1/******************************************************************************
2  SPDX-License-Identifier: BSD-3-Clause
3
4  Copyright (c) 2001-2020, Intel Corporation
5  All rights reserved.
6
7  Redistribution and use in source and binary forms, with or without
8  modification, are permitted provided that the following conditions are met:
9
10   1. Redistributions of source code must retain the above copyright notice,
11      this list of conditions and the following disclaimer.
12
13   2. Redistributions in binary form must reproduce the above copyright
14      notice, this list of conditions and the following disclaimer in the
15      documentation and/or other materials provided with the distribution.
16
17   3. Neither the name of the Intel Corporation nor the names of its
18      contributors may be used to endorse or promote products derived from
19      this software without specific prior written permission.
20
21  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  POSSIBILITY OF SUCH DAMAGE.
32
33******************************************************************************/
34/*$FreeBSD$*/
35
36/*
37 * 82543GC Gigabit Ethernet Controller (Fiber)
38 * 82543GC Gigabit Ethernet Controller (Copper)
39 * 82544EI Gigabit Ethernet Controller (Copper)
40 * 82544EI Gigabit Ethernet Controller (Fiber)
41 * 82544GC Gigabit Ethernet Controller (Copper)
42 * 82544GC Gigabit Ethernet Controller (LOM)
43 */
44
45#include "e1000_api.h"
46
47static s32  e1000_init_phy_params_82543(struct e1000_hw *hw);
48static s32  e1000_init_nvm_params_82543(struct e1000_hw *hw);
49static s32  e1000_init_mac_params_82543(struct e1000_hw *hw);
50static s32  e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset,
51				     u16 *data);
52static s32  e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset,
53				      u16 data);
54static s32  e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw);
55static s32  e1000_phy_hw_reset_82543(struct e1000_hw *hw);
56static s32  e1000_reset_hw_82543(struct e1000_hw *hw);
57static s32  e1000_init_hw_82543(struct e1000_hw *hw);
58static s32  e1000_setup_link_82543(struct e1000_hw *hw);
59static s32  e1000_setup_copper_link_82543(struct e1000_hw *hw);
60static s32  e1000_setup_fiber_link_82543(struct e1000_hw *hw);
61static s32  e1000_check_for_copper_link_82543(struct e1000_hw *hw);
62static s32  e1000_check_for_fiber_link_82543(struct e1000_hw *hw);
63static s32  e1000_led_on_82543(struct e1000_hw *hw);
64static s32  e1000_led_off_82543(struct e1000_hw *hw);
65static void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset,
66				   u32 value);
67static void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw);
68static s32  e1000_config_mac_to_phy_82543(struct e1000_hw *hw);
69static bool e1000_init_phy_disabled_82543(struct e1000_hw *hw);
70static void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl);
71static s32  e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw);
72static void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl);
73static u16  e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw);
74static void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data,
75					   u16 count);
76static bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw);
77static void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state);
78static s32  e1000_read_mac_addr_82543(struct e1000_hw *hw);
79
80
81/**
82 *  e1000_init_phy_params_82543 - Init PHY func ptrs.
83 *  @hw: pointer to the HW structure
84 **/
85static s32 e1000_init_phy_params_82543(struct e1000_hw *hw)
86{
87	struct e1000_phy_info *phy = &hw->phy;
88	s32 ret_val = E1000_SUCCESS;
89
90	DEBUGFUNC("e1000_init_phy_params_82543");
91
92	if (hw->phy.media_type != e1000_media_type_copper) {
93		phy->type = e1000_phy_none;
94		goto out;
95	} else {
96		phy->ops.power_up = e1000_power_up_phy_copper;
97		phy->ops.power_down = e1000_power_down_phy_copper;
98	}
99
100	phy->addr		= 1;
101	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
102	phy->reset_delay_us	= 10000;
103	phy->type		= e1000_phy_m88;
104
105	/* Function Pointers */
106	phy->ops.check_polarity	= e1000_check_polarity_m88;
107	phy->ops.commit		= e1000_phy_sw_reset_generic;
108	phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_82543;
109	phy->ops.get_cable_length = e1000_get_cable_length_m88;
110	phy->ops.get_cfg_done	= e1000_get_cfg_done_generic;
111	phy->ops.read_reg	= (hw->mac.type == e1000_82543)
112				  ? e1000_read_phy_reg_82543
113				  : e1000_read_phy_reg_m88;
114	phy->ops.reset		= (hw->mac.type == e1000_82543)
115				  ? e1000_phy_hw_reset_82543
116				  : e1000_phy_hw_reset_generic;
117	phy->ops.write_reg	= (hw->mac.type == e1000_82543)
118				  ? e1000_write_phy_reg_82543
119				  : e1000_write_phy_reg_m88;
120	phy->ops.get_info	= e1000_get_phy_info_m88;
121
122	/*
123	 * The external PHY of the 82543 can be in a funky state.
124	 * Resetting helps us read the PHY registers for acquiring
125	 * the PHY ID.
126	 */
127	if (!e1000_init_phy_disabled_82543(hw)) {
128		ret_val = phy->ops.reset(hw);
129		if (ret_val) {
130			DEBUGOUT("Resetting PHY during init failed.\n");
131			goto out;
132		}
133		msec_delay(20);
134	}
135
136	ret_val = e1000_get_phy_id(hw);
137	if (ret_val)
138		goto out;
139
140	/* Verify phy id */
141	switch (hw->mac.type) {
142	case e1000_82543:
143		if (phy->id != M88E1000_E_PHY_ID) {
144			ret_val = -E1000_ERR_PHY;
145			goto out;
146		}
147		break;
148	case e1000_82544:
149		if (phy->id != M88E1000_I_PHY_ID) {
150			ret_val = -E1000_ERR_PHY;
151			goto out;
152		}
153		break;
154	default:
155		ret_val = -E1000_ERR_PHY;
156		goto out;
157		break;
158	}
159
160out:
161	return ret_val;
162}
163
164/**
165 *  e1000_init_nvm_params_82543 - Init NVM func ptrs.
166 *  @hw: pointer to the HW structure
167 **/
168static s32 e1000_init_nvm_params_82543(struct e1000_hw *hw)
169{
170	struct e1000_nvm_info *nvm = &hw->nvm;
171
172	DEBUGFUNC("e1000_init_nvm_params_82543");
173
174	nvm->type		= e1000_nvm_eeprom_microwire;
175	nvm->word_size		= 64;
176	nvm->delay_usec		= 50;
177	nvm->address_bits	=  6;
178	nvm->opcode_bits	=  3;
179
180	/* Function Pointers */
181	nvm->ops.read		= e1000_read_nvm_microwire;
182	nvm->ops.update		= e1000_update_nvm_checksum_generic;
183	nvm->ops.valid_led_default = e1000_valid_led_default_generic;
184	nvm->ops.validate	= e1000_validate_nvm_checksum_generic;
185	nvm->ops.write		= e1000_write_nvm_microwire;
186
187	return E1000_SUCCESS;
188}
189
190/**
191 *  e1000_init_mac_params_82543 - Init MAC func ptrs.
