2641		sc->an_config.an_rxmode = AN_RXMODE_ADDR;
2642
2643	if (ifp->if_flags & IFF_MULTICAST)
2644		sc->an_config.an_rxmode = AN_RXMODE_BC_MC_ADDR;
2645
2646	if (ifp->if_flags & IFF_PROMISC) {
2647		if (sc->an_monitor & AN_MONITOR) {
2648			if (sc->an_monitor & AN_MONITOR_ANY_BSS) {
2649				sc->an_config.an_rxmode |=
2650				    AN_RXMODE_80211_MONITOR_ANYBSS |
2651				    AN_RXMODE_NO_8023_HEADER;
2652			} else {
2653				sc->an_config.an_rxmode |=
2654				    AN_RXMODE_80211_MONITOR_CURBSS |
2655				    AN_RXMODE_NO_8023_HEADER;
2656			}
2657		}
2658	}
2659
2660#ifdef ANCACHE
2661	if (sc->an_have_rssimap)
2662		sc->an_config.an_rxmode |= AN_RXMODE_NORMALIZED_RSSI;
2663#endif
2664
2665	/* Set the ssid list */
2666	sc->an_ssidlist.an_type = AN_RID_SSIDLIST;
2667	sc->an_ssidlist.an_len = sizeof(struct an_ltv_ssidlist_new);
2668	if (an_write_record(sc, (struct an_ltv_gen *)&sc->an_ssidlist)) {
2669		if_printf(ifp, "failed to set ssid list\n");
2670		return;
2671	}
2672
2673	/* Set the AP list */
2674	sc->an_aplist.an_type = AN_RID_APLIST;
2675	sc->an_aplist.an_len = sizeof(struct an_ltv_aplist);
2676	if (an_write_record(sc, (struct an_ltv_gen *)&sc->an_aplist)) {
2677		if_printf(ifp, "failed to set AP list\n");
2678		return;
2679	}
2680
2681	/* Set the configuration in the NIC */
2682	sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
2683	sc->an_config.an_type = AN_RID_GENCONFIG;
2684	if (an_write_record(sc, (struct an_ltv_gen *)&sc->an_config)) {
2685		if_printf(ifp, "failed to set configuration\n");
2686		return;
2687	}
2688
2689	/* Enable the MAC */
2690	if (an_cmd(sc, AN_CMD_ENABLE, 0)) {
2691		if_printf(ifp, "failed to enable MAC\n");
2692		return;
2693	}
2694
2695	if (ifp->if_flags & IFF_PROMISC)
2696		an_cmd(sc, AN_CMD_SET_MODE, 0xffff);
2697
2698	/* enable interrupts */
2699	CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), AN_INTRS(sc->mpi350));
2700
2701	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2702	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2703
2704	callout_reset(&sc->an_stat_ch, hz, an_stats_update, sc);
2705
2706	return;
2707}
2708
2709static void
2710an_start(struct ifnet *ifp)
2711{
2712	struct an_softc		*sc;
2713
2714	sc = ifp->if_softc;
2715	AN_LOCK(sc);
2716	an_start_locked(ifp);
2717	AN_UNLOCK(sc);
2718}
2719
2720static void
2721an_start_locked(struct ifnet *ifp)
2722{
2723	struct an_softc		*sc;
2724	struct mbuf		*m0 = NULL;
2725	struct an_txframe_802_3	tx_frame_802_3;
2726	struct ether_header	*eh;
2727	int			id, idx, i;
2728	unsigned char		txcontrol;
2729	struct an_card_tx_desc an_tx_desc;
2730	u_int8_t		*buf;
2731
2732	sc = ifp->if_softc;
2733
2734	AN_LOCK_ASSERT(sc);
2735	if (sc->an_gone)
2736		return;
2737
2738	if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
2739		return;
2740
2741	if (!sc->an_associated)
2742		return;
2743
2744	/* We can't send in monitor mode so toss any attempts. */
2745	if (sc->an_monitor && (ifp->if_flags & IFF_PROMISC)) {
2746		for (;;) {
2747			IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
2748			if (m0 == NULL)
2749				break;
2750			m_freem(m0);
2751		}
2752		return;
2753	}
2754
2755	idx = sc->an_rdata.an_tx_prod;
2756
2757	if (!sc->mpi350) {
2758		bzero((char *)&tx_frame_802_3, sizeof(tx_frame_802_3));
2759
2760		while (sc->an_rdata.an_tx_ring[idx] == 0) {
2761			IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
2762			if (m0 == NULL)
2763				break;
2764
2765			id = sc->an_rdata.an_tx_fids[idx];
2766			eh = mtod(m0, struct ether_header *);
2767
2768			bcopy((char *)&eh->ether_dhost,
2769			      (char *)&tx_frame_802_3.an_tx_dst_addr,
2770			      ETHER_ADDR_LEN);
2771			bcopy((char *)&eh->ether_shost,
2772			      (char *)&tx_frame_802_3.an_tx_src_addr,
2773			      ETHER_ADDR_LEN);
2774
2775			/* minus src/dest mac & type */
2776			tx_frame_802_3.an_tx_802_3_payload_len =
2777				m0->m_pkthdr.len - 12;
2778
2779			m_copydata(m0, sizeof(struct ether_header) - 2 ,
2780				   tx_frame_802_3.an_tx_802_3_payload_len,
2781				   (caddr_t)&sc->an_txbuf);
2782
2783			txcontrol = AN_TXCTL_8023 | AN_TXCTL_HW(sc->mpi350);
2784			/* write the txcontrol only */
2785			an_write_data(sc, id, 0x08, (caddr_t)&txcontrol,
2786				      sizeof(txcontrol));
2787
2788			/* 802_3 header */
2789			an_write_data(sc, id, 0x34, (caddr_t)&tx_frame_802_3,
2790				      sizeof(struct an_txframe_802_3));
2791
2792			/* in mbuf header type is just before payload */
2793			an_write_data(sc, id, 0x44, (caddr_t)&sc->an_txbuf,
2794				      tx_frame_802_3.an_tx_802_3_payload_len);
2795
2796			/*
2797			 * If there's a BPF listner, bounce a copy of
2798			 * this frame to him.
