1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-NetBSD
3 *
4 * Copyright (c) 1995, David Greenman
5 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice unmodified, this list of conditions, and the following
13 *    disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: releng/12.0/sys/dev/fxp/if_fxp.c 338948 2018-09-26 17:12:14Z imp $");
34
35/*
36 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
37 */
38
39#ifdef HAVE_KERNEL_OPTION_HEADERS
40#include "opt_device_polling.h"
41#endif
42
43#include <sys/param.h>
44#include <sys/systm.h>
45#include <sys/bus.h>
46#include <sys/endian.h>
47#include <sys/kernel.h>
48#include <sys/mbuf.h>
49#include <sys/lock.h>
50#include <sys/malloc.h>
51#include <sys/module.h>
52#include <sys/mutex.h>
53#include <sys/rman.h>
54#include <sys/socket.h>
55#include <sys/sockio.h>
56#include <sys/sysctl.h>
57
58#include <net/bpf.h>
59#include <net/ethernet.h>
60#include <net/if.h>
61#include <net/if_var.h>
62#include <net/if_arp.h>
63#include <net/if_dl.h>
64#include <net/if_media.h>
65#include <net/if_types.h>
66#include <net/if_vlan_var.h>
67
68#include <netinet/in.h>
69#include <netinet/in_systm.h>
70#include <netinet/ip.h>
71#include <netinet/tcp.h>
72#include <netinet/udp.h>
73
74#include <machine/bus.h>
75#include <machine/in_cksum.h>
76#include <machine/resource.h>
77
78#include <dev/pci/pcivar.h>
79#include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
80
81#include <dev/mii/mii.h>
82#include <dev/mii/miivar.h>
83
84#include <dev/fxp/if_fxpreg.h>
85#include <dev/fxp/if_fxpvar.h>
86#include <dev/fxp/rcvbundl.h>
87
88MODULE_DEPEND(fxp, pci, 1, 1, 1);
89MODULE_DEPEND(fxp, ether, 1, 1, 1);
90MODULE_DEPEND(fxp, miibus, 1, 1, 1);
91#include "miibus_if.h"
92
93/*
94 * NOTE!  On !x86 we typically have an alignment constraint.  The
95 * card DMAs the packet immediately following the RFA.  However,
96 * the first thing in the packet is a 14-byte Ethernet header.
97 * This means that the packet is misaligned.  To compensate,
98 * we actually offset the RFA 2 bytes into the cluster.  This
99 * alignes the packet after the Ethernet header at a 32-bit
100 * boundary.  HOWEVER!  This means that the RFA is misaligned!
101 */
102#define	RFA_ALIGNMENT_FUDGE	2
103
104/*
105 * Set initial transmit threshold at 64 (512 bytes). This is
106 * increased by 64 (512 bytes) at a time, to maximum of 192
107 * (1536 bytes), if an underrun occurs.
108 */
109static int tx_threshold = 64;
110
111/*
112 * The configuration byte map has several undefined fields which
113 * must be one or must be zero.  Set up a template for these bits.
114 * The actual configuration is performed in fxp_init_body.
115 *
116 * See struct fxp_cb_config for the bit definitions.
117 */
118static const u_char fxp_cb_config_template[] = {
119	0x0, 0x0,		/* cb_status */
120	0x0, 0x0,		/* cb_command */
121	0x0, 0x0, 0x0, 0x0,	/* link_addr */
122	0x0,	/*  0 */
123	0x0,	/*  1 */
124	0x0,	/*  2 */
125	0x0,	/*  3 */
126	0x0,	/*  4 */
127	0x0,	/*  5 */
128	0x32,	/*  6 */
129	0x0,	/*  7 */
130	0x0,	/*  8 */
131	0x0,	/*  9 */
132	0x6,	/* 10 */
133	0x0,	/* 11 */
134	0x0,	/* 12 */
135	0x0,	/* 13 */
136	0xf2,	/* 14 */
137	0x48,	/* 15 */
138	0x0,	/* 16 */
139	0x40,	/* 17 */
140	0xf0,	/* 18 */
141	0x0,	/* 19 */
142	0x3f,	/* 20 */
143	0x5,	/* 21 */
144	0x0,	/* 22 */
145	0x0,	/* 23 */
146	0x0,	/* 24 */
147	0x0,	/* 25 */
148	0x0,	/* 26 */
149	0x0,	/* 27 */
150	0x0,	/* 28 */
151	0x0,	/* 29 */
152	0x0,	/* 30 */
153	0x0	/* 31 */
154};
155
156/*
157 * Claim various Intel PCI device identifiers for this driver.  The
158 * sub-vendor and sub-device field are extensively used to identify
159 * particular variants, but we don't currently differentiate between
160 * them.
161 */
162static const struct fxp_ident fxp_ident_table[] = {
163    { 0x8086, 0x1029,	-1,	0, "Intel 82559 PCI/CardBus Pro/100" },
164    { 0x8086, 0x1030,	-1,	0, "Intel 82559 Pro/100 Ethernet" },
165    { 0x8086, 0x1031,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
166    { 0x8086, 0x1032,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
167    { 0x8086, 0x1033,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
168    { 0x8086, 0x1034,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
169    { 0x8086, 0x1035,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
170    { 0x8086, 0x1036,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
171    { 0x8086, 0x1037,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
172    { 0x8086, 0x1038,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
173    { 0x8086, 0x1039,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
174    { 0x8086, 0x103A,	-1,	4, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
175    { 0x8086, 0x103B,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
176    { 0x8086, 0x103C,	-1,	4, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
177    { 0x8086, 0x103D,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
178    { 0x8086, 0x103E,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
179    { 0x8086, 0x1050,	-1,	5, "Intel 82801BA (D865) Pro/100 VE Ethernet" },
180    { 0x8086, 0x1051,	-1,	5, "Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
181    { 0x8086, 0x1059,	-1,	0, "Intel 82551QM Pro/100 M Mobile Connection" },
182    { 0x8086, 0x1064,	-1,	6, "Intel 82562EZ (ICH6)" },
183    { 0x8086, 0x1065,	-1,	6, "Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" },
184    { 0x8086, 0x1068,	-1,	6, "Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
185    { 0x8086, 0x1069,	-1,	6, "Intel 82562EM/EX/GX Pro/100 Ethernet" },
186    { 0x8086, 0x1091,	-1,	7, "Intel 82562GX Pro/100 Ethernet" },
187    { 0x8086, 0x1092,	-1,	7, "Intel Pro/100 VE Network Connection" },
188    { 0x8086, 0x1093,	-1,	7, "Intel Pro/100 VM Network Connection" },
189    { 0x8086, 0x1094,	-1,	7, "Intel Pro/100 946GZ (ICH7) Network Connection" },
190    { 0x8086, 0x1209,	-1,	0, "Intel 82559ER Embedded 10/100 Ethernet" },
191    { 0x8086, 0x1229,	0x01,	0, "Intel 82557 Pro/100 Ethernet" },
192    { 0x8086, 0x1229,	0x02,	0, "Intel 82557 Pro/100 Ethernet" },
193    { 0x8086, 0x1229,	0x03,	0, "Intel 82557 Pro/100 Ethernet" },
194    { 0x8086, 0x1229,	0x04,	0, "Intel 82558 Pro/100 Ethernet" },
195    { 0x8086, 0x1229,	0x05,	0, "Intel 82558 Pro/100 Ethernet" },
196    { 0x8086, 0x1229,	0x06,	0, "Intel 82559 Pro/100 Ethernet" },
197    { 0x8086, 0x1229,	0x07,	0, "Intel 82559 Pro/100 Ethernet" },
198    { 0x8086, 0x1229,	0x08,	0, "Intel 82559 Pro/100 Ethernet" },
199    { 0x8086, 0x1229,	0x09,	0, "Intel 82559ER Pro/100 Ethernet" },
200    { 0x8086, 0x1229,	0x0c,	0, "Intel 82550 Pro/100 Ethernet" },
201    { 0x8086, 0x1229,	0x0d,	0, "Intel 82550C Pro/100 Ethernet" },
202    { 0x8086, 0x1229,	0x0e,	0, "Intel 82550 Pro/100 Ethernet" },
203    { 0x8086, 0x1229,	0x0f,	0, "Intel 82551 Pro/100 Ethernet" },
204    { 0x8086, 0x1229,	0x10,	0, "Intel 82551 Pro/100 Ethernet" },
205    { 0x8086, 0x1229,	-1,	0, "Intel 82557/8/9 Pro/100 Ethernet" },
206    { 0x8086, 0x2449,	-1,	2, "Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
207    { 0x8086, 0x27dc,	-1,	7, "Intel 82801GB (ICH7) 10/100 Ethernet" },
208    { 0,      0,	-1,	0, NULL },
209};
210
211#ifdef FXP_IP_CSUM_WAR
212#define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
213#else
214#define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
215#endif
216
217static int		fxp_probe(device_t dev);
218static int		fxp_attach(device_t dev);
219static int		fxp_detach(device_t dev);
220static int		fxp_shutdown(device_t dev);
221static int		fxp_suspend(device_t dev);
222static int		fxp_resume(device_t dev);
223
224static const struct fxp_ident *fxp_find_ident(device_t dev);
225static void		fxp_intr(void *xsc);
226static void		fxp_rxcsum(struct fxp_softc *sc, if_t ifp,
227			    struct mbuf *m, uint16_t status, int pos);
228static int		fxp_intr_body(struct fxp_softc *sc, if_t ifp,
229			    uint8_t statack, int count);
230static void 		fxp_init(void *xsc);
231static void 		fxp_init_body(struct fxp_softc *sc, int);
232static void 		fxp_tick(void *xsc);
233static void 		fxp_start(if_t ifp);
234static void 		fxp_start_body(if_t ifp);
235static int		fxp_encap(struct fxp_softc *sc, struct mbuf **m_head);
236static void		fxp_txeof(struct fxp_softc *sc);
237static void		fxp_stop(struct fxp_softc *sc);
238static void 		fxp_release(struct fxp_softc *sc);
239static int		fxp_ioctl(if_t ifp, u_long command,
240			    caddr_t data);
241static void 		fxp_watchdog(struct fxp_softc *sc);
242static void		fxp_add_rfabuf(struct fxp_softc *sc,
243			    struct fxp_rx *rxp);
244static void		fxp_discard_rfabuf(struct fxp_softc *sc,
245			    struct fxp_rx *rxp);
246static int		fxp_new_rfabuf(struct fxp_softc *sc,
247			    struct fxp_rx *rxp);
248static int		fxp_mc_addrs(struct fxp_softc *sc);
249static void		fxp_mc_setup(struct fxp_softc *sc);
250static uint16_t		fxp_eeprom_getword(struct fxp_softc *sc, int offset,
251			    int autosize);
252static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
253			    uint16_t data);
254static void		fxp_autosize_eeprom(struct fxp_softc *sc);
255static void		fxp_load_eeprom(struct fxp_softc *sc);
256static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
257			    int offset, int words);
258static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
259			    int offset, int words);
260static int		fxp_ifmedia_upd(if_t ifp);
261static void		fxp_ifmedia_sts(if_t ifp,
262			    struct ifmediareq *ifmr);
263static int		fxp_serial_ifmedia_upd(if_t ifp);
264static void		fxp_serial_ifmedia_sts(if_t ifp,
265			    struct ifmediareq *ifmr);
266static int		fxp_miibus_readreg(device_t dev, int phy, int reg);
267static int		fxp_miibus_writereg(device_t dev, int phy, int reg,
268			    int value);
269static void		fxp_miibus_statchg(device_t dev);
270static void		fxp_load_ucode(struct fxp_softc *sc);
271static void		fxp_update_stats(struct fxp_softc *sc);
272static void		fxp_sysctl_node(struct fxp_softc *sc);
273static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
274			    int low, int high);
275static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
276static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
277static void 		fxp_scb_wait(struct fxp_softc *sc);
278static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
279static void		fxp_dma_wait(struct fxp_softc *sc,
280			    volatile uint16_t *status, bus_dma_tag_t dmat,
281			    bus_dmamap_t map);
282
283static device_method_t fxp_methods[] = {
284	/* Device interface */
285	DEVMETHOD(device_probe,		fxp_probe),
286	DEVMETHOD(device_attach,	fxp_attach),
287	DEVMETHOD(device_detach,	fxp_detach),
288	DEVMETHOD(device_shutdown,	fxp_shutdown),
289	DEVMETHOD(device_suspend,	fxp_suspend),
290	DEVMETHOD(device_resume,	fxp_resume),
291
292	/* MII interface */
293	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
294	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
295	DEVMETHOD(miibus_statchg,	fxp_miibus_statchg),
296
297	DEVMETHOD_END
298};
299
300static driver_t fxp_driver = {
301	"fxp",
302	fxp_methods,
303	sizeof(struct fxp_softc),
304};
305
306static devclass_t fxp_devclass;
307
308DRIVER_MODULE_ORDERED(fxp, pci, fxp_driver, fxp_devclass, NULL, NULL,
309    SI_ORDER_ANY);
310MODULE_PNP_INFO("U16:vendor;U16:device", pci, fxp, fxp_ident_table,
311    nitems(fxp_ident_table) - 1);
312DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, NULL, NULL);
313
314static struct resource_spec fxp_res_spec_mem[] = {
315	{ SYS_RES_MEMORY,	FXP_PCI_MMBA,	RF_ACTIVE },
316	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
317	{ -1, 0 }
318};
319
320static struct resource_spec fxp_res_spec_io[] = {
321	{ SYS_RES_IOPORT,	FXP_PCI_IOBA,	RF_ACTIVE },
322	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
323	{ -1, 0 }
324};
325
326/*
327 * Wait for the previous command to be accepted (but not necessarily
328 * completed).
