1/*
2 * Copyright 2011-2021, Haiku, Inc. All rights reserved.
3 * Distributed under the terms of the MIT License.
4 *
5 * Authors:
6 *		Augustin Cavalier <waddlesplash>
7 *		Jian Chiang <j.jian.chiang@gmail.com>
8 *		J��r��me Duval <jerome.duval@gmail.com>
9 *		Akshay Jaggi <akshay1994.leo@gmail.com>
10 *		Michael Lotz <mmlr@mlotz.ch>
11 *		Alexander von Gluck <kallisti5@unixzen.com>
12 */
13
14
15#include <stdio.h>
16
17#include <bus/PCI.h>
18#include <USB3.h>
19#include <KernelExport.h>
20
21#include <ByteOrder.h>
22#include <util/AutoLock.h>
23
24#include "xhci.h"
25
26
27#define CALLED(x...)	TRACE_MODULE("CALLED %s\n", __PRETTY_FUNCTION__)
28
29
30#define USB_MODULE_NAME	"xhci"
31
32device_manager_info* gDeviceManager;
33static usb_for_controller_interface* gUSB;
34
35
36#define XHCI_PCI_DEVICE_MODULE_NAME "busses/usb/xhci/pci/driver_v1"
37#define XHCI_PCI_USB_BUS_MODULE_NAME "busses/usb/xhci/device_v1"
38
39
40typedef struct {
41	XHCI* xhci;
42	pci_device_module_info* pci;
43	pci_device* device;
44
45	pci_info pciinfo;
46
47	device_node* node;
48	device_node* driver_node;
49} xhci_pci_sim_info;
50
51
52//	#pragma mark -
53
54
55static status_t
56init_bus(device_node* node, void** bus_cookie)
57{
58	CALLED();
59
60	driver_module_info* driver;
61	xhci_pci_sim_info* bus;
62	device_node* parent = gDeviceManager->get_parent_node(node);
63	gDeviceManager->get_driver(parent, &driver, (void**)&bus);
64	gDeviceManager->put_node(parent);
65
66	Stack *stack;
67	if (gUSB->get_stack((void**)&stack) != B_OK)
68		return B_ERROR;
69
70	XHCI *xhci = new(std::nothrow) XHCI(&bus->pciinfo, bus->pci, bus->device, stack, node);
71	if (xhci == NULL) {
72		return B_NO_MEMORY;
73	}
74
75	if (xhci->InitCheck() < B_OK) {
76		TRACE_MODULE_ERROR("bus failed init check\n");
77		delete xhci;
78		return B_ERROR;
79	}
80
81	if (xhci->Start() != B_OK) {
82		delete xhci;
83		return B_ERROR;
84	}
85
86	*bus_cookie = xhci;
87
88	return B_OK;
89}
90
91
92static void
93uninit_bus(void* bus_cookie)
94{
95	CALLED();
96	XHCI* xhci = (XHCI*)bus_cookie;
97	delete xhci;
98}
99
100
101static status_t
102register_child_devices(void* cookie)
103{
104	CALLED();
105	xhci_pci_sim_info* bus = (xhci_pci_sim_info*)cookie;
106	device_node* node = bus->driver_node;
107
108	char prettyName[25];
109	sprintf(prettyName, "XHCI Controller %" B_PRIu16, 0);
110
111	device_attr attrs[] = {
112		// properties of this controller for the usb bus manager
113		{ B_DEVICE_PRETTY_NAME, B_STRING_TYPE,
114			{ .string = prettyName }},
115		{ B_DEVICE_FIXED_CHILD, B_STRING_TYPE,
116			{ .string = USB_FOR_CONTROLLER_MODULE_NAME }},
117
118		// private data to identify the device
119		{ NULL }
120	};
121
122	return gDeviceManager->register_node(node, XHCI_PCI_USB_BUS_MODULE_NAME,
123		attrs, NULL, NULL);
124}
125
126
127static status_t
128init_device(device_node* node, void** device_cookie)
129{
130	CALLED();
131	xhci_pci_sim_info* bus = (xhci_pci_sim_info*)calloc(1,
132		sizeof(xhci_pci_sim_info));
133	if (bus == NULL)
134		return B_NO_MEMORY;
135
136	pci_device_module_info* pci;
137	pci_device* device;
138	{
139		device_node* pciParent = gDeviceManager->get_parent_node(node);
140		gDeviceManager->get_driver(pciParent, (driver_module_info**)&pci,
141			(void**)&device);
142		gDeviceManager->put_node(pciParent);
143	}
144
145	bus->pci = pci;
146	bus->device = device;
147	bus->driver_node = node;
148
149	pci_info *pciInfo = &bus->pciinfo;
150	pci->get_pci_info(device, pciInfo);
151
152	*device_cookie = bus;
153	return B_OK;
154}
155
156
157static void
158uninit_device(void* device_cookie)
159{
160	CALLED();
161	xhci_pci_sim_info* bus = (xhci_pci_sim_info*)device_cookie;
162	free(bus);
163}
164
165
166static status_t
167register_device(device_node* parent)
168{
169	CALLED();
170	device_attr attrs[] = {
171		{B_DEVICE_PRETTY_NAME, B_STRING_TYPE, {.string = "XHCI PCI"}},
172		{}
173	};
174
175	return gDeviceManager->register_node(parent,
176		XHCI_PCI_DEVICE_MODULE_NAME, attrs, NULL, NULL);
177}
178
179
180static float
181supports_device(device_node* parent)
182{
183	CALLED();
184	const char* bus;
185	uint16 type, subType, api;
186
187	// make sure parent is a XHCI PCI device node
188	if (gDeviceManager->get_attr_string(parent, B_DEVICE_BUS, &bus, false)
189		< B_OK) {
190		return -1;
191	}
192
193	if (strcmp(bus, "pci") != 0)
194		return 0.0f;
195
196	if (gDeviceManager->get_attr_uint16(parent, B_DEVICE_SUB_TYPE, &subType,
197			false) < B_OK
198		|| gDeviceManager->get_attr_uint16(parent, B_DEVICE_TYPE, &type,
199			false) < B_OK
200		|| gDeviceManager->get_attr_uint16(parent, B_DEVICE_INTERFACE, &api,
201			false) < B_OK) {
202		TRACE_MODULE("Could not find type/subtype/interface attributes\n");
203		return -1;
204	}
205
206	if (type == PCI_serial_bus && subType == PCI_usb && api == PCI_usb_xhci) {
207		pci_device_module_info* pci;
208		pci_device* device;
209		gDeviceManager->get_driver(parent, (driver_module_info**)&pci,
210			(void**)&device);
211		TRACE_MODULE("XHCI Device found!\n");
212
213		return 0.8f;
214	}
215
216	return 0.0f;
217}
218
219
220static const char*
221xhci_error_string(uint32 error)
222{
223	switch (error) {
224		case COMP_INVALID: return "Invalid";
225		case COMP_SUCCESS: return "Success";
226		case COMP_DATA_BUFFER: return "Data buffer";
227		case COMP_BABBLE: return "Babble detected";
228		case COMP_USB_TRANSACTION: return "USB transaction";
229		case COMP_TRB: return "TRB";
230		case COMP_STALL: return "Stall";
231		case COMP_RESOURCE: return "Resource";
232		case COMP_BANDWIDTH: return "Bandwidth";
233		case COMP_NO_SLOTS: return "No slots";
234		case COMP_INVALID_STREAM: return "Invalid stream";
235		case COMP_SLOT_NOT_ENABLED: return "Slot not enabled";
236		case COMP_ENDPOINT_NOT_ENABLED: return "Endpoint not enabled";
237		case COMP_SHORT_PACKET: return "Short packet";
238		case COMP_RING_UNDERRUN: return "Ring underrun";
239		case COMP_RING_OVERRUN: return "Ring overrun";
240		case COMP_VF_RING_FULL: return "VF Event Ring Full";
241		case COMP_PARAMETER: return "Parameter";
242		case COMP_BANDWIDTH_OVERRUN: return "Bandwidth overrun";
243		case COMP_CONTEXT_STATE: return "Context state";
244		case COMP_NO_PING_RESPONSE: return "No ping response";
245		case COMP_EVENT_RING_FULL: return "Event ring full";
246		case COMP_INCOMPATIBLE_DEVICE: return "Incompatible device";
247		case COMP_MISSED_SERVICE: return "Missed service";
248		case COMP_COMMAND_RING_STOPPED: return "Command ring stopped";
249		case COMP_COMMAND_ABORTED: return "Command aborted";
250		case COMP_STOPPED: return "Stopped";
251		case COMP_STOPPED_LENGTH_INVALID: return "Stopped (length invalid)";
252		case COMP_MAX_EXIT_LATENCY: return "Max exit latency too large";
253		case COMP_ISOC_OVERRUN: return "Isoch buffer overrun";
254		case COMP_EVENT_LOST: return "Event lost";
255		case COMP_UNDEFINED: return "Undefined";
256		case COMP_INVALID_STREAM_ID: return "Invalid stream ID";
257		case COMP_SECONDARY_BANDWIDTH: return "Secondary bandwidth";
258		case COMP_SPLIT_TRANSACTION: return "Split transaction";
259
260		default: return "Undefined";
261	}
262}
263
264
265static status_t
266xhci_error_status(uint32 error, bool directionIn)
267{
268	switch (error) {
269		case COMP_SHORT_PACKET:
270		case COMP_SUCCESS:
271			return B_OK;
272		case COMP_DATA_BUFFER:
273			return directionIn ? B_DEV_WRITE_ERROR : B_DEV_READ_ERROR;
274		case COMP_BABBLE:
275			return directionIn ? B_DEV_DATA_OVERRUN : B_DEV_DATA_UNDERRUN;
276		case COMP_RING_UNDERRUN:
277			return B_DEV_FIFO_UNDERRUN;
278		case COMP_RING_OVERRUN:
279			return B_DEV_FIFO_OVERRUN;
280		case COMP_MISSED_SERVICE:
281			return B_DEV_TOO_LATE;
282		case COMP_USB_TRANSACTION:
283			return B_DEV_CRC_ERROR;
284		case COMP_STALL:
285			return B_DEV_STALLED;
286		default:
287			return B_DEV_STALLED;
288	}
289}
290
291
292module_dependency module_dependencies[] = {
293	{ USB_FOR_CONTROLLER_MODULE_NAME, (module_info**)&gUSB },
294	{ B_DEVICE_MANAGER_MODULE_NAME, (module_info**)&gDeviceManager },
295	{}
296};
297
298
299static usb_bus_interface gXHCIPCIDeviceModule = {
300	{
301		{
302			XHCI_PCI_USB_BUS_MODULE_NAME,
303			0,
304			NULL
305		},
306		NULL,  // supports device
307		NULL,  // register device
308		init_bus,
309		uninit_bus,
310		NULL,  // register child devices
311		NULL,  // rescan
312		NULL,  // device removed
313	},
314};
315
316// Root device that binds to the PCI bus. It will register an usb_bus_interface
317// node for each device.
