1/*-
2 * Copyright 2021 Intel Corp
3 * Copyright 2021 Rubicon Communications, LLC (Netgate)
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7#include <sys/cdefs.h>
8__FBSDID("$FreeBSD$");
9
10#include "igc_api.h"
11
12static void igc_config_collision_dist_generic(struct igc_hw *hw);
13
14/**
15 *  igc_init_mac_ops_generic - Initialize MAC function pointers
16 *  @hw: pointer to the HW structure
17 *
18 *  Setups up the function pointers to no-op functions
19 **/
20void igc_init_mac_ops_generic(struct igc_hw *hw)
21{
22	struct igc_mac_info *mac = &hw->mac;
23	DEBUGFUNC("igc_init_mac_ops_generic");
24
25	/* General Setup */
26	mac->ops.init_params = igc_null_ops_generic;
27	mac->ops.config_collision_dist = igc_config_collision_dist_generic;
28	mac->ops.rar_set = igc_rar_set_generic;
29}
30
31/**
32 *  igc_null_ops_generic - No-op function, returns 0
33 *  @hw: pointer to the HW structure
34 **/
35s32 igc_null_ops_generic(struct igc_hw IGC_UNUSEDARG *hw)
36{
37	DEBUGFUNC("igc_null_ops_generic");
38	return IGC_SUCCESS;
39}
40
41/**
42 *  igc_null_mac_generic - No-op function, return void
43 *  @hw: pointer to the HW structure
44 **/
45void igc_null_mac_generic(struct igc_hw IGC_UNUSEDARG *hw)
46{
47	DEBUGFUNC("igc_null_mac_generic");
48	return;
49}
50
51/**
52 *  igc_null_link_info - No-op function, return 0
53 *  @hw: pointer to the HW structure
54 *  @s: dummy variable
55 *  @d: dummy variable
56 **/
57s32 igc_null_link_info(struct igc_hw IGC_UNUSEDARG *hw,
58			 u16 IGC_UNUSEDARG *s, u16 IGC_UNUSEDARG *d)
59{
60	DEBUGFUNC("igc_null_link_info");
61	return IGC_SUCCESS;
62}
63
64/**
65 *  igc_null_mng_mode - No-op function, return false
66 *  @hw: pointer to the HW structure
67 **/
68bool igc_null_mng_mode(struct igc_hw IGC_UNUSEDARG *hw)
69{
70	DEBUGFUNC("igc_null_mng_mode");
71	return false;
72}
73
74/**
75 *  igc_null_update_mc - No-op function, return void
76 *  @hw: pointer to the HW structure
77 *  @h: dummy variable
78 *  @a: dummy variable
79 **/
80void igc_null_update_mc(struct igc_hw IGC_UNUSEDARG *hw,
81			  u8 IGC_UNUSEDARG *h, u32 IGC_UNUSEDARG a)
82{
83	DEBUGFUNC("igc_null_update_mc");
84	return;
85}
86
87/**
88 *  igc_null_write_vfta - No-op function, return void
89 *  @hw: pointer to the HW structure
90 *  @a: dummy variable
91 *  @b: dummy variable
92 **/
93void igc_null_write_vfta(struct igc_hw IGC_UNUSEDARG *hw,
94			   u32 IGC_UNUSEDARG a, u32 IGC_UNUSEDARG b)
95{
96	DEBUGFUNC("igc_null_write_vfta");
97	return;
98}
99
100/**
101 *  igc_null_rar_set - No-op function, return 0
102 *  @hw: pointer to the HW structure
103 *  @h: dummy variable
104 *  @a: dummy variable
105 **/
106int igc_null_rar_set(struct igc_hw IGC_UNUSEDARG *hw,
107			u8 IGC_UNUSEDARG *h, u32 IGC_UNUSEDARG a)
108{
109	DEBUGFUNC("igc_null_rar_set");
110	return IGC_SUCCESS;
111}
112
113/**
114 *  igc_set_lan_id_single_port - Set LAN id for a single port device
115 *  @hw: pointer to the HW structure
116 *
117 *  Sets the LAN function id to zero for a single port device.
118 **/
119void igc_set_lan_id_single_port(struct igc_hw *hw)
120{
121	struct igc_bus_info *bus = &hw->bus;
122
123	bus->func = 0;
124}
125
126/**
127 *  igc_clear_vfta_generic - Clear VLAN filter table
128 *  @hw: pointer to the HW structure
129 *
130 *  Clears the register array which contains the VLAN filter table by
131 *  setting all the values to 0.
132 **/
133void igc_clear_vfta_generic(struct igc_hw *hw)
134{
135	u32 offset;
136
137	DEBUGFUNC("igc_clear_vfta_generic");
138
139	for (offset = 0; offset < IGC_VLAN_FILTER_TBL_SIZE; offset++) {
140		IGC_WRITE_REG_ARRAY(hw, IGC_VFTA, offset, 0);
141		IGC_WRITE_FLUSH(hw);
142	}
143}
144
145/**
146 *  igc_write_vfta_generic - Write value to VLAN filter table
147 *  @hw: pointer to the HW structure
148 *  @offset: register offset in VLAN filter table
149 *  @value: register value written to VLAN filter table
150 *
151 *  Writes value at the given offset in the register array which stores
152 *  the VLAN filter table.