329 */
330static void
331fxp_scb_wait(struct fxp_softc *sc)
332{
333	union {
334		uint16_t w;
335		uint8_t b[2];
336	} flowctl;
337	int i = 10000;
338
339	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
340		DELAY(2);
341	if (i == 0) {
342		flowctl.b[0] = CSR_READ_1(sc, FXP_CSR_FC_THRESH);
343		flowctl.b[1] = CSR_READ_1(sc, FXP_CSR_FC_STATUS);
344		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
345		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
346		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
347		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS), flowctl.w);
348	}
349}
350
351static void
352fxp_scb_cmd(struct fxp_softc *sc, int cmd)
353{
354
355	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
356		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
357		fxp_scb_wait(sc);
358	}
359	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
360}
361
362static void
363fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status,
364    bus_dma_tag_t dmat, bus_dmamap_t map)
365{
366	int i;
367
368	for (i = 10000; i > 0; i--) {
369		DELAY(2);
370		bus_dmamap_sync(dmat, map,
371		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
372		if ((le16toh(*status) & FXP_CB_STATUS_C) != 0)
373			break;
374	}
375	if (i == 0)
376		device_printf(sc->dev, "DMA timeout\n");
377}
378
379static const struct fxp_ident *
380fxp_find_ident(device_t dev)
381{
382	uint16_t vendor;
383	uint16_t device;
384	uint8_t revid;
385	const struct fxp_ident *ident;
386
387	vendor = pci_get_vendor(dev);
388	device = pci_get_device(dev);
389	revid = pci_get_revid(dev);
390	for (ident = fxp_ident_table; ident->name != NULL; ident++) {
391		if (ident->vendor == vendor && ident->device == device &&
392		    (ident->revid == revid || ident->revid == -1)) {
393			return (ident);
394		}
395	}
396	return (NULL);
397}
398
399/*
400 * Return identification string if this device is ours.
401 */
402static int
403fxp_probe(device_t dev)
404{
405	const struct fxp_ident *ident;
406
407	ident = fxp_find_ident(dev);
408	if (ident != NULL) {
409		device_set_desc(dev, ident->name);
410		return (BUS_PROBE_DEFAULT);
411	}
412	return (ENXIO);
413}
414
415static void
416fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
417{
418	uint32_t *addr;
419
420	if (error)
421		return;
422
423	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
424	addr = arg;
425	*addr = segs->ds_addr;
426}
427
428static int
429fxp_attach(device_t dev)
430{
431	struct fxp_softc *sc;
432	struct fxp_cb_tx *tcbp;
433	struct fxp_tx *txp;
434	struct fxp_rx *rxp;
435	if_t ifp;
436	uint32_t val;
437	uint16_t data;
438	u_char eaddr[ETHER_ADDR_LEN];
439	int error, flags, i, pmc, prefer_iomap;
440
441	error = 0;
442	sc = device_get_softc(dev);
443	sc->dev = dev;
444	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
445	    MTX_DEF);
446	callout_init_mtx(&sc->stat_ch, &sc->sc_mtx, 0);
447	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
448	    fxp_serial_ifmedia_sts);
449
450	ifp = sc->ifp = if_gethandle(IFT_ETHER);
451	if (ifp == (void *)NULL) {
452		device_printf(dev, "can not if_alloc()\n");
453		error = ENOSPC;
454		goto fail;
455	}
456
457	/*
458	 * Enable bus mastering.
459	 */
460	pci_enable_busmaster(dev);
461
462	/*
463	 * Figure out which we should try first - memory mapping or i/o mapping?
464	 * We default to memory mapping. Then we accept an override from the
465	 * command line. Then we check to see which one is enabled.
466	 */
467	prefer_iomap = 0;
468	resource_int_value(device_get_name(dev), device_get_unit(dev),
469	    "prefer_iomap", &prefer_iomap);
470	if (prefer_iomap)
471		sc->fxp_spec = fxp_res_spec_io;
472	else
473		sc->fxp_spec = fxp_res_spec_mem;
474
475	error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
476	if (error) {
477		if (sc->fxp_spec == fxp_res_spec_mem)
478			sc->fxp_spec = fxp_res_spec_io;
479		else
480			sc->fxp_spec = fxp_res_spec_mem;
481		error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
482	}
483	if (error) {
484		device_printf(dev, "could not allocate resources\n");
485		error = ENXIO;
486		goto fail;
487	}
488
489	if (bootverbose) {
490		device_printf(dev, "using %s space register mapping\n",
491		   sc->fxp_spec == fxp_res_spec_mem ? "memory" : "I/O");
492	}
493
494	/*
495	 * Put CU/RU idle state and prepare full reset.
496	 */
497	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
498	DELAY(10);
499	/* Full reset and disable interrupts. */
500	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
501	DELAY(10);
502	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
503
504	/*
505	 * Find out how large of an SEEPROM we have.
506	 */
507	fxp_autosize_eeprom(sc);
508	fxp_load_eeprom(sc);
509
510	/*
511	 * Find out the chip revision; lump all 82557 revs together.
512	 */
513	sc->ident = fxp_find_ident(dev);
514	if (sc->ident->ich > 0) {
515		/* Assume ICH controllers are 82559. */
516		sc->revision = FXP_REV_82559_A0;
517	} else {
518		data = sc->eeprom[FXP_EEPROM_MAP_CNTR];
519		if ((data >> 8) == 1)
520			sc->revision = FXP_REV_82557;
521		else
522			sc->revision = pci_get_revid(dev);
523	}
524
525	/*
526	 * Check availability of WOL. 82559ER does not support WOL.
527	 */
528	if (sc->revision >= FXP_REV_82558_A4 &&
529	    sc->revision != FXP_REV_82559S_A) {
530		data = sc->eeprom[FXP_EEPROM_MAP_ID];
531		if ((data & 0x20) != 0 &&
532		    pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0)
533			sc->flags |= FXP_FLAG_WOLCAP;
534	}
535
536	if (sc->revision == FXP_REV_82550_C) {
537		/*
538		 * 82550C with server extension requires microcode to
539		 * receive fragmented UDP datagrams.  However if the
540		 * microcode is used for client-only featured 82550C
541		 * it locks up controller.
542		 */
543		data = sc->eeprom[FXP_EEPROM_MAP_COMPAT];
544		if ((data & 0x0400) == 0)
545			sc->flags |= FXP_FLAG_NO_UCODE;
546	}
547
548	/* Receiver lock-up workaround detection. */
549	if (sc->revision < FXP_REV_82558_A4) {
550		data = sc->eeprom[FXP_EEPROM_MAP_COMPAT];
551		if ((data & 0x03) != 0x03) {
552			sc->flags |= FXP_FLAG_RXBUG;
553			device_printf(dev, "Enabling Rx lock-up workaround\n");
554		}
555	}
556
557	/*
558	 * Determine whether we must use the 503 serial interface.
559	 */
560	data = sc->eeprom[FXP_EEPROM_MAP_PRI_PHY];
561	if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0
562	    && (data & FXP_PHY_SERIAL_ONLY))
563		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
564
565	fxp_sysctl_node(sc);
566	/*
567	 * Enable workarounds for certain chip revision deficiencies.
568	 *
569	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
570	 * some systems based a normal 82559 design, have a defect where
571	 * the chip can cause a PCI protocol violation if it receives
572	 * a CU_RESUME command when it is entering the IDLE state.  The
573	 * workaround is to disable Dynamic Standby Mode, so the chip never
574	 * deasserts CLKRUN#, and always remains in an active state.
575	 *
576	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
577	 */
578	if ((sc->ident->ich >= 2 && sc->ident->ich <= 3) ||
579	    (sc->ident->ich == 0 && sc->revision >= FXP_REV_82559_A0)) {
580		data = sc->eeprom[FXP_EEPROM_MAP_ID];
581		if (data & 0x02) {			/* STB enable */
582			uint16_t cksum;
583			int i;
584
585			device_printf(dev,
586			    "Disabling dynamic standby mode in EEPROM\n");
587			data &= ~0x02;
588			sc->eeprom[FXP_EEPROM_MAP_ID] = data;
589			fxp_write_eeprom(sc, &data, FXP_EEPROM_MAP_ID, 1);
590			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
591			cksum = 0;
592			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++)
593				cksum += sc->eeprom[i];
594			i = (1 << sc->eeprom_size) - 1;
595			cksum = 0xBABA - cksum;
596			fxp_write_eeprom(sc, &cksum, i, 1);
597			device_printf(dev,
598			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
599			    i, sc->eeprom[i], cksum);
600			sc->eeprom[i] = cksum;
601			/*
602			 * If the user elects to continue, try the software
603			 * workaround, as it is better than nothing.
604			 */
605			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
606		}
607	}
608
609	/*
610	 * If we are not a 82557 chip, we can enable extended features.
611	 */
612	if (sc->revision != FXP_REV_82557) {
613		/*
614		 * If MWI is enabled in the PCI configuration, and there
615		 * is a valid cacheline size (8 or 16 dwords), then tell
616		 * the board to turn on MWI.
617		 */
618		val = pci_read_config(dev, PCIR_COMMAND, 2);
619		if (val & PCIM_CMD_MWRICEN &&
620		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
621			sc->flags |= FXP_FLAG_MWI_ENABLE;
622
623		/* turn on the extended TxCB feature */
624		sc->flags |= FXP_FLAG_EXT_TXCB;
625
626		/* enable reception of long frames for VLAN */
627		sc->flags |= FXP_FLAG_LONG_PKT_EN;
628	} else {
629		/* a hack to get long VLAN frames on a 82557 */
630		sc->flags |= FXP_FLAG_SAVE_BAD;
631	}
632
633	/* For 82559 or later chips, Rx checksum offload is supported. */
634	if (sc->revision >= FXP_REV_82559_A0) {
635		/* 82559ER does not support Rx checksum offloading. */
636		if (sc->ident->device != 0x1209)
637			sc->flags |= FXP_FLAG_82559_RXCSUM;
638	}
639	/*
640	 * Enable use of extended RFDs and TCBs for 82550
641	 * and later chips. Note: we need extended TXCB support
642	 * too, but that's already enabled by the code above.
643	 * Be careful to do this only on the right devices.
644	 */
645	if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C ||
646	    sc->revision == FXP_REV_82551_E || sc->revision == FXP_REV_82551_F
647	    || sc->revision == FXP_REV_82551_10) {
648		sc->rfa_size = sizeof (struct fxp_rfa);
649		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
650		sc->flags |= FXP_FLAG_EXT_RFA;
651		/* Use extended RFA instead of 82559 checksum mode. */
652		sc->flags &= ~FXP_FLAG_82559_RXCSUM;
653	} else {
654		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
655		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
656	}
657
658	/*
659	 * Allocate DMA tags and DMA safe memory.
660	 */
661	sc->maxtxseg = FXP_NTXSEG;
662	sc->maxsegsize = MCLBYTES;
663	if (sc->flags & FXP_FLAG_EXT_RFA) {
664		sc->maxtxseg--;
665		sc->maxsegsize = FXP_TSO_SEGSIZE;
666	}
667	error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
668	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
669	    sc->maxsegsize * sc->maxtxseg + sizeof(struct ether_vlan_header),
670	    sc->maxtxseg, sc->maxsegsize, 0,
671	    busdma_lock_mutex, &Giant, &sc->fxp_txmtag);
672	if (error) {
673		device_printf(dev, "could not create TX DMA tag\n");
674		goto fail;
675	}
676
677	error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
678	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
679	    MCLBYTES, 1, MCLBYTES, 0,
680	    busdma_lock_mutex, &Giant, &sc->fxp_rxmtag);
681	if (error) {
682		device_printf(dev, "could not create RX DMA tag\n");
683		goto fail;
684	}
685
686	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
687	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
688	    sizeof(struct fxp_stats), 1, sizeof(struct fxp_stats), 0,
689	    busdma_lock_mutex, &Giant, &sc->fxp_stag);
690	if (error) {
691		device_printf(dev, "could not create stats DMA tag\n");
692		goto fail;
693	}
694
695	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
696	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->fxp_smap);
697	if (error) {
698		device_printf(dev, "could not allocate stats DMA memory\n");
699		goto fail;
700	}
701	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
702	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr,
703	    BUS_DMA_NOWAIT);
704	if (error) {
705		device_printf(dev, "could not load the stats DMA buffer\n");
706		goto fail;
707	}
708
709	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
710	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
711	    FXP_TXCB_SZ, 1, FXP_TXCB_SZ, 0,
712	    busdma_lock_mutex, &Giant, &sc->cbl_tag);
713	if (error) {
714		device_printf(dev, "could not create TxCB DMA tag\n");
715		goto fail;
716	}
717
718	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
719	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->cbl_map);
720	if (error) {
721		device_printf(dev, "could not allocate TxCB DMA memory\n");
722		goto fail;
723	}
724
725	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
726	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
727	    &sc->fxp_desc.cbl_addr, BUS_DMA_NOWAIT);
728	if (error) {
729		device_printf(dev, "could not load TxCB DMA buffer\n");
730		goto fail;
731	}
732
733	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
734	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
735	    sizeof(struct fxp_cb_mcs), 1, sizeof(struct fxp_cb_mcs), 0,
736	    busdma_lock_mutex, &Giant, &sc->mcs_tag);
737	if (error) {
738		device_printf(dev,
739		    "could not create multicast setup DMA tag\n");
740		goto fail;
741	}
742
743	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
744	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->mcs_map);
745	if (error) {
746		device_printf(dev,
747		    "could not allocate multicast setup DMA memory\n");
748		goto fail;
749	}
750	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
751	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr,
752	    BUS_DMA_NOWAIT);
753	if (error) {
754		device_printf(dev,
755		    "can't load the multicast setup DMA buffer\n");
756		goto fail;
757	}
758
759	/*
760	 * Pre-allocate the TX DMA maps and setup the pointers to
761	 * the TX command blocks.
762	 */
763	txp = sc->fxp_desc.tx_list;
764	tcbp = sc->fxp_desc.cbl_list;
765	for (i = 0; i < FXP_NTXCB; i++) {
766		txp[i].tx_cb = tcbp + i;
767		error = bus_dmamap_create(sc->fxp_txmtag, 0, &txp[i].tx_map);
768		if (error) {
769			device_printf(dev, "can't create DMA map for TX\n");
770			goto fail;
771		}
772	}
773	error = bus_dmamap_create(sc->fxp_rxmtag, 0, &sc->spare_map);
774	if (error) {
775		device_printf(dev, "can't create spare DMA map\n");
776		goto fail;
777	}
778
779	/*
780	 * Pre-allocate our receive buffers.