318static driver_module_info sXHCIDevice = {
319	{
320		XHCI_PCI_DEVICE_MODULE_NAME,
321		0,
322		NULL
323	},
324	supports_device,
325	register_device,
326	init_device,
327	uninit_device,
328	register_child_devices,
329	NULL, // rescan
330	NULL, // device removed
331};
332
333module_info* modules[] = {
334	(module_info* )&sXHCIDevice,
335	(module_info* )&gXHCIPCIDeviceModule,
336	NULL
337};
338
339
340XHCI::XHCI(pci_info *info, 	pci_device_module_info* pci, pci_device* device, Stack *stack,
341	device_node* node)
342	:	BusManager(stack, node),
343		fRegisterArea(-1),
344		fRegisters(NULL),
345		fPCIInfo(info),
346		fPci(pci),
347		fDevice(device),
348		fStack(stack),
349		fIRQ(0),
350		fUseMSI(false),
351		fErstArea(-1),
352		fDcbaArea(-1),
353		fCmdCompSem(-1),
354		fStopThreads(false),
355		fRootHub(NULL),
356		fPortCount(0),
357		fSlotCount(0),
358		fScratchpadCount(0),
359		fContextSizeShift(0),
360		fFinishedHead(NULL),
361		fFinishTransfersSem(-1),
362		fFinishThread(-1),
363		fEventSem(-1),
364		fEventThread(-1),
365		fEventIdx(0),
366		fCmdIdx(0),
367		fEventCcs(1),
368		fCmdCcs(1)
369{
370	B_INITIALIZE_SPINLOCK(&fSpinlock);
371	mutex_init(&fFinishedLock, "XHCI finished transfers");
372	mutex_init(&fEventLock, "XHCI event handler");
373
374	if (BusManager::InitCheck() < B_OK) {
375		TRACE_ERROR("bus manager failed to init\n");
376		return;
377	}
378
379	TRACE("constructing new XHCI host controller driver\n");
380	fInitOK = false;
381
382	// enable busmaster and memory mapped access
383	uint16 command = fPci->read_pci_config(fDevice, PCI_command, 2);
384	command &= ~(PCI_command_io | PCI_command_int_disable);
385	command |= PCI_command_master | PCI_command_memory;
386
387	fPci->write_pci_config(fDevice, PCI_command, 2, command);
388
389	// map the registers (low + high for 64-bit when requested)
390	phys_addr_t physicalAddress = fPCIInfo->u.h0.base_registers[0];
391	if ((fPCIInfo->u.h0.base_register_flags[0] & PCI_address_type)
392			== PCI_address_type_64) {
393		physicalAddress |= (uint64)fPCIInfo->u.h0.base_registers[1] << 32;
394	}
395
396	size_t mapSize = fPCIInfo->u.h0.base_register_sizes[0];
397
398	TRACE("map registers %08" B_PRIxPHYSADDR ", size: %" B_PRIuSIZE "\n",
399		physicalAddress, mapSize);
400
401	fRegisterArea = map_physical_memory("XHCI memory mapped registers",
402		physicalAddress, mapSize, B_ANY_KERNEL_BLOCK_ADDRESS,
403		B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA,
404		(void **)&fRegisters);
405	if (fRegisterArea < B_OK) {
406		TRACE_ERROR("failed to map register memory\n");
407		return;
408	}
409
410	// determine the register offsets
411	fCapabilityRegisterOffset = 0;
412	fOperationalRegisterOffset = HCI_CAPLENGTH(ReadCapReg32(XHCI_HCI_CAPLENGTH));
413	fRuntimeRegisterOffset = ReadCapReg32(XHCI_RTSOFF) & ~0x1F;
414	fDoorbellRegisterOffset = ReadCapReg32(XHCI_DBOFF) & ~0x3;
415
416	TRACE("mapped registers: %p\n", fRegisters);
417	TRACE("operational register offset: %" B_PRId32 "\n", fOperationalRegisterOffset);
418	TRACE("runtime register offset: %" B_PRId32 "\n", fRuntimeRegisterOffset);
419	TRACE("doorbell register offset: %" B_PRId32 "\n", fDoorbellRegisterOffset);
420
421	int32 interfaceVersion = HCI_VERSION(ReadCapReg32(XHCI_HCI_VERSION));
422	if (interfaceVersion < 0x0090 || interfaceVersion > 0x0120) {
423		TRACE_ERROR("unsupported interface version: 0x%04" B_PRIx32 "\n",
424			interfaceVersion);
425		return;
426	}
427	TRACE_ALWAYS("interface version: 0x%04" B_PRIx32 "\n", interfaceVersion);
428
429	TRACE_ALWAYS("structural parameters: 1:0x%08" B_PRIx32 " 2:0x%08"
430		B_PRIx32 " 3:0x%08" B_PRIx32 "\n", ReadCapReg32(XHCI_HCSPARAMS1),
431		ReadCapReg32(XHCI_HCSPARAMS2), ReadCapReg32(XHCI_HCSPARAMS3));
432
433	uint32 cparams = ReadCapReg32(XHCI_HCCPARAMS);
434	if (cparams == 0xffffffff)
435		return;
436	TRACE_ALWAYS("capability parameters: 0x%08" B_PRIx32 "\n", cparams);
437
438	// if 64 bytes context structures, then 1
439	fContextSizeShift = HCC_CSZ(cparams);
440
441	// Assume ownership of the controller from the BIOS.
442	uint32 eec = 0xffffffff;
443	uint32 eecp = HCS0_XECP(cparams) << 2;
444	for (; eecp != 0 && XECP_NEXT(eec); eecp += XECP_NEXT(eec) << 2) {
445		TRACE("eecp register: 0x%08" B_PRIx32 "\n", eecp);
446
447		eec = ReadCapReg32(eecp);
448		if (XECP_ID(eec) != XHCI_LEGSUP_CAPID)
449			continue;
450
451		if (eec & XHCI_LEGSUP_BIOSOWNED) {
452			TRACE_ALWAYS("the host controller is bios owned, claiming"
453				" ownership\n");
454			WriteCapReg32(eecp, eec | XHCI_LEGSUP_OSOWNED);
455
456			for (int32 i = 0; i < 20; i++) {
457				eec = ReadCapReg32(eecp);
458
459				if ((eec & XHCI_LEGSUP_BIOSOWNED) == 0)
460					break;
461
462				TRACE_ALWAYS("controller is still bios owned, waiting\n");
463				snooze(50000);
464			}
465
466			if (eec & XHCI_LEGSUP_BIOSOWNED) {
467				TRACE_ERROR("bios won't give up control over the host "
468					"controller (ignoring)\n");
469			} else if (eec & XHCI_LEGSUP_OSOWNED) {
470				TRACE_ALWAYS("successfully took ownership of the host "
471					"controller\n");
472			}
473
474			// Force off the BIOS owned flag, and clear all SMIs. Some BIOSes
475			// do indicate a successful handover but do not remove their SMIs
476			// and then freeze the system when interrupts are generated.
477			WriteCapReg32(eecp, eec & ~XHCI_LEGSUP_BIOSOWNED);
478		}
479		break;
480	}
481	uint32 legctlsts = ReadCapReg32(eecp + XHCI_LEGCTLSTS);
482	legctlsts &= XHCI_LEGCTLSTS_DISABLE_SMI;
483	legctlsts |= XHCI_LEGCTLSTS_EVENTS_SMI;
484	WriteCapReg32(eecp + XHCI_LEGCTLSTS, legctlsts);
485
486	// We need to explicitly take ownership of EHCI ports on earlier Intel chipsets.
487	if (fPCIInfo->vendor_id == PCI_VENDOR_INTEL) {
488		switch (fPCIInfo->device_id) {
489			case PCI_DEVICE_INTEL_PANTHER_POINT_XHCI:
490			case PCI_DEVICE_INTEL_LYNX_POINT_XHCI:
491			case PCI_DEVICE_INTEL_LYNX_POINT_LP_XHCI:
492			case PCI_DEVICE_INTEL_BAYTRAIL_XHCI:
493			case PCI_DEVICE_INTEL_WILDCAT_POINT_XHCI:
494			case PCI_DEVICE_INTEL_WILDCAT_POINT_LP_XHCI:
495				_SwitchIntelPorts();
496				break;
497		}
498	}
499
500	// halt the host controller
501	if (ControllerHalt() < B_OK) {
502		return;
503	}
504
505	// reset the host controller
506	if (ControllerReset() < B_OK) {
507		TRACE_ERROR("host controller failed to reset\n");
508		return;
509	}
510
511	fCmdCompSem = create_sem(0, "XHCI Command Complete");
512	fFinishTransfersSem = create_sem(0, "XHCI Finish Transfers");
513	fEventSem = create_sem(0, "XHCI Event");
514	if (fFinishTransfersSem < B_OK || fCmdCompSem < B_OK || fEventSem < B_OK) {
515		TRACE_ERROR("failed to create semaphores\n");
516		return;
517	}
518
519	// create event handler thread
520	fEventThread = spawn_kernel_thread(EventThread, "xhci event thread",
521		B_URGENT_PRIORITY, (void *)this);
522	resume_thread(fEventThread);
523
524	// create finisher service thread
525	fFinishThread = spawn_kernel_thread(FinishThread, "xhci finish thread",
526		B_URGENT_PRIORITY - 1, (void *)this);
527	resume_thread(fFinishThread);
528
529	// Find the right interrupt vector, using MSIs if available.
530	fIRQ = fPCIInfo->u.h0.interrupt_line;
531	if (fIRQ == 0xFF)
532		fIRQ = 0;
533
534#if 0
535	if (fPci->get_msix_count(fDevice) >= 1) {
536		uint8 msiVector = 0;
537		if (fPci->configure_msix(fDevice, 1, &msiVector) == B_OK
538			&& fPci->enable_msix(fDevice) == B_OK) {
539			TRACE_ALWAYS("using MSI-X\n");
540			fIRQ = msiVector;
541			fUseMSI = true;
542		}
543	} else
544#endif
545	if (fPci->get_msi_count(fDevice) >= 1) {
546		uint32 msiVector = 0;
547		if (fPci->configure_msi(fDevice, 1, &msiVector) == B_OK
548			&& fPci->enable_msi(fDevice) == B_OK) {
549			TRACE_ALWAYS("using message signaled interrupts\n");
550			fIRQ = msiVector;
551			fUseMSI = true;
552		}
553	}
554
555	if (fIRQ == 0) {
556		TRACE_MODULE_ERROR("device PCI:%d:%d:%d was assigned an invalid IRQ\n",
557			fPCIInfo->bus, fPCIInfo->device, fPCIInfo->function);
558		return;
559	}
560
561	// Install the interrupt handler
562	TRACE("installing interrupt handler\n");
563	install_io_interrupt_handler(fIRQ, InterruptHandler, (void *)this, 0);
564
565	memset(fPortSpeeds, 0, sizeof(fPortSpeeds));
566	memset(fDevices, 0, sizeof(fDevices));
567
568	fInitOK = true;
569	TRACE("driver construction successful\n");
570}
571
572
573XHCI::~XHCI()
574{
575	TRACE("tear down XHCI host controller driver\n");
576
577	WriteOpReg(XHCI_CMD, 0);
578
579	int32 result = 0;
580	fStopThreads = true;
581	delete_sem(fCmdCompSem);
582	delete_sem(fFinishTransfersSem);
583	delete_sem(fEventSem);
584	wait_for_thread(fFinishThread, &result);
585	wait_for_thread(fEventThread, &result);
586
587	mutex_destroy(&fFinishedLock);
588	mutex_destroy(&fEventLock);
589
590	remove_io_interrupt_handler(fIRQ, InterruptHandler, (void *)this);
591
592	delete_area(fRegisterArea);
593	delete_area(fErstArea);
594	for (uint32 i = 0; i < fScratchpadCount; i++)
595		delete_area(fScratchpadArea[i]);
596	delete_area(fDcbaArea);
597
598	if (fUseMSI) {
599		fPci->disable_msi(fDevice);
600		fPci->unconfigure_msi(fDevice);
601	}
602}
603
604
605void
606XHCI::_SwitchIntelPorts()
607{
608	TRACE("Looking for EHCI owned ports\n");
609	uint32 ports = fPci->read_pci_config(fDevice, XHCI_INTEL_USB3PRM, 4);
610	TRACE("Superspeed Ports: 0x%" B_PRIx32 "\n", ports);
611	fPci->write_pci_config(fDevice, XHCI_INTEL_USB3_PSSEN, 4, ports);
612	ports = fPci->read_pci_config(fDevice, XHCI_INTEL_USB3_PSSEN, 4);
613	TRACE("Superspeed ports now under XHCI : 0x%" B_PRIx32 "\n", ports);
614	ports = fPci->read_pci_config(fDevice, XHCI_INTEL_USB2PRM, 4);
615	TRACE("USB 2.0 Ports : 0x%" B_PRIx32 "\n", ports);
616	fPci->write_pci_config(fDevice, XHCI_INTEL_XUSB2PR, 4, ports);
617	ports = fPci->read_pci_config(fDevice, XHCI_INTEL_XUSB2PR, 4);
618	TRACE("USB 2.0 ports now under XHCI: 0x%" B_PRIx32 "\n", ports);
619}
620
621
622status_t
623XHCI::Start()
624{
625	TRACE_ALWAYS("starting XHCI host controller\n");
626	TRACE("usbcmd: 0x%08" B_PRIx32 "; usbsts: 0x%08" B_PRIx32 "\n",
627		ReadOpReg(XHCI_CMD), ReadOpReg(XHCI_STS));
628
629	if (WaitOpBits(XHCI_STS, STS_CNR, 0) != B_OK) {
630		TRACE("Start() failed STS_CNR\n");
631	}
632
