1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice unmodified, this list of conditions, and the following
12 *    disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30/* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: releng/12.0/sys/dev/ale/if_ale.c 338948 2018-09-26 17:12:14Z imp $");
34
35#include <sys/param.h>
36#include <sys/systm.h>
37#include <sys/bus.h>
38#include <sys/endian.h>
39#include <sys/kernel.h>
40#include <sys/malloc.h>
41#include <sys/mbuf.h>
42#include <sys/module.h>
43#include <sys/rman.h>
44#include <sys/queue.h>
45#include <sys/socket.h>
46#include <sys/sockio.h>
47#include <sys/sysctl.h>
48#include <sys/taskqueue.h>
49
50#include <net/bpf.h>
51#include <net/if.h>
52#include <net/if_var.h>
53#include <net/if_arp.h>
54#include <net/ethernet.h>
55#include <net/if_dl.h>
56#include <net/if_llc.h>
57#include <net/if_media.h>
58#include <net/if_types.h>
59#include <net/if_vlan_var.h>
60
61#include <netinet/in.h>
62#include <netinet/in_systm.h>
63#include <netinet/ip.h>
64#include <netinet/tcp.h>
65
66#include <dev/mii/mii.h>
67#include <dev/mii/miivar.h>
68
69#include <dev/pci/pcireg.h>
70#include <dev/pci/pcivar.h>
71
72#include <machine/bus.h>
73#include <machine/in_cksum.h>
74
75#include <dev/ale/if_alereg.h>
76#include <dev/ale/if_alevar.h>
77
78/* "device miibus" required.  See GENERIC if you get errors here. */
79#include "miibus_if.h"
80
81/* For more information about Tx checksum offload issues see ale_encap(). */
82#define	ALE_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
83
84MODULE_DEPEND(ale, pci, 1, 1, 1);
85MODULE_DEPEND(ale, ether, 1, 1, 1);
86MODULE_DEPEND(ale, miibus, 1, 1, 1);
87
88/* Tunables. */
89static int msi_disable = 0;
90static int msix_disable = 0;
91TUNABLE_INT("hw.ale.msi_disable", &msi_disable);
92TUNABLE_INT("hw.ale.msix_disable", &msix_disable);
93
94/*
95 * Devices supported by this driver.
96 */
97static const struct ale_dev {
98	uint16_t	ale_vendorid;
99	uint16_t	ale_deviceid;
100	const char	*ale_name;
101} ale_devs[] = {
102    { VENDORID_ATHEROS, DEVICEID_ATHEROS_AR81XX,
103    "Atheros AR8121/AR8113/AR8114 PCIe Ethernet" },
104};
105
106static int	ale_attach(device_t);
107static int	ale_check_boundary(struct ale_softc *);
108static int	ale_detach(device_t);
109static int	ale_dma_alloc(struct ale_softc *);
110static void	ale_dma_free(struct ale_softc *);
111static void	ale_dmamap_cb(void *, bus_dma_segment_t *, int, int);
112static int	ale_encap(struct ale_softc *, struct mbuf **);
113static void	ale_get_macaddr(struct ale_softc *);
114static void	ale_init(void *);
115static void	ale_init_locked(struct ale_softc *);
116static void	ale_init_rx_pages(struct ale_softc *);
117static void	ale_init_tx_ring(struct ale_softc *);
118static void	ale_int_task(void *, int);
119static int	ale_intr(void *);
120static int	ale_ioctl(struct ifnet *, u_long, caddr_t);
121static void	ale_mac_config(struct ale_softc *);
122static int	ale_miibus_readreg(device_t, int, int);
123static void	ale_miibus_statchg(device_t);
124static int	ale_miibus_writereg(device_t, int, int, int);
125static int	ale_mediachange(struct ifnet *);
126static void	ale_mediastatus(struct ifnet *, struct ifmediareq *);
127static void	ale_phy_reset(struct ale_softc *);
128static int	ale_probe(device_t);
129static void	ale_reset(struct ale_softc *);
130static int	ale_resume(device_t);
131static void	ale_rx_update_page(struct ale_softc *, struct ale_rx_page **,
132    uint32_t, uint32_t *);
133static void	ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t);
134static int	ale_rxeof(struct ale_softc *sc, int);
135static void	ale_rxfilter(struct ale_softc *);
136static void	ale_rxvlan(struct ale_softc *);
137static void	ale_setlinkspeed(struct ale_softc *);
138static void	ale_setwol(struct ale_softc *);
139static int	ale_shutdown(device_t);
140static void	ale_start(struct ifnet *);
141static void	ale_start_locked(struct ifnet *);
142static void	ale_stats_clear(struct ale_softc *);
143static void	ale_stats_update(struct ale_softc *);
144static void	ale_stop(struct ale_softc *);
145static void	ale_stop_mac(struct ale_softc *);
146static int	ale_suspend(device_t);
147static void	ale_sysctl_node(struct ale_softc *);
148static void	ale_tick(void *);
149static void	ale_txeof(struct ale_softc *);
150static void	ale_watchdog(struct ale_softc *);
151static int	sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
152static int	sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS);
153static int	sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS);
154
155static device_method_t ale_methods[] = {
156	/* Device interface. */
157	DEVMETHOD(device_probe,		ale_probe),
158	DEVMETHOD(device_attach,	ale_attach),
159	DEVMETHOD(device_detach,	ale_detach),
160	DEVMETHOD(device_shutdown,	ale_shutdown),
161	DEVMETHOD(device_suspend,	ale_suspend),
162	DEVMETHOD(device_resume,	ale_resume),
163
164	/* MII interface. */
165	DEVMETHOD(miibus_readreg,	ale_miibus_readreg),
166	DEVMETHOD(miibus_writereg,	ale_miibus_writereg),
167	DEVMETHOD(miibus_statchg,	ale_miibus_statchg),
168
169	DEVMETHOD_END
170};
171
172static driver_t ale_driver = {
173	"ale",
174	ale_methods,
175	sizeof(struct ale_softc)
176};
177
178static devclass_t ale_devclass;
179
180DRIVER_MODULE(ale, pci, ale_driver, ale_devclass, NULL, NULL);
181MODULE_PNP_INFO("U16:vendor;U16:device;D:#", pci, ale, ale_devs,
182    nitems(ale_devs));
183DRIVER_MODULE(miibus, ale, miibus_driver, miibus_devclass, NULL, NULL);
184
185static struct resource_spec ale_res_spec_mem[] = {
186	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
187	{ -1,			0,		0 }
188};
189
190static struct resource_spec ale_irq_spec_legacy[] = {
191	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
192	{ -1,			0,		0 }
193};
194
195static struct resource_spec ale_irq_spec_msi[] = {
196	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
197	{ -1,			0,		0 }
198};
199
200static struct resource_spec ale_irq_spec_msix[] = {
201	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
202	{ -1,			0,		0 }
203};
204
205static int
206ale_miibus_readreg(device_t dev, int phy, int reg)
207{
208	struct ale_softc *sc;
209	uint32_t v;
210	int i;
211
212	sc = device_get_softc(dev);
213
214	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
215	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
216	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
217		DELAY(5);
218		v = CSR_READ_4(sc, ALE_MDIO);
219		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
220			break;
221	}
222
223	if (i == 0) {
224		device_printf(sc->ale_dev, "phy read timeout : %d\n", reg);
225		return (0);
226	}
227
228	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
229}
230
231static int
232ale_miibus_writereg(device_t dev, int phy, int reg, int val)
233{
234	struct ale_softc *sc;
235	uint32_t v;
236	int i;
237
238	sc = device_get_softc(dev);
239
240	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
241	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
242	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
243	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
244		DELAY(5);
245		v = CSR_READ_4(sc, ALE_MDIO);
246		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
247			break;
248	}
249
250	if (i == 0)
251		device_printf(sc->ale_dev, "phy write timeout : %d\n", reg);
252
253	return (0);
254}
255
256static void
257ale_miibus_statchg(device_t dev)
258{
259	struct ale_softc *sc;
260	struct mii_data *mii;
261	struct ifnet *ifp;
262	uint32_t reg;
263
264	sc = device_get_softc(dev);
265	mii = device_get_softc(sc->ale_miibus);
266	ifp = sc->ale_ifp;
267	if (mii == NULL || ifp == NULL ||
268	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
269		return;
270
271	sc->ale_flags &= ~ALE_FLAG_LINK;
272	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
273	    (IFM_ACTIVE | IFM_AVALID)) {
274		switch (IFM_SUBTYPE(mii->mii_media_active)) {
275		case IFM_10_T:
276		case IFM_100_TX:
277			sc->ale_flags |= ALE_FLAG_LINK;
278			break;
279		case IFM_1000_T:
280			if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
281				sc->ale_flags |= ALE_FLAG_LINK;
282			break;
283		default:
284			break;
285		}
286	}
287
288	/* Stop Rx/Tx MACs. */
289	ale_stop_mac(sc);
290
291	/* Program MACs with resolved speed/duplex/flow-control. */
292	if ((sc->ale_flags & ALE_FLAG_LINK) != 0) {
293		ale_mac_config(sc);
294		/* Reenable Tx/Rx MACs. */
295		reg = CSR_READ_4(sc, ALE_MAC_CFG);
296		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
297		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
298	}
299}
300
301static void
302ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
303{
304	struct ale_softc *sc;
305	struct mii_data *mii;
306
307	sc = ifp->if_softc;
308	ALE_LOCK(sc);
309	if ((ifp->if_flags & IFF_UP) == 0) {
310		ALE_UNLOCK(sc);
311		return;
312	}
313	mii = device_get_softc(sc->ale_miibus);
314
315	mii_pollstat(mii);
316	ifmr->ifm_status = mii->mii_media_status;
317	ifmr->ifm_active = mii->mii_media_active;
318	ALE_UNLOCK(sc);
319}
320
321static int
322ale_mediachange(struct ifnet *ifp)
323{
324	struct ale_softc *sc;
325	struct mii_data *mii;
326	struct mii_softc *miisc;
327	int error;
328
329	sc = ifp->if_softc;
330	ALE_LOCK(sc);
331	mii = device_get_softc(sc->ale_miibus);
332	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
333		PHY_RESET(miisc);
334	error = mii_mediachg(mii);
335	ALE_UNLOCK(sc);
336
337	return (error);
338}
339
340static int
341ale_probe(device_t dev)
342{
343	const struct ale_dev *sp;
344	int i;
345	uint16_t vendor, devid;
346
347	vendor = pci_get_vendor(dev);
348	devid = pci_get_device(dev);
349	sp = ale_devs;
350	for (i = 0; i < nitems(ale_devs); i++) {
351		if (vendor == sp->ale_vendorid &&
352		    devid == sp->ale_deviceid) {
353			device_set_desc(dev, sp->ale_name);
354			return (BUS_PROBE_DEFAULT);
355		}
356		sp++;
357	}
358
359	return (ENXIO);
360}
361
362static void
363ale_get_macaddr(struct ale_softc *sc)
364{
365	uint32_t ea[2], reg;
366	int i, vpdc;
367
368	reg = CSR_READ_4(sc, ALE_SPI_CTRL);
369	if ((reg & SPI_VPD_ENB) != 0) {
370		reg &= ~SPI_VPD_ENB;
371		CSR_WRITE_4(sc, ALE_SPI_CTRL, reg);
372	}
373
374	if (pci_find_cap(sc->ale_dev, PCIY_VPD, &vpdc) == 0) {
375		/*
376		 * PCI VPD capability found, let TWSI reload EEPROM.
377		 * This will set ethernet address of controller.
378		 */
379		CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) |
380		    TWSI_CTRL_SW_LD_START);
381		for (i = 100; i > 0; i--) {
382			DELAY(1000);
383			reg = CSR_READ_4(sc, ALE_TWSI_CTRL);
384			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
385				break;
386		}
387		if (i == 0)
388			device_printf(sc->ale_dev,
389			    "reloading EEPROM timeout!\n");
390	} else {
391		if (bootverbose)
392			device_printf(sc->ale_dev,
393			    "PCI VPD capability not found!\n");
394	}
395
396	ea[0] = CSR_READ_4(sc, ALE_PAR0);
397	ea[1] = CSR_READ_4(sc, ALE_PAR1);
398	sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF;
399	sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF;
400	sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF;
401	sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF;
402	sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF;
403	sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF;
404}
405
406static void
407ale_phy_reset(struct ale_softc *sc)
408{
409
410	/* Reset magic from Linux. */
411	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
412	    GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
413	    GPHY_CTRL_PHY_PLL_ON);
414	DELAY(1000);
415	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
416	    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE |
417	    GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON);
418	DELAY(1000);
419
420#define	ATPHY_DBG_ADDR		0x1D
421#define	ATPHY_DBG_DATA		0x1E
422
423	/* Enable hibernation mode. */
424	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
425	    ATPHY_DBG_ADDR, 0x0B);
426	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
427	    ATPHY_DBG_DATA, 0xBC00);
428	/* Set Class A/B for all modes. */
429	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
430	    ATPHY_DBG_ADDR, 0x00);
431	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
432	    ATPHY_DBG_DATA, 0x02EF);
433	/* Enable 10BT power saving. */
434	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
435	    ATPHY_DBG_ADDR, 0x12);
436	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
437	    ATPHY_DBG_DATA, 0x4C04);
438	/* Adjust 1000T power. */
439	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
440	    ATPHY_DBG_ADDR, 0x04);
441	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
442	    ATPHY_DBG_ADDR, 0x8BBB);
443	/* 10BT center tap voltage. */
444	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
445	    ATPHY_DBG_ADDR, 0x05);
446	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
447	    ATPHY_DBG_ADDR, 0x2C46);
448
449#undef	ATPHY_DBG_ADDR
450#undef	ATPHY_DBG_DATA
451	DELAY(1000);
452}
453
454static int
455ale_attach(device_t dev)
456{
457	struct ale_softc *sc;
458	struct ifnet *ifp;
459	uint16_t burst;
460	int error, i, msic, msixc, pmc;
461	uint32_t rxf_len, txf_len;
462
463	error = 0;
464	sc = device_get_softc(dev);
465	sc->ale_dev = dev;
466
467	mtx_init(&sc->ale_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
468	    MTX_DEF);
469	callout_init_mtx(&sc->ale_tick_ch, &sc->ale_mtx, 0);
470	TASK_INIT(&sc->ale_int_task, 0, ale_int_task, sc);
471
472	/* Map the device. */
473	pci_enable_busmaster(dev);
474	sc->ale_res_spec = ale_res_spec_mem;
475	sc->ale_irq_spec = ale_irq_spec_legacy;
476	error = bus_alloc_resources(dev, sc->ale_res_spec, sc->ale_res);
477	if (error != 0) {
478		device_printf(dev, "cannot allocate memory resources.\n");
479		goto fail;
480	}
481
482	/* Set PHY address. */
483	sc->ale_phyaddr = ALE_PHY_ADDR;
484
485	/* Reset PHY. */
486	ale_phy_reset(sc);
487
488	/* Reset the ethernet controller. */
489	ale_reset(sc);
490
491	/* Get PCI and chip id/revision. */
492	sc->ale_rev = pci_get_revid(dev);
493	if (sc->ale_rev >= 0xF0) {
494		/* L2E Rev. B. AR8114 */
495		sc->ale_flags |= ALE_FLAG_FASTETHER;
496	} else {
497		if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) {
498			/* L1E AR8121 */
499			sc->ale_flags |= ALE_FLAG_JUMBO;
500		} else {
501			/* L2E Rev. A. AR8113 */
502			sc->ale_flags |= ALE_FLAG_FASTETHER;
503		}
504	}
505	/*
506	 * All known controllers seems to require 4 bytes alignment
507	 * of Tx buffers to make Tx checksum offload with custom
508	 * checksum generation method work.