192 *  @hw: pointer to the HW structure
193 **/
194static s32 e1000_init_mac_params_82543(struct e1000_hw *hw)
195{
196	struct e1000_mac_info *mac = &hw->mac;
197
198	DEBUGFUNC("e1000_init_mac_params_82543");
199
200	/* Set media type */
201	switch (hw->device_id) {
202	case E1000_DEV_ID_82543GC_FIBER:
203	case E1000_DEV_ID_82544EI_FIBER:
204		hw->phy.media_type = e1000_media_type_fiber;
205		break;
206	default:
207		hw->phy.media_type = e1000_media_type_copper;
208		break;
209	}
210
211	/* Set mta register count */
212	mac->mta_reg_count = 128;
213	/* Set rar entry count */
214	mac->rar_entry_count = E1000_RAR_ENTRIES;
215
216	/* Function pointers */
217
218	/* bus type/speed/width */
219	mac->ops.get_bus_info = e1000_get_bus_info_pci_generic;
220	/* function id */
221	mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pci;
222	/* reset */
223	mac->ops.reset_hw = e1000_reset_hw_82543;
224	/* hw initialization */
225	mac->ops.init_hw = e1000_init_hw_82543;
226	/* link setup */
227	mac->ops.setup_link = e1000_setup_link_82543;
228	/* physical interface setup */
229	mac->ops.setup_physical_interface =
230		(hw->phy.media_type == e1000_media_type_copper)
231		 ? e1000_setup_copper_link_82543 : e1000_setup_fiber_link_82543;
232	/* check for link */
233	mac->ops.check_for_link =
234		(hw->phy.media_type == e1000_media_type_copper)
235		 ? e1000_check_for_copper_link_82543
236		 : e1000_check_for_fiber_link_82543;
237	/* link info */
238	mac->ops.get_link_up_info =
239		(hw->phy.media_type == e1000_media_type_copper)
240		 ? e1000_get_speed_and_duplex_copper_generic
241		 : e1000_get_speed_and_duplex_fiber_serdes_generic;
242	/* multicast address update */
243	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
244	/* writing VFTA */
245	mac->ops.write_vfta = e1000_write_vfta_82543;
246	/* clearing VFTA */
247	mac->ops.clear_vfta = e1000_clear_vfta_generic;
248	/* read mac address */
249	mac->ops.read_mac_addr = e1000_read_mac_addr_82543;
250	/* turn on/off LED */
251	mac->ops.led_on = e1000_led_on_82543;
252	mac->ops.led_off = e1000_led_off_82543;
253	/* clear hardware counters */
254	mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82543;
255
256	/* Set tbi compatibility */
257	if ((hw->mac.type != e1000_82543) ||
258	    (hw->phy.media_type == e1000_media_type_fiber))
259		e1000_set_tbi_compatibility_82543(hw, false);
260
261	return E1000_SUCCESS;
262}
263
264/**
265 *  e1000_init_function_pointers_82543 - Init func ptrs.
266 *  @hw: pointer to the HW structure
267 *
268 *  Called to initialize all function pointers and parameters.
269 **/
270void e1000_init_function_pointers_82543(struct e1000_hw *hw)
271{
272	DEBUGFUNC("e1000_init_function_pointers_82543");
273
274	hw->mac.ops.init_params = e1000_init_mac_params_82543;
275	hw->nvm.ops.init_params = e1000_init_nvm_params_82543;
276	hw->phy.ops.init_params = e1000_init_phy_params_82543;
277}
278
279/**
280 *  e1000_tbi_compatibility_enabled_82543 - Returns TBI compat status
281 *  @hw: pointer to the HW structure
282 *
283 *  Returns the current status of 10-bit Interface (TBI) compatibility
284 *  (enabled/disabled).
285 **/
286static bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw)
287{
288	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
289	bool state = false;
290
291	DEBUGFUNC("e1000_tbi_compatibility_enabled_82543");
292
293	if (hw->mac.type != e1000_82543) {
294		DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
295		goto out;
296	}
297
298	state = !!(dev_spec->tbi_compatibility & TBI_COMPAT_ENABLED);
299
300out:
301	return state;
302}
303
304/**
305 *  e1000_set_tbi_compatibility_82543 - Set TBI compatibility
306 *  @hw: pointer to the HW structure
307 *  @state: enable/disable TBI compatibility
308 *
309 *  Enables or disabled 10-bit Interface (TBI) compatibility.
310 **/
311void e1000_set_tbi_compatibility_82543(struct e1000_hw *hw, bool state)
312{
313	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
314
315	DEBUGFUNC("e1000_set_tbi_compatibility_82543");
316
317	if (hw->mac.type != e1000_82543) {
318		DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
319		goto out;
320	}
321
322	if (state)
323		dev_spec->tbi_compatibility |= TBI_COMPAT_ENABLED;
324	else
325		dev_spec->tbi_compatibility &= ~TBI_COMPAT_ENABLED;
326
327out:
328	return;
329}
330
331/**
332 *  e1000_tbi_sbp_enabled_82543 - Returns TBI SBP status
333 *  @hw: pointer to the HW structure
334 *
335 *  Returns the current status of 10-bit Interface (TBI) store bad packet (SBP)
336 *  (enabled/disabled).
337 **/
338bool e1000_tbi_sbp_enabled_82543(struct e1000_hw *hw)
339{
340	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
341	bool state = false;
342
343	DEBUGFUNC("e1000_tbi_sbp_enabled_82543");
344
345	if (hw->mac.type != e1000_82543) {
346		DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
347		goto out;
348	}
349
350	state = !!(dev_spec->tbi_compatibility & TBI_SBP_ENABLED);
351
352out:
353	return state;
354}
355
356/**
357 *  e1000_set_tbi_sbp_82543 - Set TBI SBP
358 *  @hw: pointer to the HW structure
359 *  @state: enable/disable TBI store bad packet
360 *
361 *  Enables or disabled 10-bit Interface (TBI) store bad packet (SBP).
362 **/
363static void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state)
364{
365	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
366
367	DEBUGFUNC("e1000_set_tbi_sbp_82543");
368
369	if (state && e1000_tbi_compatibility_enabled_82543(hw))
370		dev_spec->tbi_compatibility |= TBI_SBP_ENABLED;
371	else
372		dev_spec->tbi_compatibility &= ~TBI_SBP_ENABLED;
373
374	return;
375}
376
377/**
378 *  e1000_init_phy_disabled_82543 - Returns init PHY status
379 *  @hw: pointer to the HW structure
380 *
381 *  Returns the current status of whether PHY initialization is disabled.
382 *  True if PHY initialization is disabled else false.