781	 */
782	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
783	for (i = 0; i < FXP_NRFABUFS; i++) {
784		rxp = &sc->fxp_desc.rx_list[i];
785		error = bus_dmamap_create(sc->fxp_rxmtag, 0, &rxp->rx_map);
786		if (error) {
787			device_printf(dev, "can't create DMA map for RX\n");
788			goto fail;
789		}
790		if (fxp_new_rfabuf(sc, rxp) != 0) {
791			error = ENOMEM;
792			goto fail;
793		}
794		fxp_add_rfabuf(sc, rxp);
795	}
796
797	/*
798	 * Read MAC address.
799	 */
800	eaddr[0] = sc->eeprom[FXP_EEPROM_MAP_IA0] & 0xff;
801	eaddr[1] = sc->eeprom[FXP_EEPROM_MAP_IA0] >> 8;
802	eaddr[2] = sc->eeprom[FXP_EEPROM_MAP_IA1] & 0xff;
803	eaddr[3] = sc->eeprom[FXP_EEPROM_MAP_IA1] >> 8;
804	eaddr[4] = sc->eeprom[FXP_EEPROM_MAP_IA2] & 0xff;
805	eaddr[5] = sc->eeprom[FXP_EEPROM_MAP_IA2] >> 8;
806	if (bootverbose) {
807		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
808		    pci_get_vendor(dev), pci_get_device(dev),
809		    pci_get_subvendor(dev), pci_get_subdevice(dev),
810		    pci_get_revid(dev));
811		device_printf(dev, "Dynamic Standby mode is %s\n",
812		    sc->eeprom[FXP_EEPROM_MAP_ID] & 0x02 ? "enabled" :
813		    "disabled");
814	}
815
816	/*
817	 * If this is only a 10Mbps device, then there is no MII, and
818	 * the PHY will use a serial interface instead.
819	 *
820	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
821	 * doesn't have a programming interface of any sort.  The
822	 * media is sensed automatically based on how the link partner
823	 * is configured.  This is, in essence, manual configuration.
824	 */
825	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
826		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
827		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
828	} else {
829		/*
830		 * i82557 wedge when isolating all of their PHYs.
831		 */
832		flags = MIIF_NOISOLATE;
833		if (sc->revision >= FXP_REV_82558_A4)
834			flags |= MIIF_DOPAUSE;
835		error = mii_attach(dev, &sc->miibus, ifp,
836		    (ifm_change_cb_t)fxp_ifmedia_upd,
837		    (ifm_stat_cb_t)fxp_ifmedia_sts, BMSR_DEFCAPMASK,
838		    MII_PHY_ANY, MII_OFFSET_ANY, flags);
839		if (error != 0) {
840			device_printf(dev, "attaching PHYs failed\n");
841			goto fail;
842		}
843	}
844
845	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
846	if_setdev(ifp, dev);
847	if_setinitfn(ifp, fxp_init);
848	if_setsoftc(ifp, sc);
849	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
850	if_setioctlfn(ifp, fxp_ioctl);
851	if_setstartfn(ifp, fxp_start);
852
853	if_setcapabilities(ifp, 0);
854	if_setcapenable(ifp, 0);
855
856	/* Enable checksum offload/TSO for 82550 or better chips */
857	if (sc->flags & FXP_FLAG_EXT_RFA) {
858		if_sethwassist(ifp, FXP_CSUM_FEATURES | CSUM_TSO);
859		if_setcapabilitiesbit(ifp, IFCAP_HWCSUM | IFCAP_TSO4, 0);
860		if_setcapenablebit(ifp, IFCAP_HWCSUM | IFCAP_TSO4, 0);
861	}
862
863	if (sc->flags & FXP_FLAG_82559_RXCSUM) {
864		if_setcapabilitiesbit(ifp, IFCAP_RXCSUM, 0);
865		if_setcapenablebit(ifp, IFCAP_RXCSUM, 0);
866	}
867
868	if (sc->flags & FXP_FLAG_WOLCAP) {
869		if_setcapabilitiesbit(ifp, IFCAP_WOL_MAGIC, 0);
870		if_setcapenablebit(ifp, IFCAP_WOL_MAGIC, 0);
871	}
872
873#ifdef DEVICE_POLLING
874	/* Inform the world we support polling. */
875	if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
876#endif
877
878	/*
879	 * Attach the interface.
880	 */
881	ether_ifattach(ifp, eaddr);
882
883	/*
884	 * Tell the upper layer(s) we support long frames.
885	 * Must appear after the call to ether_ifattach() because
886	 * ether_ifattach() sets ifi_hdrlen to the default value.
887	 */
888	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
889	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU, 0);
890	if_setcapenablebit(ifp, IFCAP_VLAN_MTU, 0);
891	if ((sc->flags & FXP_FLAG_EXT_RFA) != 0) {
892		if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWTAGGING |
893		    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO, 0);
894		if_setcapenablebit(ifp, IFCAP_VLAN_HWTAGGING |
895		    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO, 0);
896	}
897
898	/*
899	 * Let the system queue as many packets as we have available
900	 * TX descriptors.
901	 */
902	if_setsendqlen(ifp, FXP_NTXCB - 1);
903	if_setsendqready(ifp);
904
905	/*
906	 * Hook our interrupt after all initialization is complete.
907	 */
908	error = bus_setup_intr(dev, sc->fxp_res[1], INTR_TYPE_NET | INTR_MPSAFE,
909			       NULL, fxp_intr, sc, &sc->ih);
910	if (error) {
911		device_printf(dev, "could not setup irq\n");
912		ether_ifdetach(sc->ifp);
913		goto fail;
914	}
915
916	/*
917	 * Configure hardware to reject magic frames otherwise
918	 * system will hang on recipt of magic frames.
919	 */
920	if ((sc->flags & FXP_FLAG_WOLCAP) != 0) {
921		FXP_LOCK(sc);
922		/* Clear wakeup events. */
923		CSR_WRITE_1(sc, FXP_CSR_PMDR, CSR_READ_1(sc, FXP_CSR_PMDR));
924		fxp_init_body(sc, 0);
925		fxp_stop(sc);
926		FXP_UNLOCK(sc);
927	}
928
929fail:
930	if (error)
931		fxp_release(sc);
932	return (error);
933}
934
935/*
936 * Release all resources.  The softc lock should not be held and the
937 * interrupt should already be torn down.
938 */
939static void
940fxp_release(struct fxp_softc *sc)
941{
942	struct fxp_rx *rxp;
943	struct fxp_tx *txp;
944	int i;
945
946	FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
947	KASSERT(sc->ih == NULL,
948	    ("fxp_release() called with intr handle still active"));
949	if (sc->miibus)
950		device_delete_child(sc->dev, sc->miibus);
951	bus_generic_detach(sc->dev);
952	ifmedia_removeall(&sc->sc_media);
953	if (sc->fxp_desc.cbl_list) {
954		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
955		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
956		    sc->cbl_map);
957	}
958	if (sc->fxp_stats) {
959		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
960		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
961	}
962	if (sc->mcsp) {
963		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
964		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
965	}
966	bus_release_resources(sc->dev, sc->fxp_spec, sc->fxp_res);
967	if (sc->fxp_rxmtag) {
968		for (i = 0; i < FXP_NRFABUFS; i++) {
969			rxp = &sc->fxp_desc.rx_list[i];
970			if (rxp->rx_mbuf != NULL) {
971				bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
972				    BUS_DMASYNC_POSTREAD);
973				bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map);
974				m_freem(rxp->rx_mbuf);
975			}
976			bus_dmamap_destroy(sc->fxp_rxmtag, rxp->rx_map);
977		}
978		bus_dmamap_destroy(sc->fxp_rxmtag, sc->spare_map);
979		bus_dma_tag_destroy(sc->fxp_rxmtag);
980	}
981	if (sc->fxp_txmtag) {
982		for (i = 0; i < FXP_NTXCB; i++) {
983			txp = &sc->fxp_desc.tx_list[i];
984			if (txp->tx_mbuf != NULL) {
985				bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map,
986				    BUS_DMASYNC_POSTWRITE);
987				bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map);
988				m_freem(txp->tx_mbuf);
989			}
990			bus_dmamap_destroy(sc->fxp_txmtag, txp->tx_map);
991		}
992		bus_dma_tag_destroy(sc->fxp_txmtag);
993	}
994	if (sc->fxp_stag)
995		bus_dma_tag_destroy(sc->fxp_stag);
996	if (sc->cbl_tag)
997		bus_dma_tag_destroy(sc->cbl_tag);
998	if (sc->mcs_tag)
999		bus_dma_tag_destroy(sc->mcs_tag);
1000	if (sc->ifp)
1001		if_free(sc->ifp);
1002
1003	mtx_destroy(&sc->sc_mtx);
1004}
1005
1006/*
1007 * Detach interface.
1008 */
1009static int
1010fxp_detach(device_t dev)
1011{
1012	struct fxp_softc *sc = device_get_softc(dev);
1013
1014#ifdef DEVICE_POLLING
1015	if (if_getcapenable(sc->ifp) & IFCAP_POLLING)
1016		ether_poll_deregister(sc->ifp);
1017#endif
1018
1019	FXP_LOCK(sc);
1020	/*
1021	 * Stop DMA and drop transmit queue, but disable interrupts first.
1022	 */
1023	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1024	fxp_stop(sc);
1025	FXP_UNLOCK(sc);
1026	callout_drain(&sc->stat_ch);
1027
1028	/*
1029	 * Close down routes etc.
1030	 */
1031	ether_ifdetach(sc->ifp);
1032
1033	/*
1034	 * Unhook interrupt before dropping lock. This is to prevent
1035	 * races with fxp_intr().
1036	 */
1037	bus_teardown_intr(sc->dev, sc->fxp_res[1], sc->ih);
1038	sc->ih = NULL;
1039
1040	/* Release our allocated resources. */
1041	fxp_release(sc);
1042	return (0);
1043}
1044
1045/*
1046 * Device shutdown routine. Called at system shutdown after sync. The
1047 * main purpose of this routine is to shut off receiver DMA so that
1048 * kernel memory doesn't get clobbered during warmboot.
1049 */
1050static int
1051fxp_shutdown(device_t dev)
1052{
1053
1054	/*
1055	 * Make sure that DMA is disabled prior to reboot. Not doing
1056	 * do could allow DMA to corrupt kernel memory during the
1057	 * reboot before the driver initializes.
1058	 */
1059	return (fxp_suspend(dev));
1060}
1061
1062/*
1063 * Device suspend routine.  Stop the interface and save some PCI
1064 * settings in case the BIOS doesn't restore them properly on
1065 * resume.
1066 */
1067static int
1068fxp_suspend(device_t dev)
1069{
1070	struct fxp_softc *sc = device_get_softc(dev);
1071	if_t ifp;
1072	int pmc;
1073	uint16_t pmstat;
1074
1075	FXP_LOCK(sc);
1076
1077	ifp = sc->ifp;
1078	if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) {
1079		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1080		pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1081		if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0) {
1082			/* Request PME. */
1083			pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1084			sc->flags |= FXP_FLAG_WOL;
1085			/* Reconfigure hardware to accept magic frames. */
1086			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1087			fxp_init_body(sc, 0);
1088		}
1089		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1090	}
1091	fxp_stop(sc);
1092
1093	sc->suspended = 1;
1094
1095	FXP_UNLOCK(sc);
1096	return (0);
1097}
1098
1099/*
1100 * Device resume routine. re-enable busmastering, and restart the interface if
1101 * appropriate.
1102 */
1103static int
1104fxp_resume(device_t dev)
1105{
1106	struct fxp_softc *sc = device_get_softc(dev);
1107	if_t ifp = sc->ifp;
1108	int pmc;
1109	uint16_t pmstat;
1110
1111	FXP_LOCK(sc);
1112
1113	if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) {
1114		sc->flags &= ~FXP_FLAG_WOL;
1115		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1116		/* Disable PME and clear PME status. */
1117		pmstat &= ~PCIM_PSTAT_PMEENABLE;
1118		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1119		if ((sc->flags & FXP_FLAG_WOLCAP) != 0)
1120			CSR_WRITE_1(sc, FXP_CSR_PMDR,
1121			    CSR_READ_1(sc, FXP_CSR_PMDR));
1122	}
1123
1124	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1125	DELAY(10);
1126
1127	/* reinitialize interface if necessary */
1128	if (if_getflags(ifp) & IFF_UP)
1129		fxp_init_body(sc, 1);
1130
1131	sc->suspended = 0;
1132
1133	FXP_UNLOCK(sc);
1134	return (0);
1135}
1136
1137static void
1138fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
1139{
1140	uint16_t reg;
1141	int x;
1142
1143	/*
1144	 * Shift in data.
1145	 */
1146	for (x = 1 << (length - 1); x; x >>= 1) {
1147		if (data & x)
1148			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1149		else
1150			reg = FXP_EEPROM_EECS;
1151		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1152		DELAY(1);
1153		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1154		DELAY(1);
1155		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1156		DELAY(1);
1157	}
1158}
1159
1160/*
1161 * Read from the serial EEPROM. Basically, you manually shift in
1162 * the read opcode (one bit at a time) and then shift in the address,
1163 * and then you shift out the data (all of this one bit at a time).
1164 * The word size is 16 bits, so you have to provide the address for
1165 * every 16 bits of data.
1166 */
1167static uint16_t
1168fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1169{
1170	uint16_t reg, data;
1171	int x;
1172
1173	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1174	/*
1175	 * Shift in read opcode.
1176	 */
1177	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1178	/*
1179	 * Shift in address.
1180	 */
1181	data = 0;
1182	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1183		if (offset & x)
1184			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1185		else
1186			reg = FXP_EEPROM_EECS;
1187		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1188		DELAY(1);
1189		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1190		DELAY(1);
1191		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1192		DELAY(1);
1193		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1194		data++;
1195		if (autosize && reg == 0) {
1196			sc->eeprom_size = data;
1197			break;
1198		}
1199	}
1200	/*
1201	 * Shift out data.