633	if ((ReadOpReg(XHCI_CMD) & CMD_RUN) != 0) {
634		TRACE_ERROR("Start() warning, starting running XHCI controller!\n");
635	}
636
637	if ((ReadOpReg(XHCI_PAGESIZE) & (1 << 0)) == 0) {
638		TRACE_ERROR("controller does not support 4K page size\n");
639		return B_ERROR;
640	}
641
642	// read port count from capability register
643	uint32 capabilities = ReadCapReg32(XHCI_HCSPARAMS1);
644	fPortCount = HCS_MAX_PORTS(capabilities);
645	if (fPortCount == 0) {
646		TRACE_ERROR("invalid number of ports: %u\n", fPortCount);
647		return B_ERROR;
648	}
649
650	fSlotCount = HCS_MAX_SLOTS(capabilities);
651	if (fSlotCount > XHCI_MAX_DEVICES)
652		fSlotCount = XHCI_MAX_DEVICES;
653	WriteOpReg(XHCI_CONFIG, fSlotCount);
654
655	// find out which protocol is used for each port
656	uint8 portFound = 0;
657	uint32 cparams = ReadCapReg32(XHCI_HCCPARAMS);
658	uint32 eec = 0xffffffff;
659	uint32 eecp = HCS0_XECP(cparams) << 2;
660	for (; eecp != 0 && XECP_NEXT(eec) && portFound < fPortCount;
661		eecp += XECP_NEXT(eec) << 2) {
662		eec = ReadCapReg32(eecp);
663		if (XECP_ID(eec) != XHCI_SUPPORTED_PROTOCOLS_CAPID)
664			continue;
665		if (XHCI_SUPPORTED_PROTOCOLS_0_MAJOR(eec) > 3)
666			continue;
667		uint32 temp = ReadCapReg32(eecp + 8);
668		uint32 offset = XHCI_SUPPORTED_PROTOCOLS_1_OFFSET(temp);
669		uint32 count = XHCI_SUPPORTED_PROTOCOLS_1_COUNT(temp);
670		if (offset == 0 || count == 0)
671			continue;
672		offset--;
673		for (uint32 i = offset; i < offset + count; i++) {
674			if (XHCI_SUPPORTED_PROTOCOLS_0_MAJOR(eec) == 0x3)
675				fPortSpeeds[i] = USB_SPEED_SUPERSPEED;
676			else
677				fPortSpeeds[i] = USB_SPEED_HIGHSPEED;
678
679			TRACE("speed for port %" B_PRId32 " is %s\n", i,
680				fPortSpeeds[i] == USB_SPEED_SUPERSPEED ? "super" : "high");
681		}
682		portFound += count;
683	}
684
685	uint32 params2 = ReadCapReg32(XHCI_HCSPARAMS2);
686	fScratchpadCount = HCS_MAX_SC_BUFFERS(params2);
687	if (fScratchpadCount > XHCI_MAX_SCRATCHPADS) {
688		TRACE_ERROR("invalid number of scratchpads: %" B_PRIu32 "\n",
689			fScratchpadCount);
690		return B_ERROR;
691	}
692
693	uint32 params3 = ReadCapReg32(XHCI_HCSPARAMS3);
694	fExitLatMax = HCS_U1_DEVICE_LATENCY(params3)
695		+ HCS_U2_DEVICE_LATENCY(params3);
696
697	// clear interrupts & disable device notifications
698	WriteOpReg(XHCI_STS, ReadOpReg(XHCI_STS));
699	WriteOpReg(XHCI_DNCTRL, 0);
700
701	// allocate Device Context Base Address array
702	phys_addr_t dmaAddress;
703	fDcbaArea = fStack->AllocateArea((void **)&fDcba, &dmaAddress,
704		sizeof(*fDcba), "DCBA Area");
705	if (fDcbaArea < B_OK) {
706		TRACE_ERROR("unable to create the DCBA area\n");
707		return B_ERROR;
708	}
709	memset(fDcba, 0, sizeof(*fDcba));
710	memset(fScratchpadArea, 0, sizeof(fScratchpadArea));
711	memset(fScratchpad, 0, sizeof(fScratchpad));
712
713	// setting the first address to the scratchpad array address
714	fDcba->baseAddress[0] = dmaAddress
715		+ offsetof(struct xhci_device_context_array, scratchpad);
716
717	// fill up the scratchpad array with scratchpad pages
718	for (uint32 i = 0; i < fScratchpadCount; i++) {
719		phys_addr_t scratchDmaAddress;
720		fScratchpadArea[i] = fStack->AllocateArea((void **)&fScratchpad[i],
721			&scratchDmaAddress, B_PAGE_SIZE, "Scratchpad Area");
722		if (fScratchpadArea[i] < B_OK) {
723			TRACE_ERROR("unable to create the scratchpad area\n");
724			return B_ERROR;
725		}
726		fDcba->scratchpad[i] = scratchDmaAddress;
727	}
728
729	TRACE("setting DCBAAP %" B_PRIxPHYSADDR "\n", dmaAddress);
730	WriteOpReg(XHCI_DCBAAP_LO, (uint32)dmaAddress);
731	WriteOpReg(XHCI_DCBAAP_HI, (uint32)(dmaAddress >> 32));
732
733	// allocate Event Ring Segment Table
734	uint8 *addr;
735	fErstArea = fStack->AllocateArea((void **)&addr, &dmaAddress,
736		(XHCI_MAX_COMMANDS + XHCI_MAX_EVENTS) * sizeof(xhci_trb)
737		+ sizeof(xhci_erst_element),
738		"USB XHCI ERST CMD_RING and EVENT_RING Area");
739
740	if (fErstArea < B_OK) {
741		TRACE_ERROR("unable to create the ERST AND RING area\n");
742		delete_area(fDcbaArea);
743		return B_ERROR;
744	}
745	fErst = (xhci_erst_element *)addr;
746	memset(fErst, 0, (XHCI_MAX_COMMANDS + XHCI_MAX_EVENTS) * sizeof(xhci_trb)
747		+ sizeof(xhci_erst_element));
748
749	// fill with Event Ring Segment Base Address and Event Ring Segment Size
750	fErst->rs_addr = dmaAddress + sizeof(xhci_erst_element);
751	fErst->rs_size = XHCI_MAX_EVENTS;
752	fErst->rsvdz = 0;
753
754	addr += sizeof(xhci_erst_element);
755	fEventRing = (xhci_trb *)addr;
756	addr += XHCI_MAX_EVENTS * sizeof(xhci_trb);
757	fCmdRing = (xhci_trb *)addr;
758
759	TRACE("setting ERST size\n");
760	WriteRunReg32(XHCI_ERSTSZ(0), XHCI_ERSTS_SET(1));
761
762	TRACE("setting ERDP addr = 0x%" B_PRIx64 "\n", fErst->rs_addr);
763	WriteRunReg32(XHCI_ERDP_LO(0), (uint32)fErst->rs_addr);
764	WriteRunReg32(XHCI_ERDP_HI(0), (uint32)(fErst->rs_addr >> 32));
765
766	TRACE("setting ERST base addr = 0x%" B_PRIxPHYSADDR "\n", dmaAddress);
767	WriteRunReg32(XHCI_ERSTBA_LO(0), (uint32)dmaAddress);
768	WriteRunReg32(XHCI_ERSTBA_HI(0), (uint32)(dmaAddress >> 32));
769
770	dmaAddress += sizeof(xhci_erst_element) + XHCI_MAX_EVENTS
771		* sizeof(xhci_trb);
772
773	// Make sure the Command Ring is stopped
774	if ((ReadOpReg(XHCI_CRCR_LO) & CRCR_CRR) != 0) {
775		TRACE_ALWAYS("Command Ring is running, send stop/cancel\n");
776		WriteOpReg(XHCI_CRCR_LO, CRCR_CS);
777		WriteOpReg(XHCI_CRCR_HI, 0);
778		WriteOpReg(XHCI_CRCR_LO, CRCR_CA);
779		WriteOpReg(XHCI_CRCR_HI, 0);
780		snooze(1000);
781		if ((ReadOpReg(XHCI_CRCR_LO) & CRCR_CRR) != 0) {
782			TRACE_ERROR("Command Ring still running after stop/cancel\n");
783		}
784	}
785	TRACE("setting CRCR addr = 0x%" B_PRIxPHYSADDR "\n", dmaAddress);
786	WriteOpReg(XHCI_CRCR_LO, (uint32)dmaAddress | CRCR_RCS);
787	WriteOpReg(XHCI_CRCR_HI, (uint32)(dmaAddress >> 32));
788	// link trb
789	fCmdRing[XHCI_MAX_COMMANDS - 1].address = dmaAddress;
790
791	TRACE("setting interrupt rate\n");
792
793	// Setting IMOD below 0x3F8 on Intel Lynx Point can cause IRQ lockups
794	if (fPCIInfo->vendor_id == PCI_VENDOR_INTEL
795		&& (fPCIInfo->device_id == PCI_DEVICE_INTEL_PANTHER_POINT_XHCI
796			|| fPCIInfo->device_id == PCI_DEVICE_INTEL_LYNX_POINT_XHCI
797			|| fPCIInfo->device_id == PCI_DEVICE_INTEL_LYNX_POINT_LP_XHCI
798			|| fPCIInfo->device_id == PCI_DEVICE_INTEL_BAYTRAIL_XHCI
799			|| fPCIInfo->device_id == PCI_DEVICE_INTEL_WILDCAT_POINT_XHCI)) {
800		WriteRunReg32(XHCI_IMOD(0), 0x000003f8); // 4000 irq/s
801	} else {
802		WriteRunReg32(XHCI_IMOD(0), 0x000001f4); // 8000 irq/s
803	}
804
805	TRACE("enabling interrupt\n");
806	WriteRunReg32(XHCI_IMAN(0), ReadRunReg32(XHCI_IMAN(0)) | IMAN_INTR_ENA);
807
808	WriteOpReg(XHCI_CMD, CMD_RUN | CMD_INTE | CMD_HSEE);
809
810	// wait for start up state
811	if (WaitOpBits(XHCI_STS, STS_HCH, 0) != B_OK) {
812		TRACE_ERROR("HCH start up timeout\n");
813	}
814
815	fRootHub = new(std::nothrow) XHCIRootHub(RootObject(), 1);
816	if (!fRootHub) {
817		TRACE_ERROR("no memory to allocate root hub\n");
818		return B_NO_MEMORY;
819	}
820
821	if (fRootHub->InitCheck() < B_OK) {
822		TRACE_ERROR("root hub failed init check\n");
823		return fRootHub->InitCheck();
824	}
825
826	SetRootHub(fRootHub);
827
828	fRootHub->RegisterNode(Node());
829
830	TRACE_ALWAYS("successfully started the controller\n");
831
832#ifdef TRACE_USB
833	TRACE("No-Op test...\n");
834	Noop();
835#endif
836
837	return BusManager::Start();
838}
839
840
841status_t
842XHCI::SubmitTransfer(Transfer *transfer)
843{
844	// short circuit the root hub
845	if (transfer->TransferPipe()->DeviceAddress() == 1)
846		return fRootHub->ProcessTransfer(this, transfer);
847
848	TRACE("SubmitTransfer(%p)\n", transfer);
849	Pipe *pipe = transfer->TransferPipe();
850	if ((pipe->Type() & USB_OBJECT_CONTROL_PIPE) != 0)
851		return SubmitControlRequest(transfer);
852	return SubmitNormalRequest(transfer);
853}
854
855
856status_t
857XHCI::SubmitControlRequest(Transfer *transfer)
858{
859	Pipe *pipe = transfer->TransferPipe();
860	usb_request_data *requestData = transfer->RequestData();
861	bool directionIn = (requestData->RequestType & USB_REQTYPE_DEVICE_IN) != 0;
862
863	TRACE("SubmitControlRequest() length %d\n", requestData->Length);
864
865	xhci_endpoint *endpoint = (xhci_endpoint *)pipe->ControllerCookie();
866	if (endpoint == NULL) {
867		TRACE_ERROR("control pipe has no endpoint!\n");
868		return B_BAD_VALUE;
869	}
870	if (endpoint->device == NULL) {
871		panic("endpoint is not initialized!");
872		return B_NO_INIT;
873	}
874
875	status_t status = transfer->InitKernelAccess();
876	if (status != B_OK)
877		return status;
878
879	xhci_td *descriptor = CreateDescriptor(3, 1, requestData->Length);
880	if (descriptor == NULL)
881		return B_NO_MEMORY;
882	descriptor->transfer = transfer;
883
884	// Setup Stage
885	uint8 index = 0;
886	memcpy(&descriptor->trbs[index].address, requestData,
887		sizeof(usb_request_data));
888	descriptor->trbs[index].status = TRB_2_IRQ(0) | TRB_2_BYTES(8);
889	descriptor->trbs[index].flags
890		= TRB_3_TYPE(TRB_TYPE_SETUP_STAGE) | TRB_3_IDT_BIT | TRB_3_CYCLE_BIT;
891	if (requestData->Length > 0) {
892		descriptor->trbs[index].flags |=
893			directionIn ? TRB_3_TRT_IN : TRB_3_TRT_OUT;
894	}
895
896	index++;
897
898	// Data Stage (if any)
899	if (requestData->Length > 0) {
900		descriptor->trbs[index].address = descriptor->buffer_addrs[0];
901		descriptor->trbs[index].status = TRB_2_IRQ(0)
902			| TRB_2_BYTES(requestData->Length)
903			| TRB_2_TD_SIZE(0);
904		descriptor->trbs[index].flags = TRB_3_TYPE(TRB_TYPE_DATA_STAGE)
905				| (directionIn ? TRB_3_DIR_IN : 0)
906				| TRB_3_CYCLE_BIT;
907
908		if (!directionIn) {
909			transfer->PrepareKernelAccess();
910			WriteDescriptor(descriptor, transfer->Vector(),
911				transfer->VectorCount(), transfer->IsPhysical());
912		}
913
914		index++;
915	}
916
917	// Status Stage
918	descriptor->trbs[index].address = 0;
919	descriptor->trbs[index].status = TRB_2_IRQ(0);
920	descriptor->trbs[index].flags = TRB_3_TYPE(TRB_TYPE_STATUS_STAGE)
921			| TRB_3_CHAIN_BIT | TRB_3_ENT_BIT | TRB_3_CYCLE_BIT;
922		// The CHAIN bit must be set when using an Event Data TRB
923		// (XHCI 1.2 �� 6.4.1.2.3 Table 6-31 p472).
