1/*-
2 * Copyright 2021 Intel Corp
3 * Copyright 2021 Rubicon Communications, LLC (Netgate)
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7#include <sys/cdefs.h>
8__FBSDID("$FreeBSD$");
9
10#include "igc_api.h"
11
12static s32 igc_wait_autoneg(struct igc_hw *hw);
13
14/**
15 *  igc_init_phy_ops_generic - Initialize PHY function pointers
16 *  @hw: pointer to the HW structure
17 *
18 *  Setups up the function pointers to no-op functions
19 **/
20void igc_init_phy_ops_generic(struct igc_hw *hw)
21{
22	struct igc_phy_info *phy = &hw->phy;
23	DEBUGFUNC("igc_init_phy_ops_generic");
24
25	/* Initialize function pointers */
26	phy->ops.init_params = igc_null_ops_generic;
27	phy->ops.acquire = igc_null_ops_generic;
28	phy->ops.check_reset_block = igc_null_ops_generic;
29	phy->ops.force_speed_duplex = igc_null_ops_generic;
30	phy->ops.get_info = igc_null_ops_generic;
31	phy->ops.set_page = igc_null_set_page;
32	phy->ops.read_reg = igc_null_read_reg;
33	phy->ops.read_reg_locked = igc_null_read_reg;
34	phy->ops.read_reg_page = igc_null_read_reg;
35	phy->ops.release = igc_null_phy_generic;
36	phy->ops.reset = igc_null_ops_generic;
37	phy->ops.set_d0_lplu_state = igc_null_lplu_state;
38	phy->ops.set_d3_lplu_state = igc_null_lplu_state;
39	phy->ops.write_reg = igc_null_write_reg;
40	phy->ops.write_reg_locked = igc_null_write_reg;
41	phy->ops.write_reg_page = igc_null_write_reg;
42	phy->ops.power_up = igc_null_phy_generic;
43	phy->ops.power_down = igc_null_phy_generic;
44}
45
46/**
47 *  igc_null_set_page - No-op function, return 0
48 *  @hw: pointer to the HW structure
49 *  @data: dummy variable
50 **/
51s32 igc_null_set_page(struct igc_hw IGC_UNUSEDARG *hw,
52			u16 IGC_UNUSEDARG data)
53{
54	DEBUGFUNC("igc_null_set_page");
55	return IGC_SUCCESS;
56}
57
58/**
59 *  igc_null_read_reg - No-op function, return 0
60 *  @hw: pointer to the HW structure
61 *  @offset: dummy variable
62 *  @data: dummy variable
63 **/
64s32 igc_null_read_reg(struct igc_hw IGC_UNUSEDARG *hw,
65			u32 IGC_UNUSEDARG offset, u16 IGC_UNUSEDARG *data)
66{
67	DEBUGFUNC("igc_null_read_reg");
68	return IGC_SUCCESS;
69}
70
71/**
72 *  igc_null_phy_generic - No-op function, return void
73 *  @hw: pointer to the HW structure
74 **/
75void igc_null_phy_generic(struct igc_hw IGC_UNUSEDARG *hw)
76{
77	DEBUGFUNC("igc_null_phy_generic");
78	return;
79}
80
81/**
82 *  igc_null_lplu_state - No-op function, return 0
83 *  @hw: pointer to the HW structure
84 *  @active: dummy variable
85 **/
86s32 igc_null_lplu_state(struct igc_hw IGC_UNUSEDARG *hw,
87			  bool IGC_UNUSEDARG active)
88{
89	DEBUGFUNC("igc_null_lplu_state");
90	return IGC_SUCCESS;
91}
92
93/**
94 *  igc_null_write_reg - No-op function, return 0
95 *  @hw: pointer to the HW structure
96 *  @offset: dummy variable
97 *  @data: dummy variable
98 **/
99s32 igc_null_write_reg(struct igc_hw IGC_UNUSEDARG *hw,
100			 u32 IGC_UNUSEDARG offset, u16 IGC_UNUSEDARG data)
101{
102	DEBUGFUNC("igc_null_write_reg");
103	return IGC_SUCCESS;
104}
105
106/**
107 *  igc_check_reset_block_generic - Check if PHY reset is blocked
108 *  @hw: pointer to the HW structure
109 *
110 *  Read the PHY management control register and check whether a PHY reset
111 *  is blocked.  If a reset is not blocked return IGC_SUCCESS, otherwise
112 *  return IGC_BLK_PHY_RESET (12).
113 **/
114s32 igc_check_reset_block_generic(struct igc_hw *hw)
115{
116	u32 manc;
117
118	DEBUGFUNC("igc_check_reset_block");
119
120	manc = IGC_READ_REG(hw, IGC_MANC);
121
122	return (manc & IGC_MANC_BLK_PHY_RST_ON_IDE) ?