383 **/
384static bool e1000_init_phy_disabled_82543(struct e1000_hw *hw)
385{
386	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
387	bool ret_val;
388
389	DEBUGFUNC("e1000_init_phy_disabled_82543");
390
391	if (hw->mac.type != e1000_82543) {
392		ret_val = false;
393		goto out;
394	}
395
396	ret_val = dev_spec->init_phy_disabled;
397
398out:
399	return ret_val;
400}
401
402/**
403 *  e1000_tbi_adjust_stats_82543 - Adjust stats when TBI enabled
404 *  @hw: pointer to the HW structure
405 *  @stats: Struct containing statistic register values
406 *  @frame_len: The length of the frame in question
407 *  @mac_addr: The Ethernet destination address of the frame in question
408 *  @max_frame_size: The maximum frame size
409 *
410 *  Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
411 **/
412void e1000_tbi_adjust_stats_82543(struct e1000_hw *hw,
413				  struct e1000_hw_stats *stats, u32 frame_len,
414				  u8 *mac_addr, u32 max_frame_size)
415{
416	if (!(e1000_tbi_sbp_enabled_82543(hw)))
417		goto out;
418
419	/* First adjust the frame length. */
420	frame_len--;
421	/*
422	 * We need to adjust the statistics counters, since the hardware
423	 * counters overcount this packet as a CRC error and undercount
424	 * the packet as a good packet
425	 */
426	/* This packet should not be counted as a CRC error. */
427	stats->crcerrs--;
428	/* This packet does count as a Good Packet Received. */
429	stats->gprc++;
430
431	/* Adjust the Good Octets received counters */
432	stats->gorc += frame_len;
433
434	/*
435	 * Is this a broadcast or multicast?  Check broadcast first,
436	 * since the test for a multicast frame will test positive on
437	 * a broadcast frame.
438	 */
439	if ((mac_addr[0] == 0xff) && (mac_addr[1] == 0xff))
440		/* Broadcast packet */
441		stats->bprc++;
442	else if (*mac_addr & 0x01)
443		/* Multicast packet */
444		stats->mprc++;
445
446	/*
447	 * In this case, the hardware has over counted the number of
448	 * oversize frames.
449	 */
450	if ((frame_len == max_frame_size) && (stats->roc > 0))
451		stats->roc--;
452
453	/*
454	 * Adjust the bin counters when the extra byte put the frame in the
455	 * wrong bin. Remember that the frame_len was adjusted above.
456	 */
457	if (frame_len == 64) {
458		stats->prc64++;
459		stats->prc127--;
460	} else if (frame_len == 127) {
461		stats->prc127++;
462		stats->prc255--;
463	} else if (frame_len == 255) {
464		stats->prc255++;
465		stats->prc511--;
466	} else if (frame_len == 511) {
467		stats->prc511++;
468		stats->prc1023--;
469	} else if (frame_len == 1023) {
470		stats->prc1023++;
471		stats->prc1522--;
472	} else if (frame_len == 1522) {
473		stats->prc1522++;
474	}
475
476out:
477	return;
478}
479
480/**
481 *  e1000_read_phy_reg_82543 - Read PHY register
482 *  @hw: pointer to the HW structure
483 *  @offset: register offset to be read
484 *  @data: pointer to the read data
485 *
486 *  Reads the PHY at offset and stores the information read to data.
487 **/
488static s32 e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 *data)
489{
490	u32 mdic;
491	s32 ret_val = E1000_SUCCESS;
492
493	DEBUGFUNC("e1000_read_phy_reg_82543");
494
495	if (offset > MAX_PHY_REG_ADDRESS) {
496		DEBUGOUT1("PHY Address %d is out of range\n", offset);
497		ret_val = -E1000_ERR_PARAM;
498		goto out;
499	}
500
501	/*
502	 * We must first send a preamble through the MDIO pin to signal the
503	 * beginning of an MII instruction.  This is done by sending 32
504	 * consecutive "1" bits.
505	 */
506	e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
507
508	/*
509	 * Now combine the next few fields that are required for a read
510	 * operation.  We use this method instead of calling the
511	 * e1000_shift_out_mdi_bits routine five different times.  The format
512	 * of an MII read instruction consists of a shift out of 14 bits and
513	 * is defined as follows:
514	 *         <Preamble><SOF><Op Code><Phy Addr><Offset>
515	 * followed by a shift in of 18 bits.  This first two bits shifted in
516	 * are TurnAround bits used to avoid contention on the MDIO pin when a
517	 * READ operation is performed.  These two bits are thrown away
518	 * followed by a shift in of 16 bits which contains the desired data.
519	 */
520	mdic = (offset | (hw->phy.addr << 5) |
521		(PHY_OP_READ << 10) | (PHY_SOF << 12));
522
523	e1000_shift_out_mdi_bits_82543(hw, mdic, 14);
524
525	/*
526	 * Now that we've shifted out the read command to the MII, we need to
527	 * "shift in" the 16-bit value (18 total bits) of the requested PHY
528	 * register address.
529	 */
530	*data = e1000_shift_in_mdi_bits_82543(hw);
531
532out:
533	return ret_val;
534}
535
536/**
537 *  e1000_write_phy_reg_82543 - Write PHY register
538 *  @hw: pointer to the HW structure
539 *  @offset: register offset to be written
540 *  @data: pointer to the data to be written at offset
541 *
542 *  Writes data to the PHY at offset.
543 **/
544static s32 e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 data)
545{
546	u32 mdic;
547	s32 ret_val = E1000_SUCCESS;
548
549	DEBUGFUNC("e1000_write_phy_reg_82543");
550
551	if (offset > MAX_PHY_REG_ADDRESS) {
552		DEBUGOUT1("PHY Address %d is out of range\n", offset);
553		ret_val = -E1000_ERR_PARAM;
554		goto out;
555	}
556
557	/*
558	 * We'll need to use the SW defined pins to shift the write command
559	 * out to the PHY. We first send a preamble to the PHY to signal the
560	 * beginning of the MII instruction.  This is done by sending 32
561	 * consecutive "1" bits.
562	 */
563	e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
564
565	/*
566	 * Now combine the remaining required fields that will indicate a
567	 * write operation. We use this method instead of calling the
568	 * e1000_shift_out_mdi_bits routine for each field in the command. The
569	 * format of a MII write instruction is as follows:
570	 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
571	 */
572	mdic = ((PHY_TURNAROUND) | (offset << 2) | (hw->phy.addr << 7) |
573		(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
574	mdic <<= 16;
575	mdic |= (u32)data;
576
577	e1000_shift_out_mdi_bits_82543(hw, mdic, 32);
578
579out:
580	return ret_val;
581}
582
583/**
584 *  e1000_raise_mdi_clk_82543 - Raise Management Data Input clock
585 *  @hw: pointer to the HW structure
586 *  @ctrl: pointer to the control register
587 *
588 *  Raise the management data input clock by setting the MDC bit in the control
589 *  register.