924
925	// Status Stage is an OUT transfer when the device is sending data
926	// (XHCI 1.2 �� 4.11.2.2 Table 4-7 p213), otherwise set the IN bit.
927	if (requestData->Length == 0 || !directionIn)
928		descriptor->trbs[index].flags |= TRB_3_DIR_IN;
929
930	descriptor->trb_used = index + 1;
931
932	status = _LinkDescriptorForPipe(descriptor, endpoint);
933	if (status != B_OK) {
934		FreeDescriptor(descriptor);
935		return status;
936	}
937
938	return B_OK;
939}
940
941
942status_t
943XHCI::SubmitNormalRequest(Transfer *transfer)
944{
945	TRACE("SubmitNormalRequest() length %" B_PRIuSIZE "\n", transfer->FragmentLength());
946
947	Pipe *pipe = transfer->TransferPipe();
948	usb_isochronous_data *isochronousData = transfer->IsochronousData();
949	bool directionIn = (pipe->Direction() == Pipe::In);
950
951	xhci_endpoint *endpoint = (xhci_endpoint *)pipe->ControllerCookie();
952	if (endpoint == NULL) {
953		TRACE_ERROR("pipe has no endpoint!\n");
954		return B_BAD_VALUE;
955	}
956	if (endpoint->device == NULL) {
957		panic("endpoint is not initialized!");
958		return B_NO_INIT;
959	}
960
961	status_t status = transfer->InitKernelAccess();
962	if (status != B_OK)
963		return status;
964
965	// TRBs within a TD must be "grouped" into TD Fragments, which mostly means
966	// that a max_burst_payload boundary cannot be crossed within a TRB, but
967	// only between TRBs. More than one TRB can be in a TD Fragment, but we keep
968	// things simple by setting trbSize to the MBP. (XHCI 1.2 �� 4.11.7.1 p235.)
969	size_t trbSize = endpoint->max_burst_payload;
970
971	if (isochronousData != NULL) {
972		if (isochronousData->packet_count == 0)
973			return B_BAD_VALUE;
974
975		// Isochronous transfers use more specifically sized packets.
976		trbSize = transfer->DataLength() / isochronousData->packet_count;
977		if (trbSize == 0 || trbSize > pipe->MaxPacketSize() || trbSize
978				!= (size_t)isochronousData->packet_descriptors[0].request_length)
979			return B_BAD_VALUE;
980	}
981
982	// Now that we know trbSize, compute the count.
983	const int32 trbCount = (transfer->FragmentLength() + trbSize - 1) / trbSize;
984
985	xhci_td *td = CreateDescriptor(trbCount, trbCount, trbSize);
986	if (td == NULL)
987		return B_NO_MEMORY;
988
989	// Normal Stage
990	const size_t maxPacketSize = pipe->MaxPacketSize();
991	size_t remaining = transfer->FragmentLength();
992	for (int32 i = 0; i < trbCount; i++) {
993		int32 trbLength = (remaining < trbSize) ? remaining : trbSize;
994		remaining -= trbLength;
995
996		// The "TD Size" field of a transfer TRB indicates the number of
997		// remaining maximum-size *packets* in this TD, *not* including the
998		// packets in the current TRB, and capped at 31 if there are more
999		// than 31 packets remaining in the TD. (XHCI 1.2 �� 4.11.2.4 p218.)
1000		int32 tdSize = (remaining + maxPacketSize - 1) / maxPacketSize;
1001		if (tdSize > 31)
1002			tdSize = 31;
1003
1004		td->trbs[i].address = td->buffer_addrs[i];
1005		td->trbs[i].status = TRB_2_IRQ(0)
1006			| TRB_2_BYTES(trbLength)
1007			| TRB_2_TD_SIZE(tdSize);
1008		td->trbs[i].flags = TRB_3_TYPE(TRB_TYPE_NORMAL)
1009			| TRB_3_CYCLE_BIT | TRB_3_CHAIN_BIT;
1010
1011		td->trb_used++;
1012	}
1013
1014	// Isochronous-specific.
1015	if (isochronousData != NULL) {
1016		// This is an isochronous transfer; it should have one TD per packet.
1017		for (uint32 i = 0; i < isochronousData->packet_count; i++) {
1018			td->trbs[i].flags &= ~(TRB_3_TYPE(TRB_TYPE_NORMAL));
1019			td->trbs[i].flags |= TRB_3_TYPE(TRB_TYPE_ISOCH);
1020
1021			if (i != (isochronousData->packet_count - 1)) {
1022				// For all but the last TD, generate events (but not interrupts) on short packets.
1023				// (The last TD uses the regular Event Data TRB.)
1024				td->trbs[i].flags |= TRB_3_ISP_BIT | TRB_3_BEI_BIT;
1025				td->trbs[i].flags &= ~TRB_3_CHAIN_BIT;
1026			}
1027		}
1028
1029		// TODO: We do not currently take Mult into account at all!
1030		// How are we supposed to do that here?
1031
1032		// Determine the (starting) frame number: if ISO_ASAP is set,
1033		// we are queueing this "right away", and so want to reset
1034		// the starting_frame_number. Otherwise we use the passed one.
1035		uint32 frame;
1036		if ((isochronousData->flags & USB_ISO_ASAP) != 0
1037				|| isochronousData->starting_frame_number == NULL) {
1038			// All reads from the microframe index register must be
1039			// incremented by 1. (XHCI 1.2 �� 4.14.2.1.4 p265.)
1040			frame = (ReadRunReg32(XHCI_MFINDEX) + 1) >> 3;
1041			td->trbs[0].flags |= TRB_3_ISO_SIA_BIT;
1042		} else {
1043			frame = *isochronousData->starting_frame_number;
1044			td->trbs[0].flags |= TRB_3_FRID(frame);
1045		}
1046		if (isochronousData->starting_frame_number != NULL)
1047			*isochronousData->starting_frame_number = frame;
1048	}
1049
1050	// Set the ENT (Evaluate Next TRB) bit, so that the HC will not switch
1051	// contexts before evaluating the Link TRB that _LinkDescriptorForPipe
1052	// will insert, as otherwise there would be a race between us freeing
1053	// and unlinking the descriptor, and the controller evaluating the Link TRB
1054	// and thus getting back onto the main ring and executing the Event Data
1055	// TRB that generates the interrupt for this transfer.
1056	//
1057	// Note that we *do not* unset the CHAIN bit in this TRB, thus including
1058	// the Link TRB in this TD formally, which is required when using the
1059	// ENT bit. (XHCI 1.2 �� 4.12.3 p250.)
1060	td->trbs[td->trb_used - 1].flags |= TRB_3_ENT_BIT;
1061
1062	if (!directionIn) {
1063		TRACE("copying out iov count %ld\n", transfer->VectorCount());
1064		status_t status = transfer->PrepareKernelAccess();
1065		if (status != B_OK) {
1066			FreeDescriptor(td);
1067			return status;
1068		}
1069		WriteDescriptor(td, transfer->Vector(),
1070			transfer->VectorCount(), transfer->IsPhysical());
1071	}
1072
1073	td->transfer = transfer;
1074	status = _LinkDescriptorForPipe(td, endpoint);
1075	if (status != B_OK) {
1076		FreeDescriptor(td);
1077		return status;
1078	}
1079
1080	return B_OK;
1081}
1082
1083
1084status_t
1085XHCI::CancelQueuedTransfers(Pipe *pipe, bool force)
1086{
1087	xhci_endpoint* endpoint = (xhci_endpoint*)pipe->ControllerCookie();
1088	if (endpoint == NULL || endpoint->trbs == NULL) {
1089		// Someone's de-allocated this pipe or endpoint in the meantime.
1090		// (Possibly AllocateDevice failed, and we were the temporary pipe.)
1091		return B_NO_INIT;
1092	}
1093
1094#ifndef TRACE_USB
1095	if (force)
1096#endif
1097	{
1098		TRACE_ALWAYS("cancel queued transfers (%" B_PRId8 ") for pipe %p (%d)\n",
1099			endpoint->used, pipe, pipe->EndpointAddress());
1100	}
1101
1102	MutexLocker endpointLocker(endpoint->lock);
1103
1104	if (endpoint->td_head == NULL) {
1105		// There aren't any currently pending transfers to cancel.
1106		return B_OK;
1107	}
1108
1109	// Calling the callbacks while holding the endpoint lock could potentially
1110	// cause deadlocks, so we instead store them in a pointer array. We need
1111	// to do this separately from freeing the TDs, for in the case we fail
1112	// to stop the endpoint, we cancel the transfers but do not free the TDs.
1113	Transfer* transfers[XHCI_MAX_TRANSFERS];
1114	int32 transfersCount = 0;
1115
1116	for (xhci_td* td = endpoint->td_head; td != NULL; td = td->next) {
1117		if (td->transfer == NULL)
1118			continue;
1119
1120		// We can't cancel or delete transfers under "force", as they probably
1121		// are not safe to use anymore.