123	       IGC_BLK_PHY_RESET : IGC_SUCCESS;
124}
125
126/**
127 *  igc_get_phy_id - Retrieve the PHY ID and revision
128 *  @hw: pointer to the HW structure
129 *
130 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
131 *  revision in the hardware structure.
132 **/
133s32 igc_get_phy_id(struct igc_hw *hw)
134{
135	struct igc_phy_info *phy = &hw->phy;
136	s32 ret_val = IGC_SUCCESS;
137	u16 phy_id;
138
139	DEBUGFUNC("igc_get_phy_id");
140
141	if (!phy->ops.read_reg)
142		return IGC_SUCCESS;
143
144	ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
145	if (ret_val)
146		return ret_val;
147
148	phy->id = (u32)(phy_id << 16);
149	usec_delay(200);
150	ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
151	if (ret_val)
152		return ret_val;
153
154	phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
155	phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
156
157	return IGC_SUCCESS;
158}
159
160/**
161 *  igc_read_phy_reg_mdic - Read MDI control register
162 *  @hw: pointer to the HW structure
163 *  @offset: register offset to be read
164 *  @data: pointer to the read data
165 *
166 *  Reads the MDI control register in the PHY at offset and stores the
167 *  information read to data.
168 **/
169s32 igc_read_phy_reg_mdic(struct igc_hw *hw, u32 offset, u16 *data)
170{
171	struct igc_phy_info *phy = &hw->phy;
172	u32 i, mdic = 0;
173
174	DEBUGFUNC("igc_read_phy_reg_mdic");
175
176	if (offset > MAX_PHY_REG_ADDRESS) {
177		DEBUGOUT1("PHY Address %d is out of range\n", offset);
178		return -IGC_ERR_PARAM;
179	}
180
181	/* Set up Op-code, Phy Address, and register offset in the MDI
182	 * Control register.  The MAC will take care of interfacing with the
183	 * PHY to retrieve the desired data.
184	 */
185	mdic = ((offset << IGC_MDIC_REG_SHIFT) |
186		(phy->addr << IGC_MDIC_PHY_SHIFT) |
187		(IGC_MDIC_OP_READ));
188
189	IGC_WRITE_REG(hw, IGC_MDIC, mdic);
190
191	/* Poll the ready bit to see if the MDI read completed
192	 * Increasing the time out as testing showed failures with
193	 * the lower time out
194	 */
195	for (i = 0; i < (IGC_GEN_POLL_TIMEOUT * 3); i++) {
196		usec_delay_irq(50);
197		mdic = IGC_READ_REG(hw, IGC_MDIC);
198		if (mdic & IGC_MDIC_READY)
199			break;
200	}
201	if (!(mdic & IGC_MDIC_READY)) {
202		DEBUGOUT("MDI Read did not complete\n");
203		return -IGC_ERR_PHY;
204	}
205	if (mdic & IGC_MDIC_ERROR) {
206		DEBUGOUT("MDI Error\n");
207		return -IGC_ERR_PHY;
208	}
209	if (((mdic & IGC_MDIC_REG_MASK) >> IGC_MDIC_REG_SHIFT) != offset) {
210		DEBUGOUT2("MDI Read offset error - requested %d, returned %d\n",
211			  offset,
212			  (mdic & IGC_MDIC_REG_MASK) >> IGC_MDIC_REG_SHIFT);
213		return -IGC_ERR_PHY;
214	}
215	*data = (u16) mdic;
216
217	return IGC_SUCCESS;
218}
219
220/**
221 *  igc_write_phy_reg_mdic - Write MDI control register
222 *  @hw: pointer to the HW structure
223 *  @offset: register offset to write to
224 *  @data: data to write to register at offset
225 *
226 *  Writes data to MDI control register in the PHY at offset.
227 **/
228s32 igc_write_phy_reg_mdic(struct igc_hw *hw, u32 offset, u16 data)
229{
230	struct igc_phy_info *phy = &hw->phy;
231	u32 i, mdic = 0;
232
233	DEBUGFUNC("igc_write_phy_reg_mdic");
234
235	if (offset > MAX_PHY_REG_ADDRESS) {
236		DEBUGOUT1("PHY Address %d is out of range\n", offset);
237		return -IGC_ERR_PARAM;
238	}
239
240	/* Set up Op-code, Phy Address, and register offset in the MDI
241	 * Control register.  The MAC will take care of interfacing with the
242	 * PHY to retrieve the desired data.