153 **/
154void igc_write_vfta_generic(struct igc_hw *hw, u32 offset, u32 value)
155{
156	DEBUGFUNC("igc_write_vfta_generic");
157
158	IGC_WRITE_REG_ARRAY(hw, IGC_VFTA, offset, value);
159	IGC_WRITE_FLUSH(hw);
160}
161
162/**
163 *  igc_init_rx_addrs_generic - Initialize receive address's
164 *  @hw: pointer to the HW structure
165 *  @rar_count: receive address registers
166 *
167 *  Setup the receive address registers by setting the base receive address
168 *  register to the devices MAC address and clearing all the other receive
169 *  address registers to 0.
170 **/
171void igc_init_rx_addrs_generic(struct igc_hw *hw, u16 rar_count)
172{
173	u32 i;
174	u8 mac_addr[ETH_ADDR_LEN] = {0};
175
176	DEBUGFUNC("igc_init_rx_addrs_generic");
177
178	/* Setup the receive address */
179	DEBUGOUT("Programming MAC Address into RAR[0]\n");
180
181	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
182
183	/* Zero out the other (rar_entry_count - 1) receive addresses */
184	DEBUGOUT1("Clearing RAR[1-%u]\n", rar_count-1);
185	for (i = 1; i < rar_count; i++)
186		hw->mac.ops.rar_set(hw, mac_addr, i);
187}
188
189/**
190 *  igc_check_alt_mac_addr_generic - Check for alternate MAC addr
191 *  @hw: pointer to the HW structure
192 *
193 *  Checks the nvm for an alternate MAC address.  An alternate MAC address
194 *  can be setup by pre-boot software and must be treated like a permanent
195 *  address and must override the actual permanent MAC address. If an
196 *  alternate MAC address is found it is programmed into RAR0, replacing
197 *  the permanent address that was installed into RAR0 by the Si on reset.
198 *  This function will return SUCCESS unless it encounters an error while
199 *  reading the EEPROM.
200 **/
201s32 igc_check_alt_mac_addr_generic(struct igc_hw *hw)
202{
203	u32 i;
204	s32 ret_val;
205	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
206	u8 alt_mac_addr[ETH_ADDR_LEN];
207
208	DEBUGFUNC("igc_check_alt_mac_addr_generic");
209
210	ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &nvm_data);
211	if (ret_val)
212		return ret_val;
213
214
215	ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
216				   &nvm_alt_mac_addr_offset);
217	if (ret_val) {
218		DEBUGOUT("NVM Read Error\n");
219		return ret_val;
220	}
221
222	if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
223	    (nvm_alt_mac_addr_offset == 0x0000))
224		/* There is no Alternate MAC Address */
225		return IGC_SUCCESS;
226
227	if (hw->bus.func == IGC_FUNC_1)
228		nvm_alt_mac_addr_offset += IGC_ALT_MAC_ADDRESS_OFFSET_LAN1;
229	for (i = 0; i < ETH_ADDR_LEN; i += 2) {
230		offset = nvm_alt_mac_addr_offset + (i >> 1);
231		ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
232		if (ret_val) {
233			DEBUGOUT("NVM Read Error\n");
234			return ret_val;
235		}
236
237		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
238		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
239	}
240
241	/* if multicast bit is set, the alternate address will not be used */
242	if (alt_mac_addr[0] & 0x01) {
243		DEBUGOUT("Ignoring Alternate Mac Address with MC bit set\n");
244		return IGC_SUCCESS;
245	}
246
247	/* We have a valid alternate MAC address, and we want to treat it the
248	 * same as the normal permanent MAC address stored by the HW into the
249	 * RAR. Do this by mapping this address into RAR0.
250	 */
251	hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
252
253	return IGC_SUCCESS;
254}
255
256/**
257 *  igc_rar_set_generic - Set receive address register
258 *  @hw: pointer to the HW structure
259 *  @addr: pointer to the receive address
260 *  @index: receive address array register
261 *
262 *  Sets the receive address array register at index to the address passed
263 *  in by addr.
264 **/
265int igc_rar_set_generic(struct igc_hw *hw, u8 *addr, u32 index)
266{
267	u32 rar_low, rar_high;
268
269	DEBUGFUNC("igc_rar_set_generic");
270
271	/* HW expects these in little endian so we reverse the byte order
272	 * from network order (big endian) to little endian
273	 */
274	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
275		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
276
277	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
278
279	/* If MAC address zero, no need to set the AV bit */
280	if (rar_low || rar_high)
281		rar_high |= IGC_RAH_AV;
282
283	/* Some bridges will combine consecutive 32-bit writes into
284	 * a single burst write, which will malfunction on some parts.