1122		if (!force) {
1123			transfers[transfersCount] = td->transfer;
1124			transfersCount++;
1125		}
1126		td->transfer = NULL;
1127	}
1128
1129	// It is possible that while waiting for the stop-endpoint command to
1130	// complete, one of the queued transfers posts a completion event, so in
1131	// order to avoid a deadlock, we must unlock the endpoint.
1132	endpointLocker.Unlock();
1133	status_t status = StopEndpoint(false, endpoint);
1134	if (status != B_OK && status != B_DEV_STALLED) {
1135		// It is possible that the endpoint was stopped by the controller at the
1136		// same time our STOP command was in progress, causing a "Context State"
1137		// error. In that case, try again; if the endpoint is already stopped,
1138		// StopEndpoint will notice this. (XHCI 1.2 �� 4.6.9 p137.)
1139		status = StopEndpoint(false, endpoint);
1140	}
1141	if (status == B_DEV_STALLED) {
1142		// Only exit from a Halted state is a RESET. (XHCI 1.2 �� 4.8.3 p163.)
1143		TRACE_ERROR("cancel queued transfers: halted endpoint, reset!\n");
1144		status = ResetEndpoint(false, endpoint);
1145	}
1146	endpointLocker.Lock();
1147
1148	// Detach the head TD from the endpoint.
1149	xhci_td* td_head = endpoint->td_head;
1150	endpoint->td_head = NULL;
1151
1152	if (status == B_OK) {
1153		// Clear the endpoint's TRBs.
1154		memset(endpoint->trbs, 0, sizeof(xhci_trb) * XHCI_ENDPOINT_RING_SIZE);
1155		endpoint->used = 0;
1156		endpoint->next = 0;
1157
1158		// Set dequeue pointer location to the beginning of the ring.
1159		SetTRDequeue(endpoint->trb_addr, 0, endpoint->id + 1,
1160			endpoint->device->slot);
1161
1162		// We don't need to do anything else to restart the ring, as it will resume
1163		// operation as normal upon the next doorbell. (XHCI 1.2 �� 4.6.9 p136.)
1164	} else {
1165		// We couldn't stop the endpoint. Most likely the device has been
1166		// removed and the endpoint was stopped by the hardware, or is
1167		// for some reason busy and cannot be stopped.
1168		TRACE_ERROR("cancel queued transfers: could not stop endpoint: %s!\n",
1169			strerror(status));
1170
1171		// Instead of freeing the TDs, we want to leave them in the endpoint
1172		// so that when/if the hardware returns, they can be properly unlinked,
1173		// as otherwise the endpoint could get "stuck" by having the "used"
1174		// slowly accumulate due to "dead" transfers.
1175		endpoint->td_head = td_head;
1176		td_head = NULL;
1177	}
1178
1179	endpointLocker.Unlock();
1180
1181	for (int32 i = 0; i < transfersCount; i++) {
1182		transfers[i]->Finished(B_CANCELED, 0);
1183		delete transfers[i];
1184	}
1185
1186	// This loop looks a bit strange because we need to store the "next"
1187	// pointer before freeing the descriptor.
1188	xhci_td* td;
1189	while ((td = td_head) != NULL) {
1190		td_head = td_head->next;
1191		FreeDescriptor(td);
1192	}
1193
1194	return B_OK;
1195}
1196
1197
1198status_t
1199XHCI::StartDebugTransfer(Transfer *transfer)
1200{
1201	Pipe *pipe = transfer->TransferPipe();
1202	xhci_endpoint *endpoint = (xhci_endpoint *)pipe->ControllerCookie();
1203	if (endpoint == NULL)
1204		return B_BAD_VALUE;
1205
1206	// Check all locks that we are going to hit when running transfers.
1207	if (mutex_trylock(&endpoint->lock) != B_OK)
1208		return B_WOULD_BLOCK;
1209	if (mutex_trylock(&fFinishedLock) != B_OK) {
1210		mutex_unlock(&endpoint->lock);
1211		return B_WOULD_BLOCK;
1212	}
1213	if (mutex_trylock(&fEventLock) != B_OK) {
1214		mutex_unlock(&endpoint->lock);
1215		mutex_unlock(&fFinishedLock);
1216		return B_WOULD_BLOCK;
1217	}
1218	mutex_unlock(&endpoint->lock);
1219	mutex_unlock(&fFinishedLock);
1220	mutex_unlock(&fEventLock);
1221
1222	status_t status = SubmitTransfer(transfer);
1223	if (status != B_OK)
1224		return status;
1225
1226	// The endpoint's head TD is the TD of the just-submitted transfer.
1227	// Just like EHCI, abuse the callback cookie to hold the TD pointer.
1228	transfer->SetCallback(NULL, endpoint->td_head);
1229
1230	return B_OK;
1231}
1232
1233
1234status_t
1235XHCI::CheckDebugTransfer(Transfer *transfer)
1236{
1237	xhci_td *transfer_td = (xhci_td *)transfer->CallbackCookie();
1238	if (transfer_td == NULL)
1239		return B_NO_INIT;
1240
1241	// Process events once, and then look for it in the finished list.
1242	ProcessEvents();
1243	xhci_td *previous = NULL;
1244	for (xhci_td *td = fFinishedHead; td != NULL; td = td->next) {
1245		if (td != transfer_td) {
1246			previous = td;
1247			continue;
1248		}
1249
1250		// We've found it!
1251		if (previous == NULL) {
1252			fFinishedHead = fFinishedHead->next;
1253		} else {
1254			previous->next = td->next;
1255		}
1256
1257		bool directionIn = (transfer->TransferPipe()->Direction() != Pipe::Out);
1258		status_t status = (td->trb_completion_code == COMP_SUCCESS
1259			|| td->trb_completion_code == COMP_SHORT_PACKET) ? B_OK : B_ERROR;
1260
1261		if (status == B_OK && directionIn) {
1262			ReadDescriptor(td, transfer->Vector(), transfer->VectorCount(),
1263				transfer->IsPhysical());
1264		}
1265
1266		FreeDescriptor(td);
1267		transfer->SetCallback(NULL, NULL);
1268		return status;
1269	}
1270
1271	// We didn't find it.
1272	spin(75);
1273	return B_DEV_PENDING;
1274}
1275
1276
1277void
1278XHCI::CancelDebugTransfer(Transfer *transfer)
1279{
1280	while (CheckDebugTransfer(transfer) == B_DEV_PENDING)
1281		spin(100);
1282}
1283
1284
1285status_t
1286XHCI::NotifyPipeChange(Pipe *pipe, usb_change change)
1287{
1288	TRACE("pipe change %d for pipe %p (%d)\n", change, pipe,
1289		pipe->EndpointAddress());
1290
1291	switch (change) {
1292	case USB_CHANGE_CREATED:
1293		return _InsertEndpointForPipe(pipe);
1294	case USB_CHANGE_DESTROYED:
1295		return _RemoveEndpointForPipe(pipe);
1296
1297	case USB_CHANGE_PIPE_POLICY_CHANGED:
1298		// We don't care about these, at least for now.
1299		return B_OK;
1300	}
1301
1302	TRACE_ERROR("unknown pipe change!\n");
1303	return B_UNSUPPORTED;
1304}
1305
1306
1307xhci_td *
1308XHCI::CreateDescriptor(uint32 trbCount, uint32 bufferCount, size_t bufferSize)
1309{
1310	const bool inKDL = debug_debugger_running();
1311
1312	xhci_td *result;
1313	if (!inKDL) {
1314		result = (xhci_td*)calloc(1, sizeof(xhci_td));
1315	} else {
1316		// Just use the physical memory allocator while in KDL; it's less
1317		// secure than using the regular heap, but it's easier to deal with.
1318		phys_addr_t dummy;
1319		fStack->AllocateChunk((void **)&result, &dummy, sizeof(xhci_td));
1320	}
1321
1322	if (result == NULL) {
1323		TRACE_ERROR("failed to allocate a transfer descriptor\n");
1324		return NULL;
1325	}
1326
1327	// We always allocate 1 more TRB than requested, so that
1328	// _LinkDescriptorForPipe() has room to insert a link TRB.
1329	trbCount++;
1330	if (fStack->AllocateChunk((void **)&result->trbs, &result->trb_addr,
1331			(trbCount * sizeof(xhci_trb))) < B_OK) {
1332		TRACE_ERROR("failed to allocate TRBs\n");
1333		FreeDescriptor(result);
1334		return NULL;
1335	}
1336	result->trb_count = trbCount;
1337	result->trb_used = 0;
1338
1339	if (bufferSize > 0) {
1340		// Due to how the USB stack allocates physical memory, we can't just
1341		// request one large chunk the size of the transfer, and so instead we
1342		// create a series of buffers as requested by our caller.
1343
1344		// We store the buffer pointers and addresses in one memory block.
1345		if (!inKDL) {
1346			result->buffers = (void**)calloc(bufferCount,
1347				(sizeof(void*) + sizeof(phys_addr_t)));
1348		} else {
1349			phys_addr_t dummy;
1350			fStack->AllocateChunk((void **)&result->buffers, &dummy,
1351				bufferCount * (sizeof(void*) + sizeof(phys_addr_t)));
1352		}
1353		if (result->buffers == NULL) {
1354			TRACE_ERROR("unable to allocate space for buffer infos\n");
1355			FreeDescriptor(result);
1356			return NULL;
1357		}
1358		result->buffer_addrs = (phys_addr_t*)&result->buffers[bufferCount];
1359		result->buffer_size = bufferSize;
1360		result->buffer_count = bufferCount;
1361
1362		// Optimization: If the requested total size of all buffers is less
1363		// than 32*B_PAGE_SIZE (the maximum size that the physical memory
1364		// allocator can handle), we allocate only one buffer and segment it.
1365		size_t totalSize = bufferSize * bufferCount;
1366		if (totalSize < (32 * B_PAGE_SIZE)) {
1367			if (fStack->AllocateChunk(&result->buffers[0],
1368					&result->buffer_addrs[0], totalSize) < B_OK) {
1369				TRACE_ERROR("unable to allocate space for large buffer (size %ld)\n",
1370					totalSize);
1371				FreeDescriptor(result);
1372				return NULL;
1373			}
1374			for (uint32 i = 1; i < bufferCount; i++) {
1375				result->buffers[i] = (void*)((addr_t)(result->buffers[i - 1])
1376					+ bufferSize);
1377				result->buffer_addrs[i] = result->buffer_addrs[i - 1]
1378					+ bufferSize;
1379			}
1380		} else {
1381			// Otherwise, we allocate each buffer individually.
1382			for (uint32 i = 0; i < bufferCount; i++) {
1383				if (fStack->AllocateChunk(&result->buffers[i],
1384						&result->buffer_addrs[i], bufferSize) < B_OK) {
1385					TRACE_ERROR("unable to allocate space for a buffer (size "
1386						"%" B_PRIuSIZE ", count %" B_PRIu32 ")\n",
1387						bufferSize, bufferCount);
1388					FreeDescriptor(result);
1389					return NULL;
1390				}
1391			}
1392		}
1393	} else {
1394		result->buffers = NULL;
1395		result->buffer_addrs = NULL;
1396	}
1397
1398	// Initialize all other fields.
1399	result->transfer = NULL;
1400	result->trb_completion_code = 0;
1401	result->trb_left = 0;
1402	result->next = NULL;
1403
1404	TRACE("CreateDescriptor allocated %p, buffer_size %ld, buffer_count %" B_PRIu32 "\n",
1405		result, result->buffer_size, result->buffer_count);
1406
1407	return result;
1408}
1409
1410
1411void
1412XHCI::FreeDescriptor(xhci_td *descriptor)
1413{
1414	if (descriptor == NULL)
1415		return;
1416
1417	const bool inKDL = debug_debugger_running();
1418
1419	if (descriptor->trbs != NULL) {
1420		fStack->FreeChunk(descriptor->trbs, descriptor->trb_addr,
1421			(descriptor->trb_count * sizeof(xhci_trb)));
1422	}
1423	if (descriptor->buffers != NULL) {
1424		size_t totalSize = descriptor->buffer_size * descriptor->buffer_count;
1425		if (totalSize < (32 * B_PAGE_SIZE)) {
1426			// This was allocated as one contiguous buffer.