1202	 */
1203	data = 0;
1204	reg = FXP_EEPROM_EECS;
1205	for (x = 1 << 15; x; x >>= 1) {
1206		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1207		DELAY(1);
1208		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1209			data |= x;
1210		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1211		DELAY(1);
1212	}
1213	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1214	DELAY(1);
1215
1216	return (data);
1217}
1218
1219static void
1220fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data)
1221{
1222	int i;
1223
1224	/*
1225	 * Erase/write enable.
1226	 */
1227	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1228	fxp_eeprom_shiftin(sc, 0x4, 3);
1229	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1230	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1231	DELAY(1);
1232	/*
1233	 * Shift in write opcode, address, data.
1234	 */
1235	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1236	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1237	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1238	fxp_eeprom_shiftin(sc, data, 16);
1239	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1240	DELAY(1);
1241	/*
1242	 * Wait for EEPROM to finish up.
1243	 */
1244	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1245	DELAY(1);
1246	for (i = 0; i < 1000; i++) {
1247		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1248			break;
1249		DELAY(50);
1250	}
1251	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1252	DELAY(1);
1253	/*
1254	 * Erase/write disable.
1255	 */
1256	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1257	fxp_eeprom_shiftin(sc, 0x4, 3);
1258	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1259	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1260	DELAY(1);
1261}
1262
1263/*
1264 * From NetBSD:
1265 *
1266 * Figure out EEPROM size.
1267 *
1268 * 559's can have either 64-word or 256-word EEPROMs, the 558
1269 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1270 * talks about the existence of 16 to 256 word EEPROMs.
1271 *
1272 * The only known sizes are 64 and 256, where the 256 version is used
1273 * by CardBus cards to store CIS information.
1274 *
1275 * The address is shifted in msb-to-lsb, and after the last
1276 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1277 * after which follows the actual data. We try to detect this zero, by
1278 * probing the data-out bit in the EEPROM control register just after
1279 * having shifted in a bit. If the bit is zero, we assume we've
1280 * shifted enough address bits. The data-out should be tri-state,
1281 * before this, which should translate to a logical one.
1282 */
1283static void
1284fxp_autosize_eeprom(struct fxp_softc *sc)
1285{
1286
1287	/* guess maximum size of 256 words */
1288	sc->eeprom_size = 8;
1289
1290	/* autosize */
1291	(void) fxp_eeprom_getword(sc, 0, 1);
1292}
1293
1294static void
1295fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1296{
1297	int i;
1298
1299	for (i = 0; i < words; i++)
1300		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1301}
1302
1303static void
1304fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1305{
1306	int i;
1307
1308	for (i = 0; i < words; i++)
1309		fxp_eeprom_putword(sc, offset + i, data[i]);
1310}
1311
1312static void
1313fxp_load_eeprom(struct fxp_softc *sc)
1314{
1315	int i;
1316	uint16_t cksum;
1317
1318	fxp_read_eeprom(sc, sc->eeprom, 0, 1 << sc->eeprom_size);
1319	cksum = 0;
1320	for (i = 0; i < (1 << sc->eeprom_size) - 1; i++)
1321		cksum += sc->eeprom[i];
1322	cksum = 0xBABA - cksum;
1323	if (cksum != sc->eeprom[(1 << sc->eeprom_size) - 1])
1324		device_printf(sc->dev,
1325		    "EEPROM checksum mismatch! (0x%04x -> 0x%04x)\n",
1326		    cksum, sc->eeprom[(1 << sc->eeprom_size) - 1]);
1327}
1328
1329/*
1330 * Grab the softc lock and call the real fxp_start_body() routine
1331 */
1332static void
1333fxp_start(if_t ifp)
1334{
1335	struct fxp_softc *sc = if_getsoftc(ifp);
1336
1337	FXP_LOCK(sc);
1338	fxp_start_body(ifp);
1339	FXP_UNLOCK(sc);
1340}
1341
1342/*
1343 * Start packet transmission on the interface.
1344 * This routine must be called with the softc lock held, and is an
1345 * internal entry point only.
1346 */
1347static void
1348fxp_start_body(if_t ifp)
1349{
1350	struct fxp_softc *sc = if_getsoftc(ifp);
1351	struct mbuf *mb_head;
1352	int txqueued;
1353
1354	FXP_LOCK_ASSERT(sc, MA_OWNED);
1355
1356	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1357	    IFF_DRV_RUNNING)
1358		return;
1359
1360	if (sc->tx_queued > FXP_NTXCB_HIWAT)
1361		fxp_txeof(sc);
1362	/*
1363	 * We're finished if there is nothing more to add to the list or if
1364	 * we're all filled up with buffers to transmit.
1365	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1366	 *       a NOP command when needed.
1367	 */
1368	txqueued = 0;
1369	while (!if_sendq_empty(ifp) && sc->tx_queued < FXP_NTXCB - 1) {
1370
1371		/*
1372		 * Grab a packet to transmit.
1373		 */
1374		mb_head = if_dequeue(ifp);
1375		if (mb_head == NULL)
1376			break;
1377
1378		if (fxp_encap(sc, &mb_head)) {
1379			if (mb_head == NULL)
1380				break;
1381			if_sendq_prepend(ifp, mb_head);
1382			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1383		}
1384		txqueued++;
1385		/*
1386		 * Pass packet to bpf if there is a listener.
1387		 */
1388		if_bpfmtap(ifp, mb_head);
1389	}
1390
1391	/*
1392	 * We're finished. If we added to the list, issue a RESUME to get DMA
1393	 * going again if suspended.
1394	 */
1395	if (txqueued > 0) {
1396		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1397		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1398		fxp_scb_wait(sc);
1399		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1400		/*
1401		 * Set a 5 second timer just in case we don't hear
1402		 * from the card again.
1403		 */
1404		sc->watchdog_timer = 5;
1405	}
1406}
1407
1408static int
1409fxp_encap(struct fxp_softc *sc, struct mbuf **m_head)
1410{
1411	if_t ifp;
1412	struct mbuf *m;
1413	struct fxp_tx *txp;
1414	struct fxp_cb_tx *cbp;
1415	struct tcphdr *tcp;
1416	bus_dma_segment_t segs[FXP_NTXSEG];
1417	int error, i, nseg, tcp_payload;
1418
1419	FXP_LOCK_ASSERT(sc, MA_OWNED);
1420	ifp = sc->ifp;
1421
1422	tcp_payload = 0;
1423	tcp = NULL;
1424	/*
1425	 * Get pointer to next available tx desc.
1426	 */
1427	txp = sc->fxp_desc.tx_last->tx_next;
1428
1429	/*
1430	 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1431	 * Ethernet Controller Family Open Source Software
1432	 * Developer Manual says:
1433	 *   Using software parsing is only allowed with legal
1434	 *   TCP/IP or UDP/IP packets.
1435	 *   ...
1436	 *   For all other datagrams, hardware parsing must
1437	 *   be used.
1438	 * Software parsing appears to truncate ICMP and
1439	 * fragmented UDP packets that contain one to three
1440	 * bytes in the second (and final) mbuf of the packet.
1441	 */
1442	if (sc->flags & FXP_FLAG_EXT_RFA)
1443		txp->tx_cb->ipcb_ip_activation_high =
1444		    FXP_IPCB_HARDWAREPARSING_ENABLE;
1445
1446	m = *m_head;
1447	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1448		/*
1449		 * 82550/82551 requires ethernet/IP/TCP headers must be
1450		 * contained in the first active transmit buffer.
1451		 */
1452		struct ether_header *eh;
1453		struct ip *ip;
1454		uint32_t ip_off, poff;
1455
1456		if (M_WRITABLE(*m_head) == 0) {
1457			/* Get a writable copy. */
1458			m = m_dup(*m_head, M_NOWAIT);
1459			m_freem(*m_head);
1460			if (m == NULL) {
1461				*m_head = NULL;
1462				return (ENOBUFS);
1463			}
1464			*m_head = m;
1465		}
1466		ip_off = sizeof(struct ether_header);
1467		m = m_pullup(*m_head, ip_off);
1468		if (m == NULL) {
1469			*m_head = NULL;
1470			return (ENOBUFS);
1471		}
1472		eh = mtod(m, struct ether_header *);
1473		/* Check the existence of VLAN tag. */
1474		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1475			ip_off = sizeof(struct ether_vlan_header);
1476			m = m_pullup(m, ip_off);
1477			if (m == NULL) {
1478				*m_head = NULL;
1479				return (ENOBUFS);
1480			}
1481		}
1482		m = m_pullup(m, ip_off + sizeof(struct ip));
1483		if (m == NULL) {
1484			*m_head = NULL;
1485			return (ENOBUFS);
1486		}
1487		ip = (struct ip *)(mtod(m, char *) + ip_off);
1488		poff = ip_off + (ip->ip_hl << 2);
1489		m = m_pullup(m, poff + sizeof(struct tcphdr));
1490		if (m == NULL) {
1491			*m_head = NULL;
1492			return (ENOBUFS);
1493		}
1494		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1495		m = m_pullup(m, poff + (tcp->th_off << 2));
1496		if (m == NULL) {
1497			*m_head = NULL;
1498			return (ENOBUFS);
1499		}
1500
1501		/*
1502		 * Since 82550/82551 doesn't modify IP length and pseudo
1503		 * checksum in the first frame driver should compute it.
1504		 */
1505		ip = (struct ip *)(mtod(m, char *) + ip_off);
1506		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1507		ip->ip_sum = 0;
1508		ip->ip_len = htons(m->m_pkthdr.tso_segsz + (ip->ip_hl << 2) +
1509		    (tcp->th_off << 2));
1510		tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1511		    htons(IPPROTO_TCP + (tcp->th_off << 2) +
1512		    m->m_pkthdr.tso_segsz));
1513		/* Compute total TCP payload. */
1514		tcp_payload = m->m_pkthdr.len - ip_off - (ip->ip_hl << 2);
1515		tcp_payload -= tcp->th_off << 2;
1516		*m_head = m;
1517	} else if (m->m_pkthdr.csum_flags & FXP_CSUM_FEATURES) {
1518		/*
1519		 * Deal with TCP/IP checksum offload. Note that
1520		 * in order for TCP checksum offload to work,
1521		 * the pseudo header checksum must have already
1522		 * been computed and stored in the checksum field
1523		 * in the TCP header. The stack should have
1524		 * already done this for us.
1525		 */
1526		txp->tx_cb->ipcb_ip_schedule = FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1527		if (m->m_pkthdr.csum_flags & CSUM_TCP)
1528			txp->tx_cb->ipcb_ip_schedule |= FXP_IPCB_TCP_PACKET;
1529
1530#ifdef FXP_IP_CSUM_WAR
1531		/*
1532		 * XXX The 82550 chip appears to have trouble
1533		 * dealing with IP header checksums in very small
1534		 * datagrams, namely fragments from 1 to 3 bytes
1535		 * in size. For example, say you want to transmit
1536		 * a UDP packet of 1473 bytes. The packet will be
1537		 * fragmented over two IP datagrams, the latter
1538		 * containing only one byte of data. The 82550 will
1539		 * botch the header checksum on the 1-byte fragment.
1540		 * As long as the datagram contains 4 or more bytes
1541		 * of data, you're ok.
1542		 *
1543                 * The following code attempts to work around this
1544		 * problem: if the datagram is less than 38 bytes
1545		 * in size (14 bytes ether header, 20 bytes IP header,
1546		 * plus 4 bytes of data), we punt and compute the IP
1547		 * header checksum by hand. This workaround doesn't
1548		 * work very well, however, since it can be fooled
1549		 * by things like VLAN tags and IP options that make
1550		 * the header sizes/offsets vary.
1551		 */
1552
1553		if (m->m_pkthdr.csum_flags & CSUM_IP) {
1554			if (m->m_pkthdr.len < 38) {
1555				struct ip *ip;
1556				m->m_data += ETHER_HDR_LEN;
1557				ip = mtod(m, struct ip *);
1558				ip->ip_sum = in_cksum(m, ip->ip_hl << 2);
1559				m->m_data -= ETHER_HDR_LEN;
1560				m->m_pkthdr.csum_flags &= ~CSUM_IP;
1561			} else {
1562				txp->tx_cb->ipcb_ip_activation_high =
1563				    FXP_IPCB_HARDWAREPARSING_ENABLE;
1564				txp->tx_cb->ipcb_ip_schedule |=
1565				    FXP_IPCB_IP_CHECKSUM_ENABLE;
1566			}
1567		}
1568#endif
1569	}
1570
1571	error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map, *m_head,
1572	    segs, &nseg, 0);
1573	if (error == EFBIG) {
1574		m = m_collapse(*m_head, M_NOWAIT, sc->maxtxseg);
1575		if (m == NULL) {
1576			m_freem(*m_head);
1577			*m_head = NULL;
1578			return (ENOMEM);
1579		}
1580		*m_head = m;
1581		error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map,
1582		    *m_head, segs, &nseg, 0);
1583		if (error != 0) {
1584			m_freem(*m_head);
1585			*m_head = NULL;
1586			return (ENOMEM);
1587		}
1588	} else if (error != 0)
1589		return (error);
1590	if (nseg == 0) {
1591		m_freem(*m_head);
1592		*m_head = NULL;
1593		return (EIO);
1594	}
1595
1596	KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments"));
1597	bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map, BUS_DMASYNC_PREWRITE);
1598
1599	cbp = txp->tx_cb;
1600	for (i = 0; i < nseg; i++) {
1601		/*
1602		 * If this is an 82550/82551, then we're using extended
1603		 * TxCBs _and_ we're using checksum offload. This means
1604		 * that the TxCB is really an IPCB. One major difference
1605		 * between the two is that with plain extended TxCBs,
1606		 * the bottom half of the TxCB contains two entries from
1607		 * the TBD array, whereas IPCBs contain just one entry:
1608		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1609		 * checksum offload control bits. So to make things work
1610		 * right, we have to start filling in the TBD array
1611		 * starting from a different place depending on whether
1612		 * the chip is an 82550/82551 or not.