590 **/
591static void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl)
592{
593	/*
594	 * Raise the clock input to the Management Data Clock (by setting the
595	 * MDC bit), and then delay a sufficient amount of time.
596	 */
597	E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl | E1000_CTRL_MDC));
598	E1000_WRITE_FLUSH(hw);
599	usec_delay(10);
600}
601
602/**
603 *  e1000_lower_mdi_clk_82543 - Lower Management Data Input clock
604 *  @hw: pointer to the HW structure
605 *  @ctrl: pointer to the control register
606 *
607 *  Lower the management data input clock by clearing the MDC bit in the
608 *  control register.
609 **/
610static void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl)
611{
612	/*
613	 * Lower the clock input to the Management Data Clock (by clearing the
614	 * MDC bit), and then delay a sufficient amount of time.
615	 */
616	E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl & ~E1000_CTRL_MDC));
617	E1000_WRITE_FLUSH(hw);
618	usec_delay(10);
619}
620
621/**
622 *  e1000_shift_out_mdi_bits_82543 - Shift data bits our to the PHY
623 *  @hw: pointer to the HW structure
624 *  @data: data to send to the PHY
625 *  @count: number of bits to shift out
626 *
627 *  We need to shift 'count' bits out to the PHY.  So, the value in the
628 *  "data" parameter will be shifted out to the PHY one bit at a time.
629 *  In order to do this, "data" must be broken down into bits.
630 **/
631static void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data,
632					   u16 count)
633{
634	u32 ctrl, mask;
635
636	/*
637	 * We need to shift "count" number of bits out to the PHY.  So, the
638	 * value in the "data" parameter will be shifted out to the PHY one
639	 * bit at a time.  In order to do this, "data" must be broken down
640	 * into bits.
641	 */
642	mask = 0x01;
643	mask <<= (count - 1);
644
645	ctrl = E1000_READ_REG(hw, E1000_CTRL);
646
647	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
648	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
649
650	while (mask) {
651		/*
652		 * A "1" is shifted out to the PHY by setting the MDIO bit to
653		 * "1" and then raising and lowering the Management Data Clock.
654		 * A "0" is shifted out to the PHY by setting the MDIO bit to
655		 * "0" and then raising and lowering the clock.
656		 */
657		if (data & mask)
658			ctrl |= E1000_CTRL_MDIO;
659		else
660			ctrl &= ~E1000_CTRL_MDIO;
661
662		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
663		E1000_WRITE_FLUSH(hw);
664
665		usec_delay(10);
666
667		e1000_raise_mdi_clk_82543(hw, &ctrl);
668		e1000_lower_mdi_clk_82543(hw, &ctrl);
669
670		mask >>= 1;
671	}
672}
673
674/**
675 *  e1000_shift_in_mdi_bits_82543 - Shift data bits in from the PHY
676 *  @hw: pointer to the HW structure
677 *
678 *  In order to read a register from the PHY, we need to shift 18 bits
679 *  in from the PHY.  Bits are "shifted in" by raising the clock input to
680 *  the PHY (setting the MDC bit), and then reading the value of the data out
681 *  MDIO bit.
682 **/
683static u16 e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw)
684{
685	u32 ctrl;
686	u16 data = 0;
687	u8 i;
688
689	/*
690	 * In order to read a register from the PHY, we need to shift in a
691	 * total of 18 bits from the PHY.  The first two bit (turnaround)
692	 * times are used to avoid contention on the MDIO pin when a read
693	 * operation is performed.  These two bits are ignored by us and
694	 * thrown away.  Bits are "shifted in" by raising the input to the
695	 * Management Data Clock (setting the MDC bit) and then reading the
696	 * value of the MDIO bit.
697	 */
698	ctrl = E1000_READ_REG(hw, E1000_CTRL);
699
700	/*
701	 * Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as
702	 * input.
703	 */
704	ctrl &= ~E1000_CTRL_MDIO_DIR;
705	ctrl &= ~E1000_CTRL_MDIO;
706
707	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
708	E1000_WRITE_FLUSH(hw);
709
710	/*
711	 * Raise and lower the clock before reading in the data.  This accounts
712	 * for the turnaround bits.  The first clock occurred when we clocked
713	 * out the last bit of the Register Address.
714	 */
715	e1000_raise_mdi_clk_82543(hw, &ctrl);
716	e1000_lower_mdi_clk_82543(hw, &ctrl);
717
718	for (data = 0, i = 0; i < 16; i++) {
719		data <<= 1;
720		e1000_raise_mdi_clk_82543(hw, &ctrl);
721		ctrl = E1000_READ_REG(hw, E1000_CTRL);
722		/* Check to see if we shifted in a "1". */
723		if (ctrl & E1000_CTRL_MDIO)
724			data |= 1;
725		e1000_lower_mdi_clk_82543(hw, &ctrl);
726	}
727
728	e1000_raise_mdi_clk_82543(hw, &ctrl);
729	e1000_lower_mdi_clk_82543(hw, &ctrl);
730
731	return data;
732}
733
734/**
735 *  e1000_phy_force_speed_duplex_82543 - Force speed/duplex for PHY
736 *  @hw: pointer to the HW structure
737 *
738 *  Calls the function to force speed and duplex for the m88 PHY, and
739 *  if the PHY is not auto-negotiating and the speed is forced to 10Mbit,
740 *  then call the function for polarity reversal workaround.
741 **/
742static s32 e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw)
743{
744	s32 ret_val;
745
746	DEBUGFUNC("e1000_phy_force_speed_duplex_82543");
747
748	ret_val = e1000_phy_force_speed_duplex_m88(hw);
749	if (ret_val)
750		goto out;
751
752	if (!hw->mac.autoneg && (hw->mac.forced_speed_duplex &
753	    E1000_ALL_10_SPEED))
754		ret_val = e1000_polarity_reversal_workaround_82543(hw);
755
756out:
757	return ret_val;
758}
759
760/**
761 *  e1000_polarity_reversal_workaround_82543 - Workaround polarity reversal
762 *  @hw: pointer to the HW structure
763 *
764 *  When forcing link to 10 Full or 10 Half, the PHY can reverse the polarity
765 *  inadvertently.  To workaround the issue, we disable the transmitter on
766 *  the PHY until we have established the link partner's link parameters.
767 **/
768static s32 e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw)
769{
770	s32 ret_val = E1000_SUCCESS;
771	u16 mii_status_reg;
772	u16 i;
773	bool link;
774
775	if (!(hw->phy.ops.write_reg))
776		goto out;
777
778	/* Polarity reversal workaround for forced 10F/10H links. */
779
780	/* Disable the transmitter on the PHY */
781
782	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
783	if (ret_val)
784		goto out;
785	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
786	if (ret_val)
787		goto out;
788
789	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
790	if (ret_val)
791		goto out;
792
793	/*
794	 * This loop will early-out if the NO link condition has been met.