243	 */
244	mdic = (((u32)data) |
245		(offset << IGC_MDIC_REG_SHIFT) |
246		(phy->addr << IGC_MDIC_PHY_SHIFT) |
247		(IGC_MDIC_OP_WRITE));
248
249	IGC_WRITE_REG(hw, IGC_MDIC, mdic);
250
251	/* Poll the ready bit to see if the MDI read completed
252	 * Increasing the time out as testing showed failures with
253	 * the lower time out
254	 */
255	for (i = 0; i < (IGC_GEN_POLL_TIMEOUT * 3); i++) {
256		usec_delay_irq(50);
257		mdic = IGC_READ_REG(hw, IGC_MDIC);
258		if (mdic & IGC_MDIC_READY)
259			break;
260	}
261	if (!(mdic & IGC_MDIC_READY)) {
262		DEBUGOUT("MDI Write did not complete\n");
263		return -IGC_ERR_PHY;
264	}
265	if (mdic & IGC_MDIC_ERROR) {
266		DEBUGOUT("MDI Error\n");
267		return -IGC_ERR_PHY;
268	}
269	if (((mdic & IGC_MDIC_REG_MASK) >> IGC_MDIC_REG_SHIFT) != offset) {
270		DEBUGOUT2("MDI Write offset error - requested %d, returned %d\n",
271			  offset,
272			  (mdic & IGC_MDIC_REG_MASK) >> IGC_MDIC_REG_SHIFT);
273		return -IGC_ERR_PHY;
274	}
275
276	return IGC_SUCCESS;
277}
278
279/**
280 *  igc_phy_setup_autoneg - Configure PHY for auto-negotiation
281 *  @hw: pointer to the HW structure
282 *
283 *  Reads the MII auto-neg advertisement register and/or the 1000T control
284 *  register and if the PHY is already setup for auto-negotiation, then
285 *  return successful.  Otherwise, setup advertisement and flow control to
286 *  the appropriate values for the wanted auto-negotiation.
287 **/
288static s32 igc_phy_setup_autoneg(struct igc_hw *hw)
289{
290	struct igc_phy_info *phy = &hw->phy;
291	s32 ret_val;
292	u16 mii_autoneg_adv_reg;
293	u16 mii_1000t_ctrl_reg = 0;
294	u16 aneg_multigbt_an_ctrl = 0;
295
296	DEBUGFUNC("igc_phy_setup_autoneg");
297
298	phy->autoneg_advertised &= phy->autoneg_mask;
299
300	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
301	ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
302	if (ret_val)
303		return ret_val;
304
305	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
306		/* Read the MII 1000Base-T Control Register (Address 9). */
307		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
308					    &mii_1000t_ctrl_reg);
309		if (ret_val)
310			return ret_val;
311	}
312
313	if (phy->autoneg_mask & ADVERTISE_2500_FULL) {
314		/* Read the MULTI GBT AN Control Register - reg 7.32 */
315		ret_val = phy->ops.read_reg(hw, (STANDARD_AN_REG_MASK <<
316					    MMD_DEVADDR_SHIFT) |
317					    ANEG_MULTIGBT_AN_CTRL,
318					    &aneg_multigbt_an_ctrl);
319
320		if (ret_val)
321			return ret_val;
322	}
323
324	/* Need to parse both autoneg_advertised and fc and set up
325	 * the appropriate PHY registers.  First we will parse for
326	 * autoneg_advertised software override.  Since we can advertise
327	 * a plethora of combinations, we need to check each bit
328	 * individually.
329	 */
330
331	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
332	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
333	 * the  1000Base-T Control Register (Address 9).
334	 */
335	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
336				 NWAY_AR_100TX_HD_CAPS |
337				 NWAY_AR_10T_FD_CAPS   |
338				 NWAY_AR_10T_HD_CAPS);
339	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
340
341	DEBUGOUT1("autoneg_advertised %x\n", phy->autoneg_advertised);
342
343	/* Do we want to advertise 10 Mb Half Duplex? */
344	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
345		DEBUGOUT("Advertise 10mb Half duplex\n");
346		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
347	}
348
349	/* Do we want to advertise 10 Mb Full Duplex? */
350	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
351		DEBUGOUT("Advertise 10mb Full duplex\n");
352		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
353	}
354
355	/* Do we want to advertise 100 Mb Half Duplex? */
356	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
357		DEBUGOUT("Advertise 100mb Half duplex\n");
358		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
359	}
360
361	/* Do we want to advertise 100 Mb Full Duplex? */
362	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
363		DEBUGOUT("Advertise 100mb Full duplex\n");
364		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
365	}
366
367	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
368	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
369		DEBUGOUT("Advertise 1000mb Half duplex request denied!\n");
370
371	/* Do we want to advertise 1000 Mb Full Duplex? */
372	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
373		DEBUGOUT("Advertise 1000mb Full duplex\n");
374		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
375	}
376
377	/* We do not allow the Phy to advertise 2500 Mb Half Duplex */
378	if (phy->autoneg_advertised & ADVERTISE_2500_HALF)
379		DEBUGOUT("Advertise 2500mb Half duplex request denied!\n");
380
381	/* Do we want to advertise 2500 Mb Full Duplex? */
382	if (phy->autoneg_advertised & ADVERTISE_2500_FULL) {
383		DEBUGOUT("Advertise 2500mb Full duplex\n");
384		aneg_multigbt_an_ctrl |= CR_2500T_FD_CAPS;
385	} else {
386		aneg_multigbt_an_ctrl &= ~CR_2500T_FD_CAPS;
387	}
388
389	/* Check for a software override of the flow control settings, and
390	 * setup the PHY advertisement registers accordingly.  If
391	 * auto-negotiation is enabled, then software will have to set the
392	 * "PAUSE" bits to the correct value in the Auto-Negotiation
393	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
394	 * negotiation.