2799			 */
2800			BPF_MTAP(ifp, m0);
2801
2802			m_freem(m0);
2803			m0 = NULL;
2804
2805			sc->an_rdata.an_tx_ring[idx] = id;
2806			if (an_cmd(sc, AN_CMD_TX, id))
2807				if_printf(ifp, "xmit failed\n");
2808
2809			AN_INC(idx, AN_TX_RING_CNT);
2810
2811			/*
2812			 * Set a timeout in case the chip goes out to lunch.
2813			 */
2814			sc->an_timer = 5;
2815		}
2816	} else { /* MPI-350 */
2817		/* Disable interrupts. */
2818		CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), 0);
2819
2820		while (sc->an_rdata.an_tx_empty ||
2821		    idx != sc->an_rdata.an_tx_cons) {
2822			IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
2823			if (m0 == NULL) {
2824				break;
2825			}
2826			buf = sc->an_tx_buffer[idx].an_dma_vaddr;
2827
2828			eh = mtod(m0, struct ether_header *);
2829
2830			/* DJA optimize this to limit bcopy */
2831			bcopy((char *)&eh->ether_dhost,
2832			      (char *)&tx_frame_802_3.an_tx_dst_addr,
2833			      ETHER_ADDR_LEN);
2834			bcopy((char *)&eh->ether_shost,
2835			      (char *)&tx_frame_802_3.an_tx_src_addr,
2836			      ETHER_ADDR_LEN);
2837
2838			/* minus src/dest mac & type */
2839			tx_frame_802_3.an_tx_802_3_payload_len =
2840				m0->m_pkthdr.len - 12;
2841
2842			m_copydata(m0, sizeof(struct ether_header) - 2 ,
2843				   tx_frame_802_3.an_tx_802_3_payload_len,
2844				   (caddr_t)&sc->an_txbuf);
2845
2846			txcontrol = AN_TXCTL_8023 | AN_TXCTL_HW(sc->mpi350);
2847			/* write the txcontrol only */
2848			bcopy((caddr_t)&txcontrol, &buf[0x08],
2849			      sizeof(txcontrol));
2850
2851			/* 802_3 header */
2852			bcopy((caddr_t)&tx_frame_802_3, &buf[0x34],
2853			      sizeof(struct an_txframe_802_3));
2854
2855			/* in mbuf header type is just before payload */
2856			bcopy((caddr_t)&sc->an_txbuf, &buf[0x44],
2857			      tx_frame_802_3.an_tx_802_3_payload_len);
2858
2859
2860			bzero(&an_tx_desc, sizeof(an_tx_desc));
2861			an_tx_desc.an_offset = 0;
2862			an_tx_desc.an_eoc = 1;
2863			an_tx_desc.an_valid = 1;
2864			an_tx_desc.an_len =  0x44 +
2865			    tx_frame_802_3.an_tx_802_3_payload_len;
2866			an_tx_desc.an_phys
2867			    = sc->an_tx_buffer[idx].an_dma_paddr;
2868			for (i = sizeof(an_tx_desc) / 4 - 1; i >= 0; i--) {
2869				CSR_MEM_AUX_WRITE_4(sc, AN_TX_DESC_OFFSET
2870				    /* zero for now */
2871				    + (0 * sizeof(an_tx_desc))
2872				    + (i * 4),
2873				    ((u_int32_t *)(void *)&an_tx_desc)[i]);
2874			}
2875
2876			/*
2877			 * If there's a BPF listner, bounce a copy of
2878			 * this frame to him.
2879			 */
2880			BPF_MTAP(ifp, m0);
2881
2882			m_freem(m0);
2883			m0 = NULL;
2884			AN_INC(idx, AN_MAX_TX_DESC);
2885			sc->an_rdata.an_tx_empty = 0;
2886			CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_ALLOC);
2887
2888			/*
2889			 * Set a timeout in case the chip goes out to lunch.