1427			fStack->FreeChunk(descriptor->buffers[0], descriptor->buffer_addrs[0],
1428				totalSize);
1429		} else {
1430			for (uint32 i = 0; i < descriptor->buffer_count; i++) {
1431				if (descriptor->buffers[i] == NULL)
1432					continue;
1433				fStack->FreeChunk(descriptor->buffers[i], descriptor->buffer_addrs[i],
1434					descriptor->buffer_size);
1435			}
1436		}
1437
1438		if (!inKDL) {
1439			free(descriptor->buffers);
1440		} else {
1441			fStack->FreeChunk(descriptor->buffers, 0,
1442				descriptor->buffer_count * (sizeof(void*) + sizeof(phys_addr_t)));
1443		}
1444	}
1445
1446	if (!inKDL)
1447		free(descriptor);
1448	else
1449		fStack->FreeChunk(descriptor, 0, sizeof(xhci_td));
1450}
1451
1452
1453size_t
1454XHCI::WriteDescriptor(xhci_td *descriptor, generic_io_vec *vector, size_t vectorCount, bool physical)
1455{
1456	size_t written = 0;
1457
1458	size_t bufIdx = 0, bufUsed = 0;
1459	for (size_t vecIdx = 0; vecIdx < vectorCount; vecIdx++) {
1460		size_t length = vector[vecIdx].length;
1461
1462		while (length > 0 && bufIdx < descriptor->buffer_count) {
1463			size_t toCopy = min_c(length, descriptor->buffer_size - bufUsed);
1464			status_t status = generic_memcpy(
1465				(generic_addr_t)descriptor->buffers[bufIdx] + bufUsed, false,
1466				vector[vecIdx].base + (vector[vecIdx].length - length), physical,
1467				toCopy);
1468			ASSERT(status == B_OK);
1469
1470			written += toCopy;
1471			bufUsed += toCopy;
1472			length -= toCopy;
1473			if (bufUsed == descriptor->buffer_size) {
1474				bufIdx++;
1475				bufUsed = 0;
1476			}
1477		}
1478	}
1479
1480	TRACE("wrote descriptor (%" B_PRIuSIZE " bytes)\n", written);
1481	return written;
1482}
1483
1484
1485size_t
1486XHCI::ReadDescriptor(xhci_td *descriptor, generic_io_vec *vector, size_t vectorCount, bool physical)
1487{
1488	size_t read = 0;
1489
1490	size_t bufIdx = 0, bufUsed = 0;
1491	for (size_t vecIdx = 0; vecIdx < vectorCount; vecIdx++) {
1492		size_t length = vector[vecIdx].length;
1493
1494		while (length > 0 && bufIdx < descriptor->buffer_count) {
1495			size_t toCopy = min_c(length, descriptor->buffer_size - bufUsed);
1496			status_t status = generic_memcpy(
1497				vector[vecIdx].base + (vector[vecIdx].length - length), physical,
1498				(generic_addr_t)descriptor->buffers[bufIdx] + bufUsed, false, toCopy);
1499			ASSERT(status == B_OK);
1500
1501			read += toCopy;
1502			bufUsed += toCopy;
1503			length -= toCopy;
1504			if (bufUsed == descriptor->buffer_size) {
1505				bufIdx++;
1506				bufUsed = 0;
1507			}
1508		}
1509	}
1510
1511	TRACE("read descriptor (%" B_PRIuSIZE " bytes)\n", read);
1512	return read;
1513}
1514
1515
1516Device *
1517XHCI::AllocateDevice(Hub *parent, int8 hubAddress, uint8 hubPort,
1518	usb_speed speed)
1519{
1520	TRACE("AllocateDevice hubAddress %d hubPort %d speed %d\n", hubAddress,
1521		hubPort, speed);
1522
1523	uint8 slot = XHCI_MAX_SLOTS;
1524	status_t status = EnableSlot(&slot);
1525	if (status != B_OK) {
1526		TRACE_ERROR("failed to enable slot: %s\n", strerror(status));
1527		return NULL;
1528	}
1529
1530	if (slot == 0 || slot > fSlotCount) {
1531		TRACE_ERROR("AllocateDevice: bad slot\n");
1532		return NULL;
1533	}
1534
1535	if (fDevices[slot].slot != 0) {
1536		TRACE_ERROR("AllocateDevice: slot already used\n");
1537		return NULL;
1538	}
1539
1540	struct xhci_device *device = &fDevices[slot];
1541	device->slot = slot;
1542
1543	device->input_ctx_area = fStack->AllocateArea((void **)&device->input_ctx,
1544		&device->input_ctx_addr, sizeof(*device->input_ctx) << fContextSizeShift,
1545		"XHCI input context");
1546	if (device->input_ctx_area < B_OK) {
1547		TRACE_ERROR("unable to create a input context area\n");
1548		CleanupDevice(device);
1549		return NULL;
1550	}
1551	if (fContextSizeShift == 1) {
1552		// 64-byte contexts have to be page-aligned in order for
1553		// _OffsetContextAddr to function properly.
1554		ASSERT((((addr_t)device->input_ctx) % B_PAGE_SIZE) == 0);
1555	}
1556
1557	memset(device->input_ctx, 0, sizeof(*device->input_ctx) << fContextSizeShift);
1558	_WriteContext(&device->input_ctx->input.dropFlags, 0);
1559	_WriteContext(&device->input_ctx->input.addFlags, 3);
1560
1561	uint8 rhPort = hubPort;
1562	uint32 route = 0;
1563	for (Device *hubDevice = parent; hubDevice != RootObject();
1564			hubDevice = (Device *)hubDevice->Parent()) {
1565		if (hubDevice->Parent() == RootObject())
1566			break;
1567
1568		if (rhPort > 15)
1569			rhPort = 15;
1570		route = route << 4;
1571		route |= rhPort;
1572
1573		rhPort = hubDevice->HubPort();
1574	}
1575
1576	uint32 dwslot0 = SLOT_0_NUM_ENTRIES(1) | SLOT_0_ROUTE(route);
1577
1578	// Get speed of port, only if device connected to root hub port
1579	// else we have to rely on value reported by the Hub Explore thread
1580	if (route == 0) {
1581		GetPortSpeed(hubPort - 1, &speed);
1582		TRACE("speed updated %d\n", speed);
1583	}
1584
1585	// add the speed
1586	switch (speed) {
1587	case USB_SPEED_LOWSPEED:
1588		dwslot0 |= SLOT_0_SPEED(2);
1589		break;
1590	case USB_SPEED_FULLSPEED:
1591		dwslot0 |= SLOT_0_SPEED(1);
1592		break;
1593	case USB_SPEED_HIGHSPEED:
1594		dwslot0 |= SLOT_0_SPEED(3);
1595		break;
1596	case USB_SPEED_SUPERSPEED:
1597		dwslot0 |= SLOT_0_SPEED(4);
1598		break;
1599	default:
1600		TRACE_ERROR("unknown usb speed\n");
1601		break;
1602	}
1603
1604	_WriteContext(&device->input_ctx->slot.dwslot0, dwslot0);
1605	// TODO enable power save
1606	_WriteContext(&device->input_ctx->slot.dwslot1, SLOT_1_RH_PORT(rhPort));
1607	uint32 dwslot2 = SLOT_2_IRQ_TARGET(0);
1608
1609	// If LS/FS device connected to non-root HS device
1610	if (route != 0 && parent->Speed() == USB_SPEED_HIGHSPEED
1611		&& (speed == USB_SPEED_LOWSPEED || speed == USB_SPEED_FULLSPEED)) {
1612		struct xhci_device *parenthub = (struct xhci_device *)
1613			parent->ControllerCookie();
1614		dwslot2 |= SLOT_2_PORT_NUM(hubPort);
1615		dwslot2 |= SLOT_2_TT_HUB_SLOT(parenthub->slot);
1616	}
1617
1618	_WriteContext(&device->input_ctx->slot.dwslot2, dwslot2);
1619
1620	_WriteContext(&device->input_ctx->slot.dwslot3, SLOT_3_SLOT_STATE(0)
1621		| SLOT_3_DEVICE_ADDRESS(0));
1622
1623	TRACE("slot 0x%08" B_PRIx32 " 0x%08" B_PRIx32 " 0x%08" B_PRIx32 " 0x%08" B_PRIx32
1624		"\n", _ReadContext(&device->input_ctx->slot.dwslot0),
1625		_ReadContext(&device->input_ctx->slot.dwslot1),
1626		_ReadContext(&device->input_ctx->slot.dwslot2),
1627		_ReadContext(&device->input_ctx->slot.dwslot3));
1628
1629	device->device_ctx_area = fStack->AllocateArea((void **)&device->device_ctx,
1630		&device->device_ctx_addr, sizeof(*device->device_ctx) << fContextSizeShift,
1631		"XHCI device context");
1632	if (device->device_ctx_area < B_OK) {
1633		TRACE_ERROR("unable to create a device context area\n");
1634		CleanupDevice(device);
1635		return NULL;
1636	}
1637	memset(device->device_ctx, 0, sizeof(*device->device_ctx) << fContextSizeShift);
1638
1639	device->trb_area = fStack->AllocateArea((void **)&device->trbs,
1640		&device->trb_addr, sizeof(xhci_trb) * (XHCI_MAX_ENDPOINTS - 1)
1641			* XHCI_ENDPOINT_RING_SIZE, "XHCI endpoint trbs");
1642	if (device->trb_area < B_OK) {
1643		TRACE_ERROR("unable to create a device trbs area\n");
1644		CleanupDevice(device);
1645		return NULL;
1646	}
1647
1648	// set up slot pointer to device context
1649	fDcba->baseAddress[slot] = device->device_ctx_addr;
1650
1651	size_t maxPacketSize;
1652	switch (speed) {
1653	case USB_SPEED_LOWSPEED:
1654	case USB_SPEED_FULLSPEED:
1655		maxPacketSize = 8;
1656		break;
1657	case USB_SPEED_HIGHSPEED:
1658		maxPacketSize = 64;
1659		break;
1660	default:
1661		maxPacketSize = 512;
1662		break;
1663	}
1664
1665	xhci_endpoint* endpoint0 = &device->endpoints[0];
1666	mutex_init(&endpoint0->lock, "xhci endpoint lock");
1667	endpoint0->device = device;
1668	endpoint0->id = 0;
1669	endpoint0->status = 0;
1670	endpoint0->td_head = NULL;
1671	endpoint0->used = 0;
1672	endpoint0->next = 0;
1673	endpoint0->trbs = device->trbs;
1674	endpoint0->trb_addr = device->trb_addr;
1675
1676	// configure the Control endpoint 0
1677	if (ConfigureEndpoint(endpoint0, slot, 0, USB_OBJECT_CONTROL_PIPE, false,
1678			0, maxPacketSize, speed, 0, 0) != B_OK) {
1679		TRACE_ERROR("unable to configure default control endpoint\n");
1680		CleanupDevice(device);
1681		return NULL;
1682	}
1683
1684	// device should get to addressed state (bsr = 0)
1685	status = SetAddress(device->input_ctx_addr, false, slot);
1686	if (status != B_OK) {
1687		TRACE_ERROR("unable to set address: %s\n", strerror(status));
1688		CleanupDevice(device);
1689		return NULL;
1690	}
1691
1692	device->address = SLOT_3_DEVICE_ADDRESS_GET(_ReadContext(
1693		&device->device_ctx->slot.dwslot3));
1694
1695	TRACE("device: address 0x%x state 0x%08" B_PRIx32 "\n", device->address,
1696		SLOT_3_SLOT_STATE_GET(_ReadContext(
1697			&device->device_ctx->slot.dwslot3)));
1698	TRACE("endpoint0 state 0x%08" B_PRIx32 "\n",
1699		ENDPOINT_0_STATE_GET(_ReadContext(
1700			&device->device_ctx->endpoints[0].dwendpoint0)));
1701
1702	// Wait a bit for the device to complete addressing
1703	snooze(USB_DELAY_SET_ADDRESS);
1704
1705	// Create a temporary pipe with the new address
1706	ControlPipe pipe(parent);
1707	pipe.SetControllerCookie(endpoint0);
1708	pipe.InitCommon(device->address + 1, 0, speed, Pipe::Default, maxPacketSize, 0,
1709		hubAddress, hubPort);
1710
1711	// Get the device descriptor
1712	// Just retrieve the first 8 bytes of the descriptor -> minimum supported
1713	// size of any device. It is enough because it includes the device type.