285	 * The flushes avoid this.
286	 */
287	IGC_WRITE_REG(hw, IGC_RAL(index), rar_low);
288	IGC_WRITE_FLUSH(hw);
289	IGC_WRITE_REG(hw, IGC_RAH(index), rar_high);
290	IGC_WRITE_FLUSH(hw);
291
292	return IGC_SUCCESS;
293}
294
295/**
296 *  igc_hash_mc_addr_generic - Generate a multicast hash value
297 *  @hw: pointer to the HW structure
298 *  @mc_addr: pointer to a multicast address
299 *
300 *  Generates a multicast address hash value which is used to determine
301 *  the multicast filter table array address and new table value.
302 **/
303u32 igc_hash_mc_addr_generic(struct igc_hw *hw, u8 *mc_addr)
304{
305	u32 hash_value, hash_mask;
306	u8 bit_shift = 0;
307
308	DEBUGFUNC("igc_hash_mc_addr_generic");
309
310	/* Register count multiplied by bits per register */
311	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
312
313	/* For a mc_filter_type of 0, bit_shift is the number of left-shifts
314	 * where 0xFF would still fall within the hash mask.
315	 */
316	while (hash_mask >> bit_shift != 0xFF)
317		bit_shift++;
318
319	/* The portion of the address that is used for the hash table
320	 * is determined by the mc_filter_type setting.
321	 * The algorithm is such that there is a total of 8 bits of shifting.
322	 * The bit_shift for a mc_filter_type of 0 represents the number of
323	 * left-shifts where the MSB of mc_addr[5] would still fall within
324	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
325	 * of 8 bits of shifting, then mc_addr[4] will shift right the
326	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
327	 * cases are a variation of this algorithm...essentially raising the
328	 * number of bits to shift mc_addr[5] left, while still keeping the
329	 * 8-bit shifting total.
330	 *
331	 * For example, given the following Destination MAC Address and an
332	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
333	 * we can see that the bit_shift for case 0 is 4.  These are the hash
334	 * values resulting from each mc_filter_type...
335	 * [0] [1] [2] [3] [4] [5]
336	 * 01  AA  00  12  34  56
337	 * LSB		 MSB
338	 *
339	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
340	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
341	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
342	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
343	 */
344	switch (hw->mac.mc_filter_type) {
345	default:
346	case 0:
347		break;
348	case 1:
349		bit_shift += 1;
350		break;
351	case 2:
352		bit_shift += 2;
353		break;
354	case 3:
355		bit_shift += 4;
356		break;
357	}
358
359	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
360				  (((u16) mc_addr[5]) << bit_shift)));
361
362	return hash_value;
363}
364
365/**
366 *  igc_update_mc_addr_list_generic - Update Multicast addresses
367 *  @hw: pointer to the HW structure
368 *  @mc_addr_list: array of multicast addresses to program
369 *  @mc_addr_count: number of multicast addresses to program
370 *
371 *  Updates entire Multicast Table Array.
372 *  The caller must have a packed mc_addr_list of multicast addresses.
373 **/
374void igc_update_mc_addr_list_generic(struct igc_hw *hw,
375				       u8 *mc_addr_list, u32 mc_addr_count)
376{
377	u32 hash_value, hash_bit, hash_reg;
378	int i;
379
380	DEBUGFUNC("igc_update_mc_addr_list_generic");
381
382	/* clear mta_shadow */
383	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
384
385	/* update mta_shadow from mc_addr_list */
386	for (i = 0; (u32) i < mc_addr_count; i++) {
387		hash_value = igc_hash_mc_addr_generic(hw, mc_addr_list);
388
389		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
390		hash_bit = hash_value & 0x1F;
391
392		hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
393		mc_addr_list += (ETH_ADDR_LEN);
394	}
395
396	/* replace the entire MTA table */
397	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
398		IGC_WRITE_REG_ARRAY(hw, IGC_MTA, i, hw->mac.mta_shadow[i]);
399	IGC_WRITE_FLUSH(hw);
400}
401
402/**
403 *  igc_clear_hw_cntrs_base_generic - Clear base hardware counters
404 *  @hw: pointer to the HW structure
405 *
406 *  Clears the base hardware counters by reading the counter registers.