509	 */
510	sc->ale_flags |= ALE_FLAG_TXCSUM_BUG;
511	/*
512	 * All known controllers seems to have issues on Rx checksum
513	 * offload for fragmented IP datagrams.
514	 */
515	sc->ale_flags |= ALE_FLAG_RXCSUM_BUG;
516	/*
517	 * Don't use Tx CMB. It is known to cause RRS update failure
518	 * under certain circumstances. Typical phenomenon of the
519	 * issue would be unexpected sequence number encountered in
520	 * Rx handler.
521	 */
522	sc->ale_flags |= ALE_FLAG_TXCMB_BUG;
523	sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >>
524	    MASTER_CHIP_REV_SHIFT;
525	if (bootverbose) {
526		device_printf(dev, "PCI device revision : 0x%04x\n",
527		    sc->ale_rev);
528		device_printf(dev, "Chip id/revision : 0x%04x\n",
529		    sc->ale_chip_rev);
530	}
531	txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN);
532	rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
533	/*
534	 * Uninitialized hardware returns an invalid chip id/revision
535	 * as well as 0xFFFFFFFF for Tx/Rx fifo length.
536	 */
537	if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF ||
538	    rxf_len == 0xFFFFFFF) {
539		device_printf(dev,"chip revision : 0x%04x, %u Tx FIFO "
540		    "%u Rx FIFO -- not initialized?\n", sc->ale_chip_rev,
541		    txf_len, rxf_len);
542		error = ENXIO;
543		goto fail;
544	}
545	device_printf(dev, "%u Tx FIFO, %u Rx FIFO\n", txf_len, rxf_len);
546
547	/* Allocate IRQ resources. */
548	msixc = pci_msix_count(dev);
549	msic = pci_msi_count(dev);
550	if (bootverbose) {
551		device_printf(dev, "MSIX count : %d\n", msixc);
552		device_printf(dev, "MSI count : %d\n", msic);
553	}
554
555	/* Prefer MSIX over MSI. */
556	if (msix_disable == 0 || msi_disable == 0) {
557		if (msix_disable == 0 && msixc == ALE_MSIX_MESSAGES &&
558		    pci_alloc_msix(dev, &msixc) == 0) {
559			if (msixc == ALE_MSIX_MESSAGES) {
560				device_printf(dev, "Using %d MSIX messages.\n",
561				    msixc);
562				sc->ale_flags |= ALE_FLAG_MSIX;
563				sc->ale_irq_spec = ale_irq_spec_msix;
564			} else
565				pci_release_msi(dev);
566		}
567		if (msi_disable == 0 && (sc->ale_flags & ALE_FLAG_MSIX) == 0 &&
568		    msic == ALE_MSI_MESSAGES &&
569		    pci_alloc_msi(dev, &msic) == 0) {
570			if (msic == ALE_MSI_MESSAGES) {
571				device_printf(dev, "Using %d MSI messages.\n",
572				    msic);
573				sc->ale_flags |= ALE_FLAG_MSI;
574				sc->ale_irq_spec = ale_irq_spec_msi;
575			} else
576				pci_release_msi(dev);
577		}
578	}
579
580	error = bus_alloc_resources(dev, sc->ale_irq_spec, sc->ale_irq);
581	if (error != 0) {
582		device_printf(dev, "cannot allocate IRQ resources.\n");
583		goto fail;
584	}
585
586	/* Get DMA parameters from PCIe device control register. */
587	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
588		sc->ale_flags |= ALE_FLAG_PCIE;
589		burst = pci_read_config(dev, i + 0x08, 2);
590		/* Max read request size. */
591		sc->ale_dma_rd_burst = ((burst >> 12) & 0x07) <<
592		    DMA_CFG_RD_BURST_SHIFT;
593		/* Max payload size. */
594		sc->ale_dma_wr_burst = ((burst >> 5) & 0x07) <<
595		    DMA_CFG_WR_BURST_SHIFT;
596		if (bootverbose) {
597			device_printf(dev, "Read request size : %d bytes.\n",
598			    128 << ((burst >> 12) & 0x07));
599			device_printf(dev, "TLP payload size : %d bytes.\n",
600			    128 << ((burst >> 5) & 0x07));
601		}
602	} else {
603		sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128;
604		sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128;
605	}
606
607	/* Create device sysctl node. */
608	ale_sysctl_node(sc);
609
610	if ((error = ale_dma_alloc(sc)) != 0)
611		goto fail;
612
613	/* Load station address. */
614	ale_get_macaddr(sc);
615
616	ifp = sc->ale_ifp = if_alloc(IFT_ETHER);
617	if (ifp == NULL) {
618		device_printf(dev, "cannot allocate ifnet structure.\n");
619		error = ENXIO;
620		goto fail;
621	}
622
623	ifp->if_softc = sc;
624	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
625	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
626	ifp->if_ioctl = ale_ioctl;
627	ifp->if_start = ale_start;
628	ifp->if_init = ale_init;
629	ifp->if_snd.ifq_drv_maxlen = ALE_TX_RING_CNT - 1;
630	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
631	IFQ_SET_READY(&ifp->if_snd);
632	ifp->if_capabilities = IFCAP_RXCSUM | IFCAP_TXCSUM | IFCAP_TSO4;
633	ifp->if_hwassist = ALE_CSUM_FEATURES | CSUM_TSO;
634	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
635		sc->ale_flags |= ALE_FLAG_PMCAP;
636		ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
637	}
638	ifp->if_capenable = ifp->if_capabilities;
639
640	/* Set up MII bus. */
641	error = mii_attach(dev, &sc->ale_miibus, ifp, ale_mediachange,
642	    ale_mediastatus, BMSR_DEFCAPMASK, sc->ale_phyaddr, MII_OFFSET_ANY,
643	    MIIF_DOPAUSE);
644	if (error != 0) {
645		device_printf(dev, "attaching PHYs failed\n");
646		goto fail;
647	}
648
649	ether_ifattach(ifp, sc->ale_eaddr);
650
651	/* VLAN capability setup. */
652	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
653	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
654	ifp->if_capenable = ifp->if_capabilities;
655	/*
656	 * Even though controllers supported by ale(3) have Rx checksum
657	 * offload bug the workaround for fragmented frames seemed to
658	 * work so far. However it seems Rx checksum offload does not
659	 * work under certain conditions. So disable Rx checksum offload
660	 * until I find more clue about it but allow users to override it.
661	 */
662	ifp->if_capenable &= ~IFCAP_RXCSUM;
663
664	/* Tell the upper layer(s) we support long frames. */
665	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
666
667	/* Create local taskq. */
668	sc->ale_tq = taskqueue_create_fast("ale_taskq", M_WAITOK,
669	    taskqueue_thread_enqueue, &sc->ale_tq);
670	if (sc->ale_tq == NULL) {
671		device_printf(dev, "could not create taskqueue.\n");
672		ether_ifdetach(ifp);
673		error = ENXIO;
674		goto fail;
675	}
676	taskqueue_start_threads(&sc->ale_tq, 1, PI_NET, "%s taskq",
677	    device_get_nameunit(sc->ale_dev));
678
679	if ((sc->ale_flags & ALE_FLAG_MSIX) != 0)
680		msic = ALE_MSIX_MESSAGES;
681	else if ((sc->ale_flags & ALE_FLAG_MSI) != 0)
682		msic = ALE_MSI_MESSAGES;
683	else
684		msic = 1;
685	for (i = 0; i < msic; i++) {
686		error = bus_setup_intr(dev, sc->ale_irq[i],
687		    INTR_TYPE_NET | INTR_MPSAFE, ale_intr, NULL, sc,
688		    &sc->ale_intrhand[i]);
689		if (error != 0)
690			break;
691	}
692	if (error != 0) {
693		device_printf(dev, "could not set up interrupt handler.\n");
694		taskqueue_free(sc->ale_tq);
695		sc->ale_tq = NULL;
696		ether_ifdetach(ifp);
697		goto fail;
698	}
699
700fail:
701	if (error != 0)
702		ale_detach(dev);
703
704	return (error);
705}
706
707static int
708ale_detach(device_t dev)
709{
710	struct ale_softc *sc;
711	struct ifnet *ifp;
712	int i, msic;
713
714	sc = device_get_softc(dev);
715
716	ifp = sc->ale_ifp;
717	if (device_is_attached(dev)) {
718		ether_ifdetach(ifp);
719		ALE_LOCK(sc);
720		ale_stop(sc);
721		ALE_UNLOCK(sc);
722		callout_drain(&sc->ale_tick_ch);
723		taskqueue_drain(sc->ale_tq, &sc->ale_int_task);
724	}
725
726	if (sc->ale_tq != NULL) {
727		taskqueue_drain(sc->ale_tq, &sc->ale_int_task);
728		taskqueue_free(sc->ale_tq);
729		sc->ale_tq = NULL;
730	}
731
732	if (sc->ale_miibus != NULL) {
733		device_delete_child(dev, sc->ale_miibus);
734		sc->ale_miibus = NULL;
735	}
736	bus_generic_detach(dev);
737	ale_dma_free(sc);
738
739	if (ifp != NULL) {
740		if_free(ifp);
741		sc->ale_ifp = NULL;
742	}
743
744	if ((sc->ale_flags & ALE_FLAG_MSIX) != 0)
745		msic = ALE_MSIX_MESSAGES;
746	else if ((sc->ale_flags & ALE_FLAG_MSI) != 0)
747		msic = ALE_MSI_MESSAGES;
748	else
749		msic = 1;
750	for (i = 0; i < msic; i++) {
751		if (sc->ale_intrhand[i] != NULL) {
752			bus_teardown_intr(dev, sc->ale_irq[i],
753			    sc->ale_intrhand[i]);
754			sc->ale_intrhand[i] = NULL;
755		}
756	}
757
758	bus_release_resources(dev, sc->ale_irq_spec, sc->ale_irq);
759	if ((sc->ale_flags & (ALE_FLAG_MSI | ALE_FLAG_MSIX)) != 0)
760		pci_release_msi(dev);
761	bus_release_resources(dev, sc->ale_res_spec, sc->ale_res);
762	mtx_destroy(&sc->ale_mtx);
763
764	return (0);
765}
766
767#define	ALE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
768	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
769
770#if __FreeBSD_version >= 900030
771#define	ALE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
772	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
773#elif __FreeBSD_version > 800000
774#define	ALE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
775	    SYSCTL_ADD_QUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
776#else
777#define	ALE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
778	    SYSCTL_ADD_ULONG(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
779#endif
780
781static void
782ale_sysctl_node(struct ale_softc *sc)
783{
784	struct sysctl_ctx_list *ctx;
785	struct sysctl_oid_list *child, *parent;
786	struct sysctl_oid *tree;
787	struct ale_hw_stats *stats;
788	int error;
789
790	stats = &sc->ale_stats;
791	ctx = device_get_sysctl_ctx(sc->ale_dev);
792	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ale_dev));
793
794	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod",
795	    CTLTYPE_INT | CTLFLAG_RW, &sc->ale_int_rx_mod, 0,
796	    sysctl_hw_ale_int_mod, "I", "ale Rx interrupt moderation");
797	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod",
798	    CTLTYPE_INT | CTLFLAG_RW, &sc->ale_int_tx_mod, 0,
799	    sysctl_hw_ale_int_mod, "I", "ale Tx interrupt moderation");
800	/* Pull in device tunables. */
801	sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
802	error = resource_int_value(device_get_name(sc->ale_dev),
803	    device_get_unit(sc->ale_dev), "int_rx_mod", &sc->ale_int_rx_mod);
804	if (error == 0) {
805		if (sc->ale_int_rx_mod < ALE_IM_TIMER_MIN ||
806		    sc->ale_int_rx_mod > ALE_IM_TIMER_MAX) {
807			device_printf(sc->ale_dev, "int_rx_mod value out of "
808			    "range; using default: %d\n",
809			    ALE_IM_RX_TIMER_DEFAULT);
810			sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
811		}
812	}
813	sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
814	error = resource_int_value(device_get_name(sc->ale_dev),
815	    device_get_unit(sc->ale_dev), "int_tx_mod", &sc->ale_int_tx_mod);
816	if (error == 0) {
817		if (sc->ale_int_tx_mod < ALE_IM_TIMER_MIN ||
818		    sc->ale_int_tx_mod > ALE_IM_TIMER_MAX) {
819			device_printf(sc->ale_dev, "int_tx_mod value out of "
820			    "range; using default: %d\n",
821			    ALE_IM_TX_TIMER_DEFAULT);
822			sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
823		}
824	}
825	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
826	    CTLTYPE_INT | CTLFLAG_RW, &sc->ale_process_limit, 0,
827	    sysctl_hw_ale_proc_limit, "I",
828	    "max number of Rx events to process");
829	/* Pull in device tunables. */
830	sc->ale_process_limit = ALE_PROC_DEFAULT;
831	error = resource_int_value(device_get_name(sc->ale_dev),
832	    device_get_unit(sc->ale_dev), "process_limit",
833	    &sc->ale_process_limit);
834	if (error == 0) {
835		if (sc->ale_process_limit < ALE_PROC_MIN ||
836		    sc->ale_process_limit > ALE_PROC_MAX) {
837			device_printf(sc->ale_dev,
838			    "process_limit value out of range; "
839			    "using default: %d\n", ALE_PROC_DEFAULT);
840			sc->ale_process_limit = ALE_PROC_DEFAULT;
841		}
842	}
843
844	/* Misc statistics. */
845	ALE_SYSCTL_STAT_ADD32(ctx, child, "reset_brk_seq",
846	    &stats->reset_brk_seq,
847	    "Controller resets due to broken Rx sequnce number");
848
849	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
850	    NULL, "ATE statistics");
851	parent = SYSCTL_CHILDREN(tree);