1613		 */
1614		if (sc->flags & FXP_FLAG_EXT_RFA) {
1615			cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1616			cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1617		} else {
1618			cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1619			cbp->tbd[i].tb_size = htole32(segs[i].ds_len);
1620		}
1621	}
1622	if (sc->flags & FXP_FLAG_EXT_RFA) {
1623		/* Configure dynamic TBD for 82550/82551. */
1624		cbp->tbd_number = 0xFF;
1625		cbp->tbd[nseg].tb_size |= htole32(0x8000);
1626	} else
1627		cbp->tbd_number = nseg;
1628	/* Configure TSO. */
1629	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1630		cbp->tbd[-1].tb_size = htole32(m->m_pkthdr.tso_segsz << 16);
1631		cbp->tbd[1].tb_size |= htole32(tcp_payload << 16);
1632		cbp->ipcb_ip_schedule |= FXP_IPCB_LARGESEND_ENABLE |
1633		    FXP_IPCB_IP_CHECKSUM_ENABLE |
1634		    FXP_IPCB_TCP_PACKET |
1635		    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1636	}
1637	/* Configure VLAN hardware tag insertion. */
1638	if ((m->m_flags & M_VLANTAG) != 0) {
1639		cbp->ipcb_vlan_id = htons(m->m_pkthdr.ether_vtag);
1640		txp->tx_cb->ipcb_ip_activation_high |=
1641		    FXP_IPCB_INSERTVLAN_ENABLE;
1642	}
1643
1644	txp->tx_mbuf = m;
1645	txp->tx_cb->cb_status = 0;
1646	txp->tx_cb->byte_count = 0;
1647	if (sc->tx_queued != FXP_CXINT_THRESH - 1)
1648		txp->tx_cb->cb_command =
1649		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1650		    FXP_CB_COMMAND_S);
1651	else
1652		txp->tx_cb->cb_command =
1653		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1654		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1655	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0)
1656		txp->tx_cb->tx_threshold = tx_threshold;
1657
1658	/*
1659	 * Advance the end of list forward.
1660	 */
1661	sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S);
1662	sc->fxp_desc.tx_last = txp;
1663
1664	/*
1665	 * Advance the beginning of the list forward if there are
1666	 * no other packets queued (when nothing is queued, tx_first
1667	 * sits on the last TxCB that was sent out).
1668	 */
1669	if (sc->tx_queued == 0)
1670		sc->fxp_desc.tx_first = txp;
1671
1672	sc->tx_queued++;
1673
1674	return (0);
1675}
1676
1677#ifdef DEVICE_POLLING
1678static poll_handler_t fxp_poll;
1679
1680static int
1681fxp_poll(if_t ifp, enum poll_cmd cmd, int count)
1682{
1683	struct fxp_softc *sc = if_getsoftc(ifp);
1684	uint8_t statack;
1685	int rx_npkts = 0;
1686
1687	FXP_LOCK(sc);
1688	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
1689		FXP_UNLOCK(sc);
1690		return (rx_npkts);
1691	}
1692
1693	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1694	    FXP_SCB_STATACK_FR;
1695	if (cmd == POLL_AND_CHECK_STATUS) {
1696		uint8_t tmp;
1697
1698		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1699		if (tmp == 0xff || tmp == 0) {
1700			FXP_UNLOCK(sc);
1701			return (rx_npkts); /* nothing to do */
1702		}
1703		tmp &= ~statack;
1704		/* ack what we can */
1705		if (tmp != 0)
1706			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1707		statack |= tmp;
1708	}
1709	rx_npkts = fxp_intr_body(sc, ifp, statack, count);
1710	FXP_UNLOCK(sc);
1711	return (rx_npkts);
1712}
1713#endif /* DEVICE_POLLING */
1714
1715/*
1716 * Process interface interrupts.
1717 */
1718static void
1719fxp_intr(void *xsc)
1720{
1721	struct fxp_softc *sc = xsc;
1722	if_t ifp = sc->ifp;
1723	uint8_t statack;
1724
1725	FXP_LOCK(sc);
1726	if (sc->suspended) {
1727		FXP_UNLOCK(sc);
1728		return;
1729	}
1730
1731#ifdef DEVICE_POLLING
1732	if (if_getcapenable(ifp) & IFCAP_POLLING) {
1733		FXP_UNLOCK(sc);
1734		return;
1735	}
1736#endif
1737#ifndef __HAIKU__
1738	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1739#else
1740	statack = (uint8_t)atomic_get((int32 *)&sc->sc_statack);
1741	do {
1742#endif
1743		/*
1744		 * It should not be possible to have all bits set; the
1745		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1746		 * all bits are set, this may indicate that the card has
1747		 * been physically ejected, so ignore it.
1748		 */
1749		if (statack == 0xff) {
1750			FXP_UNLOCK(sc);
1751			return;
1752		}
1753
1754		/*
1755		 * First ACK all the interrupts in this pass.
1756		 */
1757		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1758		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1759			fxp_intr_body(sc, ifp, statack, -1);
1760#ifndef __HAIKU__
1761	}
1762#else
1763	} while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0);
1764#endif
1765	FXP_UNLOCK(sc);
1766}
1767
1768static void
1769fxp_txeof(struct fxp_softc *sc)
1770{
1771	if_t ifp;
1772	struct fxp_tx *txp;
1773
1774	ifp = sc->ifp;
1775	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1776	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1777	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1778	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1779	    txp = txp->tx_next) {
1780		if (txp->tx_mbuf != NULL) {
1781			bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map,
1782			    BUS_DMASYNC_POSTWRITE);
1783			bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map);
1784			m_freem(txp->tx_mbuf);
1785			txp->tx_mbuf = NULL;
1786			/* clear this to reset csum offload bits */
1787			txp->tx_cb->tbd[0].tb_addr = 0;
1788		}
1789		sc->tx_queued--;
1790		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1791	}
1792	sc->fxp_desc.tx_first = txp;
1793	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1794	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1795	if (sc->tx_queued == 0)
1796		sc->watchdog_timer = 0;
1797}
1798
1799static void
1800fxp_rxcsum(struct fxp_softc *sc, if_t ifp, struct mbuf *m,
1801    uint16_t status, int pos)
1802{
1803	struct ether_header *eh;
1804	struct ip *ip;
1805	struct udphdr *uh;
1806	int32_t hlen, len, pktlen, temp32;
1807	uint16_t csum, *opts;
1808
1809	if ((sc->flags & FXP_FLAG_82559_RXCSUM) == 0) {
1810		if ((status & FXP_RFA_STATUS_PARSE) != 0) {
1811			if (status & FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1812				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1813			if (status & FXP_RFDX_CS_IP_CSUM_VALID)
1814				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1815			if ((status & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1816			    (status & FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1817				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
1818				    CSUM_PSEUDO_HDR;
1819				m->m_pkthdr.csum_data = 0xffff;
1820			}
1821		}
1822		return;
1823	}
1824
1825	pktlen = m->m_pkthdr.len;
1826	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
1827		return;
1828	eh = mtod(m, struct ether_header *);
1829	if (eh->ether_type != htons(ETHERTYPE_IP))
1830		return;
1831	ip = (struct ip *)(eh + 1);
1832	if (ip->ip_v != IPVERSION)
1833		return;
1834
1835	hlen = ip->ip_hl << 2;
1836	pktlen -= sizeof(struct ether_header);
1837	if (hlen < sizeof(struct ip))
1838		return;
1839	if (ntohs(ip->ip_len) < hlen)
1840		return;
1841	if (ntohs(ip->ip_len) != pktlen)
1842		return;
1843	if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
1844		return;	/* can't handle fragmented packet */
1845
1846	switch (ip->ip_p) {
1847	case IPPROTO_TCP:
1848		if (pktlen < (hlen + sizeof(struct tcphdr)))
1849			return;
1850		break;
1851	case IPPROTO_UDP:
1852		if (pktlen < (hlen + sizeof(struct udphdr)))
1853			return;
1854		uh = (struct udphdr *)((caddr_t)ip + hlen);
1855		if (uh->uh_sum == 0)
1856			return; /* no checksum */
1857		break;
1858	default:
1859		return;
1860	}
1861	/* Extract computed checksum. */
1862	csum = be16dec(mtod(m, char *) + pos);
1863	/* checksum fixup for IP options */
1864	len = hlen - sizeof(struct ip);
1865	if (len > 0) {
1866		opts = (uint16_t *)(ip + 1);
1867		for (; len > 0; len -= sizeof(uint16_t), opts++) {
1868			temp32 = csum - *opts;
1869			temp32 = (temp32 >> 16) + (temp32 & 65535);
1870			csum = temp32 & 65535;
1871		}
1872	}
1873	m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
1874	m->m_pkthdr.csum_data = csum;
1875}
1876
1877static int
1878fxp_intr_body(struct fxp_softc *sc, if_t ifp, uint8_t statack,
1879    int count)
1880{
1881	struct mbuf *m;
1882	struct fxp_rx *rxp;
1883	struct fxp_rfa *rfa;
1884	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1885	int rx_npkts;
1886	uint16_t status;
1887
1888	rx_npkts = 0;
1889	FXP_LOCK_ASSERT(sc, MA_OWNED);
1890
1891	if (rnr)
1892		sc->rnr++;
1893#ifdef DEVICE_POLLING
1894	/* Pick up a deferred RNR condition if `count' ran out last time. */
1895	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1896		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1897		rnr = 1;
1898	}
1899#endif
1900
1901	/*
1902	 * Free any finished transmit mbuf chains.
1903	 *
1904	 * Handle the CNA event likt a CXTNO event. It used to
1905	 * be that this event (control unit not ready) was not
1906	 * encountered, but it is now with the SMPng modifications.
1907	 * The exact sequence of events that occur when the interface
1908	 * is brought up are different now, and if this event
1909	 * goes unhandled, the configuration/rxfilter setup sequence
1910	 * can stall for several seconds. The result is that no
1911	 * packets go out onto the wire for about 5 to 10 seconds
1912	 * after the interface is ifconfig'ed for the first time.
1913	 */
1914	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA))
1915		fxp_txeof(sc);
1916
1917	/*
1918	 * Try to start more packets transmitting.
1919	 */
1920	if (!if_sendq_empty(ifp))
1921		fxp_start_body(ifp);
1922
1923	/*
1924	 * Just return if nothing happened on the receive side.
1925	 */
1926	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1927		return (rx_npkts);
1928
1929	/*
1930	 * Process receiver interrupts. If a no-resource (RNR)
1931	 * condition exists, get whatever packets we can and
1932	 * re-start the receiver.
1933	 *
1934	 * When using polling, we do not process the list to completion,
1935	 * so when we get an RNR interrupt we must defer the restart
1936	 * until we hit the last buffer with the C bit set.
1937	 * If we run out of cycles and rfa_headm has the C bit set,
1938	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1939	 * that the info will be used in the subsequent polling cycle.
1940	 */
1941	for (;;) {
1942		rxp = sc->fxp_desc.rx_head;
1943		m = rxp->rx_mbuf;
1944		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1945		    RFA_ALIGNMENT_FUDGE);
1946		bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
1947		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1948
1949#ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1950		if (count >= 0 && count-- == 0) {
1951			if (rnr) {
1952				/* Defer RNR processing until the next time. */
1953				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1954				rnr = 0;
1955			}
1956			break;
1957		}
1958#endif /* DEVICE_POLLING */
1959
1960		status = le16toh(rfa->rfa_status);
1961		if ((status & FXP_RFA_STATUS_C) == 0)
1962			break;
1963
1964		if ((status & FXP_RFA_STATUS_RNR) != 0)
1965			rnr++;
1966		/*
1967		 * Advance head forward.
1968		 */
1969		sc->fxp_desc.rx_head = rxp->rx_next;
1970
1971		/*
1972		 * Add a new buffer to the receive chain.
1973		 * If this fails, the old buffer is recycled
1974		 * instead.
1975		 */
1976		if (fxp_new_rfabuf(sc, rxp) == 0) {
1977			int total_len;
1978
1979			/*
1980			 * Fetch packet length (the top 2 bits of
1981			 * actual_size are flags set by the controller
1982			 * upon completion), and drop the packet in case
1983			 * of bogus length or CRC errors.
1984			 */
1985			total_len = le16toh(rfa->actual_size) & 0x3fff;
1986			if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
1987			    (if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) {
1988				/* Adjust for appended checksum bytes. */
1989				total_len -= 2;
1990			}
1991			if (total_len < (int)sizeof(struct ether_header) ||
1992			    total_len > (MCLBYTES - RFA_ALIGNMENT_FUDGE -
1993			    sc->rfa_size) ||
1994			    status & (FXP_RFA_STATUS_CRC |
1995			    FXP_RFA_STATUS_ALIGN | FXP_RFA_STATUS_OVERRUN)) {
1996				m_freem(m);
1997				fxp_add_rfabuf(sc, rxp);
1998				continue;
1999			}
2000
2001			m->m_pkthdr.len = m->m_len = total_len;
2002			if_setrcvif(m, ifp);
2003
2004                        /* Do IP checksum checking. */
2005			if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
2006				fxp_rxcsum(sc, ifp, m, status, total_len);
2007			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0 &&
2008			    (status & FXP_RFA_STATUS_VLAN) != 0) {
2009				m->m_pkthdr.ether_vtag =
2010				    ntohs(rfa->rfax_vlan_id);
2011				m->m_flags |= M_VLANTAG;
2012			}
2013			/*
2014			 * Drop locks before calling if_input() since it
2015			 * may re-enter fxp_start() in the netisr case.
2016			 * This would result in a lock reversal.  Better
2017			 * performance might be obtained by chaining all
2018			 * packets received, dropping the lock, and then
2019			 * calling if_input() on each one.