2890			 */
2891			sc->an_timer = 5;
2892		}
2893
2894		/* Re-enable interrupts. */
2895		CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), AN_INTRS(sc->mpi350));
2896	}
2897
2898	if (m0 != NULL)
2899		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2900
2901	sc->an_rdata.an_tx_prod = idx;
2902
2903	return;
2904}
2905
2906void
2907an_stop(struct an_softc *sc)
2908{
2909	struct ifnet		*ifp;
2910	int			i;
2911
2912	AN_LOCK_ASSERT(sc);
2913
2914	if (sc->an_gone)
2915		return;
2916
2917	ifp = sc->an_ifp;
2918
2919	an_cmd(sc, AN_CMD_FORCE_SYNCLOSS, 0);
2920	CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), 0);
2921	an_cmd(sc, AN_CMD_DISABLE, 0);
2922
2923	for (i = 0; i < AN_TX_RING_CNT; i++)
2924		an_cmd(sc, AN_CMD_DEALLOC_MEM, sc->an_rdata.an_tx_fids[i]);
2925
2926	callout_stop(&sc->an_stat_ch);
2927
2928	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE);
2929
2930	if (sc->an_flash_buffer) {
2931		free(sc->an_flash_buffer, M_DEVBUF);
2932		sc->an_flash_buffer = NULL;
2933	}
2934}
2935
2936static void
2937an_watchdog(struct an_softc *sc)
2938{
2939	struct ifnet *ifp;
2940
2941	AN_LOCK_ASSERT(sc);
2942
2943	if (sc->an_gone)
2944		return;
2945
2946	ifp = sc->an_ifp;
2947	if_printf(ifp, "device timeout\n");
2948
2949	an_reset(sc);
2950	if (sc->mpi350)
2951		an_init_mpi350_desc(sc);
2952	an_init_locked(sc);
2953
2954	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2955}
2956
2957int
2958an_shutdown(device_t dev)
2959{
2960	struct an_softc		*sc;
2961
2962	sc = device_get_softc(dev);
2963	AN_LOCK(sc);
2964	an_stop(sc);
2965	sc->an_gone = 1;
2966	AN_UNLOCK(sc);
2967
2968	return (0);
2969}
2970
2971void
2972an_resume(device_t dev)
2973{
2974	struct an_softc		*sc;
2975	struct ifnet		*ifp;
2976	int			i;
2977
2978	sc = device_get_softc(dev);
2979	AN_LOCK(sc);
2980	ifp = sc->an_ifp;
2981
2982	sc->an_gone = 0;
2983	an_reset(sc);
2984	if (sc->mpi350)
2985		an_init_mpi350_desc(sc);
2986	an_init_locked(sc);
2987
2988	/* Recovery temporary keys */
2989	for (i = 0; i < 4; i++) {
2990		sc->areq.an_type = AN_RID_WEP_TEMP;
2991		sc->areq.an_len = sizeof(struct an_ltv_key);
2992		bcopy(&sc->an_temp_keys[i],
2993		    &sc->areq, sizeof(struct an_ltv_key));
2994		an_setdef(sc, &sc->areq);
2995	}
2996
2997	if (ifp->if_flags & IFF_UP)
2998		an_start_locked(ifp);
2999	AN_UNLOCK(sc);
3000
3001	return;
3002}
3003
3004#ifdef ANCACHE
3005/* Aironet signal strength cache code.
3006 * store signal/noise/quality on per MAC src basis in
3007 * a small fixed cache.  The cache wraps if > MAX slots
3008 * used.  The cache may be zeroed out to start over.
3009 * Two simple filters exist to reduce computation:
3010 * 1. ip only (literally 0x800, ETHERTYPE_IP) which may be used
3011 * to ignore some packets.  It defaults to ip only.
3012 * it could be used to focus on broadcast, non-IP 802.11 beacons.
3013 * 2. multicast/broadcast only.  This may be used to
3014 * ignore unicast packets and only cache signal strength
3015 * for multicast/broadcast packets (beacons); e.g., Mobile-IP
3016 * beacons and not unicast traffic.
3017 *
3018 * The cache stores (MAC src(index), IP src (major clue), signal,
3019 *	quality, noise)
3020 *
3021 * No apologies for storing IP src here.  It's easy and saves much
3022 * trouble elsewhere.  The cache is assumed to be INET dependent,
3023 * although it need not be.
3024 *
3025 * Note: the Aironet only has a single byte of signal strength value
3026 * in the rx frame header, and it's not scaled to anything sensible.
3027 * This is kind of lame, but it's all we've got.
3028 */
3029
3030#ifdef documentation
3031
3032int an_sigitems;				/* number of cached entries */
3033struct an_sigcache an_sigcache[MAXANCACHE];	/* array of cache entries */
3034int an_nextitem;				/* index/# of entries */
3035
3036
3037#endif
3038
3039/* control variables for cache filtering.  Basic idea is
3040 * to reduce cost (e.g., to only Mobile-IP agent beacons
3041 * which are broadcast or multicast).  Still you might
3042 * want to measure signal strength anth unicast ping packets
3043 * on a pt. to pt. ant. setup.
3044 */
3045/* set true if you want to limit cache items to broadcast/mcast
3046 * only packets (not unicast).  Useful for mobile-ip beacons which
3047 * are broadcast/multicast at network layer.  Default is all packets
3048 * so ping/unicast anll work say anth pt. to pt. antennae setup.
3049 */
3050static int an_cache_mcastonly = 0;
3051SYSCTL_INT(_hw_an, OID_AUTO, an_cache_mcastonly, CTLFLAG_RW,
3052	&an_cache_mcastonly, 0, "");
3053
3054/* set true if you want to limit cache items to IP packets only
3055*/
3056static int an_cache_iponly = 1;
3057SYSCTL_INT(_hw_an, OID_AUTO, an_cache_iponly, CTLFLAG_RW,
3058	&an_cache_iponly, 0, "");
3059
3060/*
3061 * an_cache_store, per rx packet store signal
3062 * strength in MAC (src) indexed cache.