795	 * In other words, DO NOT use e1000_phy_has_link_generic() here.
796	 */
797	for (i = PHY_FORCE_TIME; i > 0; i--) {
798		/*
799		 * Read the MII Status Register and wait for Link Status bit
800		 * to be clear.
801		 */
802
803		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
804		if (ret_val)
805			goto out;
806
807		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
808		if (ret_val)
809			goto out;
810
811		if (!(mii_status_reg & ~MII_SR_LINK_STATUS))
812			break;
813		msec_delay_irq(100);
814	}
815
816	/* Recommended delay time after link has been lost */
817	msec_delay_irq(1000);
818
819	/* Now we will re-enable the transmitter on the PHY */
820
821	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
822	if (ret_val)
823		goto out;
824	msec_delay_irq(50);
825	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
826	if (ret_val)
827		goto out;
828	msec_delay_irq(50);
829	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
830	if (ret_val)
831		goto out;
832	msec_delay_irq(50);
833	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
834	if (ret_val)
835		goto out;
836
837	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
838	if (ret_val)
839		goto out;
840
841	/*
842	 * Read the MII Status Register and wait for Link Status bit
843	 * to be set.
844	 */
845	ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_TIME, 100000, &link);
846	if (ret_val)
847		goto out;
848
849out:
850	return ret_val;
851}
852
853/**
854 *  e1000_phy_hw_reset_82543 - PHY hardware reset
855 *  @hw: pointer to the HW structure
856 *
857 *  Sets the PHY_RESET_DIR bit in the extended device control register
858 *  to put the PHY into a reset and waits for completion.  Once the reset
859 *  has been accomplished, clear the PHY_RESET_DIR bit to take the PHY out
860 *  of reset.
861 **/
862static s32 e1000_phy_hw_reset_82543(struct e1000_hw *hw)
863{
864	u32 ctrl_ext;
865	s32 ret_val;
866
867	DEBUGFUNC("e1000_phy_hw_reset_82543");
868
869	/*
870	 * Read the Extended Device Control Register, assert the PHY_RESET_DIR
871	 * bit to put the PHY into reset...
872	 */
873	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
874	ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
875	ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
876	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
877	E1000_WRITE_FLUSH(hw);
878
879	msec_delay(10);
880
881	/* ...then take it out of reset. */
882	ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
883	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
884	E1000_WRITE_FLUSH(hw);
885
886	usec_delay(150);
887
888	if (!(hw->phy.ops.get_cfg_done))
889		return E1000_SUCCESS;
890
891	ret_val = hw->phy.ops.get_cfg_done(hw);
892
893	return ret_val;
894}
895
896/**
897 *  e1000_reset_hw_82543 - Reset hardware
898 *  @hw: pointer to the HW structure
899 *
900 *  This resets the hardware into a known state.
901 **/
902static s32 e1000_reset_hw_82543(struct e1000_hw *hw)
903{
904	u32 ctrl;
905	s32 ret_val = E1000_SUCCESS;
906
907	DEBUGFUNC("e1000_reset_hw_82543");
908
909	DEBUGOUT("Masking off all interrupts\n");
910	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
911
912	E1000_WRITE_REG(hw, E1000_RCTL, 0);
913	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
914	E1000_WRITE_FLUSH(hw);
915
916	e1000_set_tbi_sbp_82543(hw, false);
917
918	/*
919	 * Delay to allow any outstanding PCI transactions to complete before
920	 * resetting the device
921	 */
922	msec_delay(10);
923
924	ctrl = E1000_READ_REG(hw, E1000_CTRL);
925
926	DEBUGOUT("Issuing a global reset to 82543/82544 MAC\n");
927	if (hw->mac.type == e1000_82543) {
928		E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
929	} else {
930		/*
931		 * The 82544 can't ACK the 64-bit write when issuing the
932		 * reset, so use IO-mapping as a workaround.
933		 */
934		E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
935	}
936
937	/*
938	 * After MAC reset, force reload of NVM to restore power-on
939	 * settings to device.
940	 */
941	hw->nvm.ops.reload(hw);
942	msec_delay(2);
943
944	/* Masking off and clearing any pending interrupts */
945	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
946	E1000_READ_REG(hw, E1000_ICR);
947
948	return ret_val;
949}
950
951/**
952 *  e1000_init_hw_82543 - Initialize hardware
953 *  @hw: pointer to the HW structure
954 *
955 *  This inits the hardware readying it for operation.
956 **/
957static s32 e1000_init_hw_82543(struct e1000_hw *hw)
958{
959	struct e1000_mac_info *mac = &hw->mac;
960	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
961	u32 ctrl;
962	s32 ret_val;
963	u16 i;
964
965	DEBUGFUNC("e1000_init_hw_82543");
966
967	/* Disabling VLAN filtering */
968	E1000_WRITE_REG(hw, E1000_VET, 0);
969	mac->ops.clear_vfta(hw);
970
971	/* Setup the receive address. */
972	e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
973
974	/* Zero out the Multicast HASH table */
975	DEBUGOUT("Zeroing the MTA\n");
976	for (i = 0; i < mac->mta_reg_count; i++) {
977		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
978		E1000_WRITE_FLUSH(hw);
979	}
980
981	/*
982	 * Set the PCI priority bit correctly in the CTRL register.  This
983	 * determines if the adapter gives priority to receives, or if it
984	 * gives equal priority to transmits and receives.
985	 */
986	if (hw->mac.type == e1000_82543 && dev_spec->dma_fairness) {
987		ctrl = E1000_READ_REG(hw, E1000_CTRL);
988		E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PRIOR);
989	}
990
991	e1000_pcix_mmrbc_workaround_generic(hw);
992
993	/* Setup link and flow control */
994	ret_val = mac->ops.setup_link(hw);
995
996	/*
997	 * Clear all of the statistics registers (clear on read).  It is
998	 * important that we do this after we have tried to establish link
999	 * because the symbol error count will increment wildly if there
1000	 * is no link.
1001	 */
1002	e1000_clear_hw_cntrs_82543(hw);
1003
1004	return ret_val;
1005}
1006
1007/**
1008 *  e1000_setup_link_82543 - Setup flow control and link settings
1009 *  @hw: pointer to the HW structure
1010 *
1011 *  Read the EEPROM to determine the initial polarity value and write the
1012 *  extended device control register with the information before calling
1013 *  the generic setup link function, which does the following:
1014 *  Determines which flow control settings to use, then configures flow
1015 *  control.  Calls the appropriate media-specific link configuration
1016 *  function.  Assuming the adapter has a valid link partner, a valid link
1017 *  should be established.  Assumes the hardware has previously been reset
1018 *  and the transmitter and receiver are not enabled.
1019 **/
1020static s32 e1000_setup_link_82543(struct e1000_hw *hw)
1021{
1022	u32 ctrl_ext;
1023	s32  ret_val;
1024	u16 data;
1025
1026	DEBUGFUNC("e1000_setup_link_82543");
1027
1028	/*
1029	 * Take the 4 bits from NVM word 0xF that determine the initial
1030	 * polarity value for the SW controlled pins, and setup the
1031	 * Extended Device Control reg with that info.