852
853	/* Rx statistics. */
854	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
855	    NULL, "Rx MAC statistics");
856	child = SYSCTL_CHILDREN(tree);
857	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
858	    &stats->rx_frames, "Good frames");
859	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
860	    &stats->rx_bcast_frames, "Good broadcast frames");
861	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
862	    &stats->rx_mcast_frames, "Good multicast frames");
863	ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
864	    &stats->rx_pause_frames, "Pause control frames");
865	ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
866	    &stats->rx_control_frames, "Control frames");
867	ALE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
868	    &stats->rx_crcerrs, "CRC errors");
869	ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
870	    &stats->rx_lenerrs, "Frames with length mismatched");
871	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
872	    &stats->rx_bytes, "Good octets");
873	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
874	    &stats->rx_bcast_bytes, "Good broadcast octets");
875	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
876	    &stats->rx_mcast_bytes, "Good multicast octets");
877	ALE_SYSCTL_STAT_ADD32(ctx, child, "runts",
878	    &stats->rx_runts, "Too short frames");
879	ALE_SYSCTL_STAT_ADD32(ctx, child, "fragments",
880	    &stats->rx_fragments, "Fragmented frames");
881	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
882	    &stats->rx_pkts_64, "64 bytes frames");
883	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
884	    &stats->rx_pkts_65_127, "65 to 127 bytes frames");
885	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
886	    &stats->rx_pkts_128_255, "128 to 255 bytes frames");
887	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
888	    &stats->rx_pkts_256_511, "256 to 511 bytes frames");
889	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
890	    &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
891	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
892	    &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
893	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
894	    &stats->rx_pkts_1519_max, "1519 to max frames");
895	ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
896	    &stats->rx_pkts_truncated, "Truncated frames due to MTU size");
897	ALE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
898	    &stats->rx_fifo_oflows, "FIFO overflows");
899	ALE_SYSCTL_STAT_ADD32(ctx, child, "rrs_errs",
900	    &stats->rx_rrs_errs, "Return status write-back errors");
901	ALE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
902	    &stats->rx_alignerrs, "Alignment errors");
903	ALE_SYSCTL_STAT_ADD32(ctx, child, "filtered",
904	    &stats->rx_pkts_filtered,
905	    "Frames dropped due to address filtering");
906
907	/* Tx statistics. */
908	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
909	    NULL, "Tx MAC statistics");
910	child = SYSCTL_CHILDREN(tree);
911	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
912	    &stats->tx_frames, "Good frames");
913	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
914	    &stats->tx_bcast_frames, "Good broadcast frames");
915	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
916	    &stats->tx_mcast_frames, "Good multicast frames");
917	ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
918	    &stats->tx_pause_frames, "Pause control frames");
919	ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
920	    &stats->tx_control_frames, "Control frames");
921	ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
922	    &stats->tx_excess_defer, "Frames with excessive derferrals");
923	ALE_SYSCTL_STAT_ADD32(ctx, child, "defers",
924	    &stats->tx_excess_defer, "Frames with derferrals");
925	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
926	    &stats->tx_bytes, "Good octets");
927	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
928	    &stats->tx_bcast_bytes, "Good broadcast octets");
929	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
930	    &stats->tx_mcast_bytes, "Good multicast octets");
931	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
932	    &stats->tx_pkts_64, "64 bytes frames");
933	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
934	    &stats->tx_pkts_65_127, "65 to 127 bytes frames");
935	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
936	    &stats->tx_pkts_128_255, "128 to 255 bytes frames");
937	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
938	    &stats->tx_pkts_256_511, "256 to 511 bytes frames");
939	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
940	    &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
941	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
942	    &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
943	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
944	    &stats->tx_pkts_1519_max, "1519 to max frames");
945	ALE_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
946	    &stats->tx_single_colls, "Single collisions");
947	ALE_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
948	    &stats->tx_multi_colls, "Multiple collisions");
949	ALE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
950	    &stats->tx_late_colls, "Late collisions");
951	ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_colls",
952	    &stats->tx_excess_colls, "Excessive collisions");
953	ALE_SYSCTL_STAT_ADD32(ctx, child, "underruns",
954	    &stats->tx_underrun, "FIFO underruns");
955	ALE_SYSCTL_STAT_ADD32(ctx, child, "desc_underruns",
956	    &stats->tx_desc_underrun, "Descriptor write-back errors");
957	ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
958	    &stats->tx_lenerrs, "Frames with length mismatched");
959	ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
960	    &stats->tx_pkts_truncated, "Truncated frames due to MTU size");
961}
962
963#undef ALE_SYSCTL_STAT_ADD32
964#undef ALE_SYSCTL_STAT_ADD64
965
966struct ale_dmamap_arg {
967	bus_addr_t	ale_busaddr;
968};
969
970static void
971ale_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
972{
973	struct ale_dmamap_arg *ctx;
974
975	if (error != 0)
976		return;
977
978	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
979
980	ctx = (struct ale_dmamap_arg *)arg;
981	ctx->ale_busaddr = segs[0].ds_addr;
982}
983
984/*
985 * Tx descriptors/RXF0/CMB DMA blocks share ALE_DESC_ADDR_HI register
986 * which specifies high address region of DMA blocks. Therefore these
987 * blocks should have the same high address of given 4GB address
988 * space(i.e. crossing 4GB boundary is not allowed).
989 */
990static int
991ale_check_boundary(struct ale_softc *sc)
992{
993	bus_addr_t rx_cmb_end[ALE_RX_PAGES], tx_cmb_end;
994	bus_addr_t rx_page_end[ALE_RX_PAGES], tx_ring_end;
995
996	rx_page_end[0] = sc->ale_cdata.ale_rx_page[0].page_paddr +
997	    sc->ale_pagesize;
998	rx_page_end[1] = sc->ale_cdata.ale_rx_page[1].page_paddr +
999	    sc->ale_pagesize;
1000	tx_ring_end = sc->ale_cdata.ale_tx_ring_paddr + ALE_TX_RING_SZ;
1001	tx_cmb_end = sc->ale_cdata.ale_tx_cmb_paddr + ALE_TX_CMB_SZ;
1002	rx_cmb_end[0] = sc->ale_cdata.ale_rx_page[0].cmb_paddr + ALE_RX_CMB_SZ;
1003	rx_cmb_end[1] = sc->ale_cdata.ale_rx_page[1].cmb_paddr + ALE_RX_CMB_SZ;
1004
1005	if ((ALE_ADDR_HI(tx_ring_end) !=
1006	    ALE_ADDR_HI(sc->ale_cdata.ale_tx_ring_paddr)) ||
1007	    (ALE_ADDR_HI(rx_page_end[0]) !=
1008	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].page_paddr)) ||
1009	    (ALE_ADDR_HI(rx_page_end[1]) !=
1010	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].page_paddr)) ||
1011	    (ALE_ADDR_HI(tx_cmb_end) !=
1012	    ALE_ADDR_HI(sc->ale_cdata.ale_tx_cmb_paddr)) ||
1013	    (ALE_ADDR_HI(rx_cmb_end[0]) !=
1014	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].cmb_paddr)) ||
1015	    (ALE_ADDR_HI(rx_cmb_end[1]) !=
1016	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].cmb_paddr)))
1017		return (EFBIG);
1018
1019	if ((ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[0])) ||
1020	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[1])) ||
1021	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[0])) ||
1022	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[1])) ||
1023	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(tx_cmb_end)))
1024		return (EFBIG);
1025
1026	return (0);
1027}
1028
1029static int
1030ale_dma_alloc(struct ale_softc *sc)
1031{
1032	struct ale_txdesc *txd;
1033	bus_addr_t lowaddr;
1034	struct ale_dmamap_arg ctx;
1035	int error, guard_size, i;
1036
1037	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
1038		guard_size = ALE_JUMBO_FRAMELEN;
1039	else
1040		guard_size = ALE_MAX_FRAMELEN;
1041	sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ,
1042	    ALE_RX_PAGE_ALIGN);
1043	lowaddr = BUS_SPACE_MAXADDR;
1044again:
1045	/* Create parent DMA tag. */
1046	error = bus_dma_tag_create(
1047	    bus_get_dma_tag(sc->ale_dev), /* parent */
1048	    1, 0,			/* alignment, boundary */
1049	    lowaddr,			/* lowaddr */
1050	    BUS_SPACE_MAXADDR,		/* highaddr */
1051	    NULL, NULL,			/* filter, filterarg */
1052	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1053	    0,				/* nsegments */
1054	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1055	    0,				/* flags */
1056	    NULL, NULL,			/* lockfunc, lockarg */
1057	    &sc->ale_cdata.ale_parent_tag);
1058	if (error != 0) {
1059		device_printf(sc->ale_dev,
1060		    "could not create parent DMA tag.\n");
1061		goto fail;
1062	}
1063
1064	/* Create DMA tag for Tx descriptor ring. */
1065	error = bus_dma_tag_create(
1066	    sc->ale_cdata.ale_parent_tag, /* parent */
1067	    ALE_TX_RING_ALIGN, 0,	/* alignment, boundary */
1068	    BUS_SPACE_MAXADDR,		/* lowaddr */
1069	    BUS_SPACE_MAXADDR,		/* highaddr */
1070	    NULL, NULL,			/* filter, filterarg */
1071	    ALE_TX_RING_SZ,		/* maxsize */
1072	    1,				/* nsegments */
1073	    ALE_TX_RING_SZ,		/* maxsegsize */
1074	    0,				/* flags */
1075	    NULL, NULL,			/* lockfunc, lockarg */
1076	    &sc->ale_cdata.ale_tx_ring_tag);
1077	if (error != 0) {
1078		device_printf(sc->ale_dev,
1079		    "could not create Tx ring DMA tag.\n");
1080		goto fail;
1081	}
1082
1083	/* Create DMA tag for Rx pages. */
1084	for (i = 0; i < ALE_RX_PAGES; i++) {
1085		error = bus_dma_tag_create(
1086		    sc->ale_cdata.ale_parent_tag, /* parent */
1087		    ALE_RX_PAGE_ALIGN, 0,	/* alignment, boundary */
1088		    BUS_SPACE_MAXADDR,		/* lowaddr */
1089		    BUS_SPACE_MAXADDR,		/* highaddr */
1090		    NULL, NULL,			/* filter, filterarg */
1091		    sc->ale_pagesize,		/* maxsize */
1092		    1,				/* nsegments */
1093		    sc->ale_pagesize,		/* maxsegsize */
1094		    0,				/* flags */
1095		    NULL, NULL,			/* lockfunc, lockarg */
1096		    &sc->ale_cdata.ale_rx_page[i].page_tag);
1097		if (error != 0) {
1098			device_printf(sc->ale_dev,
1099			    "could not create Rx page %d DMA tag.\n", i);
1100			goto fail;
1101		}
1102	}
1103
1104	/* Create DMA tag for Tx coalescing message block. */
1105	error = bus_dma_tag_create(
1106	    sc->ale_cdata.ale_parent_tag, /* parent */
1107	    ALE_CMB_ALIGN, 0,		/* alignment, boundary */
1108	    BUS_SPACE_MAXADDR,		/* lowaddr */
1109	    BUS_SPACE_MAXADDR,		/* highaddr */
1110	    NULL, NULL,			/* filter, filterarg */
1111	    ALE_TX_CMB_SZ,		/* maxsize */
1112	    1,				/* nsegments */
1113	    ALE_TX_CMB_SZ,		/* maxsegsize */
1114	    0,				/* flags */
1115	    NULL, NULL,			/* lockfunc, lockarg */
1116	    &sc->ale_cdata.ale_tx_cmb_tag);
1117	if (error != 0) {
1118		device_printf(sc->ale_dev,