3063 */
3064static void
3065an_cache_store(struct an_softc *sc, struct ether_header *eh, struct mbuf *m,
3066    u_int8_t rx_rssi, u_int8_t rx_quality)
3067{
3068	struct ip *ip = NULL;
3069	int i;
3070	static int cache_slot = 0; 	/* use this cache entry */
3071	static int wrapindex = 0;	/* next "free" cache entry */
3072	int type_ipv4 = 0;
3073
3074	/* filters:
3075	 * 1. ip only
3076	 * 2. configurable filter to throw out unicast packets,
3077	 * keep multicast only.
3078	 */
3079
3080	if ((ntohs(eh->ether_type) == ETHERTYPE_IP)) {
3081		type_ipv4 = 1;
3082	}
3083
3084	/* filter for ip packets only
3085	*/
3086	if ( an_cache_iponly && !type_ipv4) {
3087		return;
3088	}
3089
3090	/* filter for broadcast/multicast only
3091	 */
3092	if (an_cache_mcastonly && ((eh->ether_dhost[0] & 1) == 0)) {
3093		return;
3094	}
3095
3096#ifdef SIGDEBUG
3097	if_printf(sc->an_ifp, "q value %x (MSB=0x%x, LSB=0x%x) \n",
3098		rx_rssi & 0xffff, rx_rssi >> 8, rx_rssi & 0xff);
3099#endif
3100
3101	/* find the ip header.  we want to store the ip_src
3102	 * address.
3103	 */
3104	if (type_ipv4) {
3105		ip = mtod(m, struct ip *);
3106	}
3107
3108	/* do a linear search for a matching MAC address
3109	 * in the cache table
3110	 * . MAC address is 6 bytes,
3111	 * . var w_nextitem holds total number of entries already cached
3112	 */
3113	for (i = 0; i < sc->an_nextitem; i++) {
3114		if (! bcmp(eh->ether_shost , sc->an_sigcache[i].macsrc,  6 )) {
3115			/* Match!,
3116			 * so we already have this entry,
3117			 * update the data
3118			 */
3119			break;
3120		}
3121	}
3122
3123	/* did we find a matching mac address?
3124	 * if yes, then overwrite a previously existing cache entry
3125	 */
3126	if (i < sc->an_nextitem )   {
3127		cache_slot = i;
3128	}
3129	/* else, have a new address entry,so
3130	 * add this new entry,
3131	 * if table full, then we need to replace LRU entry
3132	 */
3133	else    {
3134
3135		/* check for space in cache table
3136		 * note: an_nextitem also holds number of entries
3137		 * added in the cache table
3138		 */
3139		if ( sc->an_nextitem < MAXANCACHE ) {
3140			cache_slot = sc->an_nextitem;
3141			sc->an_nextitem++;
3142			sc->an_sigitems = sc->an_nextitem;
3143		}
3144		/* no space found, so simply wrap anth wrap index
3145		 * and "zap" the next entry
3146		 */
3147		else {
3148			if (wrapindex == MAXANCACHE) {
3149				wrapindex = 0;
3150			}
3151			cache_slot = wrapindex++;
3152		}
3153	}
3154
3155	/* invariant: cache_slot now points at some slot
3156	 * in cache.
3157	 */
3158	if (cache_slot < 0 || cache_slot >= MAXANCACHE) {
3159		log(LOG_ERR, "an_cache_store, bad index: %d of "
3160		    "[0..%d], gross cache error\n",
3161		    cache_slot, MAXANCACHE);
3162		return;
3163	}
3164
3165	/*  store items in cache
3166	 *  .ip source address
3167	 *  .mac src
3168	 *  .signal, etc.
3169	 */
3170	if (type_ipv4) {
3171		sc->an_sigcache[cache_slot].ipsrc = ip->ip_src.s_addr;
3172	}
3173	bcopy( eh->ether_shost, sc->an_sigcache[cache_slot].macsrc,  6);
3174
3175
3176	switch (an_cache_mode) {
3177	case DBM:
3178		if (sc->an_have_rssimap) {
3179			sc->an_sigcache[cache_slot].signal =
3180				- sc->an_rssimap.an_entries[rx_rssi].an_rss_dbm;
3181			sc->an_sigcache[cache_slot].quality =
3182				- sc->an_rssimap.an_entries[rx_quality].an_rss_dbm;
3183		} else {
3184			sc->an_sigcache[cache_slot].signal = rx_rssi - 100;
3185			sc->an_sigcache[cache_slot].quality = rx_quality - 100;
3186		}
3187		break;
3188	case PERCENT:
3189		if (sc->an_have_rssimap) {
3190			sc->an_sigcache[cache_slot].signal =
3191				sc->an_rssimap.an_entries[rx_rssi].an_rss_pct;
3192			sc->an_sigcache[cache_slot].quality =
3193				sc->an_rssimap.an_entries[rx_quality].an_rss_pct;
3194		} else {
3195			if (rx_rssi > 100)
3196				rx_rssi = 100;
3197			if (rx_quality > 100)
3198				rx_quality = 100;
3199			sc->an_sigcache[cache_slot].signal = rx_rssi;
3200			sc->an_sigcache[cache_slot].quality = rx_quality;
3201		}
3202		break;
3203	case RAW:
3204		sc->an_sigcache[cache_slot].signal = rx_rssi;
3205		sc->an_sigcache[cache_slot].quality = rx_quality;
3206		break;
3207	}
3208