1032	 * This is needed because one of the SW controlled pins is used for
1033	 * signal detection.  So this should be done before phy setup.
1034	 */
1035	if (hw->mac.type == e1000_82543) {
1036		ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1037		if (ret_val) {
1038			DEBUGOUT("NVM Read Error\n");
1039			ret_val = -E1000_ERR_NVM;
1040			goto out;
1041		}
1042		ctrl_ext = ((data & NVM_WORD0F_SWPDIO_EXT_MASK) <<
1043			    NVM_SWDPIO_EXT_SHIFT);
1044		E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
1045	}
1046
1047	ret_val = e1000_setup_link_generic(hw);
1048
1049out:
1050	return ret_val;
1051}
1052
1053/**
1054 *  e1000_setup_copper_link_82543 - Configure copper link settings
1055 *  @hw: pointer to the HW structure
1056 *
1057 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1058 *  for link, once link is established calls to configure collision distance
1059 *  and flow control are called.
1060 **/
1061static s32 e1000_setup_copper_link_82543(struct e1000_hw *hw)
1062{
1063	u32 ctrl;
1064	s32 ret_val;
1065	bool link = true;
1066
1067	DEBUGFUNC("e1000_setup_copper_link_82543");
1068
1069	ctrl = E1000_READ_REG(hw, E1000_CTRL) | E1000_CTRL_SLU;
1070	/*
1071	 * With 82543, we need to force speed and duplex on the MAC
1072	 * equal to what the PHY speed and duplex configuration is.
1073	 * In addition, we need to perform a hardware reset on the
1074	 * PHY to take it out of reset.
1075	 */
1076	if (hw->mac.type == e1000_82543) {
1077		ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1078		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1079		ret_val = hw->phy.ops.reset(hw);
1080		if (ret_val)
1081			goto out;
1082	} else {
1083		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1084		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1085	}
1086
1087	/* Set MDI/MDI-X, Polarity Reversal, and downshift settings */
1088	ret_val = e1000_copper_link_setup_m88(hw);
1089	if (ret_val)
1090		goto out;
1091
1092	if (hw->mac.autoneg) {
1093		/*
1094		 * Setup autoneg and flow control advertisement and perform
1095		 * autonegotiation.
1096		 */
1097		ret_val = e1000_copper_link_autoneg(hw);
1098		if (ret_val)
1099			goto out;
1100	} else {
1101		/*
1102		 * PHY will be set to 10H, 10F, 100H or 100F
1103		 * depending on user settings.
1104		 */
1105		DEBUGOUT("Forcing Speed and Duplex\n");
1106		ret_val = e1000_phy_force_speed_duplex_82543(hw);
1107		if (ret_val) {
1108			DEBUGOUT("Error Forcing Speed and Duplex\n");
1109			goto out;
1110		}
1111	}
1112
1113	/*
1114	 * Check link status. Wait up to 100 microseconds for link to become
1115	 * valid.
1116	 */
1117	ret_val = e1000_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
1118					     &link);
1119	if (ret_val)
1120		goto out;
1121
1122
1123	if (link) {
1124		DEBUGOUT("Valid link established!!!\n");
1125		/* Config the MAC and PHY after link is up */
1126		if (hw->mac.type == e1000_82544) {
1127			hw->mac.ops.config_collision_dist(hw);
1128		} else {
1129			ret_val = e1000_config_mac_to_phy_82543(hw);
1130			if (ret_val)
1131				goto out;
1132		}
1133		ret_val = e1000_config_fc_after_link_up_generic(hw);
1134	} else {
1135		DEBUGOUT("Unable to establish link!!!\n");
1136	}
1137
1138out:
1139	return ret_val;
1140}
1141
1142/**
1143 *  e1000_setup_fiber_link_82543 - Setup link for fiber
1144 *  @hw: pointer to the HW structure
1145 *
1146 *  Configures collision distance and flow control for fiber links.  Upon
1147 *  successful setup, poll for link.
1148 **/
1149static s32 e1000_setup_fiber_link_82543(struct e1000_hw *hw)
1150{
1151	u32 ctrl;
1152	s32 ret_val;
1153
1154	DEBUGFUNC("e1000_setup_fiber_link_82543");
1155
1156	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1157
1158	/* Take the link out of reset */
1159	ctrl &= ~E1000_CTRL_LRST;
1160
1161	hw->mac.ops.config_collision_dist(hw);
1162
1163	ret_val = e1000_commit_fc_settings_generic(hw);
1164	if (ret_val)
1165		goto out;
1166
1167	DEBUGOUT("Auto-negotiation enabled\n");
1168
1169	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1170	E1000_WRITE_FLUSH(hw);
1171	msec_delay(1);
1172
1173	/*
1174	 * For these adapters, the SW definable pin 1 is cleared when the
1175	 * optics detect a signal.  If we have a signal, then poll for a
1176	 * "Link-Up" indication.
1177	 */
1178	if (!(E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1))
1179		ret_val = e1000_poll_fiber_serdes_link_generic(hw);
1180	else
1181		DEBUGOUT("No signal detected\n");
1182
1183out:
1184	return ret_val;
1185}
1186
1187/**
1188 *  e1000_check_for_copper_link_82543 - Check for link (Copper)
1189 *  @hw: pointer to the HW structure
1190 *
1191 *  Checks the phy for link, if link exists, do the following:
1192 *   - check for downshift
1193 *   - do polarity workaround (if necessary)
1194 *   - configure collision distance
1195 *   - configure flow control after link up
1196 *   - configure tbi compatibility
1197 **/
1198static s32 e1000_check_for_copper_link_82543(struct e1000_hw *hw)
1199{
1200	struct e1000_mac_info *mac = &hw->mac;
1201	u32 icr, rctl;
1202	s32 ret_val;
1203	u16 speed, duplex;
1204	bool link;
1205
1206	DEBUGFUNC("e1000_check_for_copper_link_82543");
1207
1208	if (!mac->get_link_status) {
1209		ret_val = E1000_SUCCESS;
1210		goto out;
1211	}
1212
1213	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
1214	if (ret_val)
1215		goto out;
1216
1217	if (!link)
1218		goto out; /* No link detected */
1219
1220	mac->get_link_status = false;
1221
1222	e1000_check_downshift_generic(hw);
1223
1224	/*
1225	 * If we are forcing speed/duplex, then we can return since
1226	 * we have already determined whether we have link or not.
1227	 */
1228	if (!mac->autoneg) {
1229		/*
1230		 * If speed and duplex are forced to 10H or 10F, then we will
1231		 * implement the polarity reversal workaround.  We disable
1232		 * interrupts first, and upon returning, place the devices
1233		 * interrupt state to its previous value except for the link
1234		 * status change interrupt which will happened due to the
1235		 * execution of this workaround.