1119		    "could not create Tx CMB DMA tag.\n");
1120		goto fail;
1121	}
1122
1123	/* Create DMA tag for Rx coalescing message block. */
1124	for (i = 0; i < ALE_RX_PAGES; i++) {
1125		error = bus_dma_tag_create(
1126		    sc->ale_cdata.ale_parent_tag, /* parent */
1127		    ALE_CMB_ALIGN, 0,		/* alignment, boundary */
1128		    BUS_SPACE_MAXADDR,		/* lowaddr */
1129		    BUS_SPACE_MAXADDR,		/* highaddr */
1130		    NULL, NULL,			/* filter, filterarg */
1131		    ALE_RX_CMB_SZ,		/* maxsize */
1132		    1,				/* nsegments */
1133		    ALE_RX_CMB_SZ,		/* maxsegsize */
1134		    0,				/* flags */
1135		    NULL, NULL,			/* lockfunc, lockarg */
1136		    &sc->ale_cdata.ale_rx_page[i].cmb_tag);
1137		if (error != 0) {
1138			device_printf(sc->ale_dev,
1139			    "could not create Rx page %d CMB DMA tag.\n", i);
1140			goto fail;
1141		}
1142	}
1143
1144	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1145	error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_ring_tag,
1146	    (void **)&sc->ale_cdata.ale_tx_ring,
1147	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1148	    &sc->ale_cdata.ale_tx_ring_map);
1149	if (error != 0) {
1150		device_printf(sc->ale_dev,
1151		    "could not allocate DMA'able memory for Tx ring.\n");
1152		goto fail;
1153	}
1154	ctx.ale_busaddr = 0;
1155	error = bus_dmamap_load(sc->ale_cdata.ale_tx_ring_tag,
1156	    sc->ale_cdata.ale_tx_ring_map, sc->ale_cdata.ale_tx_ring,
1157	    ALE_TX_RING_SZ, ale_dmamap_cb, &ctx, 0);
1158	if (error != 0 || ctx.ale_busaddr == 0) {
1159		device_printf(sc->ale_dev,
1160		    "could not load DMA'able memory for Tx ring.\n");
1161		goto fail;
1162	}
1163	sc->ale_cdata.ale_tx_ring_paddr = ctx.ale_busaddr;
1164
1165	/* Rx pages. */
1166	for (i = 0; i < ALE_RX_PAGES; i++) {
1167		error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].page_tag,
1168		    (void **)&sc->ale_cdata.ale_rx_page[i].page_addr,
1169		    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1170		    &sc->ale_cdata.ale_rx_page[i].page_map);
1171		if (error != 0) {
1172			device_printf(sc->ale_dev,
1173			    "could not allocate DMA'able memory for "
1174			    "Rx page %d.\n", i);
1175			goto fail;
1176		}
1177		ctx.ale_busaddr = 0;
1178		error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].page_tag,
1179		    sc->ale_cdata.ale_rx_page[i].page_map,
1180		    sc->ale_cdata.ale_rx_page[i].page_addr,
1181		    sc->ale_pagesize, ale_dmamap_cb, &ctx, 0);
1182		if (error != 0 || ctx.ale_busaddr == 0) {
1183			device_printf(sc->ale_dev,
1184			    "could not load DMA'able memory for "
1185			    "Rx page %d.\n", i);
1186			goto fail;
1187		}
1188		sc->ale_cdata.ale_rx_page[i].page_paddr = ctx.ale_busaddr;
1189	}
1190
1191	/* Tx CMB. */
1192	error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_cmb_tag,
1193	    (void **)&sc->ale_cdata.ale_tx_cmb,
1194	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1195	    &sc->ale_cdata.ale_tx_cmb_map);
1196	if (error != 0) {
1197		device_printf(sc->ale_dev,
1198		    "could not allocate DMA'able memory for Tx CMB.\n");
1199		goto fail;
1200	}
1201	ctx.ale_busaddr = 0;
1202	error = bus_dmamap_load(sc->ale_cdata.ale_tx_cmb_tag,
1203	    sc->ale_cdata.ale_tx_cmb_map, sc->ale_cdata.ale_tx_cmb,
1204	    ALE_TX_CMB_SZ, ale_dmamap_cb, &ctx, 0);
1205	if (error != 0 || ctx.ale_busaddr == 0) {
1206		device_printf(sc->ale_dev,
1207		    "could not load DMA'able memory for Tx CMB.\n");
1208		goto fail;
1209	}
1210	sc->ale_cdata.ale_tx_cmb_paddr = ctx.ale_busaddr;
1211
1212	/* Rx CMB. */
1213	for (i = 0; i < ALE_RX_PAGES; i++) {
1214		error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].cmb_tag,
1215		    (void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr,
1216		    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1217		    &sc->ale_cdata.ale_rx_page[i].cmb_map);
1218		if (error != 0) {
1219			device_printf(sc->ale_dev, "could not allocate "
1220			    "DMA'able memory for Rx page %d CMB.\n", i);
1221			goto fail;
1222		}
1223		ctx.ale_busaddr = 0;
1224		error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].cmb_tag,
1225		    sc->ale_cdata.ale_rx_page[i].cmb_map,
1226		    sc->ale_cdata.ale_rx_page[i].cmb_addr,
1227		    ALE_RX_CMB_SZ, ale_dmamap_cb, &ctx, 0);
1228		if (error != 0 || ctx.ale_busaddr == 0) {
1229			device_printf(sc->ale_dev, "could not load DMA'able "
1230			    "memory for Rx page %d CMB.\n", i);
1231			goto fail;
1232		}
1233		sc->ale_cdata.ale_rx_page[i].cmb_paddr = ctx.ale_busaddr;
1234	}
1235
1236	/*
1237	 * Tx descriptors/RXF0/CMB DMA blocks share the same
1238	 * high address region of 64bit DMA address space.
1239	 */
1240	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1241	    (error = ale_check_boundary(sc)) != 0) {
1242		device_printf(sc->ale_dev, "4GB boundary crossed, "
1243		    "switching to 32bit DMA addressing mode.\n");
1244		ale_dma_free(sc);
1245		/*
1246		 * Limit max allowable DMA address space to 32bit
1247		 * and try again.
1248		 */
1249		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1250		goto again;
1251	}
1252
1253	/*
1254	 * Create Tx buffer parent tag.
1255	 * AR81xx allows 64bit DMA addressing of Tx buffers so it
1256	 * needs separate parent DMA tag as parent DMA address space
1257	 * could be restricted to be within 32bit address space by
1258	 * 4GB boundary crossing.
1259	 */
1260	error = bus_dma_tag_create(
1261	    bus_get_dma_tag(sc->ale_dev), /* parent */
1262	    1, 0,			/* alignment, boundary */
1263	    BUS_SPACE_MAXADDR,		/* lowaddr */
1264	    BUS_SPACE_MAXADDR,		/* highaddr */
1265	    NULL, NULL,			/* filter, filterarg */
1266	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1267	    0,				/* nsegments */
1268	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1269	    0,				/* flags */
1270	    NULL, NULL,			/* lockfunc, lockarg */
1271	    &sc->ale_cdata.ale_buffer_tag);
1272	if (error != 0) {
1273		device_printf(sc->ale_dev,
1274		    "could not create parent buffer DMA tag.\n");
1275		goto fail;
1276	}
1277
1278	/* Create DMA tag for Tx buffers. */
1279	error = bus_dma_tag_create(
1280	    sc->ale_cdata.ale_buffer_tag, /* parent */
1281	    1, 0,			/* alignment, boundary */
1282	    BUS_SPACE_MAXADDR,		/* lowaddr */
1283	    BUS_SPACE_MAXADDR,		/* highaddr */
1284	    NULL, NULL,			/* filter, filterarg */
1285	    ALE_TSO_MAXSIZE,		/* maxsize */
1286	    ALE_MAXTXSEGS,		/* nsegments */
1287	    ALE_TSO_MAXSEGSIZE,		/* maxsegsize */
1288	    0,				/* flags */
1289	    NULL, NULL,			/* lockfunc, lockarg */
1290	    &sc->ale_cdata.ale_tx_tag);
1291	if (error != 0) {
1292		device_printf(sc->ale_dev, "could not create Tx DMA tag.\n");
1293		goto fail;
1294	}
1295
1296	/* Create DMA maps for Tx buffers. */
1297	for (i = 0; i < ALE_TX_RING_CNT; i++) {
1298		txd = &sc->ale_cdata.ale_txdesc[i];
1299		txd->tx_m = NULL;
1300		txd->tx_dmamap = NULL;
1301		error = bus_dmamap_create(sc->ale_cdata.ale_tx_tag, 0,
1302		    &txd->tx_dmamap);
1303		if (error != 0) {
1304			device_printf(sc->ale_dev,
1305			    "could not create Tx dmamap.\n");
1306			goto fail;
1307		}
1308	}
1309
1310fail:
1311	return (error);
1312}
1313
1314static void
1315ale_dma_free(struct ale_softc *sc)
1316{
1317	struct ale_txdesc *txd;
1318	int i;
1319
1320	/* Tx buffers. */
1321	if (sc->ale_cdata.ale_tx_tag != NULL) {
1322		for (i = 0; i < ALE_TX_RING_CNT; i++) {
1323			txd = &sc->ale_cdata.ale_txdesc[i];
1324			if (txd->tx_dmamap != NULL) {
1325				bus_dmamap_destroy(sc->ale_cdata.ale_tx_tag,
1326				    txd->tx_dmamap);
1327				txd->tx_dmamap = NULL;
1328			}
1329		}
1330		bus_dma_tag_destroy(sc->ale_cdata.ale_tx_tag);
1331		sc->ale_cdata.ale_tx_tag = NULL;
1332	}
1333	/* Tx descriptor ring. */
1334	if (sc->ale_cdata.ale_tx_ring_tag != NULL) {
1335		if (sc->ale_cdata.ale_tx_ring_paddr != 0)
1336			bus_dmamap_unload(sc->ale_cdata.ale_tx_ring_tag,
1337			    sc->ale_cdata.ale_tx_ring_map);
1338		if (sc->ale_cdata.ale_tx_ring != NULL)
1339			bus_dmamem_free(sc->ale_cdata.ale_tx_ring_tag,
1340			    sc->ale_cdata.ale_tx_ring,
1341			    sc->ale_cdata.ale_tx_ring_map);
1342		sc->ale_cdata.ale_tx_ring_paddr = 0;
1343		sc->ale_cdata.ale_tx_ring = NULL;
1344		bus_dma_tag_destroy(sc->ale_cdata.ale_tx_ring_tag);
1345		sc->ale_cdata.ale_tx_ring_tag = NULL;
1346	}
1347	/* Rx page block. */
1348	for (i = 0; i < ALE_RX_PAGES; i++) {
1349		if (sc->ale_cdata.ale_rx_page[i].page_tag != NULL) {
1350			if (sc->ale_cdata.ale_rx_page[i].page_paddr != 0)
1351				bus_dmamap_unload(
1352				    sc->ale_cdata.ale_rx_page[i].page_tag,
1353				    sc->ale_cdata.ale_rx_page[i].page_map);
1354			if (sc->ale_cdata.ale_rx_page[i].page_addr != NULL)
1355				bus_dmamem_free(
1356				    sc->ale_cdata.ale_rx_page[i].page_tag,
1357				    sc->ale_cdata.ale_rx_page[i].page_addr,
1358				    sc->ale_cdata.ale_rx_page[i].page_map);
1359			sc->ale_cdata.ale_rx_page[i].page_paddr = 0;
1360			sc->ale_cdata.ale_rx_page[i].page_addr = NULL;
1361			bus_dma_tag_destroy(
1362			    sc->ale_cdata.ale_rx_page[i].page_tag);
1363			sc->ale_cdata.ale_rx_page[i].page_tag = NULL;
1364		}
1365	}
1366	/* Rx CMB. */
1367	for (i = 0; i < ALE_RX_PAGES; i++) {
1368		if (sc->ale_cdata.ale_rx_page[i].cmb_tag != NULL) {
1369			if (sc->ale_cdata.ale_rx_page[i].cmb_paddr != 0)
1370				bus_dmamap_unload(
1371				    sc->ale_cdata.ale_rx_page[i].cmb_tag,
1372				    sc->ale_cdata.ale_rx_page[i].cmb_map);
1373			if (sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL)
1374				bus_dmamem_free(
1375				    sc->ale_cdata.ale_rx_page[i].cmb_tag,
1376				    sc->ale_cdata.ale_rx_page[i].cmb_addr,
1377				    sc->ale_cdata.ale_rx_page[i].cmb_map);
1378			sc->ale_cdata.ale_rx_page[i].cmb_paddr = 0;
1379			sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL;
1380			bus_dma_tag_destroy(
1381			    sc->ale_cdata.ale_rx_page[i].cmb_tag);
1382			sc->ale_cdata.ale_rx_page[i].cmb_tag = NULL;
1383		}
1384	}
1385	/* Tx CMB. */
1386	if (sc->ale_cdata.ale_tx_cmb_tag != NULL) {
1387		if (sc->ale_cdata.ale_tx_cmb_paddr != 0)
1388			bus_dmamap_unload(sc->ale_cdata.ale_tx_cmb_tag,
1389			    sc->ale_cdata.ale_tx_cmb_map);
1390		if (sc->ale_cdata.ale_tx_cmb != NULL)
1391			bus_dmamem_free(sc->ale_cdata.ale_tx_cmb_tag,
1392			    sc->ale_cdata.ale_tx_cmb,
1393			    sc->ale_cdata.ale_tx_cmb_map);
1394		sc->ale_cdata.ale_tx_cmb_paddr = 0;
1395		sc->ale_cdata.ale_tx_cmb = NULL;
1396		bus_dma_tag_destroy(sc->ale_cdata.ale_tx_cmb_tag);
1397		sc->ale_cdata.ale_tx_cmb_tag = NULL;
1398	}
1399	if (sc->ale_cdata.ale_buffer_tag != NULL) {
1400		bus_dma_tag_destroy(sc->ale_cdata.ale_buffer_tag);
1401		sc->ale_cdata.ale_buffer_tag = NULL;
1402	}
1403	if (sc->ale_cdata.ale_parent_tag != NULL) {
1404		bus_dma_tag_destroy(sc->ale_cdata.ale_parent_tag);
1405		sc->ale_cdata.ale_parent_tag = NULL;
1406	}
1407}
1408
1409static int
1410ale_shutdown(device_t dev)
1411{
1412
1413	return (ale_suspend(dev));
1414}
1415
1416/*
1417 * Note, this driver resets the link speed to 10/100Mbps by
1418 * restarting auto-negotiation in suspend/shutdown phase but we
1419 * don't know whether that auto-negotiation would succeed or not
1420 * as driver has no control after powering off/suspend operation.
1421 * If the renegotiation fail WOL may not work. Running at 1Gbps
1422 * will draw more power than 375mA at 3.3V which is specified in
1423 * PCI specification and that would result in complete
1424 * shutdowning power to ethernet controller.
1425 *
1426 * TODO
1427 * Save current negotiated media speed/duplex/flow-control to
1428 * softc and restore the same link again after resuming. PHY
1429 * handling such as power down/resetting to 100Mbps may be better
1430 * handled in suspend method in phy driver.