407 **/
408void igc_clear_hw_cntrs_base_generic(struct igc_hw *hw)
409{
410	DEBUGFUNC("igc_clear_hw_cntrs_base_generic");
411
412	IGC_READ_REG(hw, IGC_CRCERRS);
413	IGC_READ_REG(hw, IGC_MPC);
414	IGC_READ_REG(hw, IGC_SCC);
415	IGC_READ_REG(hw, IGC_ECOL);
416	IGC_READ_REG(hw, IGC_MCC);
417	IGC_READ_REG(hw, IGC_LATECOL);
418	IGC_READ_REG(hw, IGC_COLC);
419	IGC_READ_REG(hw, IGC_RERC);
420	IGC_READ_REG(hw, IGC_DC);
421	IGC_READ_REG(hw, IGC_RLEC);
422	IGC_READ_REG(hw, IGC_XONRXC);
423	IGC_READ_REG(hw, IGC_XONTXC);
424	IGC_READ_REG(hw, IGC_XOFFRXC);
425	IGC_READ_REG(hw, IGC_XOFFTXC);
426	IGC_READ_REG(hw, IGC_FCRUC);
427	IGC_READ_REG(hw, IGC_GPRC);
428	IGC_READ_REG(hw, IGC_BPRC);
429	IGC_READ_REG(hw, IGC_MPRC);
430	IGC_READ_REG(hw, IGC_GPTC);
431	IGC_READ_REG(hw, IGC_GORCL);
432	IGC_READ_REG(hw, IGC_GORCH);
433	IGC_READ_REG(hw, IGC_GOTCL);
434	IGC_READ_REG(hw, IGC_GOTCH);
435	IGC_READ_REG(hw, IGC_RNBC);
436	IGC_READ_REG(hw, IGC_RUC);
437	IGC_READ_REG(hw, IGC_RFC);
438	IGC_READ_REG(hw, IGC_ROC);
439	IGC_READ_REG(hw, IGC_RJC);
440	IGC_READ_REG(hw, IGC_TORL);
441	IGC_READ_REG(hw, IGC_TORH);
442	IGC_READ_REG(hw, IGC_TOTL);
443	IGC_READ_REG(hw, IGC_TOTH);
444	IGC_READ_REG(hw, IGC_TPR);
445	IGC_READ_REG(hw, IGC_TPT);
446	IGC_READ_REG(hw, IGC_MPTC);
447	IGC_READ_REG(hw, IGC_BPTC);
448	IGC_READ_REG(hw, IGC_TLPIC);
449	IGC_READ_REG(hw, IGC_RLPIC);
450	IGC_READ_REG(hw, IGC_RXDMTC);
451}
452
453/**
454 *  igc_check_for_copper_link_generic - Check for link (Copper)
455 *  @hw: pointer to the HW structure
456 *
457 *  Checks to see of the link status of the hardware has changed.  If a
458 *  change in link status has been detected, then we read the PHY registers
459 *  to get the current speed/duplex if link exists.
460 **/
461s32 igc_check_for_copper_link_generic(struct igc_hw *hw)
462{
463	struct igc_mac_info *mac = &hw->mac;
464	s32 ret_val;
465	bool link = false;
466
467	DEBUGFUNC("igc_check_for_copper_link");
468
469	/* We only want to go out to the PHY registers to see if Auto-Neg
470	 * has completed and/or if our link status has changed.  The
471	 * get_link_status flag is set upon receiving a Link Status
472	 * Change or Rx Sequence Error interrupt.
473	 */
474	if (!mac->get_link_status)
475		return IGC_SUCCESS;
476
477	/* First we want to see if the MII Status Register reports
478	 * link.  If so, then we want to get the current speed/duplex
479	 * of the PHY.
480	 */
481	ret_val = igc_phy_has_link_generic(hw, 1, 0, &link);
482	if (ret_val)
483		return ret_val;
484
485	if (!link)
486		return IGC_SUCCESS; /* No link detected */
487
488	mac->get_link_status = false;
489
490	/* Check if there was DownShift, must be checked
491	 * immediately after link-up
492	 */
493	igc_check_downshift_generic(hw);
494
495	/* If we are forcing speed/duplex, then we simply return since
496	 * we have already determined whether we have link or not.
497	 */
498	if (!mac->autoneg)
499		return -IGC_ERR_CONFIG;
500
501	/* Auto-Neg is enabled.  Auto Speed Detection takes care
502	 * of MAC speed/duplex configuration.  So we only need to
503	 * configure Collision Distance in the MAC.
504	 */
505	mac->ops.config_collision_dist(hw);
506
507	/* Configure Flow Control now that Auto-Neg has completed.
508	 * First, we need to restore the desired flow control
509	 * settings because we may have had to re-autoneg with a
510	 * different link partner.
511	 */
512	ret_val = igc_config_fc_after_link_up_generic(hw);
513	if (ret_val)
514		DEBUGOUT("Error configuring flow control\n");
515
516	return ret_val;
517}
518
519/**
520 *  igc_setup_link_generic - Setup flow control and link settings
521 *  @hw: pointer to the HW structure
522 *
523 *  Determines which flow control settings to use, then configures flow
524 *  control.  Calls the appropriate media-specific link configuration
525 *  function.  Assuming the adapter has a valid link partner, a valid link
526 *  should be established.  Assumes the hardware has previously been reset
527 *  and the transmitter and receiver are not enabled.