395	 *
396	 * The possible values of the "fc" parameter are:
397	 *      0:  Flow control is completely disabled
398	 *      1:  Rx flow control is enabled (we can receive pause frames
399	 *          but not send pause frames).
400	 *      2:  Tx flow control is enabled (we can send pause frames
401	 *          but we do not support receiving pause frames).
402	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
403	 *  other:  No software override.  The flow control configuration
404	 *          in the EEPROM is used.
405	 */
406	switch (hw->fc.current_mode) {
407	case igc_fc_none:
408		/* Flow control (Rx & Tx) is completely disabled by a
409		 * software over-ride.
410		 */
411		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
412		break;
413	case igc_fc_rx_pause:
414		/* Rx Flow control is enabled, and Tx Flow control is
415		 * disabled, by a software over-ride.
416		 *
417		 * Since there really isn't a way to advertise that we are
418		 * capable of Rx Pause ONLY, we will advertise that we
419		 * support both symmetric and asymmetric Rx PAUSE.  Later
420		 * (in igc_config_fc_after_link_up) we will disable the
421		 * hw's ability to send PAUSE frames.
422		 */
423		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
424		break;
425	case igc_fc_tx_pause:
426		/* Tx Flow control is enabled, and Rx Flow control is
427		 * disabled, by a software over-ride.
428		 */
429		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
430		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
431		break;
432	case igc_fc_full:
433		/* Flow control (both Rx and Tx) is enabled by a software
434		 * over-ride.
435		 */
436		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
437		break;
438	default:
439		DEBUGOUT("Flow control param set incorrectly\n");
440		return -IGC_ERR_CONFIG;
441	}
442
443	ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
444	if (ret_val)
445		return ret_val;
446
447	DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
448
449	if (phy->autoneg_mask & ADVERTISE_1000_FULL)
450		ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL,
451					     mii_1000t_ctrl_reg);
452
453	if (phy->autoneg_mask & ADVERTISE_2500_FULL)
454		ret_val = phy->ops.write_reg(hw,
455					     (STANDARD_AN_REG_MASK <<
456					     MMD_DEVADDR_SHIFT) |
457					     ANEG_MULTIGBT_AN_CTRL,
458					     aneg_multigbt_an_ctrl);
459
460	return ret_val;
461}
462
463/**
464 *  igc_copper_link_autoneg - Setup/Enable autoneg for copper link
465 *  @hw: pointer to the HW structure
466 *
467 *  Performs initial bounds checking on autoneg advertisement parameter, then
468 *  configure to advertise the full capability.  Setup the PHY to autoneg
469 *  and restart the negotiation process between the link partner.  If
470 *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
471 **/
472static s32 igc_copper_link_autoneg(struct igc_hw *hw)
473{
474	struct igc_phy_info *phy = &hw->phy;
475	s32 ret_val;
476	u16 phy_ctrl;
477
478	DEBUGFUNC("igc_copper_link_autoneg");
479
480	/* Perform some bounds checking on the autoneg advertisement
481	 * parameter.
482	 */
483	phy->autoneg_advertised &= phy->autoneg_mask;
484
485	/* If autoneg_advertised is zero, we assume it was not defaulted
486	 * by the calling code so we set to advertise full capability.
487	 */
488	if (!phy->autoneg_advertised)
489		phy->autoneg_advertised = phy->autoneg_mask;
490
491	DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
492	ret_val = igc_phy_setup_autoneg(hw);
493	if (ret_val) {
494		DEBUGOUT("Error Setting up Auto-Negotiation\n");
495		return ret_val;
496	}
497	DEBUGOUT("Restarting Auto-Neg\n");
498
499	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
500	 * the Auto Neg Restart bit in the PHY control register.
501	 */
502	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
503	if (ret_val)
504		return ret_val;
505
506	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
507	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
508	if (ret_val)
509		return ret_val;
510
511	/* Does the user want to wait for Auto-Neg to complete here, or
512	 * check at a later time (for example, callback routine).
513	 */
514	if (phy->autoneg_wait_to_complete) {
515		ret_val = igc_wait_autoneg(hw);
516		if (ret_val) {
517			DEBUGOUT("Error while waiting for autoneg to complete\n");
518			return ret_val;
519		}
520	}
521
522	hw->mac.get_link_status = true;
523
524	return ret_val;
525}
526
527/**
528 *  igc_setup_copper_link_generic - Configure copper link settings
529 *  @hw: pointer to the HW structure
530 *
531 *  Calls the appropriate function to configure the link for auto-neg or forced
532 *  speed and duplex.  Then we check for link, once link is established calls
533 *  to configure collision distance and flow control are called.  If link is
534 *  not established, we return -IGC_ERR_PHY (-2).