1431 */
1432static void
1433ale_setlinkspeed(struct ale_softc *sc)
1434{
1435	struct mii_data *mii;
1436	int aneg, i;
1437
1438	mii = device_get_softc(sc->ale_miibus);
1439	mii_pollstat(mii);
1440	aneg = 0;
1441	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1442	    (IFM_ACTIVE | IFM_AVALID)) {
1443		switch IFM_SUBTYPE(mii->mii_media_active) {
1444		case IFM_10_T:
1445		case IFM_100_TX:
1446			return;
1447		case IFM_1000_T:
1448			aneg++;
1449			break;
1450		default:
1451			break;
1452		}
1453	}
1454	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, MII_100T2CR, 0);
1455	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
1456	    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1457	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
1458	    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1459	DELAY(1000);
1460	if (aneg != 0) {
1461		/*
1462		 * Poll link state until ale(4) get a 10/100Mbps link.
1463		 */
1464		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1465			mii_pollstat(mii);
1466			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
1467			    == (IFM_ACTIVE | IFM_AVALID)) {
1468				switch (IFM_SUBTYPE(
1469				    mii->mii_media_active)) {
1470				case IFM_10_T:
1471				case IFM_100_TX:
1472					ale_mac_config(sc);
1473					return;
1474				default:
1475					break;
1476				}
1477			}
1478			ALE_UNLOCK(sc);
1479			pause("alelnk", hz);
1480			ALE_LOCK(sc);
1481		}
1482		if (i == MII_ANEGTICKS_GIGE)
1483			device_printf(sc->ale_dev,
1484			    "establishing a link failed, WOL may not work!");
1485	}
1486	/*
1487	 * No link, force MAC to have 100Mbps, full-duplex link.
1488	 * This is the last resort and may/may not work.
1489	 */
1490	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1491	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1492	ale_mac_config(sc);
1493}
1494
1495static void
1496ale_setwol(struct ale_softc *sc)
1497{
1498	struct ifnet *ifp;
1499	uint32_t reg, pmcs;
1500	uint16_t pmstat;
1501	int pmc;
1502
1503	ALE_LOCK_ASSERT(sc);
1504
1505	if (pci_find_cap(sc->ale_dev, PCIY_PMG, &pmc) != 0) {
1506		/* Disable WOL. */
1507		CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
1508		reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC);
1509		reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1510		CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg);
1511		/* Force PHY power down. */
1512		CSR_WRITE_2(sc, ALE_GPHY_CTRL,
1513		    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN |
1514		    GPHY_CTRL_HIB_PULSE | GPHY_CTRL_PHY_PLL_ON |
1515		    GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_IDDQ |
1516		    GPHY_CTRL_PCLK_SEL_DIS | GPHY_CTRL_PWDOWN_HW);
1517		return;
1518	}
1519
1520	ifp = sc->ale_ifp;
1521	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1522		if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
1523			ale_setlinkspeed(sc);
1524	}
1525
1526	pmcs = 0;
1527	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1528		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1529	CSR_WRITE_4(sc, ALE_WOL_CFG, pmcs);
1530	reg = CSR_READ_4(sc, ALE_MAC_CFG);
1531	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC | MAC_CFG_ALLMULTI |
1532	    MAC_CFG_BCAST);
1533	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1534		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1535	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1536		reg |= MAC_CFG_RX_ENB;
1537	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1538
1539	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1540		/* WOL disabled, PHY power down. */
1541		reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC);
1542		reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1543		CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg);
1544		CSR_WRITE_2(sc, ALE_GPHY_CTRL,
1545		    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN |
1546		    GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
1547		    GPHY_CTRL_PHY_IDDQ | GPHY_CTRL_PCLK_SEL_DIS |
1548		    GPHY_CTRL_PWDOWN_HW);
1549	}
1550	/* Request PME. */
1551	pmstat = pci_read_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, 2);
1552	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1553	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1554		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1555	pci_write_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1556}
1557
1558static int
1559ale_suspend(device_t dev)
1560{
1561	struct ale_softc *sc;
1562
1563	sc = device_get_softc(dev);
1564
1565	ALE_LOCK(sc);
1566	ale_stop(sc);
1567	ale_setwol(sc);
1568	ALE_UNLOCK(sc);
1569
1570	return (0);
1571}
1572
1573static int
1574ale_resume(device_t dev)
1575{
1576	struct ale_softc *sc;
1577	struct ifnet *ifp;
1578	int pmc;
1579	uint16_t pmstat;
1580
1581	sc = device_get_softc(dev);
1582
1583	ALE_LOCK(sc);
1584	if (pci_find_cap(sc->ale_dev, PCIY_PMG, &pmc) == 0) {
1585		/* Disable PME and clear PME status. */
1586		pmstat = pci_read_config(sc->ale_dev,
1587		    pmc + PCIR_POWER_STATUS, 2);
1588		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
1589			pmstat &= ~PCIM_PSTAT_PMEENABLE;
1590			pci_write_config(sc->ale_dev,
1591			    pmc + PCIR_POWER_STATUS, pmstat, 2);
1592		}
1593	}
1594	/* Reset PHY. */
1595	ale_phy_reset(sc);
1596	ifp = sc->ale_ifp;
1597	if ((ifp->if_flags & IFF_UP) != 0) {
1598		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1599		ale_init_locked(sc);
1600	}
1601	ALE_UNLOCK(sc);
1602
1603	return (0);
1604}
1605
1606static int
1607ale_encap(struct ale_softc *sc, struct mbuf **m_head)
1608{
1609	struct ale_txdesc *txd, *txd_last;
1610	struct tx_desc *desc;
1611	struct mbuf *m;
1612	struct ip *ip;
1613	struct tcphdr *tcp;
1614	bus_dma_segment_t txsegs[ALE_MAXTXSEGS];
1615	bus_dmamap_t map;
1616	uint32_t cflags, hdrlen, ip_off, poff, vtag;
1617	int error, i, nsegs, prod, si;
1618
1619	ALE_LOCK_ASSERT(sc);
1620
1621	M_ASSERTPKTHDR((*m_head));
1622
1623	m = *m_head;
1624	ip = NULL;
1625	tcp = NULL;
1626	cflags = vtag = 0;
1627	ip_off = poff = 0;
1628	if ((m->m_pkthdr.csum_flags & (ALE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1629		/*
1630		 * AR81xx requires offset of TCP/UDP payload in its Tx
1631		 * descriptor to perform hardware Tx checksum offload.
1632		 * Additionally, TSO requires IP/TCP header size and
1633		 * modification of IP/TCP header in order to make TSO
1634		 * engine work. This kind of operation takes many CPU
1635		 * cycles on FreeBSD so fast host CPU is required to
1636		 * get smooth TSO performance.
1637		 */
1638		struct ether_header *eh;
1639
1640		if (M_WRITABLE(m) == 0) {
1641			/* Get a writable copy. */
1642			m = m_dup(*m_head, M_NOWAIT);
1643			/* Release original mbufs. */
1644			m_freem(*m_head);
1645			if (m == NULL) {
1646				*m_head = NULL;
1647				return (ENOBUFS);
1648			}
1649			*m_head = m;
1650		}
1651
1652		/*
1653		 * Buggy-controller requires 4 byte aligned Tx buffer
1654		 * to make custom checksum offload work.
1655		 */
1656		if ((sc->ale_flags & ALE_FLAG_TXCSUM_BUG) != 0 &&
1657		    (m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0 &&
1658		    (mtod(m, intptr_t) & 3) != 0) {
1659			m = m_defrag(*m_head, M_NOWAIT);
1660			if (m == NULL) {
1661				m_freem(*m_head);
1662				*m_head = NULL;
1663				return (ENOBUFS);
1664			}
1665			*m_head = m;
1666		}
1667
1668		ip_off = sizeof(struct ether_header);
1669		m = m_pullup(m, ip_off);
1670		if (m == NULL) {
1671			*m_head = NULL;
1672			return (ENOBUFS);
1673		}
1674		eh = mtod(m, struct ether_header *);
1675		/*
1676		 * Check if hardware VLAN insertion is off.
1677		 * Additional check for LLC/SNAP frame?
1678		 */
1679		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1680			ip_off = sizeof(struct ether_vlan_header);
1681			m = m_pullup(m, ip_off);
1682			if (m == NULL) {
1683				*m_head = NULL;
1684				return (ENOBUFS);
1685			}
1686		}
1687		m = m_pullup(m, ip_off + sizeof(struct ip));
1688		if (m == NULL) {
1689			*m_head = NULL;
1690			return (ENOBUFS);
1691		}
1692		ip = (struct ip *)(mtod(m, char *) + ip_off);
1693		poff = ip_off + (ip->ip_hl << 2);
1694		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1695			/*
1696			 * XXX
1697			 * AR81xx requires the first descriptor should
1698			 * not include any TCP playload for TSO case.
1699			 * (i.e. ethernet header + IP + TCP header only)
1700			 * m_pullup(9) above will ensure this too.
1701			 * However it's not correct if the first mbuf
1702			 * of the chain does not use cluster.
1703			 */
1704			m = m_pullup(m, poff + sizeof(struct tcphdr));
1705			if (m == NULL) {
1706				*m_head = NULL;
1707				return (ENOBUFS);
1708			}
1709			ip = (struct ip *)(mtod(m, char *) + ip_off);
1710			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1711			m = m_pullup(m, poff + (tcp->th_off << 2));
1712			if (m == NULL) {
1713				*m_head = NULL;
1714				return (ENOBUFS);
1715			}
1716			/*
1717			 * AR81xx requires IP/TCP header size and offset as
1718			 * well as TCP pseudo checksum which complicates
1719			 * TSO configuration. I guess this comes from the
1720			 * adherence to Microsoft NDIS Large Send
1721			 * specification which requires insertion of
1722			 * pseudo checksum by upper stack. The pseudo
1723			 * checksum that NDIS refers to doesn't include
1724			 * TCP payload length so ale(4) should recompute
1725			 * the pseudo checksum here. Hopefully this wouldn't
1726			 * be much burden on modern CPUs.
1727			 * Reset IP checksum and recompute TCP pseudo
1728			 * checksum as NDIS specification said.
1729			 */
1730			ip->ip_sum = 0;
1731			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1732			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1733		}
1734		*m_head = m;
1735	}
1736
1737	si = prod = sc->ale_cdata.ale_tx_prod;
1738	txd = &sc->ale_cdata.ale_txdesc[prod];
1739	txd_last = txd;
1740	map = txd->tx_dmamap;
1741
1742	error =  bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map,
1743	    *m_head, txsegs, &nsegs, 0);
1744	if (error == EFBIG) {
1745		m = m_collapse(*m_head, M_NOWAIT, ALE_MAXTXSEGS);
1746		if (m == NULL) {
1747			m_freem(*m_head);
1748			*m_head = NULL;
1749			return (ENOMEM);
1750		}
1751		*m_head = m;
1752		error = bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map,
1753		    *m_head, txsegs, &nsegs, 0);
1754		if (error != 0) {
1755			m_freem(*m_head);
1756			*m_head = NULL;
1757			return (error);
1758		}
1759	} else if (error != 0)
1760		return (error);
1761	if (nsegs == 0) {
1762		m_freem(*m_head);
1763		*m_head = NULL;
1764		return (EIO);
1765	}
1766
1767	/* Check descriptor overrun. */
1768	if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 3) {
1769		bus_dmamap_unload(sc->ale_cdata.ale_tx_tag, map);
1770		return (ENOBUFS);
1771	}
1772	bus_dmamap_sync(sc->ale_cdata.ale_tx_tag, map, BUS_DMASYNC_PREWRITE);
1773
1774	m = *m_head;
1775	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1776		/* Request TSO and set MSS. */
1777		cflags |= ALE_TD_TSO;
1778		cflags |= ((uint32_t)m->m_pkthdr.tso_segsz << ALE_TD_MSS_SHIFT);
1779		/* Set IP/TCP header size. */
1780		cflags |= ip->ip_hl << ALE_TD_IPHDR_LEN_SHIFT;
1781		cflags |= tcp->th_off << ALE_TD_TCPHDR_LEN_SHIFT;
1782	} else if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) {
1783		/*
1784		 * AR81xx supports Tx custom checksum offload feature
1785		 * that offloads single 16bit checksum computation.
1786		 * So you can choose one among IP, TCP and UDP.
1787		 * Normally driver sets checksum start/insertion
1788		 * position from the information of TCP/UDP frame as
1789		 * TCP/UDP checksum takes more time than that of IP.
1790		 * However it seems that custom checksum offload
1791		 * requires 4 bytes aligned Tx buffers due to hardware
1792		 * bug.
1793		 * AR81xx also supports explicit Tx checksum computation
1794		 * if it is told that the size of IP header and TCP
1795		 * header(for UDP, the header size does not matter
1796		 * because it's fixed length). However with this scheme
1797		 * TSO does not work so you have to choose one either
1798		 * TSO or explicit Tx checksum offload. I chosen TSO
1799		 * plus custom checksum offload with work-around which
1800		 * will cover most common usage for this consumer
1801		 * ethernet controller. The work-around takes a lot of
1802		 * CPU cycles if Tx buffer is not aligned on 4 bytes
1803		 * boundary, though.
1804		 */
1805		cflags |= ALE_TD_CXSUM;
1806		/* Set checksum start offset. */
1807		cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT);
1808		/* Set checksum insertion position of TCP/UDP. */
1809		cflags |= ((poff + m->m_pkthdr.csum_data) <<
1810		    ALE_TD_CSUM_XSUMOFFSET_SHIFT);
1811	}
1812
1813	/* Configure VLAN hardware tag insertion. */
1814	if ((m->m_flags & M_VLANTAG) != 0) {
1815		vtag = ALE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1816		vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK);
1817		cflags |= ALE_TD_INSERT_VLAN_TAG;
1818	}
1819
1820	i = 0;
1821	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1822		/*
1823		 * Make sure the first fragment contains
1824		 * only ethernet and IP/TCP header with options.