3209	sc->an_sigcache[cache_slot].noise = 0;
3210
3211	return;
3212}
3213#endif
3214
3215static int
3216an_media_change(struct ifnet *ifp)
3217{
3218	struct an_softc *sc = ifp->if_softc;
3219	struct an_ltv_genconfig	*cfg;
3220	int otype = sc->an_config.an_opmode;
3221	int orate = sc->an_tx_rate;
3222
3223	AN_LOCK(sc);
3224	sc->an_tx_rate = ieee80211_media2rate(
3225		IFM_SUBTYPE(sc->an_ifmedia.ifm_cur->ifm_media));
3226	if (sc->an_tx_rate < 0)
3227		sc->an_tx_rate = 0;
3228
3229	if (orate != sc->an_tx_rate) {
3230		/* Read the current configuration */
3231		sc->an_config.an_type = AN_RID_GENCONFIG;
3232		sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
3233		an_read_record(sc, (struct an_ltv_gen *)&sc->an_config);
3234		cfg = &sc->an_config;
3235
3236		/* clear other rates and set the only one we want */
3237		bzero(cfg->an_rates, sizeof(cfg->an_rates));
3238		cfg->an_rates[0] = sc->an_tx_rate;
3239
3240		/* Save the new rate */
3241		sc->an_config.an_type = AN_RID_GENCONFIG;
3242		sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
3243	}
3244
3245	if ((sc->an_ifmedia.ifm_cur->ifm_media & IFM_IEEE80211_ADHOC) != 0)
3246		sc->an_config.an_opmode &= ~AN_OPMODE_INFRASTRUCTURE_STATION;
3247	else
3248		sc->an_config.an_opmode |= AN_OPMODE_INFRASTRUCTURE_STATION;
3249
3250	if (otype != sc->an_config.an_opmode ||
3251	    orate != sc->an_tx_rate)
3252		an_init_locked(sc);
3253	AN_UNLOCK(sc);
3254
3255	return(0);
3256}
3257
3258static void
3259an_media_status(struct ifnet *ifp, struct ifmediareq *imr)
3260{
3261	struct an_ltv_status	status;
3262	struct an_softc		*sc = ifp->if_softc;
3263
3264	imr->ifm_active = IFM_IEEE80211;
3265
3266	AN_LOCK(sc);
3267	status.an_len = sizeof(status);
3268	status.an_type = AN_RID_STATUS;
3269	if (an_read_record(sc, (struct an_ltv_gen *)&status)) {
3270		/* If the status read fails, just lie. */
3271		imr->ifm_active = sc->an_ifmedia.ifm_cur->ifm_media;
3272		imr->ifm_status = IFM_AVALID|IFM_ACTIVE;
3273	}
3274
3275	if (sc->an_tx_rate == 0) {
3276		imr->ifm_active = IFM_IEEE80211|IFM_AUTO;
3277	}
3278
3279	if (sc->an_config.an_opmode == AN_OPMODE_IBSS_ADHOC)
3280		imr->ifm_active |= IFM_IEEE80211_ADHOC;
3281	imr->ifm_active |= ieee80211_rate2media(NULL,
3282		status.an_current_tx_rate, IEEE80211_MODE_AUTO);
3283	imr->ifm_status = IFM_AVALID;
3284	if (status.an_opmode & AN_STATUS_OPMODE_ASSOCIATED)
3285		imr->ifm_status |= IFM_ACTIVE;
3286	AN_UNLOCK(sc);
3287}
3288
3289/********************** Cisco utility support routines *************/
3290
3291/*
3292 * ReadRids & WriteRids derived from Cisco driver additions to Ben Reed's
3293 * Linux driver
3294 */
3295
3296static int
3297readrids(struct ifnet *ifp, struct aironet_ioctl *l_ioctl)
3298{
3299	unsigned short  rid;
3300	struct an_softc *sc;
3301	int error;
3302
3303	switch (l_ioctl->command) {
3304	case AIROGCAP:
3305		rid = AN_RID_CAPABILITIES;
3306		break;
3307	case AIROGCFG:
3308		rid = AN_RID_GENCONFIG;
3309		break;
3310	case AIROGSLIST:
3311		rid = AN_RID_SSIDLIST;
3312		break;
3313	case AIROGVLIST:
3314		rid = AN_RID_APLIST;
3315		break;
3316	case AIROGDRVNAM:
3317		rid = AN_RID_DRVNAME;
3318		break;
3319	case AIROGEHTENC:
3320		rid = AN_RID_ENCAPPROTO;
3321		break;
3322	case AIROGWEPKTMP:
3323		rid = AN_RID_WEP_TEMP;
3324		break;
3325	case AIROGWEPKNV:
3326		rid = AN_RID_WEP_PERM;
3327		break;
3328	case AIROGSTAT:
3329		rid = AN_RID_STATUS;
3330		break;
3331	case AIROGSTATSD32:
3332		rid = AN_RID_32BITS_DELTA;
3333		break;
3334	case AIROGSTATSC32:
3335		rid = AN_RID_32BITS_CUM;
3336		break;
3337	default:
3338		rid = 999;
3339		break;
3340	}
3341
3342	if (rid == 999)	/* Is bad command */
3343		return -EINVAL;
3344
3345	sc = ifp->if_softc;
3346	sc->areq.an_len  = AN_MAX_DATALEN;
3347	sc->areq.an_type = rid;
3348
3349	an_read_record(sc, (struct an_ltv_gen *)&sc->areq);
3350
3351	l_ioctl->len = sc->areq.an_len - 4;	/* just data */
3352
3353	AN_UNLOCK(sc);
3354	/* the data contains the length at first */
3355	if (copyout(&(sc->areq.an_len), l_ioctl->data,
3356		    sizeof(sc->areq.an_len))) {
3357		error = -EFAULT;
3358		goto lock_exit;
3359	}