528 **/
529s32 igc_setup_link_generic(struct igc_hw *hw)
530{
531	s32 ret_val;
532
533	DEBUGFUNC("igc_setup_link_generic");
534
535	/* In the case of the phy reset being blocked, we already have a link.
536	 * We do not need to set it up again.
537	 */
538	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
539		return IGC_SUCCESS;
540
541	/* If requested flow control is set to default, set flow control
542	 * for both 'rx' and 'tx' pause frames.
543	 */
544	if (hw->fc.requested_mode == igc_fc_default) {
545		hw->fc.requested_mode = igc_fc_full;
546	}
547
548	/* Save off the requested flow control mode for use later.  Depending
549	 * on the link partner's capabilities, we may or may not use this mode.
550	 */
551	hw->fc.current_mode = hw->fc.requested_mode;
552
553	DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
554		hw->fc.current_mode);
555
556	/* Call the necessary media_type subroutine to configure the link. */
557	ret_val = hw->mac.ops.setup_physical_interface(hw);
558	if (ret_val)
559		return ret_val;
560
561	/* Initialize the flow control address, type, and PAUSE timer
562	 * registers to their default values.  This is done even if flow
563	 * control is disabled, because it does not hurt anything to
564	 * initialize these registers.
565	 */
566	DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
567	IGC_WRITE_REG(hw, IGC_FCT, FLOW_CONTROL_TYPE);
568	IGC_WRITE_REG(hw, IGC_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
569	IGC_WRITE_REG(hw, IGC_FCAL, FLOW_CONTROL_ADDRESS_LOW);
570
571	IGC_WRITE_REG(hw, IGC_FCTTV, hw->fc.pause_time);
572
573	return igc_set_fc_watermarks_generic(hw);
574}
575
576/**
577 *  igc_config_collision_dist_generic - Configure collision distance
578 *  @hw: pointer to the HW structure
579 *
580 *  Configures the collision distance to the default value and is used
581 *  during link setup.
582 **/
583static void igc_config_collision_dist_generic(struct igc_hw *hw)
584{
585	u32 tctl;
586
587	DEBUGFUNC("igc_config_collision_dist_generic");
588
589	tctl = IGC_READ_REG(hw, IGC_TCTL);
590
591	tctl &= ~IGC_TCTL_COLD;
592	tctl |= IGC_COLLISION_DISTANCE << IGC_COLD_SHIFT;
593
594	IGC_WRITE_REG(hw, IGC_TCTL, tctl);
595	IGC_WRITE_FLUSH(hw);
596}
597
598/**
599 *  igc_set_fc_watermarks_generic - Set flow control high/low watermarks
600 *  @hw: pointer to the HW structure
601 *
602 *  Sets the flow control high/low threshold (watermark) registers.  If
603 *  flow control XON frame transmission is enabled, then set XON frame
604 *  transmission as well.
605 **/
606s32 igc_set_fc_watermarks_generic(struct igc_hw *hw)
607{
608	u32 fcrtl = 0, fcrth = 0;
609
610	DEBUGFUNC("igc_set_fc_watermarks_generic");
611
612	/* Set the flow control receive threshold registers.  Normally,
613	 * these registers will be set to a default threshold that may be
614	 * adjusted later by the driver's runtime code.  However, if the
615	 * ability to transmit pause frames is not enabled, then these
616	 * registers will be set to 0.
617	 */
618	if (hw->fc.current_mode & igc_fc_tx_pause) {
619		/* We need to set up the Receive Threshold high and low water
620		 * marks as well as (optionally) enabling the transmission of
621		 * XON frames.
622		 */
623		fcrtl = hw->fc.low_water;
624		if (hw->fc.send_xon)
625			fcrtl |= IGC_FCRTL_XONE;
626
627		fcrth = hw->fc.high_water;
628	}
629	IGC_WRITE_REG(hw, IGC_FCRTL, fcrtl);
630	IGC_WRITE_REG(hw, IGC_FCRTH, fcrth);
631
632	return IGC_SUCCESS;
633}
634
635/**
636 *  igc_force_mac_fc_generic - Force the MAC's flow control settings
637 *  @hw: pointer to the HW structure
638 *
639 *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
640 *  device control register to reflect the adapter settings.  TFCE and RFCE
641 *  need to be explicitly set by software when a copper PHY is used because
642 *  autonegotiation is managed by the PHY rather than the MAC.  Software must
643 *  also configure these bits when link is forced on a fiber connection.
644 **/
645s32 igc_force_mac_fc_generic(struct igc_hw *hw)
646{
647	u32 ctrl;
648
649	DEBUGFUNC("igc_force_mac_fc_generic");
650
651	ctrl = IGC_READ_REG(hw, IGC_CTRL);
652
653	/* Because we didn't get link via the internal auto-negotiation
654	 * mechanism (we either forced link or we got link via PHY
655	 * auto-neg), we have to manually enable/disable transmit an
656	 * receive flow control.