535 **/
536s32 igc_setup_copper_link_generic(struct igc_hw *hw)
537{
538	s32 ret_val;
539	bool link;
540
541	DEBUGFUNC("igc_setup_copper_link_generic");
542
543	if (hw->mac.autoneg) {
544		/* Setup autoneg and flow control advertisement and perform
545		 * autonegotiation.
546		 */
547		ret_val = igc_copper_link_autoneg(hw);
548		if (ret_val)
549			return ret_val;
550	} else {
551		/* PHY will be set to 10H, 10F, 100H or 100F
552		 * depending on user settings.
553		 */
554		DEBUGOUT("Forcing Speed and Duplex\n");
555		ret_val = hw->phy.ops.force_speed_duplex(hw);
556		if (ret_val) {
557			DEBUGOUT("Error Forcing Speed and Duplex\n");
558			return ret_val;
559		}
560	}
561
562	/* Check link status. Wait up to 100 microseconds for link to become
563	 * valid.
564	 */
565	ret_val = igc_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
566					     &link);
567	if (ret_val)
568		return ret_val;
569
570	if (link) {
571		DEBUGOUT("Valid link established!!!\n");
572		hw->mac.ops.config_collision_dist(hw);
573		ret_val = igc_config_fc_after_link_up_generic(hw);
574	} else {
575		DEBUGOUT("Unable to establish link!!!\n");
576	}
577
578	return ret_val;
579}
580
581/**
582 *  igc_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
583 *  @hw: pointer to the HW structure
584 *  @phy_ctrl: pointer to current value of PHY_CONTROL
585 *
586 *  Forces speed and duplex on the PHY by doing the following: disable flow
587 *  control, force speed/duplex on the MAC, disable auto speed detection,
588 *  disable auto-negotiation, configure duplex, configure speed, configure
589 *  the collision distance, write configuration to CTRL register.  The
590 *  caller must write to the PHY_CONTROL register for these settings to
591 *  take effect.
592 **/
593void igc_phy_force_speed_duplex_setup(struct igc_hw *hw, u16 *phy_ctrl)
594{
595	struct igc_mac_info *mac = &hw->mac;
596	u32 ctrl;
597
598	DEBUGFUNC("igc_phy_force_speed_duplex_setup");
599
600	/* Turn off flow control when forcing speed/duplex */
601	hw->fc.current_mode = igc_fc_none;
602
603	/* Force speed/duplex on the mac */
604	ctrl = IGC_READ_REG(hw, IGC_CTRL);
605	ctrl |= (IGC_CTRL_FRCSPD | IGC_CTRL_FRCDPX);
606	ctrl &= ~IGC_CTRL_SPD_SEL;
607
608	/* Disable Auto Speed Detection */
609	ctrl &= ~IGC_CTRL_ASDE;
610
611	/* Disable autoneg on the phy */
612	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
613
614	/* Forcing Full or Half Duplex? */
615	if (mac->forced_speed_duplex & IGC_ALL_HALF_DUPLEX) {
616		ctrl &= ~IGC_CTRL_FD;
617		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
618		DEBUGOUT("Half Duplex\n");
619	} else {
620		ctrl |= IGC_CTRL_FD;
621		*phy_ctrl |= MII_CR_FULL_DUPLEX;
622		DEBUGOUT("Full Duplex\n");
623	}
624
625	/* Forcing 10mb or 100mb? */
626	if (mac->forced_speed_duplex & IGC_ALL_100_SPEED) {
627		ctrl |= IGC_CTRL_SPD_100;
628		*phy_ctrl |= MII_CR_SPEED_100;
629		*phy_ctrl &= ~MII_CR_SPEED_1000;
630		DEBUGOUT("Forcing 100mb\n");
631	} else {
632		ctrl &= ~(IGC_CTRL_SPD_1000 | IGC_CTRL_SPD_100);
633		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
634		DEBUGOUT("Forcing 10mb\n");
635	}
636
637	hw->mac.ops.config_collision_dist(hw);
638
639	IGC_WRITE_REG(hw, IGC_CTRL, ctrl);
640}
641
642/**
643 *  igc_set_d3_lplu_state_generic - Sets low power link up state for D3
644 *  @hw: pointer to the HW structure
645 *  @active: boolean used to enable/disable lplu
646 *
647 *  Success returns 0, Failure returns 1
648 *
649 *  The low power link up (lplu) state is set to the power management level D3
650 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
651 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
652 *  is used during Dx states where the power conservation is most important.
653 *  During driver activity, SmartSpeed should be enabled so performance is
654 *  maintained.