3360	/* Just copy the data back */
3361	if (copyout(&(sc->areq.an_val), l_ioctl->data + 2,
3362		    l_ioctl->len)) {
3363		error = -EFAULT;
3364		goto lock_exit;
3365	}
3366	error = 0;
3367lock_exit:
3368	AN_LOCK(sc);
3369	return (error);
3370}
3371
3372static int
3373writerids(struct ifnet *ifp, struct aironet_ioctl *l_ioctl)
3374{
3375	struct an_softc *sc;
3376	int		rid, command, error;
3377
3378	sc = ifp->if_softc;
3379	AN_LOCK_ASSERT(sc);
3380	rid = 0;
3381	command = l_ioctl->command;
3382
3383	switch (command) {
3384	case AIROPSIDS:
3385		rid = AN_RID_SSIDLIST;
3386		break;
3387	case AIROPCAP:
3388		rid = AN_RID_CAPABILITIES;
3389		break;
3390	case AIROPAPLIST:
3391		rid = AN_RID_APLIST;
3392		break;
3393	case AIROPCFG:
3394		rid = AN_RID_GENCONFIG;
3395		break;
3396	case AIROPMACON:
3397		an_cmd(sc, AN_CMD_ENABLE, 0);
3398		return 0;
3399		break;
3400	case AIROPMACOFF:
3401		an_cmd(sc, AN_CMD_DISABLE, 0);
3402		return 0;
3403		break;
3404	case AIROPSTCLR:
3405		/*
3406		 * This command merely clears the counts does not actually
3407		 * store any data only reads rid. But as it changes the cards
3408		 * state, I put it in the writerid routines.
3409		 */
3410
3411		rid = AN_RID_32BITS_DELTACLR;
3412		sc = ifp->if_softc;
3413		sc->areq.an_len = AN_MAX_DATALEN;
3414		sc->areq.an_type = rid;
3415
3416		an_read_record(sc, (struct an_ltv_gen *)&sc->areq);
3417		l_ioctl->len = sc->areq.an_len - 4;	/* just data */
3418
3419		AN_UNLOCK(sc);
3420		/* the data contains the length at first */
3421		error = copyout(&(sc->areq.an_len), l_ioctl->data,
3422			    sizeof(sc->areq.an_len));
3423		if (error) {
3424			AN_LOCK(sc);
3425			return -EFAULT;
3426		}
3427		/* Just copy the data */
3428		error = copyout(&(sc->areq.an_val), l_ioctl->data + 2,
3429			    l_ioctl->len);
3430		AN_LOCK(sc);
3431		if (error)
3432			return -EFAULT;
3433		return 0;
3434		break;
3435	case AIROPWEPKEY:
3436		rid = AN_RID_WEP_TEMP;
3437		break;
3438	case AIROPWEPKEYNV:
3439		rid = AN_RID_WEP_PERM;
3440		break;
3441	case AIROPLEAPUSR:
3442		rid = AN_RID_LEAPUSERNAME;
3443		break;
3444	case AIROPLEAPPWD:
3445		rid = AN_RID_LEAPPASSWORD;
3446		break;
3447	default:
3448		return -EOPNOTSUPP;
3449	}
3450
3451	if (rid) {
3452		if (l_ioctl->len > sizeof(sc->areq.an_val) + 4)
3453			return -EINVAL;
3454		sc->areq.an_len = l_ioctl->len + 4;	/* add type & length */
3455		sc->areq.an_type = rid;
3456
3457		/* Just copy the data back */
3458		AN_UNLOCK(sc);
3459		error = copyin((l_ioctl->data) + 2, &sc->areq.an_val,
3460		       l_ioctl->len);
3461		AN_LOCK(sc);
3462		if (error)
3463			return -EFAULT;
3464
3465		an_cmd(sc, AN_CMD_DISABLE, 0);
3466		an_write_record(sc, (struct an_ltv_gen *)&sc->areq);
3467		an_cmd(sc, AN_CMD_ENABLE, 0);
3468		return 0;
3469	}
3470	return -EOPNOTSUPP;
3471}
3472
3473/*
3474 * General Flash utilities derived from Cisco driver additions to Ben Reed's
3475 * Linux driver
3476 */
3477
3478#define FLASH_DELAY(_sc, x)	msleep(ifp, &(_sc)->an_mtx, PZERO, \
3479	"flash", ((x) / hz) + 1);
3480#define FLASH_COMMAND	0x7e7e
3481#define FLASH_SIZE	32 * 1024
3482
3483static int
3484unstickbusy(struct ifnet *ifp)
3485{
3486	struct an_softc *sc = ifp->if_softc;
3487
3488	if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) & AN_CMD_BUSY) {
3489		CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350),
3490			    AN_EV_CLR_STUCK_BUSY);
3491		return 1;
3492	}
3493	return 0;
3494}
3495
3496/*
3497 * Wait for busy completion from card wait for delay uSec's Return true for
3498 * success meaning command reg is clear
3499 */
3500
3501static int
3502WaitBusy(struct ifnet *ifp, int uSec)
3503{
3504	int		statword = 0xffff;
3505	int		delay = 0;
3506	struct an_softc	*sc = ifp->if_softc;
3507
3508	while ((statword & AN_CMD_BUSY) && delay <= (1000 * 100)) {
3509		FLASH_DELAY(sc, 10);
3510		delay += 10;
3511		statword = CSR_READ_2(sc, AN_COMMAND(sc->mpi350));
3512
3513		if ((AN_CMD_BUSY & statword) && (delay % 200)) {
3514			unstickbusy(ifp);
3515		}
3516	}
3517
3518	return 0 == (AN_CMD_BUSY & statword);
3519}
3520
3521/*
3522 * STEP 1) Disable MAC and do soft reset on card.