657	 *
658	 * The "Case" statement below enables/disable flow control
659	 * according to the "hw->fc.current_mode" parameter.
660	 *
661	 * The possible values of the "fc" parameter are:
662	 *      0:  Flow control is completely disabled
663	 *      1:  Rx flow control is enabled (we can receive pause
664	 *          frames but not send pause frames).
665	 *      2:  Tx flow control is enabled (we can send pause frames
666	 *          frames but we do not receive pause frames).
667	 *      3:  Both Rx and Tx flow control (symmetric) is enabled.
668	 *  other:  No other values should be possible at this point.
669	 */
670	DEBUGOUT1("hw->fc.current_mode = %u\n", hw->fc.current_mode);
671
672	switch (hw->fc.current_mode) {
673	case igc_fc_none:
674		ctrl &= (~(IGC_CTRL_TFCE | IGC_CTRL_RFCE));
675		break;
676	case igc_fc_rx_pause:
677		ctrl &= (~IGC_CTRL_TFCE);
678		ctrl |= IGC_CTRL_RFCE;
679		break;
680	case igc_fc_tx_pause:
681		ctrl &= (~IGC_CTRL_RFCE);
682		ctrl |= IGC_CTRL_TFCE;
683		break;
684	case igc_fc_full:
685		ctrl |= (IGC_CTRL_TFCE | IGC_CTRL_RFCE);
686		break;
687	default:
688		DEBUGOUT("Flow control param set incorrectly\n");
689		return -IGC_ERR_CONFIG;
690	}
691
692	IGC_WRITE_REG(hw, IGC_CTRL, ctrl);
693
694	return IGC_SUCCESS;
695}
696
697/**
698 *  igc_config_fc_after_link_up_generic - Configures flow control after link
699 *  @hw: pointer to the HW structure
700 *
701 *  Checks the status of auto-negotiation after link up to ensure that the
702 *  speed and duplex were not forced.  If the link needed to be forced, then
703 *  flow control needs to be forced also.  If auto-negotiation is enabled
704 *  and did not fail, then we configure flow control based on our link
705 *  partner.
706 **/
707s32 igc_config_fc_after_link_up_generic(struct igc_hw *hw)
708{
709	struct igc_mac_info *mac = &hw->mac;
710	s32 ret_val = IGC_SUCCESS;
711	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
712	u16 speed, duplex;
713
714	DEBUGFUNC("igc_config_fc_after_link_up_generic");
715
716	if (ret_val) {
717		DEBUGOUT("Error forcing flow control settings\n");
718		return ret_val;
719	}
720
721	/* Check for the case where we have copper media and auto-neg is
722	 * enabled.  In this case, we need to check and see if Auto-Neg
723	 * has completed, and if so, how the PHY and link partner has
724	 * flow control configured.
725	 */
726	if (mac->autoneg) {
727		/* Read the MII Status Register and check to see if AutoNeg
728		 * has completed.  We read this twice because this reg has
729		 * some "sticky" (latched) bits.
730		 */
731		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
732		if (ret_val)
733			return ret_val;
734		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
735		if (ret_val)
736			return ret_val;
737
738		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
739			DEBUGOUT("Copper PHY and Auto Neg has not completed.\n");
740			return ret_val;
741		}
742
743		/* The AutoNeg process has completed, so we now need to
744		 * read both the Auto Negotiation Advertisement
745		 * Register (Address 4) and the Auto_Negotiation Base
746		 * Page Ability Register (Address 5) to determine how
747		 * flow control was negotiated.
748		 */
749		ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
750					       &mii_nway_adv_reg);
751		if (ret_val)
752			return ret_val;
753		ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
754					       &mii_nway_lp_ability_reg);
755		if (ret_val)
756			return ret_val;
757
758		/* Two bits in the Auto Negotiation Advertisement Register
759		 * (Address 4) and two bits in the Auto Negotiation Base
760		 * Page Ability Register (Address 5) determine flow control
761		 * for both the PHY and the link partner.  The following
762		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
763		 * 1999, describes these PAUSE resolution bits and how flow
764		 * control is determined based upon these settings.
765		 * NOTE:  DC = Don't Care
766		 *
767		 *   LOCAL DEVICE  |   LINK PARTNER
768		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
769		 *-------|---------|-------|---------|--------------------
770		 *   0   |    0    |  DC   |   DC    | igc_fc_none
771		 *   0   |    1    |   0   |   DC    | igc_fc_none
772		 *   0   |    1    |   1   |    0    | igc_fc_none
773		 *   0   |    1    |   1   |    1    | igc_fc_tx_pause
774		 *   1   |    0    |   0   |   DC    | igc_fc_none
775		 *   1   |   DC    |   1   |   DC    | igc_fc_full
776		 *   1   |    1    |   0   |    0    | igc_fc_none
777		 *   1   |    1    |   0   |    1    | igc_fc_rx_pause
778		 *
779		 * Are both PAUSE bits set to 1?  If so, this implies
780		 * Symmetric Flow Control is enabled at both ends.  The
781		 * ASM_DIR bits are irrelevant per the spec.