1236		 */
1237		if (mac->forced_speed_duplex & E1000_ALL_10_SPEED) {
1238			E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF);
1239			ret_val = e1000_polarity_reversal_workaround_82543(hw);
1240			icr = E1000_READ_REG(hw, E1000_ICR);
1241			E1000_WRITE_REG(hw, E1000_ICS, (icr & ~E1000_ICS_LSC));
1242			E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
1243		}
1244
1245		ret_val = -E1000_ERR_CONFIG;
1246		goto out;
1247	}
1248
1249	/*
1250	 * We have a M88E1000 PHY and Auto-Neg is enabled.  If we
1251	 * have Si on board that is 82544 or newer, Auto
1252	 * Speed Detection takes care of MAC speed/duplex
1253	 * configuration.  So we only need to configure Collision
1254	 * Distance in the MAC.  Otherwise, we need to force
1255	 * speed/duplex on the MAC to the current PHY speed/duplex
1256	 * settings.
1257	 */
1258	if (mac->type == e1000_82544)
1259		hw->mac.ops.config_collision_dist(hw);
1260	else {
1261		ret_val = e1000_config_mac_to_phy_82543(hw);
1262		if (ret_val) {
1263			DEBUGOUT("Error configuring MAC to PHY settings\n");
1264			goto out;
1265		}
1266	}
1267
1268	/*
1269	 * Configure Flow Control now that Auto-Neg has completed.
1270	 * First, we need to restore the desired flow control
1271	 * settings because we may have had to re-autoneg with a
1272	 * different link partner.
1273	 */
1274	ret_val = e1000_config_fc_after_link_up_generic(hw);
1275	if (ret_val)
1276		DEBUGOUT("Error configuring flow control\n");
1277
1278	/*
1279	 * At this point we know that we are on copper and we have
1280	 * auto-negotiated link.  These are conditions for checking the link
1281	 * partner capability register.  We use the link speed to determine if
1282	 * TBI compatibility needs to be turned on or off.  If the link is not
1283	 * at gigabit speed, then TBI compatibility is not needed.  If we are
1284	 * at gigabit speed, we turn on TBI compatibility.
1285	 */
1286	if (e1000_tbi_compatibility_enabled_82543(hw)) {
1287		ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
1288		if (ret_val) {
1289			DEBUGOUT("Error getting link speed and duplex\n");
1290			return ret_val;
1291		}
1292		if (speed != SPEED_1000) {
1293			/*
1294			 * If link speed is not set to gigabit speed,
1295			 * we do not need to enable TBI compatibility.
1296			 */
1297			if (e1000_tbi_sbp_enabled_82543(hw)) {
1298				/*
1299				 * If we previously were in the mode,
1300				 * turn it off.
1301				 */
1302				e1000_set_tbi_sbp_82543(hw, false);
1303				rctl = E1000_READ_REG(hw, E1000_RCTL);
1304				rctl &= ~E1000_RCTL_SBP;
1305				E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1306			}
1307		} else {
1308			/*
1309			 * If TBI compatibility is was previously off,
1310			 * turn it on. For compatibility with a TBI link
1311			 * partner, we will store bad packets. Some
1312			 * frames have an additional byte on the end and
1313			 * will look like CRC errors to the hardware.
1314			 */
1315			if (!e1000_tbi_sbp_enabled_82543(hw)) {
1316				e1000_set_tbi_sbp_82543(hw, true);
1317				rctl = E1000_READ_REG(hw, E1000_RCTL);
1318				rctl |= E1000_RCTL_SBP;
1319				E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1320			}
1321		}
1322	}
1323out:
1324	return ret_val;
1325}
1326
1327/**
1328 *  e1000_check_for_fiber_link_82543 - Check for link (Fiber)
1329 *  @hw: pointer to the HW structure
1330 *
1331 *  Checks for link up on the hardware.  If link is not up and we have
1332 *  a signal, then we need to force link up.
1333 **/
1334static s32 e1000_check_for_fiber_link_82543(struct e1000_hw *hw)
1335{
1336	struct e1000_mac_info *mac = &hw->mac;
1337	u32 rxcw, ctrl, status;
1338	s32 ret_val = E1000_SUCCESS;
1339
1340	DEBUGFUNC("e1000_check_for_fiber_link_82543");
1341
1342	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1343	status = E1000_READ_REG(hw, E1000_STATUS);
1344	rxcw = E1000_READ_REG(hw, E1000_RXCW);
1345
1346	/*
1347	 * If we don't have link (auto-negotiation failed or link partner
1348	 * cannot auto-negotiate), the cable is plugged in (we have signal),
1349	 * and our link partner is not trying to auto-negotiate with us (we
1350	 * are receiving idles or data), we need to force link up. We also
1351	 * need to give auto-negotiation time to complete, in case the cable
1352	 * was just plugged in. The autoneg_failed flag does this.
1353	 */
1354	/* (ctrl & E1000_CTRL_SWDPIN1) == 0 == have signal */
1355	if ((!(ctrl & E1000_CTRL_SWDPIN1)) &&
1356	    (!(status & E1000_STATUS_LU)) &&
1357	    (!(rxcw & E1000_RXCW_C))) {
1358		if (!mac->autoneg_failed) {
1359			mac->autoneg_failed = true;
1360			ret_val = 0;
1361			goto out;
1362		}
1363		DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
1364
1365		/* Disable auto-negotiation in the TXCW register */
1366		E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1367
1368		/* Force link-up and also force full-duplex. */
1369		ctrl = E1000_READ_REG(hw, E1000_CTRL);
1370		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1371		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1372
1373		/* Configure Flow Control after forcing link up. */
1374		ret_val = e1000_config_fc_after_link_up_generic(hw);
1375		if (ret_val) {
1376			DEBUGOUT("Error configuring flow control\n");
1377			goto out;
1378		}
1379	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
1380		/*
1381		 * If we are forcing link and we are receiving /C/ ordered
1382		 * sets, re-enable auto-negotiation in the TXCW register
1383		 * and disable forced link in the Device Control register
1384		 * in an attempt to auto-negotiate with our link partner.
1385		 */
1386		DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
1387		E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
1388		E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
1389
1390		mac->serdes_has_link = true;
1391	}
1392
1393out:
1394	return ret_val;
1395}
1396
1397/**
1398 *  e1000_config_mac_to_phy_82543 - Configure MAC to PHY settings
1399 *  @hw: pointer to the HW structure
1400 *
1401 *  For the 82543 silicon, we need to set the MAC to match the settings
1402 *  of the PHY, even if the PHY is auto-negotiating.