655 **/
656s32 igc_set_d3_lplu_state_generic(struct igc_hw *hw, bool active)
657{
658	struct igc_phy_info *phy = &hw->phy;
659	s32 ret_val;
660	u16 data;
661
662	DEBUGFUNC("igc_set_d3_lplu_state_generic");
663
664	if (!hw->phy.ops.read_reg)
665		return IGC_SUCCESS;
666
667	ret_val = phy->ops.read_reg(hw, IGP02IGC_PHY_POWER_MGMT, &data);
668	if (ret_val)
669		return ret_val;
670
671	if (!active) {
672		data &= ~IGP02IGC_PM_D3_LPLU;
673		ret_val = phy->ops.write_reg(hw, IGP02IGC_PHY_POWER_MGMT,
674					     data);
675		if (ret_val)
676			return ret_val;
677		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
678		 * during Dx states where the power conservation is most
679		 * important.  During driver activity we should enable
680		 * SmartSpeed, so performance is maintained.
681		 */
682		if (phy->smart_speed == igc_smart_speed_on) {
683			ret_val = phy->ops.read_reg(hw,
684						    IGP01IGC_PHY_PORT_CONFIG,
685						    &data);
686			if (ret_val)
687				return ret_val;
688
689			data |= IGP01IGC_PSCFR_SMART_SPEED;
690			ret_val = phy->ops.write_reg(hw,
691						     IGP01IGC_PHY_PORT_CONFIG,
692						     data);
693			if (ret_val)
694				return ret_val;
695		} else if (phy->smart_speed == igc_smart_speed_off) {
696			ret_val = phy->ops.read_reg(hw,
697						    IGP01IGC_PHY_PORT_CONFIG,
698						    &data);
699			if (ret_val)
700				return ret_val;
701
702			data &= ~IGP01IGC_PSCFR_SMART_SPEED;
703			ret_val = phy->ops.write_reg(hw,
704						     IGP01IGC_PHY_PORT_CONFIG,
705						     data);
706			if (ret_val)
707				return ret_val;
708		}
709	} else if ((phy->autoneg_advertised == IGC_ALL_SPEED_DUPLEX) ||
710		   (phy->autoneg_advertised == IGC_ALL_NOT_GIG) ||
711		   (phy->autoneg_advertised == IGC_ALL_10_SPEED)) {
712		data |= IGP02IGC_PM_D3_LPLU;
713		ret_val = phy->ops.write_reg(hw, IGP02IGC_PHY_POWER_MGMT,
714					     data);
715		if (ret_val)
716			return ret_val;
717
718		/* When LPLU is enabled, we should disable SmartSpeed */
719		ret_val = phy->ops.read_reg(hw, IGP01IGC_PHY_PORT_CONFIG,
720					    &data);
721		if (ret_val)
722			return ret_val;
723
724		data &= ~IGP01IGC_PSCFR_SMART_SPEED;
725		ret_val = phy->ops.write_reg(hw, IGP01IGC_PHY_PORT_CONFIG,
726					     data);
727	}
728
729	return ret_val;
730}
731
732/**
733 *  igc_check_downshift_generic - Checks whether a downshift in speed occurred
734 *  @hw: pointer to the HW structure
735 *
736 *  Success returns 0, Failure returns 1
737 *
738 *  A downshift is detected by querying the PHY link health.
739 **/
740s32 igc_check_downshift_generic(struct igc_hw *hw)
741{
742	struct igc_phy_info *phy = &hw->phy;
743	s32 ret_val;
744
745	DEBUGFUNC("igc_check_downshift_generic");
746
747	switch (phy->type) {
748	case igc_phy_i225:
749	default:
750		/* speed downshift not supported */
751		phy->speed_downgraded = false;
752		return IGC_SUCCESS;
753	}
754
755	return ret_val;
756}
757
758/**
759 *  igc_wait_autoneg - Wait for auto-neg completion
760 *  @hw: pointer to the HW structure
761 *
762 *  Waits for auto-negotiation to complete or for the auto-negotiation time
763 *  limit to expire, which ever happens first.
764 **/
765static s32 igc_wait_autoneg(struct igc_hw *hw)
766{
767	s32 ret_val = IGC_SUCCESS;
768	u16 i, phy_status;
769
770	DEBUGFUNC("igc_wait_autoneg");
771
772	if (!hw->phy.ops.read_reg)
773		return IGC_SUCCESS;
774
775	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
776	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
777		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
778		if (ret_val)
779			break;
780		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
781		if (ret_val)
782			break;
783		if (phy_status & MII_SR_AUTONEG_COMPLETE)
784			break;
785		msec_delay(100);
786	}
787
788	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
789	 * has completed.
790	 */
791	return ret_val;
792}
793
794/**
795 *  igc_phy_has_link_generic - Polls PHY for link
796 *  @hw: pointer to the HW structure
797 *  @iterations: number of times to poll for link
798 *  @usec_interval: delay between polling attempts
799 *  @success: pointer to whether polling was successful or not
800 *
801 *  Polls the PHY status register for link, 'iterations' number of times.