782		 *
783		 * For Symmetric Flow Control:
784		 *
785		 *   LOCAL DEVICE  |   LINK PARTNER
786		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
787		 *-------|---------|-------|---------|--------------------
788		 *   1   |   DC    |   1   |   DC    | IGC_fc_full
789		 *
790		 */
791		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
792		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
793			/* Now we need to check if the user selected Rx ONLY
794			 * of pause frames.  In this case, we had to advertise
795			 * FULL flow control because we could not advertise Rx
796			 * ONLY. Hence, we must now check to see if we need to
797			 * turn OFF the TRANSMISSION of PAUSE frames.
798			 */
799			if (hw->fc.requested_mode == igc_fc_full) {
800				hw->fc.current_mode = igc_fc_full;
801				DEBUGOUT("Flow Control = FULL.\n");
802			} else {
803				hw->fc.current_mode = igc_fc_rx_pause;
804				DEBUGOUT("Flow Control = Rx PAUSE frames only.\n");
805			}
806		}
807		/* For receiving PAUSE frames ONLY.
808		 *
809		 *   LOCAL DEVICE  |   LINK PARTNER
810		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
811		 *-------|---------|-------|---------|--------------------
812		 *   0   |    1    |   1   |    1    | igc_fc_tx_pause
813		 */
814		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
815			  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
816			  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
817			  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
818			hw->fc.current_mode = igc_fc_tx_pause;
819			DEBUGOUT("Flow Control = Tx PAUSE frames only.\n");
820		}
821		/* For transmitting PAUSE frames ONLY.
822		 *
823		 *   LOCAL DEVICE  |   LINK PARTNER
824		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
825		 *-------|---------|-------|---------|--------------------
826		 *   1   |    1    |   0   |    1    | igc_fc_rx_pause
827		 */
828		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
829			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
830			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
831			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
832			hw->fc.current_mode = igc_fc_rx_pause;
833			DEBUGOUT("Flow Control = Rx PAUSE frames only.\n");
834		} else {
835			/* Per the IEEE spec, at this point flow control
836			 * should be disabled.
837			 */
838			hw->fc.current_mode = igc_fc_none;
839			DEBUGOUT("Flow Control = NONE.\n");
840		}
841
842		/* Now we need to do one last check...  If we auto-
843		 * negotiated to HALF DUPLEX, flow control should not be
844		 * enabled per IEEE 802.3 spec.
845		 */
846		ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
847		if (ret_val) {
848			DEBUGOUT("Error getting link speed and duplex\n");
849			return ret_val;
850		}
851
852		if (duplex == HALF_DUPLEX)
853			hw->fc.current_mode = igc_fc_none;
854
855		/* Now we call a subroutine to actually force the MAC
856		 * controller to use the correct flow control settings.
857		 */
858		ret_val = igc_force_mac_fc_generic(hw);
859		if (ret_val) {
860			DEBUGOUT("Error forcing flow control settings\n");
861			return ret_val;
862		}
863	}
864
865	return IGC_SUCCESS;
866}
867
868/**
869 *  igc_get_speed_and_duplex_copper_generic - Retrieve current speed/duplex
870 *  @hw: pointer to the HW structure
871 *  @speed: stores the current speed
872 *  @duplex: stores the current duplex
873 *
874 *  Read the status register for the current speed/duplex and store the current
875 *  speed and duplex for copper connections.
876 **/
877s32 igc_get_speed_and_duplex_copper_generic(struct igc_hw *hw, u16 *speed,
878					      u16 *duplex)
879{
880	u32 status;
881
882	DEBUGFUNC("igc_get_speed_and_duplex_copper_generic");
883
884	status = IGC_READ_REG(hw, IGC_STATUS);
885	if (status & IGC_STATUS_SPEED_1000) {
886		/* For I225, STATUS will indicate 1G speed in both 1 Gbps
887		 * and 2.5 Gbps link modes. An additional bit is used
888		 * to differentiate between 1 Gbps and 2.5 Gbps.