1403 **/
1404static s32 e1000_config_mac_to_phy_82543(struct e1000_hw *hw)
1405{
1406	u32 ctrl;
1407	s32 ret_val = E1000_SUCCESS;
1408	u16 phy_data;
1409
1410	DEBUGFUNC("e1000_config_mac_to_phy_82543");
1411
1412	if (!(hw->phy.ops.read_reg))
1413		goto out;
1414
1415	/* Set the bits to force speed and duplex */
1416	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1417	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1418	ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
1419
1420	/*
1421	 * Set up duplex in the Device Control and Transmit Control
1422	 * registers depending on negotiated values.
1423	 */
1424	ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1425	if (ret_val)
1426		goto out;
1427
1428	ctrl &= ~E1000_CTRL_FD;
1429	if (phy_data & M88E1000_PSSR_DPLX)
1430		ctrl |= E1000_CTRL_FD;
1431
1432	hw->mac.ops.config_collision_dist(hw);
1433
1434	/*
1435	 * Set up speed in the Device Control register depending on
1436	 * negotiated values.
1437	 */
1438	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
1439		ctrl |= E1000_CTRL_SPD_1000;
1440	else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
1441		ctrl |= E1000_CTRL_SPD_100;
1442
1443	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1444
1445out:
1446	return ret_val;
1447}
1448
1449/**
1450 *  e1000_write_vfta_82543 - Write value to VLAN filter table
1451 *  @hw: pointer to the HW structure
1452 *  @offset: the 32-bit offset in which to write the value to.
1453 *  @value: the 32-bit value to write at location offset.
1454 *
1455 *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
1456 *  table.
1457 **/
1458static void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset, u32 value)
1459{
1460	u32 temp;
1461
1462	DEBUGFUNC("e1000_write_vfta_82543");
1463
1464	if ((hw->mac.type == e1000_82544) && (offset & 1)) {
1465		temp = E1000_READ_REG_ARRAY(hw, E1000_VFTA, offset - 1);
1466		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
1467		E1000_WRITE_FLUSH(hw);
1468		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset - 1, temp);
1469		E1000_WRITE_FLUSH(hw);
1470	} else {
1471		e1000_write_vfta_generic(hw, offset, value);
1472	}
1473}
1474
1475/**
1476 *  e1000_led_on_82543 - Turn on SW controllable LED
1477 *  @hw: pointer to the HW structure
1478 *
1479 *  Turns the SW defined LED on.
1480 **/
1481static s32 e1000_led_on_82543(struct e1000_hw *hw)
1482{
1483	u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
1484
1485	DEBUGFUNC("e1000_led_on_82543");
1486
1487	if (hw->mac.type == e1000_82544 &&
1488	    hw->phy.media_type == e1000_media_type_copper) {
1489		/* Clear SW-definable Pin 0 to turn on the LED */
1490		ctrl &= ~E1000_CTRL_SWDPIN0;
1491		ctrl |= E1000_CTRL_SWDPIO0;
1492	} else {
1493		/* Fiber 82544 and all 82543 use this method */
1494		ctrl |= E1000_CTRL_SWDPIN0;
1495		ctrl |= E1000_CTRL_SWDPIO0;
1496	}
1497	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1498
1499	return E1000_SUCCESS;
1500}
1501
1502/**
1503 *  e1000_led_off_82543 - Turn off SW controllable LED
1504 *  @hw: pointer to the HW structure
1505 *
1506 *  Turns the SW defined LED off.
1507 **/
1508static s32 e1000_led_off_82543(struct e1000_hw *hw)
1509{
1510	u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
1511
1512	DEBUGFUNC("e1000_led_off_82543");
1513
1514	if (hw->mac.type == e1000_82544 &&
1515	    hw->phy.media_type == e1000_media_type_copper) {
1516		/* Set SW-definable Pin 0 to turn off the LED */
1517		ctrl |= E1000_CTRL_SWDPIN0;
1518		ctrl |= E1000_CTRL_SWDPIO0;
1519	} else {
1520		ctrl &= ~E1000_CTRL_SWDPIN0;
1521		ctrl |= E1000_CTRL_SWDPIO0;
1522	}
1523	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1524
1525	return E1000_SUCCESS;
1526}
1527
1528/**
1529 *  e1000_clear_hw_cntrs_82543 - Clear device specific hardware counters
1530 *  @hw: pointer to the HW structure
1531 *
1532 *  Clears the hardware counters by reading the counter registers.
1533 **/
1534static void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw)
1535{
1536	DEBUGFUNC("e1000_clear_hw_cntrs_82543");
1537
1538	e1000_clear_hw_cntrs_base_generic(hw);
1539
1540	E1000_READ_REG(hw, E1000_PRC64);
1541	E1000_READ_REG(hw, E1000_PRC127);
1542	E1000_READ_REG(hw, E1000_PRC255);
1543	E1000_READ_REG(hw, E1000_PRC511);
1544	E1000_READ_REG(hw, E1000_PRC1023);
1545	E1000_READ_REG(hw, E1000_PRC1522);
1546	E1000_READ_REG(hw, E1000_PTC64);
1547	E1000_READ_REG(hw, E1000_PTC127);
1548	E1000_READ_REG(hw, E1000_PTC255);
1549	E1000_READ_REG(hw, E1000_PTC511);
1550	E1000_READ_REG(hw, E1000_PTC1023);
1551	E1000_READ_REG(hw, E1000_PTC1522);
1552
1553	E1000_READ_REG(hw, E1000_ALGNERRC);
1554	E1000_READ_REG(hw, E1000_RXERRC);
1555	E1000_READ_REG(hw, E1000_TNCRS);
1556	E1000_READ_REG(hw, E1000_CEXTERR);
1557	E1000_READ_REG(hw, E1000_TSCTC);
1558	E1000_READ_REG(hw, E1000_TSCTFC);
1559}
1560
1561/**
1562 *  e1000_read_mac_addr_82543 - Read device MAC address
1563 *  @hw: pointer to the HW structure
1564 *
1565 *  Reads the device MAC address from the EEPROM and stores the value.
1566 *  Since devices with two ports use the same EEPROM, we increment the
1567 *  last bit in the MAC address for the second port.
1568 *
1569 **/
1570s32 e1000_read_mac_addr_82543(struct e1000_hw *hw)
1571{
1572	s32  ret_val = E1000_SUCCESS;
1573	u16 offset, nvm_data, i;
1574
1575	DEBUGFUNC("e1000_read_mac_addr");
1576
1577	for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
1578		offset = i >> 1;
1579		ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
1580		if (ret_val) {
1581			DEBUGOUT("NVM Read Error\n");
1582			goto out;
1583		}
1584		hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF);
1585		hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8);
1586	}
1587
1588	/* Flip last bit of mac address if we're on second port */
1589	if (hw->bus.func == E1000_FUNC_1)
1590		hw->mac.perm_addr[5] ^= 1;
1591
1592	for (i = 0; i < ETHER_ADDR_LEN; i++)
1593		hw->mac.addr[i] = hw->mac.perm_addr[i];
1594
1595out:
1596	return ret_val;
1597}
1598