3523 */
3524
3525static int
3526cmdreset(struct ifnet *ifp)
3527{
3528	int		status;
3529	struct an_softc	*sc = ifp->if_softc;
3530
3531	AN_LOCK(sc);
3532	an_stop(sc);
3533
3534	an_cmd(sc, AN_CMD_DISABLE, 0);
3535
3536	if (!(status = WaitBusy(ifp, AN_TIMEOUT))) {
3537		if_printf(ifp, "Waitbusy hang b4 RESET =%d\n", status);
3538		AN_UNLOCK(sc);
3539		return -EBUSY;
3540	}
3541	CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), AN_CMD_FW_RESTART);
3542
3543	FLASH_DELAY(sc, 1000);	/* WAS 600 12/7/00 */
3544
3545
3546	if (!(status = WaitBusy(ifp, 100))) {
3547		if_printf(ifp, "Waitbusy hang AFTER RESET =%d\n", status);
3548		AN_UNLOCK(sc);
3549		return -EBUSY;
3550	}
3551	AN_UNLOCK(sc);
3552	return 0;
3553}
3554
3555/*
3556 * STEP 2) Put the card in legendary flash mode
3557 */
3558
3559static int
3560setflashmode(struct ifnet *ifp)
3561{
3562	int		status;
3563	struct an_softc	*sc = ifp->if_softc;
3564
3565	CSR_WRITE_2(sc, AN_SW0(sc->mpi350), FLASH_COMMAND);
3566	CSR_WRITE_2(sc, AN_SW1(sc->mpi350), FLASH_COMMAND);
3567	CSR_WRITE_2(sc, AN_SW0(sc->mpi350), FLASH_COMMAND);
3568	CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), FLASH_COMMAND);
3569
3570	/*
3571	 * mdelay(500); // 500ms delay
3572	 */
3573
3574	FLASH_DELAY(sc, 500);
3575
3576	if (!(status = WaitBusy(ifp, AN_TIMEOUT))) {
3577		printf("Waitbusy hang after setflash mode\n");
3578		return -EIO;
3579	}
3580	return 0;
3581}
3582
3583/*
3584 * Get a character from the card matching matchbyte Step 3)
3585 */
3586
3587static int
3588flashgchar(struct ifnet *ifp, int matchbyte, int dwelltime)
3589{
3590	int		rchar;
3591	unsigned char	rbyte = 0;
3592	int		success = -1;
3593	struct an_softc	*sc = ifp->if_softc;
3594
3595
3596	do {
3597		rchar = CSR_READ_2(sc, AN_SW1(sc->mpi350));
3598
3599		if (dwelltime && !(0x8000 & rchar)) {
3600			dwelltime -= 10;
3601			FLASH_DELAY(sc, 10);
3602			continue;
3603		}
3604		rbyte = 0xff & rchar;
3605
3606		if ((rbyte == matchbyte) && (0x8000 & rchar)) {
3607			CSR_WRITE_2(sc, AN_SW1(sc->mpi350), 0);
3608			success = 1;
3609			break;
3610		}
3611		if (rbyte == 0x81 || rbyte == 0x82 || rbyte == 0x83 || rbyte == 0x1a || 0xffff == rchar)
3612			break;
3613		CSR_WRITE_2(sc, AN_SW1(sc->mpi350), 0);
3614
3615	} while (dwelltime > 0);
3616	return success;
3617}
3618
3619/*
3620 * Put character to SWS0 wait for dwelltime x 50us for  echo .