889		 */
890		if ((hw->mac.type == igc_i225) &&
891		    (status & IGC_STATUS_SPEED_2500)) {
892			*speed = SPEED_2500;
893			DEBUGOUT("2500 Mbs, ");
894		} else {
895			*speed = SPEED_1000;
896			DEBUGOUT("1000 Mbs, ");
897		}
898	} else if (status & IGC_STATUS_SPEED_100) {
899		*speed = SPEED_100;
900		DEBUGOUT("100 Mbs, ");
901	} else {
902		*speed = SPEED_10;
903		DEBUGOUT("10 Mbs, ");
904	}
905
906	if (status & IGC_STATUS_FD) {
907		*duplex = FULL_DUPLEX;
908		DEBUGOUT("Full Duplex\n");
909	} else {
910		*duplex = HALF_DUPLEX;
911		DEBUGOUT("Half Duplex\n");
912	}
913
914	return IGC_SUCCESS;
915}
916
917/**
918 *  igc_get_hw_semaphore_generic - Acquire hardware semaphore
919 *  @hw: pointer to the HW structure
920 *
921 *  Acquire the HW semaphore to access the PHY or NVM
922 **/
923s32 igc_get_hw_semaphore_generic(struct igc_hw *hw)
924{
925	u32 swsm;
926	s32 timeout = hw->nvm.word_size + 1;
927	s32 i = 0;
928
929	DEBUGFUNC("igc_get_hw_semaphore_generic");
930
931	/* Get the SW semaphore */
932	while (i < timeout) {
933		swsm = IGC_READ_REG(hw, IGC_SWSM);
934		if (!(swsm & IGC_SWSM_SMBI))
935			break;
936
937		usec_delay(50);
938		i++;
939	}
940
941	if (i == timeout) {
942		DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
943		return -IGC_ERR_NVM;
944	}
945
946	/* Get the FW semaphore. */
947	for (i = 0; i < timeout; i++) {
948		swsm = IGC_READ_REG(hw, IGC_SWSM);
949		IGC_WRITE_REG(hw, IGC_SWSM, swsm | IGC_SWSM_SWESMBI);
950
951		/* Semaphore acquired if bit latched */
952		if (IGC_READ_REG(hw, IGC_SWSM) & IGC_SWSM_SWESMBI)
953			break;
954
955		usec_delay(50);
956	}
957
958	if (i == timeout) {
959		/* Release semaphores */
960		igc_put_hw_semaphore_generic(hw);
961		DEBUGOUT("Driver can't access the NVM\n");
962		return -IGC_ERR_NVM;
963	}
964
965	return IGC_SUCCESS;
966}
967
968/**
969 *  igc_put_hw_semaphore_generic - Release hardware semaphore
970 *  @hw: pointer to the HW structure
971 *
972 *  Release hardware semaphore used to access the PHY or NVM
973 **/
974void igc_put_hw_semaphore_generic(struct igc_hw *hw)
975{
976	u32 swsm;
977
978	DEBUGFUNC("igc_put_hw_semaphore_generic");
979
980	swsm = IGC_READ_REG(hw, IGC_SWSM);
981
982	swsm &= ~(IGC_SWSM_SMBI | IGC_SWSM_SWESMBI);
983
984	IGC_WRITE_REG(hw, IGC_SWSM, swsm);
985}
986
987/**
988 *  igc_get_auto_rd_done_generic - Check for auto read completion
989 *  @hw: pointer to the HW structure
990 *
991 *  Check EEPROM for Auto Read done bit.
992 **/
993s32 igc_get_auto_rd_done_generic(struct igc_hw *hw)
994{
995	s32 i = 0;
996
997	DEBUGFUNC("igc_get_auto_rd_done_generic");
998
999	while (i < AUTO_READ_DONE_TIMEOUT) {
1000		if (IGC_READ_REG(hw, IGC_EECD) & IGC_EECD_AUTO_RD)
1001			break;
1002		msec_delay(1);
1003		i++;
1004	}
1005
1006	if (i == AUTO_READ_DONE_TIMEOUT) {
1007		DEBUGOUT("Auto read by HW from NVM has not completed.\n");
1008		return -IGC_ERR_RESET;
1009	}
1010
1011	return IGC_SUCCESS;
1012}
1013
1014/**
1015 *  igc_disable_pcie_master_generic - Disables PCI-express master access
1016 *  @hw: pointer to the HW structure
1017 *
1018 *  Returns IGC_SUCCESS if successful, else returns -10
1019 *  (-IGC_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1020 *  the master requests to be disabled.
1021 *
1022 *  Disables PCI-Express master access and verifies there are no pending
1023 *  requests.
1024 **/
1025s32 igc_disable_pcie_master_generic(struct igc_hw *hw)
1026{
1027	u32 ctrl;
1028	s32 timeout = MASTER_DISABLE_TIMEOUT;
1029
1030	DEBUGFUNC("igc_disable_pcie_master_generic");
1031
1032	ctrl = IGC_READ_REG(hw, IGC_CTRL);
1033	ctrl |= IGC_CTRL_GIO_MASTER_DISABLE;
1034	IGC_WRITE_REG(hw, IGC_CTRL, ctrl);
1035
1036	while (timeout) {
1037		if (!(IGC_READ_REG(hw, IGC_STATUS) &
1038		      IGC_STATUS_GIO_MASTER_ENABLE))
1039			break;
1040		usec_delay(100);
1041		timeout--;
1042	}
1043
1044	if (!timeout) {
1045		DEBUGOUT("Master requests are pending.\n");
1046		return -IGC_ERR_MASTER_REQUESTS_PENDING;
1047	}
1048
1049	return IGC_SUCCESS;
1050}
1051