1825		 */
1826		hdrlen =  poff + (tcp->th_off << 2);
1827		desc = &sc->ale_cdata.ale_tx_ring[prod];
1828		desc->addr = htole64(txsegs[i].ds_addr);
1829		desc->len = htole32(ALE_TX_BYTES(hdrlen) | vtag);
1830		desc->flags = htole32(cflags);
1831		sc->ale_cdata.ale_tx_cnt++;
1832		ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1833		if (m->m_len - hdrlen > 0) {
1834			/* Handle remaining payload of the first fragment. */
1835			desc = &sc->ale_cdata.ale_tx_ring[prod];
1836			desc->addr = htole64(txsegs[i].ds_addr + hdrlen);
1837			desc->len = htole32(ALE_TX_BYTES(m->m_len - hdrlen) |
1838			    vtag);
1839			desc->flags = htole32(cflags);
1840			sc->ale_cdata.ale_tx_cnt++;
1841			ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1842		}
1843		i = 1;
1844	}
1845	for (; i < nsegs; i++) {
1846		desc = &sc->ale_cdata.ale_tx_ring[prod];
1847		desc->addr = htole64(txsegs[i].ds_addr);
1848		desc->len = htole32(ALE_TX_BYTES(txsegs[i].ds_len) | vtag);
1849		desc->flags = htole32(cflags);
1850		sc->ale_cdata.ale_tx_cnt++;
1851		ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1852	}
1853	/* Update producer index. */
1854	sc->ale_cdata.ale_tx_prod = prod;
1855	/* Set TSO header on the first descriptor. */
1856	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1857		desc = &sc->ale_cdata.ale_tx_ring[si];
1858		desc->flags |= htole32(ALE_TD_TSO_HDR);
1859	}
1860
1861	/* Finally set EOP on the last descriptor. */
1862	prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT;
1863	desc = &sc->ale_cdata.ale_tx_ring[prod];
1864	desc->flags |= htole32(ALE_TD_EOP);
1865
1866	/* Swap dmamap of the first and the last. */
1867	txd = &sc->ale_cdata.ale_txdesc[prod];
1868	map = txd_last->tx_dmamap;
1869	txd_last->tx_dmamap = txd->tx_dmamap;
1870	txd->tx_dmamap = map;
1871	txd->tx_m = m;
1872
1873	/* Sync descriptors. */
1874	bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
1875	    sc->ale_cdata.ale_tx_ring_map,
1876	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1877
1878	return (0);
1879}
1880
1881static void
1882ale_start(struct ifnet *ifp)
1883{
1884        struct ale_softc *sc;
1885
1886	sc = ifp->if_softc;
1887	ALE_LOCK(sc);
1888	ale_start_locked(ifp);
1889	ALE_UNLOCK(sc);
1890}
1891
1892static void
1893ale_start_locked(struct ifnet *ifp)
1894{
1895        struct ale_softc *sc;
1896        struct mbuf *m_head;
1897	int enq;
1898
1899	sc = ifp->if_softc;
1900
1901	ALE_LOCK_ASSERT(sc);
1902
1903	/* Reclaim transmitted frames. */
1904	if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT)
1905		ale_txeof(sc);
1906
1907	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1908	    IFF_DRV_RUNNING || (sc->ale_flags & ALE_FLAG_LINK) == 0)
1909		return;
1910
1911	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1912		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1913		if (m_head == NULL)
1914			break;
1915		/*
1916		 * Pack the data into the transmit ring. If we
1917		 * don't have room, set the OACTIVE flag and wait
1918		 * for the NIC to drain the ring.
1919		 */
1920		if (ale_encap(sc, &m_head)) {
1921			if (m_head == NULL)
1922				break;
1923			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1924			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1925			break;
1926		}
1927
1928		enq++;
1929		/*
1930		 * If there's a BPF listener, bounce a copy of this frame
1931		 * to him.
1932		 */
1933		ETHER_BPF_MTAP(ifp, m_head);
1934	}
1935
1936	if (enq > 0) {
1937		/* Kick. */
1938		CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX,
1939		    sc->ale_cdata.ale_tx_prod);
1940		/* Set a timeout in case the chip goes out to lunch. */
1941		sc->ale_watchdog_timer = ALE_TX_TIMEOUT;
1942	}
1943}
1944
1945static void
1946ale_watchdog(struct ale_softc *sc)
1947{
1948	struct ifnet *ifp;
1949
1950	ALE_LOCK_ASSERT(sc);
1951
1952	if (sc->ale_watchdog_timer == 0 || --sc->ale_watchdog_timer)
1953		return;
1954
1955	ifp = sc->ale_ifp;
1956	if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
1957		if_printf(sc->ale_ifp, "watchdog timeout (lost link)\n");
1958		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1959		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1960		ale_init_locked(sc);
1961		return;
1962	}
1963	if_printf(sc->ale_ifp, "watchdog timeout -- resetting\n");
1964	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1965	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1966	ale_init_locked(sc);
1967	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1968		ale_start_locked(ifp);
1969}
1970
1971static int
1972ale_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1973{
1974	struct ale_softc *sc;
1975	struct ifreq *ifr;
1976	struct mii_data *mii;
1977	int error, mask;
1978
1979	sc = ifp->if_softc;
1980	ifr = (struct ifreq *)data;
1981	error = 0;
1982	switch (cmd) {
1983	case SIOCSIFMTU:
1984		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ALE_JUMBO_MTU ||
1985		    ((sc->ale_flags & ALE_FLAG_JUMBO) == 0 &&
1986		    ifr->ifr_mtu > ETHERMTU))
1987			error = EINVAL;
1988		else if (ifp->if_mtu != ifr->ifr_mtu) {
1989			ALE_LOCK(sc);
1990			ifp->if_mtu = ifr->ifr_mtu;
1991			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1992				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1993				ale_init_locked(sc);
1994			}
1995			ALE_UNLOCK(sc);
1996		}
1997		break;
1998	case SIOCSIFFLAGS:
1999		ALE_LOCK(sc);
2000		if ((ifp->if_flags & IFF_UP) != 0) {
2001			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2002				if (((ifp->if_flags ^ sc->ale_if_flags)
2003				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2004					ale_rxfilter(sc);
2005			} else {
2006				ale_init_locked(sc);
2007			}
2008		} else {
2009			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2010				ale_stop(sc);
2011		}
2012		sc->ale_if_flags = ifp->if_flags;
2013		ALE_UNLOCK(sc);
2014		break;
2015	case SIOCADDMULTI:
2016	case SIOCDELMULTI:
2017		ALE_LOCK(sc);
2018		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2019			ale_rxfilter(sc);
2020		ALE_UNLOCK(sc);
2021		break;
2022	case SIOCSIFMEDIA:
2023	case SIOCGIFMEDIA:
2024		mii = device_get_softc(sc->ale_miibus);
2025		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
2026		break;
2027	case SIOCSIFCAP:
2028		ALE_LOCK(sc);
2029		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2030		if ((mask & IFCAP_TXCSUM) != 0 &&
2031		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2032			ifp->if_capenable ^= IFCAP_TXCSUM;
2033			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2034				ifp->if_hwassist |= ALE_CSUM_FEATURES;
2035			else
2036				ifp->if_hwassist &= ~ALE_CSUM_FEATURES;
2037		}
2038		if ((mask & IFCAP_RXCSUM) != 0 &&
2039		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
2040			ifp->if_capenable ^= IFCAP_RXCSUM;
2041		if ((mask & IFCAP_TSO4) != 0 &&
2042		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
2043			ifp->if_capenable ^= IFCAP_TSO4;
2044			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
2045				ifp->if_hwassist |= CSUM_TSO;
2046			else
2047				ifp->if_hwassist &= ~CSUM_TSO;
2048		}
2049
2050		if ((mask & IFCAP_WOL_MCAST) != 0 &&
2051		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
2052			ifp->if_capenable ^= IFCAP_WOL_MCAST;
2053		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2054		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2055			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2056		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2057		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2058			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2059		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2060		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
2061			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
2062		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2063		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2064			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2065			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
2066				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
2067			ale_rxvlan(sc);
2068		}
2069		ALE_UNLOCK(sc);
2070		VLAN_CAPABILITIES(ifp);
2071		break;
2072	default:
2073		error = ether_ioctl(ifp, cmd, data);
2074		break;
2075	}
2076
2077	return (error);
2078}
2079
2080static void
2081ale_mac_config(struct ale_softc *sc)
2082{
2083	struct mii_data *mii;
2084	uint32_t reg;
2085
2086	ALE_LOCK_ASSERT(sc);
2087
2088	mii = device_get_softc(sc->ale_miibus);
2089	reg = CSR_READ_4(sc, ALE_MAC_CFG);
2090	reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
2091	    MAC_CFG_SPEED_MASK);
2092	/* Reprogram MAC with resolved speed/duplex. */
2093	switch (IFM_SUBTYPE(mii->mii_media_active)) {
2094	case IFM_10_T:
2095	case IFM_100_TX:
2096		reg |= MAC_CFG_SPEED_10_100;
2097		break;
2098	case IFM_1000_T:
2099		reg |= MAC_CFG_SPEED_1000;
2100		break;
2101	}
2102	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2103		reg |= MAC_CFG_FULL_DUPLEX;
2104		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2105			reg |= MAC_CFG_TX_FC;
2106		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2107			reg |= MAC_CFG_RX_FC;
2108	}
2109	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2110}
2111
2112static void
2113ale_stats_clear(struct ale_softc *sc)
2114{
2115	struct smb sb;
2116	uint32_t *reg;
2117	int i;
2118
2119	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
2120		CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
2121		i += sizeof(uint32_t);
2122	}
2123	/* Read Tx statistics. */
2124	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
2125		CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
2126		i += sizeof(uint32_t);
2127	}
2128}
2129
2130static void
2131ale_stats_update(struct ale_softc *sc)
2132{
2133	struct ale_hw_stats *stat;
2134	struct smb sb, *smb;
2135	struct ifnet *ifp;
2136	uint32_t *reg;
2137	int i;
2138
2139	ALE_LOCK_ASSERT(sc);
2140
2141	ifp = sc->ale_ifp;
2142	stat = &sc->ale_stats;
2143	smb = &sb;
2144
2145	/* Read Rx statistics. */
2146	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
2147		*reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
2148		i += sizeof(uint32_t);
2149	}
2150	/* Read Tx statistics. */
2151	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
2152		*reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
2153		i += sizeof(uint32_t);
2154	}
2155
2156	/* Rx stats. */
2157	stat->rx_frames += smb->rx_frames;
2158	stat->rx_bcast_frames += smb->rx_bcast_frames;
2159	stat->rx_mcast_frames += smb->rx_mcast_frames;
2160	stat->rx_pause_frames += smb->rx_pause_frames;
2161	stat->rx_control_frames += smb->rx_control_frames;
2162	stat->rx_crcerrs += smb->rx_crcerrs;
2163	stat->rx_lenerrs += smb->rx_lenerrs;
2164	stat->rx_bytes += smb->rx_bytes;
2165	stat->rx_runts += smb->rx_runts;
2166	stat->rx_fragments += smb->rx_fragments;
2167	stat->rx_pkts_64 += smb->rx_pkts_64;
2168	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2169	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2170	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2171	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2172	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2173	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2174	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2175	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2176	stat->rx_rrs_errs += smb->rx_rrs_errs;
2177	stat->rx_alignerrs += smb->rx_alignerrs;
2178	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2179	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2180	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2181
2182	/* Tx stats. */
2183	stat->tx_frames += smb->tx_frames;
2184	stat->tx_bcast_frames += smb->tx_bcast_frames;
2185	stat->tx_mcast_frames += smb->tx_mcast_frames;
2186	stat->tx_pause_frames += smb->tx_pause_frames;
2187	stat->tx_excess_defer += smb->tx_excess_defer;
2188	stat->tx_control_frames += smb->tx_control_frames;
2189	stat->tx_deferred += smb->tx_deferred;
2190	stat->tx_bytes += smb->tx_bytes;
2191	stat->tx_pkts_64 += smb->tx_pkts_64;
2192	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2193	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2194	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2195	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2196	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2197	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2198	stat->tx_single_colls += smb->tx_single_colls;
2199	stat->tx_multi_colls += smb->tx_multi_colls;
2200	stat->tx_late_colls += smb->tx_late_colls;
2201	stat->tx_excess_colls += smb->tx_excess_colls;
2202	stat->tx_underrun += smb->tx_underrun;
2203	stat->tx_desc_underrun += smb->tx_desc_underrun;
2204	stat->tx_lenerrs += smb->tx_lenerrs;
2205	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2206	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2207	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2208
2209	/* Update counters in ifnet. */
2210	if_inc_counter(ifp, IFCOUNTER_OPACKETS, smb->tx_frames);
2211
2212	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, smb->tx_single_colls +
2213	    smb->tx_multi_colls * 2 + smb->tx_late_colls +
2214	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT);
2215
2216	if_inc_counter(ifp, IFCOUNTER_OERRORS, smb->tx_late_colls +
2217	    smb->tx_excess_colls + smb->tx_underrun + smb->tx_pkts_truncated);
2218
2219	if_inc_counter(ifp, IFCOUNTER_IPACKETS, smb->rx_frames);
2220
2221	if_inc_counter(ifp, IFCOUNTER_IERRORS,
2222	    smb->rx_crcerrs + smb->rx_lenerrs +
2223	    smb->rx_runts + smb->rx_pkts_truncated +
2224	    smb->rx_fifo_oflows + smb->rx_rrs_errs +
2225	    smb->rx_alignerrs);
2226}
2227
2228static int
2229ale_intr(void *arg)
2230{
2231	struct ale_softc *sc;
2232	uint32_t status;
2233
2234	sc = (struct ale_softc *)arg;
2235
2236	status = CSR_READ_4(sc, ALE_INTR_STATUS);
2237	if ((status & ALE_INTRS) == 0)
2238		return (FILTER_STRAY);
2239	/* Disable interrupts. */
2240	CSR_WRITE_4(sc, ALE_INTR_STATUS, INTR_DIS_INT);
2241	taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task);
2242
2243	return (FILTER_HANDLED);
2244}
2245
2246static void
2247ale_int_task(void *arg, int pending)
2248{
2249	struct ale_softc *sc;
2250	struct ifnet *ifp;
2251	uint32_t status;
2252	int more;
2253
2254	sc = (struct ale_softc *)arg;
2255
2256	status = CSR_READ_4(sc, ALE_INTR_STATUS);
2257	ALE_LOCK(sc);
2258	if (sc->ale_morework != 0)
2259		status |= INTR_RX_PKT;
2260	if ((status & ALE_INTRS) == 0)
2261		goto done;
2262
2263	/* Acknowledge interrupts but still disable interrupts. */
2264	CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT);
2265
2266	ifp = sc->ale_ifp;
2267	more = 0;
2268	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2269		more = ale_rxeof(sc, sc->ale_process_limit);
2270		if (more == EAGAIN)
2271			sc->ale_morework = 1;
2272		else if (more == EIO) {
2273			sc->ale_stats.reset_brk_seq++;
2274			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2275			ale_init_locked(sc);
2276			ALE_UNLOCK(sc);
2277			return;
2278		}
2279
2280		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2281			if ((status & INTR_DMA_RD_TO_RST) != 0)
2282				device_printf(sc->ale_dev,
2283				    "DMA read error! -- resetting\n");
2284			if ((status & INTR_DMA_WR_TO_RST) != 0)
2285				device_printf(sc->ale_dev,
2286				    "DMA write error! -- resetting\n");
2287			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2288			ale_init_locked(sc);
2289			ALE_UNLOCK(sc);
2290			return;
2291		}
2292		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2293			ale_start_locked(ifp);
2294	}
2295
2296	if (more == EAGAIN ||
2297	    (CSR_READ_4(sc, ALE_INTR_STATUS) & ALE_INTRS) != 0) {
2298		ALE_UNLOCK(sc);
2299		taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task);
2300		return;
2301	}
2302
2303done:
2304	ALE_UNLOCK(sc);
2305
2306	/* Re-enable interrupts. */
2307	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF);
2308}
2309
2310static void
2311ale_txeof(struct ale_softc *sc)
2312{
2313	struct ifnet *ifp;
2314	struct ale_txdesc *txd;
2315	uint32_t cons, prod;
2316	int prog;
2317
2318	ALE_LOCK_ASSERT(sc);
2319
2320	ifp = sc->ale_ifp;
2321
2322	if (sc->ale_cdata.ale_tx_cnt == 0)
2323		return;
2324
2325	bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
2326	    sc->ale_cdata.ale_tx_ring_map,
2327	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2328	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) {
2329		bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag,
2330		    sc->ale_cdata.ale_tx_cmb_map,
2331		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2332		prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK;
2333	} else
2334		prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX);
2335	cons = sc->ale_cdata.ale_tx_cons;
2336	/*
2337	 * Go through our Tx list and free mbufs for those
2338	 * frames which have been transmitted.