3621 */
3622
3623static int
3624flashpchar(struct ifnet *ifp, int byte, int dwelltime)
3625{
3626	int		echo;
3627	int		pollbusy, waittime;
3628	struct an_softc	*sc = ifp->if_softc;
3629
3630	byte |= 0x8000;
3631
3632	if (dwelltime == 0)
3633		dwelltime = 200;
3634
3635	waittime = dwelltime;
3636
3637	/*
3638	 * Wait for busy bit d15 to go false indicating buffer empty
3639	 */
3640	do {
3641		pollbusy = CSR_READ_2(sc, AN_SW0(sc->mpi350));
3642
3643		if (pollbusy & 0x8000) {
3644			FLASH_DELAY(sc, 50);
3645			waittime -= 50;
3646			continue;
3647		} else
3648			break;
3649	}
3650	while (waittime >= 0);
3651
3652	/* timeout for busy clear wait */
3653
3654	if (waittime <= 0) {
3655		if_printf(ifp, "flash putchar busywait timeout!\n");
3656		return -1;
3657	}
3658	/*
3659	 * Port is clear now write byte and wait for it to echo back
3660	 */
3661	do {
3662		CSR_WRITE_2(sc, AN_SW0(sc->mpi350), byte);
3663		FLASH_DELAY(sc, 50);
3664		dwelltime -= 50;
3665		echo = CSR_READ_2(sc, AN_SW1(sc->mpi350));
3666	} while (dwelltime >= 0 && echo != byte);
3667
3668
3669	CSR_WRITE_2(sc, AN_SW1(sc->mpi350), 0);
3670
3671	return echo == byte;
3672}
3673
3674/*
3675 * Transfer 32k of firmware data from user buffer to our buffer and send to
3676 * the card
3677 */
3678
3679static int
3680flashputbuf(struct ifnet *ifp)
3681{
3682	unsigned short *bufp;
3683	int		nwords;
3684	struct an_softc	*sc = ifp->if_softc;
3685
3686	/* Write stuff */
3687
3688	bufp = sc->an_flash_buffer;
3689
3690	if (!sc->mpi350) {
3691		CSR_WRITE_2(sc, AN_AUX_PAGE, 0x100);
3692		CSR_WRITE_2(sc, AN_AUX_OFFSET, 0);
3693
3694		for (nwords = 0; nwords != FLASH_SIZE / 2; nwords++) {
3695			CSR_WRITE_2(sc, AN_AUX_DATA, bufp[nwords] & 0xffff);
3696		}
3697	} else {
3698		for (nwords = 0; nwords != FLASH_SIZE / 4; nwords++) {
3699			CSR_MEM_AUX_WRITE_4(sc, 0x8000,
3700				((u_int32_t *)bufp)[nwords] & 0xffff);
3701		}
3702	}
3703
3704	CSR_WRITE_2(sc, AN_SW0(sc->mpi350), 0x8000);
3705
3706	return 0;
3707}
3708
3709/*
3710 * After flashing restart the card.
3711 */
3712
3713static int
3714flashrestart(struct ifnet *ifp)
3715{
3716	int		status = 0;
3717	struct an_softc	*sc = ifp->if_softc;
3718
3719	FLASH_DELAY(sc, 1024);		/* Added 12/7/00 */
3720
3721	an_init_locked(sc);
3722
3723	FLASH_DELAY(sc, 1024);		/* Added 12/7/00 */
3724	return status;
3725}
3726
3727/*
3728 * Entry point for flash ioclt.
3729 */
3730
3731static int
3732flashcard(struct ifnet *ifp, struct aironet_ioctl *l_ioctl)
3733{
3734	int		z = 0, status;
3735	struct an_softc	*sc;
3736
3737	sc = ifp->if_softc;
3738	if (sc->mpi350) {
3739		if_printf(ifp, "flashing not supported on MPI 350 yet\n");
3740		return(-1);
3741	}
3742	status = l_ioctl->command;
3743
3744	switch (l_ioctl->command) {
3745	case AIROFLSHRST:
3746		return cmdreset(ifp);
3747		break;
3748	case AIROFLSHSTFL:
3749		if (sc->an_flash_buffer) {
3750			free(sc->an_flash_buffer, M_DEVBUF);
3751			sc->an_flash_buffer = NULL;
3752		}
3753		sc->an_flash_buffer = malloc(FLASH_SIZE, M_DEVBUF, M_WAITOK);
3754		if (sc->an_flash_buffer)
3755			return setflashmode(ifp);
3756		else
3757			return ENOBUFS;
3758		break;
3759	case AIROFLSHGCHR:	/* Get char from aux */
3760		if (l_ioctl->len > sizeof(sc->areq)) {
3761			return -EINVAL;
3762		}
3763		AN_UNLOCK(sc);
3764		status = copyin(l_ioctl->data, &sc->areq, l_ioctl->len);
3765		AN_LOCK(sc);
3766		if (status)
3767			return status;
3768		z = *(int *)&sc->areq;
3769		if ((status = flashgchar(ifp, z, 8000)) == 1)
3770			return 0;
3771		else
3772			return -1;
3773	case AIROFLSHPCHR:	/* Send char to card. */
3774		if (l_ioctl->len > sizeof(sc->areq)) {
3775			return -EINVAL;
3776		}
3777		AN_UNLOCK(sc);
3778		status = copyin(l_ioctl->data, &sc->areq, l_ioctl->len);
3779		AN_LOCK(sc);
3780		if (status)
3781			return status;
3782		z = *(int *)&sc->areq;
3783		if ((status = flashpchar(ifp, z, 8000)) == -1)
3784			return -EIO;
3785		else
3786			return 0;
3787		break;
3788	case AIROFLPUTBUF:	/* Send 32k to card */
3789		if (l_ioctl->len > FLASH_SIZE) {
3790			if_printf(ifp, "Buffer to big, %x %x\n",
3791			       l_ioctl->len, FLASH_SIZE);
3792			return -EINVAL;
3793		}
3794		AN_UNLOCK(sc);
3795		status = copyin(l_ioctl->data, sc->an_flash_buffer, l_ioctl->len);
3796		AN_LOCK(sc);
3797		if (status)
3798			return status;
3799
3800		if ((status = flashputbuf(ifp)) != 0)
3801			return -EIO;
3802		else
3803			return 0;
3804		break;
3805	case AIRORESTART:
3806		if ((status = flashrestart(ifp)) != 0) {
3807			if_printf(ifp, "FLASHRESTART returned %d\n", status);
3808			return -EIO;
3809		} else
3810			return 0;
3811
3812		break;
3813	default:
3814		return -EINVAL;
3815	}
3816
3817	return -EINVAL;
3818}
3819