2020			 */
2021			FXP_UNLOCK(sc);
2022			if_input(ifp, m);
2023			FXP_LOCK(sc);
2024			rx_npkts++;
2025			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
2026				return (rx_npkts);
2027		} else {
2028			/* Reuse RFA and loaded DMA map. */
2029			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2030			fxp_discard_rfabuf(sc, rxp);
2031		}
2032		fxp_add_rfabuf(sc, rxp);
2033	}
2034	if (rnr) {
2035		fxp_scb_wait(sc);
2036		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
2037		    sc->fxp_desc.rx_head->rx_addr);
2038		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2039	}
2040	return (rx_npkts);
2041}
2042
2043static void
2044fxp_update_stats(struct fxp_softc *sc)
2045{
2046	if_t ifp = sc->ifp;
2047	struct fxp_stats *sp = sc->fxp_stats;
2048	struct fxp_hwstats *hsp;
2049	uint32_t *status;
2050
2051	FXP_LOCK_ASSERT(sc, MA_OWNED);
2052
2053	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2054	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2055	/* Update statistical counters. */
2056	if (sc->revision >= FXP_REV_82559_A0)
2057		status = &sp->completion_status;
2058	else if (sc->revision >= FXP_REV_82558_A4)
2059		status = (uint32_t *)&sp->tx_tco;
2060	else
2061		status = &sp->tx_pause;
2062	if (*status == htole32(FXP_STATS_DR_COMPLETE)) {
2063		hsp = &sc->fxp_hwstats;
2064		hsp->tx_good += le32toh(sp->tx_good);
2065		hsp->tx_maxcols += le32toh(sp->tx_maxcols);
2066		hsp->tx_latecols += le32toh(sp->tx_latecols);
2067		hsp->tx_underruns += le32toh(sp->tx_underruns);
2068		hsp->tx_lostcrs += le32toh(sp->tx_lostcrs);
2069		hsp->tx_deffered += le32toh(sp->tx_deffered);
2070		hsp->tx_single_collisions += le32toh(sp->tx_single_collisions);
2071		hsp->tx_multiple_collisions +=
2072		    le32toh(sp->tx_multiple_collisions);
2073		hsp->tx_total_collisions += le32toh(sp->tx_total_collisions);
2074		hsp->rx_good += le32toh(sp->rx_good);
2075		hsp->rx_crc_errors += le32toh(sp->rx_crc_errors);
2076		hsp->rx_alignment_errors += le32toh(sp->rx_alignment_errors);
2077		hsp->rx_rnr_errors += le32toh(sp->rx_rnr_errors);
2078		hsp->rx_overrun_errors += le32toh(sp->rx_overrun_errors);
2079		hsp->rx_cdt_errors += le32toh(sp->rx_cdt_errors);
2080		hsp->rx_shortframes += le32toh(sp->rx_shortframes);
2081		hsp->tx_pause += le32toh(sp->tx_pause);
2082		hsp->rx_pause += le32toh(sp->rx_pause);
2083		hsp->rx_controls += le32toh(sp->rx_controls);
2084		hsp->tx_tco += le16toh(sp->tx_tco);
2085		hsp->rx_tco += le16toh(sp->rx_tco);
2086
2087		if_inc_counter(ifp, IFCOUNTER_OPACKETS, le32toh(sp->tx_good));
2088		if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
2089		    le32toh(sp->tx_total_collisions));
2090		if (sp->rx_good) {
2091			if_inc_counter(ifp, IFCOUNTER_IPACKETS,
2092			    le32toh(sp->rx_good));
2093			sc->rx_idle_secs = 0;
2094		} else if (sc->flags & FXP_FLAG_RXBUG) {
2095			/*
2096			 * Receiver's been idle for another second.
2097			 */
2098			sc->rx_idle_secs++;
2099		}
2100		if_inc_counter(ifp, IFCOUNTER_IERRORS,
2101		    le32toh(sp->rx_crc_errors) +
2102		    le32toh(sp->rx_alignment_errors) +
2103		    le32toh(sp->rx_rnr_errors) +
2104		    le32toh(sp->rx_overrun_errors));
2105		/*
2106		 * If any transmit underruns occurred, bump up the transmit
2107		 * threshold by another 512 bytes (64 * 8).
2108		 */
2109		if (sp->tx_underruns) {
2110			if_inc_counter(ifp, IFCOUNTER_OERRORS,
2111			    le32toh(sp->tx_underruns));
2112			if (tx_threshold < 192)
2113				tx_threshold += 64;
2114		}
2115		*status = 0;
2116		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2117		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2118	}
2119}
2120
2121/*
2122 * Update packet in/out/collision statistics. The i82557 doesn't
2123 * allow you to access these counters without doing a fairly
2124 * expensive DMA to get _all_ of the statistics it maintains, so
2125 * we do this operation here only once per second. The statistics
2126 * counters in the kernel are updated from the previous dump-stats
2127 * DMA and then a new dump-stats DMA is started. The on-chip
2128 * counters are zeroed when the DMA completes. If we can't start
2129 * the DMA immediately, we don't wait - we just prepare to read
2130 * them again next time.
2131 */
2132static void
2133fxp_tick(void *xsc)
2134{
2135	struct fxp_softc *sc = xsc;
2136	if_t ifp = sc->ifp;
2137
2138	FXP_LOCK_ASSERT(sc, MA_OWNED);
2139
2140	/* Update statistical counters. */
2141	fxp_update_stats(sc);
2142
2143	/*
2144	 * Release any xmit buffers that have completed DMA. This isn't
2145	 * strictly necessary to do here, but it's advantagous for mbufs
2146	 * with external storage to be released in a timely manner rather
2147	 * than being defered for a potentially long time. This limits
2148	 * the delay to a maximum of one second.
2149	 */
2150	fxp_txeof(sc);
2151
2152	/*
2153	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
2154	 * then assume the receiver has locked up and attempt to clear
2155	 * the condition by reprogramming the multicast filter. This is
2156	 * a work-around for a bug in the 82557 where the receiver locks
2157	 * up if it gets certain types of garbage in the synchronization
2158	 * bits prior to the packet header. This bug is supposed to only
2159	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
2160	 * mode as well (perhaps due to a 10/100 speed transition).
2161	 */
2162	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
2163		sc->rx_idle_secs = 0;
2164		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2165			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2166			fxp_init_body(sc, 1);
2167		}
2168		return;
2169	}
2170	/*
2171	 * If there is no pending command, start another stats
2172	 * dump. Otherwise punt for now.
2173	 */
2174	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
2175		/*
2176		 * Start another stats dump.
2177		 */
2178		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
2179	}
2180	if (sc->miibus != NULL)
2181		mii_tick(device_get_softc(sc->miibus));
2182
2183	/*
2184	 * Check that chip hasn't hung.
2185	 */
2186	fxp_watchdog(sc);
2187
2188	/*
2189	 * Schedule another timeout one second from now.
2190	 */
2191	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2192}
2193
2194/*
2195 * Stop the interface. Cancels the statistics updater and resets
2196 * the interface.
2197 */
2198static void
2199fxp_stop(struct fxp_softc *sc)
2200{
2201	if_t ifp = sc->ifp;
2202	struct fxp_tx *txp;
2203	int i;
2204
2205	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
2206	sc->watchdog_timer = 0;
2207
2208	/*
2209	 * Cancel stats updater.
2210	 */
2211	callout_stop(&sc->stat_ch);
2212
2213	/*
2214	 * Preserve PCI configuration, configure, IA/multicast
2215	 * setup and put RU and CU into idle state.
2216	 */
2217	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
2218	DELAY(50);
2219	/* Disable interrupts. */
2220	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2221
2222	fxp_update_stats(sc);
2223
2224	/*
2225	 * Release any xmit buffers.
2226	 */
2227	txp = sc->fxp_desc.tx_list;
2228	for (i = 0; i < FXP_NTXCB; i++) {
2229		if (txp[i].tx_mbuf != NULL) {
2230			bus_dmamap_sync(sc->fxp_txmtag, txp[i].tx_map,
2231			    BUS_DMASYNC_POSTWRITE);
2232			bus_dmamap_unload(sc->fxp_txmtag, txp[i].tx_map);
2233			m_freem(txp[i].tx_mbuf);
2234			txp[i].tx_mbuf = NULL;
2235			/* clear this to reset csum offload bits */
2236			txp[i].tx_cb->tbd[0].tb_addr = 0;
2237		}
2238	}
2239	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2240	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2241	sc->tx_queued = 0;
2242}
2243
2244/*
2245 * Watchdog/transmission transmit timeout handler. Called when a
2246 * transmission is started on the interface, but no interrupt is
2247 * received before the timeout. This usually indicates that the
2248 * card has wedged for some reason.
2249 */
2250static void
2251fxp_watchdog(struct fxp_softc *sc)
2252{
2253	if_t ifp = sc->ifp;
2254
2255	FXP_LOCK_ASSERT(sc, MA_OWNED);
2256
2257	if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
2258		return;
2259
2260	device_printf(sc->dev, "device timeout\n");
2261	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2262
2263	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2264	fxp_init_body(sc, 1);
2265}
2266
2267/*
2268 * Acquire locks and then call the real initialization function.  This
2269 * is necessary because ether_ioctl() calls if_init() and this would
2270 * result in mutex recursion if the mutex was held.
2271 */
2272static void
2273fxp_init(void *xsc)
2274{
2275	struct fxp_softc *sc = xsc;
2276
2277	FXP_LOCK(sc);
2278	fxp_init_body(sc, 1);
2279	FXP_UNLOCK(sc);
2280}
2281
2282/*
2283 * Perform device initialization. This routine must be called with the
2284 * softc lock held.
2285 */
2286static void
2287fxp_init_body(struct fxp_softc *sc, int setmedia)
2288{
2289	if_t ifp = sc->ifp;
2290	struct mii_data *mii;
2291	struct fxp_cb_config *cbp;
2292	struct fxp_cb_ias *cb_ias;
2293	struct fxp_cb_tx *tcbp;
2294	struct fxp_tx *txp;
2295	int i, prm;
2296
2297	FXP_LOCK_ASSERT(sc, MA_OWNED);
2298
2299	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2300		return;
2301
2302	/*
2303	 * Cancel any pending I/O
2304	 */
2305	fxp_stop(sc);
2306
2307	/*
2308	 * Issue software reset, which also unloads the microcode.
2309	 */
2310	sc->flags &= ~FXP_FLAG_UCODE;
2311	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
2312	DELAY(50);
2313
2314	prm = (if_getflags(ifp) & IFF_PROMISC) ? 1 : 0;
2315
2316	/*
2317	 * Initialize base of CBL and RFA memory. Loading with zero
2318	 * sets it up for regular linear addressing.
2319	 */
2320	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
2321	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
2322
2323	fxp_scb_wait(sc);
2324	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
2325
2326	/*
2327	 * Initialize base of dump-stats buffer.
2328	 */
2329	fxp_scb_wait(sc);
2330	bzero(sc->fxp_stats, sizeof(struct fxp_stats));
2331	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2332	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2333	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
2334	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
2335
2336	/*
2337	 * Attempt to load microcode if requested.
2338	 * For ICH based controllers do not load microcode.
2339	 */
2340	if (sc->ident->ich == 0) {
2341		if (if_getflags(ifp) & IFF_LINK0 &&
2342		    (sc->flags & FXP_FLAG_UCODE) == 0)
2343			fxp_load_ucode(sc);
2344	}
2345
2346	/*
2347	 * Set IFF_ALLMULTI status. It's needed in configure action
2348	 * command.
2349	 */
2350	fxp_mc_addrs(sc);
2351
2352	/*
2353	 * We temporarily use memory that contains the TxCB list to
2354	 * construct the config CB. The TxCB list memory is rebuilt
2355	 * later.
2356	 */
2357	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
2358
2359	/*
2360	 * This bcopy is kind of disgusting, but there are a bunch of must be
2361	 * zero and must be one bits in this structure and this is the easiest
2362	 * way to initialize them all to proper values.
2363	 */
2364	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
2365
2366	cbp->cb_status =	0;
2367	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
2368	    FXP_CB_COMMAND_EL);
2369	cbp->link_addr =	0xffffffff;	/* (no) next command */
2370	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2371	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2372	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2373	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2374	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2375	cbp->type_enable =	0;	/* actually reserved */
2376	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2377	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2378	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2379	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2380	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2381	cbp->late_scb =		0;	/* (don't) defer SCB update */
2382	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2383	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2384	cbp->ci_int =		1;	/* interrupt on CU idle */
2385	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2386	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2387	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2388	cbp->save_bf =		sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
2389	cbp->disc_short_rx =	!prm;	/* discard short packets */
2390	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2391	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2392	cbp->dyn_tbd =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2393	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2394	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2395	cbp->csma_dis =		0;	/* (don't) disable link */
2396	cbp->tcp_udp_cksum =	((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
2397	    (if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) ? 1 : 0;
2398	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2399	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2400	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2401	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2402	cbp->nsai =		1;	/* (don't) disable source addr insert */
2403	cbp->preamble_length =	2;	/* (7 byte) preamble */
2404	cbp->loopback =		0;	/* (don't) loopback */
2405	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2406	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2407	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2408	cbp->promiscuous =	prm;	/* promiscuous mode */
2409	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2410	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2411	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2412	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2413	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2414
2415	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2416	cbp->padding =		1;	/* (do) pad short tx packets */
2417	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2418	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2419	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2420	cbp->magic_pkt_dis =	sc->flags & FXP_FLAG_WOL ? 0 : 1;
2421	cbp->force_fdx =	0;	/* (don't) force full duplex */
2422	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2423	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2424	cbp->mc_all =		if_getflags(ifp) & IFF_ALLMULTI ? 1 : prm;
2425	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2426	cbp->vlan_strip_en =	((sc->flags & FXP_FLAG_EXT_RFA) != 0 &&
2427	    (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) ? 1 : 0;
2428
2429	if (sc->revision == FXP_REV_82557) {
2430		/*
2431		 * The 82557 has no hardware flow control, the values
2432		 * below are the defaults for the chip.