1714
1715	size_t actualLength = 0;
1716	usb_device_descriptor deviceDescriptor;
1717
1718	TRACE("getting the device descriptor\n");
1719	status = pipe.SendRequest(
1720		USB_REQTYPE_DEVICE_IN | USB_REQTYPE_STANDARD,		// type
1721		USB_REQUEST_GET_DESCRIPTOR,							// request
1722		USB_DESCRIPTOR_DEVICE << 8,							// value
1723		0,													// index
1724		8,													// length
1725		(void *)&deviceDescriptor,							// buffer
1726		8,													// buffer length
1727		&actualLength);										// actual length
1728
1729	if (actualLength != 8) {
1730		TRACE_ERROR("failed to get the device descriptor: %s\n",
1731			strerror(status));
1732		CleanupDevice(device);
1733		return NULL;
1734	}
1735
1736	TRACE("device_class: %d device_subclass %d device_protocol %d\n",
1737		deviceDescriptor.device_class, deviceDescriptor.device_subclass,
1738		deviceDescriptor.device_protocol);
1739
1740	if (speed == USB_SPEED_FULLSPEED && deviceDescriptor.max_packet_size_0 != 8) {
1741		TRACE("Full speed device with different max packet size for Endpoint 0\n");
1742		uint32 dwendpoint1 = _ReadContext(
1743			&device->input_ctx->endpoints[0].dwendpoint1);
1744		dwendpoint1 &= ~ENDPOINT_1_MAXPACKETSIZE(0xffff);
1745		dwendpoint1 |= ENDPOINT_1_MAXPACKETSIZE(
1746			deviceDescriptor.max_packet_size_0);
1747		_WriteContext(&device->input_ctx->endpoints[0].dwendpoint1,
1748			dwendpoint1);
1749		_WriteContext(&device->input_ctx->input.dropFlags, 0);
1750		_WriteContext(&device->input_ctx->input.addFlags, (1 << 1));
1751		EvaluateContext(device->input_ctx_addr, device->slot);
1752	}
1753
1754	Device *deviceObject = NULL;
1755	if (deviceDescriptor.device_class == 0x09) {
1756		TRACE("creating new Hub\n");
1757		TRACE("getting the hub descriptor\n");
1758		size_t actualLength = 0;
1759		usb_hub_descriptor hubDescriptor;
1760		status = pipe.SendRequest(
1761			USB_REQTYPE_DEVICE_IN | USB_REQTYPE_CLASS,			// type
1762			USB_REQUEST_GET_DESCRIPTOR,							// request
1763			USB_DESCRIPTOR_HUB << 8,							// value
1764			0,													// index
1765			sizeof(usb_hub_descriptor),							// length
1766			(void *)&hubDescriptor,								// buffer
1767			sizeof(usb_hub_descriptor),							// buffer length
1768			&actualLength);
1769
1770		if (actualLength != sizeof(usb_hub_descriptor)) {
1771			TRACE_ERROR("error while getting the hub descriptor: %s\n",
1772				strerror(status));
1773			CleanupDevice(device);
1774			return NULL;
1775		}
1776
1777		uint32 dwslot0 = _ReadContext(&device->input_ctx->slot.dwslot0);
1778		dwslot0 |= SLOT_0_HUB_BIT;
1779		_WriteContext(&device->input_ctx->slot.dwslot0, dwslot0);
1780		uint32 dwslot1 = _ReadContext(&device->input_ctx->slot.dwslot1);
1781		dwslot1 |= SLOT_1_NUM_PORTS(hubDescriptor.num_ports);
1782		_WriteContext(&device->input_ctx->slot.dwslot1, dwslot1);
1783		if (speed == USB_SPEED_HIGHSPEED) {
1784			uint32 dwslot2 = _ReadContext(&device->input_ctx->slot.dwslot2);
1785			dwslot2 |= SLOT_2_TT_TIME(HUB_TTT_GET(hubDescriptor.characteristics));
1786			_WriteContext(&device->input_ctx->slot.dwslot2, dwslot2);
1787		}
1788
1789		deviceObject = new(std::nothrow) Hub(parent, hubAddress, hubPort,
1790			deviceDescriptor, device->address + 1, speed, false, device);
1791	} else {
1792		TRACE("creating new device\n");
1793		deviceObject = new(std::nothrow) Device(parent, hubAddress, hubPort,
1794			deviceDescriptor, device->address + 1, speed, false, device);
1795	}
1796	if (deviceObject == NULL || deviceObject->InitCheck() != B_OK) {
1797		if (deviceObject == NULL) {
1798			TRACE_ERROR("no memory to allocate device\n");
1799		} else {
1800			TRACE_ERROR("device object failed to initialize\n");
1801		}
1802		CleanupDevice(device);
1803		return NULL;
1804	}
1805
1806	// We don't want to disable the default endpoint, naturally, which would
1807	// otherwise happen when this Pipe object is destroyed.
1808	pipe.SetControllerCookie(NULL);
1809
1810	deviceObject->RegisterNode();
1811
1812	TRACE("AllocateDevice() port %d slot %d\n", hubPort, slot);
1813	return deviceObject;
1814}
1815
1816
1817void
1818XHCI::FreeDevice(Device *usbDevice)
1819{
1820	xhci_device* device = (xhci_device*)usbDevice->ControllerCookie();
1821	TRACE("FreeDevice() slot %d\n", device->slot);
1822
1823	// Delete the device first, so it cleans up its pipes and tells us
1824	// what we need to destroy before we tear down our internal state.
1825	delete usbDevice;
1826
1827	CleanupDevice(device);
1828}
1829
1830
1831void
1832XHCI::CleanupDevice(xhci_device *device)
1833{
1834	if (device->slot != 0) {
1835		DisableSlot(device->slot);
1836		fDcba->baseAddress[device->slot] = 0;
1837	}
1838
1839	if (device->trb_addr != 0)
1840		delete_area(device->trb_area);
1841	if (device->input_ctx_addr != 0)
1842		delete_area(device->input_ctx_area);
1843	if (device->device_ctx_addr != 0)
1844		delete_area(device->device_ctx_area);
1845
1846	memset(device, 0, sizeof(xhci_device));
1847}
1848
1849
1850uint8
1851XHCI::_GetEndpointState(xhci_endpoint* endpoint)
1852{
1853	struct xhci_device_ctx* device_ctx = endpoint->device->device_ctx;
1854	return ENDPOINT_0_STATE_GET(
1855		_ReadContext(&device_ctx->endpoints[endpoint->id].dwendpoint0));
1856}
1857
1858
1859status_t
1860XHCI::_InsertEndpointForPipe(Pipe *pipe)
1861{
1862	TRACE("insert endpoint for pipe %p (%d)\n", pipe, pipe->EndpointAddress());
1863
1864	if (pipe->ControllerCookie() != NULL
1865			|| pipe->Parent()->Type() != USB_OBJECT_DEVICE) {
1866		// default pipe is already referenced
1867		return B_OK;
1868	}
1869
1870	Device* usbDevice = (Device *)pipe->Parent();
1871	if (usbDevice->Parent() == RootObject()) {
1872		// root hub needs no initialization
1873		return B_OK;
1874	}
1875
1876	struct xhci_device *device = (struct xhci_device *)
1877		usbDevice->ControllerCookie();
1878	if (device == NULL) {
1879		panic("device is NULL\n");
1880		return B_NO_INIT;
1881	}
1882
1883	const uint8 id = (2 * pipe->EndpointAddress()
1884		+ (pipe->Direction() != Pipe::Out ? 1 : 0)) - 1;
1885	if (id >= XHCI_MAX_ENDPOINTS - 1)
1886		return B_BAD_VALUE;
1887
1888	if (id > 0) {
1889		uint32 devicedwslot0 = _ReadContext(&device->device_ctx->slot.dwslot0);
1890		if (SLOT_0_NUM_ENTRIES_GET(devicedwslot0) == 1) {
1891			uint32 inputdwslot0 = _ReadContext(&device->input_ctx->slot.dwslot0);
1892			inputdwslot0 &= ~(SLOT_0_NUM_ENTRIES(0x1f));
1893			inputdwslot0 |= SLOT_0_NUM_ENTRIES(XHCI_MAX_ENDPOINTS - 1);
1894			_WriteContext(&device->input_ctx->slot.dwslot0, inputdwslot0);
1895			EvaluateContext(device->input_ctx_addr, device->slot);
1896		}
1897
1898		xhci_endpoint* endpoint = &device->endpoints[id];
1899		mutex_init(&endpoint->lock, "xhci endpoint lock");
1900		MutexLocker endpointLocker(endpoint->lock);
1901
1902		endpoint->device = device;
1903		endpoint->id = id;
1904		endpoint->td_head = NULL;
1905		endpoint->used = 0;
1906		endpoint->next = 0;
1907
1908		endpoint->trbs = device->trbs + id * XHCI_ENDPOINT_RING_SIZE;
1909		endpoint->trb_addr = device->trb_addr
1910			+ id * XHCI_ENDPOINT_RING_SIZE * sizeof(xhci_trb);
1911		memset(endpoint->trbs, 0,
1912			sizeof(xhci_trb) * XHCI_ENDPOINT_RING_SIZE);
1913
1914		TRACE("insert endpoint for pipe: trbs, device %p endpoint %p\n",
1915			device->trbs, endpoint->trbs);
1916		TRACE("insert endpoint for pipe: trb_addr, device 0x%" B_PRIxPHYSADDR
1917			" endpoint 0x%" B_PRIxPHYSADDR "\n", device->trb_addr,
1918			endpoint->trb_addr);
1919
1920		const uint8 endpointNum = id + 1;
1921
1922		status_t status = ConfigureEndpoint(endpoint, device->slot, id, pipe->Type(),
1923			pipe->Direction() == Pipe::In, pipe->Interval(), pipe->MaxPacketSize(),
1924			usbDevice->Speed(), pipe->MaxBurst(), pipe->BytesPerInterval());
1925		if (status != B_OK) {
1926			TRACE_ERROR("unable to configure endpoint: %s\n", strerror(status));
1927			return status;
1928		}
1929
1930		_WriteContext(&device->input_ctx->input.dropFlags, 0);
1931		_WriteContext(&device->input_ctx->input.addFlags,
1932			(1 << endpointNum) | (1 << 0));
1933
1934		ConfigureEndpoint(device->input_ctx_addr, false, device->slot);
1935
1936		TRACE("device: address 0x%x state 0x%08" B_PRIx32 "\n",
1937			device->address, SLOT_3_SLOT_STATE_GET(_ReadContext(
1938				&device->device_ctx->slot.dwslot3)));
1939		TRACE("endpoint[0] state 0x%08" B_PRIx32 "\n",
1940			ENDPOINT_0_STATE_GET(_ReadContext(
1941				&device->device_ctx->endpoints[0].dwendpoint0)));
1942		TRACE("endpoint[%d] state 0x%08" B_PRIx32 "\n", id,
1943			ENDPOINT_0_STATE_GET(_ReadContext(
1944				&device->device_ctx->endpoints[id].dwendpoint0)));
1945	}
1946	pipe->SetControllerCookie(&device->endpoints[id]);
1947
1948	return B_OK;
1949}
1950
1951
1952status_t
1953XHCI::_RemoveEndpointForPipe(Pipe *pipe)
1954{
1955	TRACE("remove endpoint for pipe %p (%d)\n", pipe, pipe->EndpointAddress());
1956
1957	if (pipe->Parent()->Type() != USB_OBJECT_DEVICE)
1958		return B_OK;
1959	Device* usbDevice = (Device *)pipe->Parent();
1960	if (usbDevice->Parent() == RootObject())
1961		return B_BAD_VALUE;
1962
1963	xhci_endpoint *endpoint = (xhci_endpoint *)pipe->ControllerCookie();
1964	if (endpoint == NULL || endpoint->trbs == NULL)
1965		return B_NO_INIT;
1966
1967	pipe->SetControllerCookie(NULL);
1968
1969	if (endpoint->id > 0) {
1970		xhci_device *device = endpoint->device;
1971		uint8 epNumber = endpoint->id + 1;
1972		StopEndpoint(true, endpoint);
1973
1974		mutex_lock(&endpoint->lock);
1975
1976		// See comment in CancelQueuedTransfers.