802 **/
803s32 igc_phy_has_link_generic(struct igc_hw *hw, u32 iterations,
804			       u32 usec_interval, bool *success)
805{
806	s32 ret_val = IGC_SUCCESS;
807	u16 i, phy_status;
808
809	DEBUGFUNC("igc_phy_has_link_generic");
810
811	if (!hw->phy.ops.read_reg)
812		return IGC_SUCCESS;
813
814	for (i = 0; i < iterations; i++) {
815		/* Some PHYs require the PHY_STATUS register to be read
816		 * twice due to the link bit being sticky.  No harm doing
817		 * it across the board.
818		 */
819		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
820		if (ret_val) {
821			/* If the first read fails, another entity may have
822			 * ownership of the resources, wait and try again to
823			 * see if they have relinquished the resources yet.
824			 */
825			if (usec_interval >= 1000)
826				msec_delay(usec_interval/1000);
827			else
828				usec_delay(usec_interval);
829		}
830		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
831		if (ret_val)
832			break;
833		if (phy_status & MII_SR_LINK_STATUS)
834			break;
835		if (usec_interval >= 1000)
836			msec_delay(usec_interval/1000);
837		else
838			usec_delay(usec_interval);
839	}
840
841	*success = (i < iterations);
842
843	return ret_val;
844}
845
846/**
847 *  igc_phy_hw_reset_generic - PHY hardware reset
848 *  @hw: pointer to the HW structure
849 *
850 *  Verify the reset block is not blocking us from resetting.  Acquire
851 *  semaphore (if necessary) and read/set/write the device control reset
852 *  bit in the PHY.  Wait the appropriate delay time for the device to
853 *  reset and release the semaphore (if necessary).
854 **/
855s32 igc_phy_hw_reset_generic(struct igc_hw *hw)
856{
857	struct igc_phy_info *phy = &hw->phy;
858	s32 ret_val;
859	u32 ctrl, timeout = 10000, phpm = 0;
860
861	DEBUGFUNC("igc_phy_hw_reset_generic");
862
863	if (phy->ops.check_reset_block) {
864		ret_val = phy->ops.check_reset_block(hw);
865		if (ret_val)
866			return IGC_SUCCESS;
867	}
868
869	ret_val = phy->ops.acquire(hw);
870	if (ret_val)
871		return ret_val;
872
873	phpm = IGC_READ_REG(hw, IGC_I225_PHPM);
874
875	ctrl = IGC_READ_REG(hw, IGC_CTRL);
876	IGC_WRITE_REG(hw, IGC_CTRL, ctrl | IGC_CTRL_PHY_RST);
877	IGC_WRITE_FLUSH(hw);
878
879	usec_delay(phy->reset_delay_us);
880
881	IGC_WRITE_REG(hw, IGC_CTRL, ctrl);
882	IGC_WRITE_FLUSH(hw);
883
884	usec_delay(150);
885
886	do {
887		phpm = IGC_READ_REG(hw, IGC_I225_PHPM);
888		timeout--;
889		usec_delay(1);
890	} while (!(phpm & IGC_I225_PHPM_RST_COMPL) && timeout);
891
892	if (!timeout)
893		DEBUGOUT("Timeout expired after a phy reset\n");
894
895	phy->ops.release(hw);
896
897	return ret_val;
898}
899
900/**
901 * igc_power_up_phy_copper - Restore copper link in case of PHY power down
902 * @hw: pointer to the HW structure
903 *
904 * In the case of a PHY power down to save power, or to turn off link during a
905 * driver unload, or wake on lan is not enabled, restore the link to previous
906 * settings.
907 **/
908void igc_power_up_phy_copper(struct igc_hw *hw)
909{
910	u16 mii_reg = 0;
911
912	/* The PHY will retain its settings across a power down/up cycle */
913	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
914	mii_reg &= ~MII_CR_POWER_DOWN;
915	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
916	usec_delay(300);
917}
918
919/**
920 * igc_power_down_phy_copper - Restore copper link in case of PHY power down
921 * @hw: pointer to the HW structure
922 *
923 * In the case of a PHY power down to save power, or to turn off link during a
924 * driver unload, or wake on lan is not enabled, restore the link to previous
925 * settings.
926 **/
927void igc_power_down_phy_copper(struct igc_hw *hw)
928{
929	u16 mii_reg = 0;
930
931	/* The PHY will retain its settings across a power down/up cycle */
932	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
933	mii_reg |= MII_CR_POWER_DOWN;
934	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
935	msec_delay(1);
936}
937/**
938 *  igc_write_phy_reg_gpy - Write GPY PHY register
939 *  @hw: pointer to the HW structure
940 *  @offset: register offset to write to
941 *  @data: data to write at register offset
942 *
943 *  Acquires semaphore, if necessary, then writes the data to PHY register
944 *  at the offset.  Release any acquired semaphores before exiting.