2433		 */
2434		cbp->fc_delay_lsb =	0;
2435		cbp->fc_delay_msb =	0x40;
2436		cbp->pri_fc_thresh =	3;
2437		cbp->tx_fc_dis =	0;
2438		cbp->rx_fc_restop =	0;
2439		cbp->rx_fc_restart =	0;
2440		cbp->fc_filter =	0;
2441		cbp->pri_fc_loc =	1;
2442	} else {
2443		/* Set pause RX FIFO threshold to 1KB. */
2444		CSR_WRITE_1(sc, FXP_CSR_FC_THRESH, 1);
2445		/* Set pause time. */
2446		cbp->fc_delay_lsb =	0xff;
2447		cbp->fc_delay_msb =	0xff;
2448		cbp->pri_fc_thresh =	3;
2449		mii = device_get_softc(sc->miibus);
2450		if ((IFM_OPTIONS(mii->mii_media_active) &
2451		    IFM_ETH_TXPAUSE) != 0)
2452			/* enable transmit FC */
2453			cbp->tx_fc_dis = 0;
2454		else
2455			/* disable transmit FC */
2456			cbp->tx_fc_dis = 1;
2457		if ((IFM_OPTIONS(mii->mii_media_active) &
2458		    IFM_ETH_RXPAUSE) != 0) {
2459			/* enable FC restart/restop frames */
2460			cbp->rx_fc_restart = 1;
2461			cbp->rx_fc_restop = 1;
2462		} else {
2463			/* disable FC restart/restop frames */
2464			cbp->rx_fc_restart = 0;
2465			cbp->rx_fc_restop = 0;
2466		}
2467		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2468		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2469	}
2470
2471	/* Enable 82558 and 82559 extended statistics functionality. */
2472	if (sc->revision >= FXP_REV_82558_A4) {
2473		if (sc->revision >= FXP_REV_82559_A0) {
2474			/*
2475			 * Extend configuration table size to 32
2476			 * to include TCO configuration.
2477			 */
2478			cbp->byte_count = 32;
2479			cbp->ext_stats_dis = 1;
2480			/* Enable TCO stats. */
2481			cbp->tno_int_or_tco_en = 1;
2482			cbp->gamla_rx = 1;
2483		} else
2484			cbp->ext_stats_dis = 0;
2485	}
2486
2487	/*
2488	 * Start the config command/DMA.
2489	 */
2490	fxp_scb_wait(sc);
2491	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2492	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2493	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2494	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2495	/* ...and wait for it to complete. */
2496	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2497
2498	/*
2499	 * Now initialize the station address. Temporarily use the TxCB
2500	 * memory area like we did above for the config CB.
2501	 */
2502	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2503	cb_ias->cb_status = 0;
2504	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2505	cb_ias->link_addr = 0xffffffff;
2506	bcopy(if_getlladdr(sc->ifp), cb_ias->macaddr, ETHER_ADDR_LEN);
2507
2508	/*
2509	 * Start the IAS (Individual Address Setup) command/DMA.
2510	 */
2511	fxp_scb_wait(sc);
2512	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2513	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2514	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2515	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2516	/* ...and wait for it to complete. */
2517	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2518
2519	/*
2520	 * Initialize the multicast address list.
2521	 */
2522	fxp_mc_setup(sc);
2523
2524	/*
2525	 * Initialize transmit control block (TxCB) list.
2526	 */
2527	txp = sc->fxp_desc.tx_list;
2528	tcbp = sc->fxp_desc.cbl_list;
2529	bzero(tcbp, FXP_TXCB_SZ);
2530	for (i = 0; i < FXP_NTXCB; i++) {
2531		txp[i].tx_mbuf = NULL;
2532		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2533		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2534		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2535		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2536		if (sc->flags & FXP_FLAG_EXT_TXCB)
2537			tcbp[i].tbd_array_addr =
2538			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2539		else
2540			tcbp[i].tbd_array_addr =
2541			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2542		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2543	}
2544	/*
2545	 * Set the suspend flag on the first TxCB and start the control
2546	 * unit. It will execute the NOP and then suspend.
2547	 */
2548	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2549	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2550	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2551	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2552	sc->tx_queued = 1;
2553
2554	fxp_scb_wait(sc);
2555	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2556	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2557
2558	/*
2559	 * Initialize receiver buffer area - RFA.
2560	 */
2561	fxp_scb_wait(sc);
2562	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2563	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2564
2565	if (sc->miibus != NULL && setmedia != 0)
2566		mii_mediachg(device_get_softc(sc->miibus));
2567
2568	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
2569
2570	/*
2571	 * Enable interrupts.
2572	 */
2573#ifdef DEVICE_POLLING
2574	/*
2575	 * ... but only do that if we are not polling. And because (presumably)
2576	 * the default is interrupts on, we need to disable them explicitly!
2577	 */
2578	if (if_getcapenable(ifp) & IFCAP_POLLING )
2579		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2580	else
2581#endif /* DEVICE_POLLING */
2582	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2583
2584	/*
2585	 * Start stats updater.
2586	 */
2587	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2588}
2589
2590static int
2591fxp_serial_ifmedia_upd(if_t ifp)
2592{
2593
2594	return (0);
2595}
2596
2597static void
2598fxp_serial_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
2599{
2600
2601	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2602}
2603
2604/*
2605 * Change media according to request.
2606 */
2607static int
2608fxp_ifmedia_upd(if_t ifp)
2609{
2610	struct fxp_softc *sc = if_getsoftc(ifp);
2611	struct mii_data *mii;
2612	struct mii_softc	*miisc;
2613
2614	mii = device_get_softc(sc->miibus);
2615	FXP_LOCK(sc);
2616	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2617		PHY_RESET(miisc);
2618	mii_mediachg(mii);
2619	FXP_UNLOCK(sc);
2620	return (0);
2621}
2622
2623/*
2624 * Notify the world which media we're using.
2625 */
2626static void
2627fxp_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
2628{
2629	struct fxp_softc *sc = if_getsoftc(ifp);
2630	struct mii_data *mii;
2631
2632	mii = device_get_softc(sc->miibus);
2633	FXP_LOCK(sc);
2634	mii_pollstat(mii);
2635	ifmr->ifm_active = mii->mii_media_active;
2636	ifmr->ifm_status = mii->mii_media_status;
2637	FXP_UNLOCK(sc);
2638}
2639
2640/*
2641 * Add a buffer to the end of the RFA buffer list.
2642 * Return 0 if successful, 1 for failure. A failure results in
2643 * reusing the RFA buffer.
2644 * The RFA struct is stuck at the beginning of mbuf cluster and the
2645 * data pointer is fixed up to point just past it.
2646 */
2647static int
2648fxp_new_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2649{
2650	struct mbuf *m;
2651	struct fxp_rfa *rfa;
2652	bus_dmamap_t tmp_map;
2653	int error;
2654
2655	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2656	if (m == NULL)
2657		return (ENOBUFS);
2658
2659	/*
2660	 * Move the data pointer up so that the incoming data packet
2661	 * will be 32-bit aligned.
2662	 */
2663	m->m_data += RFA_ALIGNMENT_FUDGE;
2664
2665	/*
2666	 * Get a pointer to the base of the mbuf cluster and move
2667	 * data start past it.
2668	 */
2669	rfa = mtod(m, struct fxp_rfa *);
2670	m->m_data += sc->rfa_size;
2671	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2672
2673	rfa->rfa_status = 0;
2674	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2675	rfa->actual_size = 0;
2676	m->m_len = m->m_pkthdr.len = MCLBYTES - RFA_ALIGNMENT_FUDGE -
2677	    sc->rfa_size;
2678
2679	/*
2680	 * Initialize the rest of the RFA.  Note that since the RFA
2681	 * is misaligned, we cannot store values directly.  We're thus
2682	 * using the le32enc() function which handles endianness and
2683	 * is also alignment-safe.
2684	 */
2685	le32enc(&rfa->link_addr, 0xffffffff);
2686	le32enc(&rfa->rbd_addr, 0xffffffff);
2687
2688	/* Map the RFA into DMA memory. */
2689	error = bus_dmamap_load(sc->fxp_rxmtag, sc->spare_map, rfa,
2690	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2691	    &rxp->rx_addr, BUS_DMA_NOWAIT);
2692	if (error) {
2693		m_freem(m);
2694		return (error);
2695	}
2696
2697	if (rxp->rx_mbuf != NULL)
2698		bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map);
2699	tmp_map = sc->spare_map;
2700	sc->spare_map = rxp->rx_map;
2701	rxp->rx_map = tmp_map;
2702	rxp->rx_mbuf = m;
2703
2704	bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
2705	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2706	return (0);
2707}
2708
2709static void
2710fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2711{
2712	struct fxp_rfa *p_rfa;
2713	struct fxp_rx *p_rx;
2714
2715	/*
2716	 * If there are other buffers already on the list, attach this
2717	 * one to the end by fixing up the tail to point to this one.
2718	 */
2719	if (sc->fxp_desc.rx_head != NULL) {
2720		p_rx = sc->fxp_desc.rx_tail;
2721		p_rfa = (struct fxp_rfa *)
2722		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2723		p_rx->rx_next = rxp;
2724		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2725		p_rfa->rfa_control = 0;
2726		bus_dmamap_sync(sc->fxp_rxmtag, p_rx->rx_map,
2727		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2728	} else {
2729		rxp->rx_next = NULL;
2730		sc->fxp_desc.rx_head = rxp;
2731	}
2732	sc->fxp_desc.rx_tail = rxp;
2733}
2734
2735static void
2736fxp_discard_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2737{
2738	struct mbuf *m;
2739	struct fxp_rfa *rfa;
2740
2741	m = rxp->rx_mbuf;
2742	m->m_data = m->m_ext.ext_buf;
2743	/*
2744	 * Move the data pointer up so that the incoming data packet
2745	 * will be 32-bit aligned.
2746	 */
2747	m->m_data += RFA_ALIGNMENT_FUDGE;
2748
2749	/*
2750	 * Get a pointer to the base of the mbuf cluster and move
2751	 * data start past it.
2752	 */
2753	rfa = mtod(m, struct fxp_rfa *);
2754	m->m_data += sc->rfa_size;
2755	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2756
2757	rfa->rfa_status = 0;
2758	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2759	rfa->actual_size = 0;
2760
2761	/*
2762	 * Initialize the rest of the RFA.  Note that since the RFA
2763	 * is misaligned, we cannot store values directly.  We're thus
2764	 * using the le32enc() function which handles endianness and
2765	 * is also alignment-safe.
2766	 */
2767	le32enc(&rfa->link_addr, 0xffffffff);
2768	le32enc(&rfa->rbd_addr, 0xffffffff);
2769
2770	bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
2771	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2772}
2773
2774static int
2775fxp_miibus_readreg(device_t dev, int phy, int reg)
2776{
2777	struct fxp_softc *sc = device_get_softc(dev);
2778	int count = 10000;
2779	int value;
2780
2781	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2782	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2783
2784	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2785	    && count--)
2786		DELAY(10);
2787
2788	if (count <= 0)
2789		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2790
2791	return (value & 0xffff);
2792}
2793
2794static int
2795fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2796{
2797	struct fxp_softc *sc = device_get_softc(dev);
2798	int count = 10000;
2799
2800	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2801	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2802	    (value & 0xffff));
2803
2804	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2805	    count--)
2806		DELAY(10);
2807
2808	if (count <= 0)
2809		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2810	return (0);
2811}
2812
2813static void
2814fxp_miibus_statchg(device_t dev)
2815{
2816	struct fxp_softc *sc;
2817	struct mii_data *mii;
2818	if_t ifp;
2819
2820	sc = device_get_softc(dev);
2821	mii = device_get_softc(sc->miibus);
2822	ifp = sc->ifp;
2823	if (mii == NULL || ifp == (void *)NULL ||
2824	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 ||
2825	    (mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) !=
2826	    (IFM_AVALID | IFM_ACTIVE))
2827		return;
2828
2829	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T &&
2830	    sc->flags & FXP_FLAG_CU_RESUME_BUG)
2831		sc->cu_resume_bug = 1;
2832	else
2833		sc->cu_resume_bug = 0;
2834	/*
2835	 * Call fxp_init_body in order to adjust the flow control settings.
2836	 * Note that the 82557 doesn't support hardware flow control.
2837	 */
2838	if (sc->revision == FXP_REV_82557)
2839		return;
2840	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2841	fxp_init_body(sc, 0);
2842}
2843
2844static int
2845fxp_ioctl(if_t ifp, u_long command, caddr_t data)
2846{
2847	struct fxp_softc *sc = if_getsoftc(ifp);
2848	struct ifreq *ifr = (struct ifreq *)data;
2849	struct mii_data *mii;
2850	int flag, mask, error = 0, reinit;
2851
2852	switch (command) {
2853	case SIOCSIFFLAGS:
2854		FXP_LOCK(sc);
2855		/*
2856		 * If interface is marked up and not running, then start it.
2857		 * If it is marked down and running, stop it.
2858		 * XXX If it's up then re-initialize it. This is so flags
2859		 * such as IFF_PROMISC are handled.