2339	 */
2340	for (prog = 0; cons != prod; prog++,
2341	    ALE_DESC_INC(cons, ALE_TX_RING_CNT)) {
2342		if (sc->ale_cdata.ale_tx_cnt <= 0)
2343			break;
2344		prog++;
2345		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2346		sc->ale_cdata.ale_tx_cnt--;
2347		txd = &sc->ale_cdata.ale_txdesc[cons];
2348		if (txd->tx_m != NULL) {
2349			/* Reclaim transmitted mbufs. */
2350			bus_dmamap_sync(sc->ale_cdata.ale_tx_tag,
2351			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2352			bus_dmamap_unload(sc->ale_cdata.ale_tx_tag,
2353			    txd->tx_dmamap);
2354			m_freem(txd->tx_m);
2355			txd->tx_m = NULL;
2356		}
2357	}
2358
2359	if (prog > 0) {
2360		sc->ale_cdata.ale_tx_cons = cons;
2361		/*
2362		 * Unarm watchdog timer only when there is no pending
2363		 * Tx descriptors in queue.
2364		 */
2365		if (sc->ale_cdata.ale_tx_cnt == 0)
2366			sc->ale_watchdog_timer = 0;
2367	}
2368}
2369
2370static void
2371ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page,
2372    uint32_t length, uint32_t *prod)
2373{
2374	struct ale_rx_page *rx_page;
2375
2376	rx_page = *page;
2377	/* Update consumer position. */
2378	rx_page->cons += roundup(length + sizeof(struct rx_rs),
2379	    ALE_RX_PAGE_ALIGN);
2380	if (rx_page->cons >= ALE_RX_PAGE_SZ) {
2381		/*
2382		 * End of Rx page reached, let hardware reuse
2383		 * this page.
2384		 */
2385		rx_page->cons = 0;
2386		*rx_page->cmb_addr = 0;
2387		bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2388		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2389		CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp,
2390		    RXF_VALID);
2391		/* Switch to alternate Rx page. */
2392		sc->ale_cdata.ale_rx_curp ^= 1;
2393		rx_page = *page =
2394		    &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
2395		/* Page flipped, sync CMB and Rx page. */
2396		bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
2397		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2398		bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2399		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2400		/* Sync completed, cache updated producer index. */
2401		*prod = *rx_page->cmb_addr;
2402	}
2403}
2404
2405
2406/*
2407 * It seems that AR81xx controller can compute partial checksum.
2408 * The partial checksum value can be used to accelerate checksum
2409 * computation for fragmented TCP/UDP packets. Upper network stack
2410 * already takes advantage of the partial checksum value in IP
2411 * reassembly stage. But I'm not sure the correctness of the
2412 * partial hardware checksum assistance due to lack of data sheet.
2413 * In addition, the Rx feature of controller that requires copying
2414 * for every frames effectively nullifies one of most nice offload
2415 * capability of controller.
2416 */
2417static void
2418ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status)
2419{
2420	struct ifnet *ifp;
2421	struct ip *ip;
2422	char *p;
2423
2424	ifp = sc->ale_ifp;
2425	m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2426	if ((status & ALE_RD_IPCSUM_NOK) == 0)
2427		m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2428
2429	if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) {
2430		if (((status & ALE_RD_IPV4_FRAG) == 0) &&
2431		    ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) &&
2432		    ((status & ALE_RD_TCP_UDPCSUM_NOK) == 0)) {
2433			m->m_pkthdr.csum_flags |=
2434			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2435			m->m_pkthdr.csum_data = 0xffff;
2436		}
2437	} else {
2438		if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0 &&
2439		    (status & ALE_RD_TCP_UDPCSUM_NOK) == 0) {
2440			p = mtod(m, char *);
2441			p += ETHER_HDR_LEN;
2442			if ((status & ALE_RD_802_3) != 0)
2443				p += LLC_SNAPFRAMELEN;
2444			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0 &&
2445			    (status & ALE_RD_VLAN) != 0)
2446				p += ETHER_VLAN_ENCAP_LEN;
2447			ip = (struct ip *)p;
2448			if (ip->ip_off != 0 && (status & ALE_RD_IPV4_DF) == 0)
2449				return;
2450			m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
2451			    CSUM_PSEUDO_HDR;
2452			m->m_pkthdr.csum_data = 0xffff;
2453		}
2454	}
2455	/*
2456	 * Don't mark bad checksum for TCP/UDP frames
2457	 * as fragmented frames may always have set
2458	 * bad checksummed bit of frame status.
2459	 */
2460}
2461
2462/* Process received frames. */
2463static int
2464ale_rxeof(struct ale_softc *sc, int count)
2465{
2466	struct ale_rx_page *rx_page;
2467	struct rx_rs *rs;
2468	struct ifnet *ifp;
2469	struct mbuf *m;
2470	uint32_t length, prod, seqno, status, vtags;
2471	int prog;
2472
2473	ifp = sc->ale_ifp;
2474	rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
2475	bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2476	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2477	bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
2478	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2479	/*
2480	 * Don't directly access producer index as hardware may
2481	 * update it while Rx handler is in progress. It would
2482	 * be even better if there is a way to let hardware
2483	 * know how far driver processed its received frames.
2484	 * Alternatively, hardware could provide a way to disable
2485	 * CMB updates until driver acknowledges the end of CMB
2486	 * access.
2487	 */
2488	prod = *rx_page->cmb_addr;
2489	for (prog = 0; prog < count; prog++) {
2490		if (rx_page->cons >= prod)
2491			break;
2492		rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons);
2493		seqno = ALE_RX_SEQNO(le32toh(rs->seqno));
2494		if (sc->ale_cdata.ale_rx_seqno != seqno) {
2495			/*
2496			 * Normally I believe this should not happen unless
2497			 * severe driver bug or corrupted memory. However
2498			 * it seems to happen under certain conditions which
2499			 * is triggered by abrupt Rx events such as initiation
2500			 * of bulk transfer of remote host. It's not easy to
2501			 * reproduce this and I doubt it could be related
2502			 * with FIFO overflow of hardware or activity of Tx
2503			 * CMB updates. I also remember similar behaviour
2504			 * seen on RealTek 8139 which uses resembling Rx
2505			 * scheme.
2506			 */
2507			if (bootverbose)
2508				device_printf(sc->ale_dev,
2509				    "garbled seq: %u, expected: %u -- "
2510				    "resetting!\n", seqno,
2511				    sc->ale_cdata.ale_rx_seqno);
2512			return (EIO);
2513		}
2514		/* Frame received. */
2515		sc->ale_cdata.ale_rx_seqno++;
2516		length = ALE_RX_BYTES(le32toh(rs->length));
2517		status = le32toh(rs->flags);
2518		if ((status & ALE_RD_ERROR) != 0) {
2519			/*
2520			 * We want to pass the following frames to upper
2521			 * layer regardless of error status of Rx return
2522			 * status.
2523			 *
2524			 *  o IP/TCP/UDP checksum is bad.
2525			 *  o frame length and protocol specific length
2526			 *     does not match.
2527			 */
2528			if ((status & (ALE_RD_CRC | ALE_RD_CODE |
2529			    ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW |
2530			    ALE_RD_TRUNC)) != 0) {
2531				ale_rx_update_page(sc, &rx_page, length, &prod);
2532				continue;
2533			}
2534		}
2535		/*
2536		 * m_devget(9) is major bottle-neck of ale(4)(It comes
2537		 * from hardware limitation). For jumbo frames we could
2538		 * get a slightly better performance if driver use
2539		 * m_getjcl(9) with proper buffer size argument. However
2540		 * that would make code more complicated and I don't
2541		 * think users would expect good Rx performance numbers
2542		 * on these low-end consumer ethernet controller.
2543		 */
2544		m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN,
2545		    ETHER_ALIGN, ifp, NULL);
2546		if (m == NULL) {
2547			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2548			ale_rx_update_page(sc, &rx_page, length, &prod);
2549			continue;
2550		}
2551		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2552		    (status & ALE_RD_IPV4) != 0)
2553			ale_rxcsum(sc, m, status);
2554		if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2555		    (status & ALE_RD_VLAN) != 0) {
2556			vtags = ALE_RX_VLAN(le32toh(rs->vtags));
2557			m->m_pkthdr.ether_vtag = ALE_RX_VLAN_TAG(vtags);
2558			m->m_flags |= M_VLANTAG;
2559		}
2560
2561		/* Pass it to upper layer. */
2562		ALE_UNLOCK(sc);
2563		(*ifp->if_input)(ifp, m);
2564		ALE_LOCK(sc);
2565
2566		ale_rx_update_page(sc, &rx_page, length, &prod);
2567	}
2568
2569	return (count > 0 ? 0 : EAGAIN);
2570}
2571
2572static void
2573ale_tick(void *arg)
2574{
2575	struct ale_softc *sc;
2576	struct mii_data *mii;
2577
2578	sc = (struct ale_softc *)arg;
2579
2580	ALE_LOCK_ASSERT(sc);
2581
2582	mii = device_get_softc(sc->ale_miibus);
2583	mii_tick(mii);
2584	ale_stats_update(sc);
2585	/*
2586	 * Reclaim Tx buffers that have been transferred. It's not
2587	 * needed here but it would release allocated mbuf chains
2588	 * faster and limit the maximum delay to a hz.
2589	 */
2590	ale_txeof(sc);
2591	ale_watchdog(sc);
2592	callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc);
2593}
2594
2595static void
2596ale_reset(struct ale_softc *sc)
2597{
2598	uint32_t reg;
2599	int i;
2600
2601	/* Initialize PCIe module. From Linux. */
2602	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2603
2604	CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET);
2605	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
2606		DELAY(10);
2607		if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0)
2608			break;
2609	}
2610	if (i == 0)
2611		device_printf(sc->ale_dev, "master reset timeout!\n");
2612
2613	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
2614		if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0)
2615			break;
2616		DELAY(10);
2617	}
2618
2619	if (i == 0)
2620		device_printf(sc->ale_dev, "reset timeout(0x%08x)!\n", reg);
2621}
2622
2623static void
2624ale_init(void *xsc)
2625{
2626	struct ale_softc *sc;
2627
2628	sc = (struct ale_softc *)xsc;
2629	ALE_LOCK(sc);
2630	ale_init_locked(sc);
2631	ALE_UNLOCK(sc);
2632}
2633
2634static void
2635ale_init_locked(struct ale_softc *sc)
2636{
2637	struct ifnet *ifp;
2638	struct mii_data *mii;
2639	uint8_t eaddr[ETHER_ADDR_LEN];
2640	bus_addr_t paddr;
2641	uint32_t reg, rxf_hi, rxf_lo;
2642
2643	ALE_LOCK_ASSERT(sc);
2644
2645	ifp = sc->ale_ifp;
2646	mii = device_get_softc(sc->ale_miibus);
2647
2648	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2649		return;
2650	/*
2651	 * Cancel any pending I/O.
2652	 */
2653	ale_stop(sc);
2654	/*
2655	 * Reset the chip to a known state.
2656	 */
2657	ale_reset(sc);
2658	/* Initialize Tx descriptors, DMA memory blocks. */
2659	ale_init_rx_pages(sc);
2660	ale_init_tx_ring(sc);
2661
2662	/* Reprogram the station address. */
2663	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2664	CSR_WRITE_4(sc, ALE_PAR0,
2665	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2666	CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]);
2667	/*
2668	 * Clear WOL status and disable all WOL feature as WOL
2669	 * would interfere Rx operation under normal environments.
2670	 */
2671	CSR_READ_4(sc, ALE_WOL_CFG);
2672	CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
2673	/*
2674	 * Set Tx descriptor/RXF0/CMB base addresses. They share
2675	 * the same high address part of DMAable region.