945 **/
946s32 igc_write_phy_reg_gpy(struct igc_hw *hw, u32 offset, u16 data)
947{
948	s32 ret_val;
949	u8 dev_addr = (offset & GPY_MMD_MASK) >> GPY_MMD_SHIFT;
950
951	DEBUGFUNC("igc_write_phy_reg_gpy");
952
953	offset = offset & GPY_REG_MASK;
954
955	if (!dev_addr) {
956		ret_val = hw->phy.ops.acquire(hw);
957		if (ret_val)
958			return ret_val;
959		ret_val = igc_write_phy_reg_mdic(hw, offset, data);
960		if (ret_val)
961			return ret_val;
962		hw->phy.ops.release(hw);
963	} else {
964		ret_val = igc_write_xmdio_reg(hw, (u16)offset, dev_addr,
965						data);
966	}
967	return ret_val;
968}
969
970/**
971 *  igc_read_phy_reg_gpy - Read GPY PHY register
972 *  @hw: pointer to the HW structure
973 *  @offset: lower half is register offset to read to
974 *     upper half is MMD to use.
975 *  @data: data to read at register offset
976 *
977 *  Acquires semaphore, if necessary, then reads the data in the PHY register
978 *  at the offset.  Release any acquired semaphores before exiting.
979 **/
980s32 igc_read_phy_reg_gpy(struct igc_hw *hw, u32 offset, u16 *data)
981{
982	s32 ret_val;
983	u8 dev_addr = (offset & GPY_MMD_MASK) >> GPY_MMD_SHIFT;
984
985	DEBUGFUNC("igc_read_phy_reg_gpy");
986
987	offset = offset & GPY_REG_MASK;
988
989	if (!dev_addr) {
990		ret_val = hw->phy.ops.acquire(hw);
991		if (ret_val)
992			return ret_val;
993		ret_val = igc_read_phy_reg_mdic(hw, offset, data);
994		if (ret_val)
995			return ret_val;
996		hw->phy.ops.release(hw);
997	} else {
998		ret_val = igc_read_xmdio_reg(hw, (u16)offset, dev_addr,
999					       data);
1000	}
1001	return ret_val;
1002}
1003
1004
1005/**
1006 *  __igc_access_xmdio_reg - Read/write XMDIO register
1007 *  @hw: pointer to the HW structure
1008 *  @address: XMDIO address to program
1009 *  @dev_addr: device address to program
1010 *  @data: pointer to value to read/write from/to the XMDIO address
1011 *  @read: boolean flag to indicate read or write
1012 **/
1013static s32 __igc_access_xmdio_reg(struct igc_hw *hw, u16 address,
1014				    u8 dev_addr, u16 *data, bool read)
1015{
1016	s32 ret_val;
1017
1018	DEBUGFUNC("__igc_access_xmdio_reg");
1019
1020	ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, dev_addr);
1021	if (ret_val)
1022		return ret_val;
1023
1024	ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAAD, address);
1025	if (ret_val)
1026		return ret_val;
1027
1028	ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, IGC_MMDAC_FUNC_DATA |
1029					dev_addr);
1030	if (ret_val)
1031		return ret_val;
1032
1033	if (read)
1034		ret_val = hw->phy.ops.read_reg(hw, IGC_MMDAAD, data);
1035	else
1036		ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAAD, *data);
1037	if (ret_val)
1038		return ret_val;
1039
1040	/* Recalibrate the device back to 0 */
1041	ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, 0);
1042	if (ret_val)
1043		return ret_val;
1044
1045	return ret_val;
1046}
1047
1048/**
1049 *  igc_read_xmdio_reg - Read XMDIO register
1050 *  @hw: pointer to the HW structure
1051 *  @addr: XMDIO address to program
1052 *  @dev_addr: device address to program
1053 *  @data: value to be read from the EMI address
1054 **/
1055s32 igc_read_xmdio_reg(struct igc_hw *hw, u16 addr, u8 dev_addr, u16 *data)
1056{
1057	DEBUGFUNC("igc_read_xmdio_reg");
1058
1059	return __igc_access_xmdio_reg(hw, addr, dev_addr, data, true);
1060}
1061
1062/**
1063 *  igc_write_xmdio_reg - Write XMDIO register
1064 *  @hw: pointer to the HW structure
1065 *  @addr: XMDIO address to program
1066 *  @dev_addr: device address to program
1067 *  @data: value to be written to the XMDIO address
1068 **/
1069s32 igc_write_xmdio_reg(struct igc_hw *hw, u16 addr, u8 dev_addr, u16 data)
1070{
1071	DEBUGFUNC("igc_write_xmdio_reg");
1072
1073	return __igc_access_xmdio_reg(hw, addr, dev_addr, &data, false);
1074}
1075