2860		 */
2861		if (if_getflags(ifp) & IFF_UP) {
2862			if (((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) &&
2863			    ((if_getflags(ifp) ^ sc->if_flags) &
2864			    (IFF_PROMISC | IFF_ALLMULTI | IFF_LINK0)) != 0) {
2865				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2866				fxp_init_body(sc, 0);
2867			} else if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
2868				fxp_init_body(sc, 1);
2869		} else {
2870			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2871				fxp_stop(sc);
2872		}
2873		sc->if_flags = if_getflags(ifp);
2874		FXP_UNLOCK(sc);
2875		break;
2876
2877	case SIOCADDMULTI:
2878	case SIOCDELMULTI:
2879		FXP_LOCK(sc);
2880		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2881			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2882			fxp_init_body(sc, 0);
2883		}
2884		FXP_UNLOCK(sc);
2885		break;
2886
2887	case SIOCSIFMEDIA:
2888	case SIOCGIFMEDIA:
2889		if (sc->miibus != NULL) {
2890			mii = device_get_softc(sc->miibus);
2891                        error = ifmedia_ioctl(ifp, ifr,
2892                            &mii->mii_media, command);
2893		} else {
2894                        error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2895		}
2896		break;
2897
2898	case SIOCSIFCAP:
2899		reinit = 0;
2900		mask = if_getcapenable(ifp) ^ ifr->ifr_reqcap;
2901#ifdef DEVICE_POLLING
2902		if (mask & IFCAP_POLLING) {
2903			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2904				error = ether_poll_register(fxp_poll, ifp);
2905				if (error)
2906					return(error);
2907				FXP_LOCK(sc);
2908				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL,
2909				    FXP_SCB_INTR_DISABLE);
2910				if_setcapenablebit(ifp, IFCAP_POLLING, 0);
2911				FXP_UNLOCK(sc);
2912			} else {
2913				error = ether_poll_deregister(ifp);
2914				/* Enable interrupts in any case */
2915				FXP_LOCK(sc);
2916				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2917				if_setcapenablebit(ifp, 0, IFCAP_POLLING);
2918				FXP_UNLOCK(sc);
2919			}
2920		}
2921#endif
2922		FXP_LOCK(sc);
2923		if ((mask & IFCAP_TXCSUM) != 0 &&
2924		    (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
2925			if_togglecapenable(ifp, IFCAP_TXCSUM);
2926			if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
2927				if_sethwassistbits(ifp, FXP_CSUM_FEATURES, 0);
2928			else
2929				if_sethwassistbits(ifp, 0, FXP_CSUM_FEATURES);
2930		}
2931		if ((mask & IFCAP_RXCSUM) != 0 &&
2932		    (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0) {
2933			if_togglecapenable(ifp, IFCAP_RXCSUM);
2934			if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0)
2935				reinit++;
2936		}
2937		if ((mask & IFCAP_TSO4) != 0 &&
2938		    (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) {
2939			if_togglecapenable(ifp, IFCAP_TSO4);
2940			if ((if_getcapenable(ifp) & IFCAP_TSO4) != 0)
2941				if_sethwassistbits(ifp, CSUM_TSO, 0);
2942			else
2943				if_sethwassistbits(ifp, 0, CSUM_TSO);
2944		}
2945		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2946		    (if_getcapabilities(ifp) & IFCAP_WOL_MAGIC) != 0)
2947			if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
2948		if ((mask & IFCAP_VLAN_MTU) != 0 &&
2949		    (if_getcapabilities(ifp) & IFCAP_VLAN_MTU) != 0) {
2950			if_togglecapenable(ifp, IFCAP_VLAN_MTU);
2951			if (sc->revision != FXP_REV_82557)
2952				flag = FXP_FLAG_LONG_PKT_EN;
2953			else /* a hack to get long frames on the old chip */
2954				flag = FXP_FLAG_SAVE_BAD;
2955			sc->flags ^= flag;
2956			if (if_getflags(ifp) & IFF_UP)
2957				reinit++;
2958		}
2959		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2960		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWCSUM) != 0)
2961			if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
2962		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2963		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
2964			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
2965		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2966		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
2967			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
2968			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
2969				if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO |
2970				    IFCAP_VLAN_HWCSUM);
2971			reinit++;
2972		}
2973		if (reinit > 0 &&
2974		    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2975			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2976			fxp_init_body(sc, 0);
2977		}
2978		FXP_UNLOCK(sc);
2979		if_vlancap(ifp);
2980		break;
2981
2982	default:
2983		error = ether_ioctl(ifp, command, data);
2984	}
2985	return (error);
2986}
2987
2988/*
2989 * Fill in the multicast address list and return number of entries.
2990 */
2991static int
2992fxp_mc_addrs(struct fxp_softc *sc)
2993{
2994	struct fxp_cb_mcs *mcsp = sc->mcsp;
2995	if_t ifp = sc->ifp;
2996	int nmcasts = 0;
2997
2998	if ((if_getflags(ifp) & IFF_ALLMULTI) == 0) {
2999		if_maddr_rlock(ifp);
3000		if_setupmultiaddr(ifp, mcsp->mc_addr, &nmcasts, MAXMCADDR);
3001		if (nmcasts >= MAXMCADDR) {
3002			if_setflagbits(ifp, IFF_ALLMULTI, 0);
3003			nmcasts = 0;
3004		}
3005		if_maddr_runlock(ifp);
3006	}
3007	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
3008	return (nmcasts);
3009}
3010
3011/*
3012 * Program the multicast filter.
3013 *
3014 * We have an artificial restriction that the multicast setup command
3015 * must be the first command in the chain, so we take steps to ensure
3016 * this. By requiring this, it allows us to keep up the performance of
3017 * the pre-initialized command ring (esp. link pointers) by not actually
3018 * inserting the mcsetup command in the ring - i.e. its link pointer
3019 * points to the TxCB ring, but the mcsetup descriptor itself is not part
3020 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
3021 * lead into the regular TxCB ring when it completes.
3022 */
3023static void
3024fxp_mc_setup(struct fxp_softc *sc)
3025{
3026	struct fxp_cb_mcs *mcsp;
3027	int count;
3028
3029	FXP_LOCK_ASSERT(sc, MA_OWNED);
3030
3031	mcsp = sc->mcsp;
3032	mcsp->cb_status = 0;
3033	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
3034	mcsp->link_addr = 0xffffffff;
3035	fxp_mc_addrs(sc);
3036
3037	/*
3038	 * Wait until command unit is idle. This should never be the
3039	 * case when nothing is queued, but make sure anyway.
3040	 */
3041	count = 100;
3042	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) !=
3043	    FXP_SCB_CUS_IDLE && --count)
3044		DELAY(10);
3045	if (count == 0) {
3046		device_printf(sc->dev, "command queue timeout\n");
3047		return;
3048	}
3049
3050	/*
3051	 * Start the multicast setup command.
3052	 */
3053	fxp_scb_wait(sc);
3054	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
3055	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3056	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
3057	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
3058	/* ...and wait for it to complete. */
3059	fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
3060}
3061
3062static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
3063static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
3064static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
3065static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
3066static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
3067static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
3068static uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
3069
3070#define UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
3071
3072static const struct ucode {
3073	uint32_t	revision;
3074	uint32_t	*ucode;
3075	int		length;
3076	u_short		int_delay_offset;
3077	u_short		bundle_max_offset;
3078} ucode_table[] = {
3079	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
3080	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
3081	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
3082	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
3083	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
3084	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
3085	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
3086	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
3087	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
3088	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
3089	{ FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
3090	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
3091	{ FXP_REV_82551_10, UCODE(fxp_ucode_d102e),
3092	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
3093	{ 0, NULL, 0, 0, 0 }
3094};
3095
3096static void
3097fxp_load_ucode(struct fxp_softc *sc)
3098{
3099	const struct ucode *uc;
3100	struct fxp_cb_ucode *cbp;
3101	int i;
3102
3103	if (sc->flags & FXP_FLAG_NO_UCODE)
3104		return;
3105
3106	for (uc = ucode_table; uc->ucode != NULL; uc++)
3107		if (sc->revision == uc->revision)
3108			break;
3109	if (uc->ucode == NULL)
3110		return;
3111	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
3112	cbp->cb_status = 0;
3113	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
3114	cbp->link_addr = 0xffffffff;    	/* (no) next command */
3115	for (i = 0; i < uc->length; i++)
3116		cbp->ucode[i] = htole32(uc->ucode[i]);
3117	if (uc->int_delay_offset)
3118		*(uint16_t *)&cbp->ucode[uc->int_delay_offset] =
3119		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
3120	if (uc->bundle_max_offset)
3121		*(uint16_t *)&cbp->ucode[uc->bundle_max_offset] =
3122		    htole16(sc->tunable_bundle_max);
3123	/*
3124	 * Download the ucode to the chip.
3125	 */
3126	fxp_scb_wait(sc);
3127	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
3128	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3129	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
3130	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
3131	/* ...and wait for it to complete. */
3132	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
3133	device_printf(sc->dev,
3134	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
3135	    sc->tunable_int_delay,
3136	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
3137	sc->flags |= FXP_FLAG_UCODE;
3138	bzero(cbp, FXP_TXCB_SZ);
3139}
3140
3141#define FXP_SYSCTL_STAT_ADD(c, h, n, p, d)	\
3142	SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
3143
3144static void
3145fxp_sysctl_node(struct fxp_softc *sc)
3146{
3147	struct sysctl_ctx_list *ctx;
3148	struct sysctl_oid_list *child, *parent;
3149	struct sysctl_oid *tree;
3150	struct fxp_hwstats *hsp;
3151
3152	ctx = device_get_sysctl_ctx(sc->dev);
3153	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
3154
3155	SYSCTL_ADD_PROC(ctx, child,
3156	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW,
3157	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
3158	    "FXP driver receive interrupt microcode bundling delay");
3159	SYSCTL_ADD_PROC(ctx, child,
3160	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW,
3161	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
3162	    "FXP driver receive interrupt microcode bundle size limit");
3163	SYSCTL_ADD_INT(ctx, child,OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
3164	    "FXP RNR events");
3165
3166	/*
3167	 * Pull in device tunables.
3168	 */
3169	sc->tunable_int_delay = TUNABLE_INT_DELAY;
3170	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
3171	(void) resource_int_value(device_get_name(sc->dev),
3172	    device_get_unit(sc->dev), "int_delay", &sc->tunable_int_delay);
3173	(void) resource_int_value(device_get_name(sc->dev),
3174	    device_get_unit(sc->dev), "bundle_max", &sc->tunable_bundle_max);
3175	sc->rnr = 0;
3176
3177	hsp = &sc->fxp_hwstats;
3178	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
3179	    NULL, "FXP statistics");
3180	parent = SYSCTL_CHILDREN(tree);
3181
3182	/* Rx MAC statistics. */
3183	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
3184	    NULL, "Rx MAC statistics");
3185	child = SYSCTL_CHILDREN(tree);
3186	FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames",
3187	    &hsp->rx_good, "Good frames");
3188	FXP_SYSCTL_STAT_ADD(ctx, child, "crc_errors",
3189	    &hsp->rx_crc_errors, "CRC errors");
3190	FXP_SYSCTL_STAT_ADD(ctx, child, "alignment_errors",
3191	    &hsp->rx_alignment_errors, "Alignment errors");
3192	FXP_SYSCTL_STAT_ADD(ctx, child, "rnr_errors",
3193	    &hsp->rx_rnr_errors, "RNR errors");
3194	FXP_SYSCTL_STAT_ADD(ctx, child, "overrun_errors",
3195	    &hsp->rx_overrun_errors, "Overrun errors");
3196	FXP_SYSCTL_STAT_ADD(ctx, child, "cdt_errors",
3197	    &hsp->rx_cdt_errors, "Collision detect errors");
3198	FXP_SYSCTL_STAT_ADD(ctx, child, "shortframes",
3199	    &hsp->rx_shortframes, "Short frame errors");
3200	if (sc->revision >= FXP_REV_82558_A4) {
3201		FXP_SYSCTL_STAT_ADD(ctx, child, "pause",
3202		    &hsp->rx_pause, "Pause frames");
3203		FXP_SYSCTL_STAT_ADD(ctx, child, "controls",
3204		    &hsp->rx_controls, "Unsupported control frames");
3205	}
3206	if (sc->revision >= FXP_REV_82559_A0)
3207		FXP_SYSCTL_STAT_ADD(ctx, child, "tco",
3208		    &hsp->rx_tco, "TCO frames");
3209
3210	/* Tx MAC statistics. */
3211	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
3212	    NULL, "Tx MAC statistics");
3213	child = SYSCTL_CHILDREN(tree);
3214	FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames",
3215	    &hsp->tx_good, "Good frames");
3216	FXP_SYSCTL_STAT_ADD(ctx, child, "maxcols",
3217	    &hsp->tx_maxcols, "Maximum collisions errors");
3218	FXP_SYSCTL_STAT_ADD(ctx, child, "latecols",
3219	    &hsp->tx_latecols, "Late collisions errors");
3220	FXP_SYSCTL_STAT_ADD(ctx, child, "underruns",
3221	    &hsp->tx_underruns, "Underrun errors");
3222	FXP_SYSCTL_STAT_ADD(ctx, child, "lostcrs",
3223	    &hsp->tx_lostcrs, "Lost carrier sense");
3224	FXP_SYSCTL_STAT_ADD(ctx, child, "deffered",
3225	    &hsp->tx_deffered, "Deferred");
3226	FXP_SYSCTL_STAT_ADD(ctx, child, "single_collisions",
3227	    &hsp->tx_single_collisions, "Single collisions");
3228	FXP_SYSCTL_STAT_ADD(ctx, child, "multiple_collisions",
3229	    &hsp->tx_multiple_collisions, "Multiple collisions");
3230	FXP_SYSCTL_STAT_ADD(ctx, child, "total_collisions",
3231	    &hsp->tx_total_collisions, "Total collisions");
3232	if (sc->revision >= FXP_REV_82558_A4)
3233		FXP_SYSCTL_STAT_ADD(ctx, child, "pause",
3234		    &hsp->tx_pause, "Pause frames");
3235	if (sc->revision >= FXP_REV_82559_A0)
3236		FXP_SYSCTL_STAT_ADD(ctx, child, "tco",
3237		    &hsp->tx_tco, "TCO frames");
3238}
3239
3240#undef FXP_SYSCTL_STAT_ADD
3241
3242static int
3243sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3244{
3245	int error, value;
3246
3247	value = *(int *)arg1;
3248	error = sysctl_handle_int(oidp, &value, 0, req);
3249	if (error || !req->newptr)
3250		return (error);
3251	if (value < low || value > high)
3252		return (EINVAL);
3253	*(int *)arg1 = value;
3254	return (0);
3255}
3256
3257/*
3258 * Interrupt delay is expressed in microseconds, a multiplier is used
3259 * to convert this to the appropriate clock ticks before using.
3260 */
3261static int
3262sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
3263{
3264
3265	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
3266}
3267
3268static int
3269sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
3270{
3271
3272	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
3273}
3274