2676	 */
2677	paddr = sc->ale_cdata.ale_tx_ring_paddr;
2678	CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr));
2679	CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr));
2680	CSR_WRITE_4(sc, ALE_TPD_CNT,
2681	    (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK);
2682	/* Set Rx page base address, note we use single queue. */
2683	paddr = sc->ale_cdata.ale_rx_page[0].page_paddr;
2684	CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr));
2685	paddr = sc->ale_cdata.ale_rx_page[1].page_paddr;
2686	CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr));
2687	/* Set Tx/Rx CMB addresses. */
2688	paddr = sc->ale_cdata.ale_tx_cmb_paddr;
2689	CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr));
2690	paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr;
2691	CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr));
2692	paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr;
2693	CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr));
2694	/* Mark RXF0 is valid. */
2695	CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID);
2696	CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID);
2697	/*
2698	 * No need to initialize RFX1/RXF2/RXF3. We don't use
2699	 * multi-queue yet.
2700	 */
2701
2702	/* Set Rx page size, excluding guard frame size. */
2703	CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ);
2704	/* Tell hardware that we're ready to load DMA blocks. */
2705	CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD);
2706
2707	/* Set Rx/Tx interrupt trigger threshold. */
2708	CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) |
2709	    (4 << INT_TRIG_TX_THRESH_SHIFT));
2710	/*
2711	 * XXX
2712	 * Set interrupt trigger timer, its purpose and relation
2713	 * with interrupt moderation mechanism is not clear yet.
2714	 */
2715	CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER,
2716	    ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) |
2717	    (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT)));
2718
2719	/* Configure interrupt moderation timer. */
2720	reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT;
2721	reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT;
2722	CSR_WRITE_4(sc, ALE_IM_TIMER, reg);
2723	reg = CSR_READ_4(sc, ALE_MASTER_CFG);
2724	reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
2725	reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
2726	if (ALE_USECS(sc->ale_int_rx_mod) != 0)
2727		reg |= MASTER_IM_RX_TIMER_ENB;
2728	if (ALE_USECS(sc->ale_int_tx_mod) != 0)
2729		reg |= MASTER_IM_TX_TIMER_ENB;
2730	CSR_WRITE_4(sc, ALE_MASTER_CFG, reg);
2731	CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000));
2732
2733	/* Set Maximum frame size of controller. */
2734	if (ifp->if_mtu < ETHERMTU)
2735		sc->ale_max_frame_size = ETHERMTU;
2736	else
2737		sc->ale_max_frame_size = ifp->if_mtu;
2738	sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
2739	    ETHER_CRC_LEN;
2740	CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size);
2741	/* Configure IPG/IFG parameters. */
2742	CSR_WRITE_4(sc, ALE_IPG_IFG_CFG,
2743	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
2744	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2745	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2746	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
2747	/* Set parameters for half-duplex media. */
2748	CSR_WRITE_4(sc, ALE_HDPX_CFG,
2749	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2750	    HDPX_CFG_LCOL_MASK) |
2751	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2752	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2753	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2754	    HDPX_CFG_ABEBT_MASK) |
2755	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2756	    HDPX_CFG_JAMIPG_MASK));
2757
2758	/* Configure Tx jumbo frame parameters. */
2759	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
2760		if (ifp->if_mtu < ETHERMTU)
2761			reg = sc->ale_max_frame_size;
2762		else if (ifp->if_mtu < 6 * 1024)
2763			reg = (sc->ale_max_frame_size * 2) / 3;
2764		else
2765			reg = sc->ale_max_frame_size / 2;
2766		CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH,
2767		    roundup(reg, TX_JUMBO_THRESH_UNIT) >>
2768		    TX_JUMBO_THRESH_UNIT_SHIFT);
2769	}
2770	/* Configure TxQ. */
2771	reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT))
2772	    << TXQ_CFG_TX_FIFO_BURST_SHIFT;
2773	reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2774	    TXQ_CFG_TPD_BURST_MASK;
2775	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB);
2776
2777	/* Configure Rx jumbo frame & flow control parameters. */
2778	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
2779		reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT);
2780		CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH,
2781		    (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) <<
2782		    RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) |
2783		    ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) &
2784		    RX_JUMBO_LKAH_MASK));
2785		reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
2786		rxf_hi = (reg * 7) / 10;
2787		rxf_lo = (reg * 3)/ 10;
2788		CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH,
2789		    ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
2790		    RX_FIFO_PAUSE_THRESH_LO_MASK) |
2791		    ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
2792		    RX_FIFO_PAUSE_THRESH_HI_MASK));
2793	}
2794
2795	/* Disable RSS. */
2796	CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0);
2797	CSR_WRITE_4(sc, ALE_RSS_CPU, 0);
2798
2799	/* Configure RxQ. */
2800	CSR_WRITE_4(sc, ALE_RXQ_CFG,
2801	    RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2802
2803	/* Configure DMA parameters. */
2804	reg = 0;
2805	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0)
2806		reg |= DMA_CFG_TXCMB_ENB;
2807	CSR_WRITE_4(sc, ALE_DMA_CFG,
2808	    DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 |
2809	    sc->ale_dma_rd_burst | reg |
2810	    sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB |
2811	    ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
2812	    DMA_CFG_RD_DELAY_CNT_MASK) |
2813	    ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
2814	    DMA_CFG_WR_DELAY_CNT_MASK));
2815
2816	/*
2817	 * Hardware can be configured to issue SMB interrupt based
2818	 * on programmed interval. Since there is a callout that is
2819	 * invoked for every hz in driver we use that instead of
2820	 * relying on periodic SMB interrupt.
2821	 */
2822	CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0));
2823	/* Clear MAC statistics. */
2824	ale_stats_clear(sc);
2825
2826	/*
2827	 * Configure Tx/Rx MACs.
2828	 *  - Auto-padding for short frames.
2829	 *  - Enable CRC generation.
2830	 *  Actual reconfiguration of MAC for resolved speed/duplex
2831	 *  is followed after detection of link establishment.
2832	 *  AR81xx always does checksum computation regardless of
2833	 *  MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
2834	 *  cause Rx handling issue for fragmented IP datagrams due
2835	 *  to silicon bug.
2836	 */
2837	reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
2838	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2839	    MAC_CFG_PREAMBLE_MASK);
2840	if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0)
2841		reg |= MAC_CFG_SPEED_10_100;
2842	else
2843		reg |= MAC_CFG_SPEED_1000;
2844	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2845
2846	/* Set up the receive filter. */
2847	ale_rxfilter(sc);
2848	ale_rxvlan(sc);
2849
2850	/* Acknowledge all pending interrupts and clear it. */
2851	CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS);
2852	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2853	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0);
2854
2855	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2856	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2857
2858	sc->ale_flags &= ~ALE_FLAG_LINK;
2859	/* Switch to the current media. */
2860	mii_mediachg(mii);
2861
2862	callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc);
2863}
2864
2865static void
2866ale_stop(struct ale_softc *sc)
2867{
2868	struct ifnet *ifp;
2869	struct ale_txdesc *txd;
2870	uint32_t reg;
2871	int i;
2872
2873	ALE_LOCK_ASSERT(sc);
2874	/*
2875	 * Mark the interface down and cancel the watchdog timer.
2876	 */
2877	ifp = sc->ale_ifp;
2878	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2879	sc->ale_flags &= ~ALE_FLAG_LINK;
2880	callout_stop(&sc->ale_tick_ch);
2881	sc->ale_watchdog_timer = 0;
2882	ale_stats_update(sc);
2883	/* Disable interrupts. */
2884	CSR_WRITE_4(sc, ALE_INTR_MASK, 0);
2885	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2886	/* Disable queue processing and DMA. */
2887	reg = CSR_READ_4(sc, ALE_TXQ_CFG);
2888	reg &= ~TXQ_CFG_ENB;
2889	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg);
2890	reg = CSR_READ_4(sc, ALE_RXQ_CFG);
2891	reg &= ~RXQ_CFG_ENB;
2892	CSR_WRITE_4(sc, ALE_RXQ_CFG, reg);
2893	reg = CSR_READ_4(sc, ALE_DMA_CFG);
2894	reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB);
2895	CSR_WRITE_4(sc, ALE_DMA_CFG, reg);
2896	DELAY(1000);
2897	/* Stop Rx/Tx MACs. */
2898	ale_stop_mac(sc);
2899	/* Disable interrupts which might be touched in taskq handler. */
2900	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2901
2902	/*
2903	 * Free TX mbufs still in the queues.
2904	 */
2905	for (i = 0; i < ALE_TX_RING_CNT; i++) {
2906		txd = &sc->ale_cdata.ale_txdesc[i];
2907		if (txd->tx_m != NULL) {
2908			bus_dmamap_sync(sc->ale_cdata.ale_tx_tag,
2909			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2910			bus_dmamap_unload(sc->ale_cdata.ale_tx_tag,
2911			    txd->tx_dmamap);
2912			m_freem(txd->tx_m);
2913			txd->tx_m = NULL;
2914		}
2915        }
2916}
2917
2918static void
2919ale_stop_mac(struct ale_softc *sc)
2920{
2921	uint32_t reg;
2922	int i;
2923
2924	ALE_LOCK_ASSERT(sc);
2925
2926	reg = CSR_READ_4(sc, ALE_MAC_CFG);
2927	if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
2928		reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2929		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2930	}
2931
2932	for (i = ALE_TIMEOUT; i > 0; i--) {
2933		reg = CSR_READ_4(sc, ALE_IDLE_STATUS);
2934		if (reg == 0)
2935			break;
2936		DELAY(10);
2937	}
2938	if (i == 0)
2939		device_printf(sc->ale_dev,
2940		    "could not disable Tx/Rx MAC(0x%08x)!\n", reg);
2941}
2942
2943static void
2944ale_init_tx_ring(struct ale_softc *sc)
2945{
2946	struct ale_txdesc *txd;
2947	int i;
2948
2949	ALE_LOCK_ASSERT(sc);
2950
2951	sc->ale_cdata.ale_tx_prod = 0;
2952	sc->ale_cdata.ale_tx_cons = 0;
2953	sc->ale_cdata.ale_tx_cnt = 0;
2954
2955	bzero(sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ);
2956	bzero(sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ);
2957	for (i = 0; i < ALE_TX_RING_CNT; i++) {
2958		txd = &sc->ale_cdata.ale_txdesc[i];
2959		txd->tx_m = NULL;
2960	}
2961	*sc->ale_cdata.ale_tx_cmb = 0;
2962	bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag,
2963	    sc->ale_cdata.ale_tx_cmb_map,
2964	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2965	bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
2966	    sc->ale_cdata.ale_tx_ring_map,
2967	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2968}
2969
2970static void
2971ale_init_rx_pages(struct ale_softc *sc)
2972{
2973	struct ale_rx_page *rx_page;
2974	int i;
2975
2976	ALE_LOCK_ASSERT(sc);
2977
2978	sc->ale_morework = 0;
2979	sc->ale_cdata.ale_rx_seqno = 0;
2980	sc->ale_cdata.ale_rx_curp = 0;
2981
2982	for (i = 0; i < ALE_RX_PAGES; i++) {
2983		rx_page = &sc->ale_cdata.ale_rx_page[i];
2984		bzero(rx_page->page_addr, sc->ale_pagesize);
2985		bzero(rx_page->cmb_addr, ALE_RX_CMB_SZ);
2986		rx_page->cons = 0;
2987		*rx_page->cmb_addr = 0;
2988		bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
2989		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2990		bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2991		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2992	}
2993}
2994
2995static void
2996ale_rxvlan(struct ale_softc *sc)
2997{
2998	struct ifnet *ifp;
2999	uint32_t reg;
3000
3001	ALE_LOCK_ASSERT(sc);
3002
3003	ifp = sc->ale_ifp;
3004	reg = CSR_READ_4(sc, ALE_MAC_CFG);
3005	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3006	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3007		reg |= MAC_CFG_VLAN_TAG_STRIP;
3008	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
3009}
3010
3011static void
3012ale_rxfilter(struct ale_softc *sc)
3013{
3014	struct ifnet *ifp;
3015	struct ifmultiaddr *ifma;
3016	uint32_t crc;
3017	uint32_t mchash[2];
3018	uint32_t rxcfg;
3019
3020	ALE_LOCK_ASSERT(sc);
3021
3022	ifp = sc->ale_ifp;
3023
3024	rxcfg = CSR_READ_4(sc, ALE_MAC_CFG);
3025	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3026	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3027		rxcfg |= MAC_CFG_BCAST;
3028	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3029		if ((ifp->if_flags & IFF_PROMISC) != 0)
3030			rxcfg |= MAC_CFG_PROMISC;
3031		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3032			rxcfg |= MAC_CFG_ALLMULTI;
3033		CSR_WRITE_4(sc, ALE_MAR0, 0xFFFFFFFF);
3034		CSR_WRITE_4(sc, ALE_MAR1, 0xFFFFFFFF);
3035		CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
3036		return;
3037	}
3038
3039	/* Program new filter. */
3040	bzero(mchash, sizeof(mchash));
3041
3042	if_maddr_rlock(ifp);
3043	TAILQ_FOREACH(ifma, &sc->ale_ifp->if_multiaddrs, ifma_link) {
3044		if (ifma->ifma_addr->sa_family != AF_LINK)
3045			continue;
3046		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3047		    ifma->ifma_addr), ETHER_ADDR_LEN);
3048		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3049	}
3050	if_maddr_runlock(ifp);
3051
3052	CSR_WRITE_4(sc, ALE_MAR0, mchash[0]);
3053	CSR_WRITE_4(sc, ALE_MAR1, mchash[1]);
3054	CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
3055}
3056
3057static int
3058sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3059{
3060	int error, value;
3061
3062	if (arg1 == NULL)
3063		return (EINVAL);
3064	value = *(int *)arg1;
3065	error = sysctl_handle_int(oidp, &value, 0, req);
3066	if (error || req->newptr == NULL)
3067		return (error);
3068	if (value < low || value > high)
3069		return (EINVAL);
3070        *(int *)arg1 = value;
3071
3072        return (0);
3073}
3074
3075static int
3076sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS)
3077{
3078	return (sysctl_int_range(oidp, arg1, arg2, req,
3079	    ALE_PROC_MIN, ALE_PROC_MAX));
3080}
3081
3082static int
3083sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS)
3084{
3085
3086	return (sysctl_int_range(oidp, arg1, arg2, req,
3087	    ALE_IM_TIMER_MIN, ALE_IM_TIMER_MAX));
3088}
3089