1977		xhci_td* td;
1978		while ((td = endpoint->td_head) != NULL) {
1979			endpoint->td_head = endpoint->td_head->next;
1980			FreeDescriptor(td);
1981		}
1982
1983		mutex_destroy(&endpoint->lock);
1984		memset(endpoint, 0, sizeof(xhci_endpoint));
1985
1986		_WriteContext(&device->input_ctx->input.dropFlags, (1 << epNumber));
1987		_WriteContext(&device->input_ctx->input.addFlags, (1 << 0));
1988
1989		// The Deconfigure bit in the Configure Endpoint command indicates
1990		// that *all* endpoints are to be deconfigured, and not just the ones
1991		// specified in the context flags. (XHCI 1.2 �� 4.6.6 p115.)
1992		ConfigureEndpoint(device->input_ctx_addr, false, device->slot);
1993	}
1994
1995	return B_OK;
1996}
1997
1998
1999status_t
2000XHCI::_LinkDescriptorForPipe(xhci_td *descriptor, xhci_endpoint *endpoint)
2001{
2002	TRACE("link descriptor for pipe\n");
2003
2004	// Use mutex_trylock first, in case we are in KDL.
2005	MutexLocker endpointLocker(&endpoint->lock, mutex_trylock(&endpoint->lock) == B_OK);
2006
2007	// "used" refers to the number of currently linked TDs, not the number of
2008	// used TRBs on the ring (we use 2 TRBs on the ring per transfer.)
2009	// Furthermore, we have to leave an empty item between the head and tail.
2010	if (endpoint->used >= (XHCI_MAX_TRANSFERS - 1)) {
2011		TRACE_ERROR("link descriptor for pipe: max transfers count exceeded\n");
2012		return B_BAD_VALUE;
2013	}
2014
2015	// We do not support queuing other transfers in tandem with a fragmented one.
2016	if (endpoint->td_head != NULL && endpoint->td_head->transfer != NULL
2017			&& endpoint->td_head->transfer->IsFragmented()) {
2018		TRACE_ERROR("cannot submit transfer: a fragmented transfer is queued\n");
2019		return B_DEV_RESOURCE_CONFLICT;
2020	}
2021
2022	endpoint->used++;
2023	descriptor->next = endpoint->td_head;
2024	endpoint->td_head = descriptor;
2025
2026	uint32 link = endpoint->next, eventdata = link + 1, next = eventdata + 1;
2027	if (eventdata == XHCI_ENDPOINT_RING_SIZE || next == XHCI_ENDPOINT_RING_SIZE) {
2028		// If it's "next" not "eventdata" that got us here, we will be leaving
2029		// one TRB at the end of the ring unused.
2030		eventdata = 0;
2031		next = 1;
2032	}
2033
2034	TRACE("link descriptor for pipe: link %d, next %d\n", link, next);
2035
2036	// Add a Link TRB to the end of the descriptor.
2037	phys_addr_t addr = endpoint->trb_addr + (eventdata * sizeof(xhci_trb));
2038	descriptor->trbs[descriptor->trb_used].address = addr;
2039	descriptor->trbs[descriptor->trb_used].status = TRB_2_IRQ(0);
2040	descriptor->trbs[descriptor->trb_used].flags = TRB_3_TYPE(TRB_TYPE_LINK)
2041		| TRB_3_CHAIN_BIT | TRB_3_CYCLE_BIT;
2042		// It is specified that (XHCI 1.2 �� 4.12.3 Note 2 p251) if the TRB
2043		// following one with the ENT bit set is a Link TRB, the Link TRB
2044		// shall be evaluated *and* the subsequent TRB shall be. Thus a
2045		// TRB_3_ENT_BIT is unnecessary here; and from testing seems to
2046		// break all transfers on a (very) small number of controllers.
2047
2048#if !B_HOST_IS_LENDIAN
2049	// Convert endianness.
2050	for (uint32 i = 0; i <= descriptor->trb_used; i++) {
2051		descriptor->trbs[i].address =
2052			B_HOST_TO_LENDIAN_INT64(descriptor->trbs[i].address);
2053		descriptor->trbs[i].status =
2054			B_HOST_TO_LENDIAN_INT32(descriptor->trbs[i].status);
2055		descriptor->trbs[i].flags =
2056			B_HOST_TO_LENDIAN_INT32(descriptor->trbs[i].flags);
2057	}
2058#endif
2059
2060	// Link the descriptor.
2061	endpoint->trbs[link].address =
2062		B_HOST_TO_LENDIAN_INT64(descriptor->trb_addr);
2063	endpoint->trbs[link].status =
2064		B_HOST_TO_LENDIAN_INT32(TRB_2_IRQ(0));
2065	endpoint->trbs[link].flags =
2066		B_HOST_TO_LENDIAN_INT32(TRB_3_TYPE(TRB_TYPE_LINK));
2067
2068	// Set up the Event Data TRB (XHCI 1.2 �� 4.11.5.2 p230.)
2069	//
2070	// We do this on the main ring for two reasons: first, to avoid a small
2071	// potential race between the interrupt and the controller evaluating
2072	// the link TRB to get back onto the ring; and second, because many
2073	// controllers throw errors if the target of a Link TRB is not valid
2074	// (i.e. does not have its Cycle Bit set.)
2075	//
2076	// We also set the "address" field, which the controller will copy
2077	// verbatim into the TRB it posts to the event ring, to be the last
2078	// "real" TRB in the TD; this will allow us to determine what transfer
2079	// the resulting Transfer Event TRB refers to.
2080	endpoint->trbs[eventdata].address =
2081		B_HOST_TO_LENDIAN_INT64(descriptor->trb_addr
2082			+ (descriptor->trb_used - 1) * sizeof(xhci_trb));
2083	endpoint->trbs[eventdata].status =
2084		B_HOST_TO_LENDIAN_INT32(TRB_2_IRQ(0));
2085	endpoint->trbs[eventdata].flags =
2086		B_HOST_TO_LENDIAN_INT32(TRB_3_TYPE(TRB_TYPE_EVENT_DATA)
2087			| TRB_3_IOC_BIT | TRB_3_CYCLE_BIT);
2088
2089	endpoint->trbs[next].address = 0;
2090	endpoint->trbs[next].status = 0;
2091	endpoint->trbs[next].flags = 0;
2092
2093	memory_write_barrier();
2094
2095	// Everything is ready, so write the cycle bit.
2096	endpoint->trbs[link].flags |= B_HOST_TO_LENDIAN_INT32(TRB_3_CYCLE_BIT);
2097
2098	TRACE("_LinkDescriptorForPipe pLink %p phys 0x%" B_PRIxPHYSADDR
2099		" 0x%" B_PRIxPHYSADDR " 0x%08" B_PRIx32 "\n", &endpoint->trbs[link],
2100		endpoint->trb_addr + link * sizeof(struct xhci_trb),
2101		endpoint->trbs[link].address,
2102		B_LENDIAN_TO_HOST_INT32(endpoint->trbs[link].flags));
2103
2104	endpoint->next = next;
2105	endpointLocker.Unlock();
2106
2107	TRACE("Endpoint status 0x%08" B_PRIx32 " 0x%08" B_PRIx32 " 0x%016" B_PRIx64 "\n",
2108		_ReadContext(&endpoint->device->device_ctx->endpoints[endpoint->id].dwendpoint0),
2109		_ReadContext(&endpoint->device->device_ctx->endpoints[endpoint->id].dwendpoint1),
2110		_ReadContext(&endpoint->device->device_ctx->endpoints[endpoint->id].qwendpoint2));
2111
2112	Ring(endpoint->device->slot, endpoint->id + 1);
2113
2114	TRACE("Endpoint status 0x%08" B_PRIx32 " 0x%08" B_PRIx32 " 0x%016" B_PRIx64 "\n",
2115		_ReadContext(&endpoint->device->device_ctx->endpoints[endpoint->id].dwendpoint0),
2116		_ReadContext(&endpoint->device->device_ctx->endpoints[endpoint->id].dwendpoint1),
2117		_ReadContext(&endpoint->device->device_ctx->endpoints[endpoint->id].qwendpoint2));
2118
2119	return B_OK;
2120}
2121
2122
2123status_t
2124XHCI::_UnlinkDescriptorForPipe(xhci_td *descriptor, xhci_endpoint *endpoint)
2125{
2126	TRACE("unlink descriptor for pipe\n");
2127	// We presume that the caller has already locked or owns the endpoint.
2128
2129	endpoint->used--;
2130	if (descriptor == endpoint->td_head) {
2131		endpoint->td_head = descriptor->next;
2132		descriptor->next = NULL;
2133		return B_OK;
2134	} else {
2135		for (xhci_td *td = endpoint->td_head; td->next != NULL; td = td->next) {
2136			if (td->next == descriptor) {
2137				td->next = descriptor->next;
2138				descriptor->next = NULL;
2139				return B_OK;
2140			}
2141		}
2142	}
2143
2144	endpoint->used++;
2145	return B_ERROR;
2146}
2147
2148
2149status_t
2150XHCI::ConfigureEndpoint(xhci_endpoint* ep, uint8 slot, uint8 number, uint8 type,
2151	bool directionIn, uint16 interval, uint16 maxPacketSize, usb_speed speed,
2152	uint8 maxBurst, uint16 bytesPerInterval)
2153{
2154	struct xhci_device* device = &fDevices[slot];
2155
2156	uint32 dwendpoint0 = 0;
2157	uint32 dwendpoint1 = 0;
2158	uint64 qwendpoint2 = 0;
2159	uint32 dwendpoint4 = 0;
2160
2161	// Compute and assign the endpoint type. (XHCI 1.2 �� 6.2.3 Table 6-9 p452.)
2162	uint8 xhciType = 4;
2163	if ((type & USB_OBJECT_INTERRUPT_PIPE) != 0)
2164		xhciType = 3;
2165	if ((type & USB_OBJECT_BULK_PIPE) != 0)
2166		xhciType = 2;
2167	if ((type & USB_OBJECT_ISO_PIPE) != 0)
2168		xhciType = 1;
2169	xhciType |= directionIn ? (1 << 2) : 0;
2170	dwendpoint1 |= ENDPOINT_1_EPTYPE(xhciType);
2171
2172	// Compute and assign interval. (XHCI 1.2 �� 6.2.3.6 p456.)
2173	uint16 calcInterval;
2174	if ((type & USB_OBJECT_BULK_PIPE) != 0
2175			|| (type & USB_OBJECT_CONTROL_PIPE) != 0) {
2176		// Bulk and Control endpoints never issue NAKs.
2177		calcInterval = 0;
2178	} else {
2179		switch (speed) {
2180		case USB_SPEED_FULLSPEED:
2181			if ((type & USB_OBJECT_ISO_PIPE) != 0) {
2182				// Convert 1-16 into 3-18.
2183				calcInterval = min_c(max_c(interval, 1), 16) + 2;
2184				break;
2185			}
2186
2187			// fall through
2188		case USB_SPEED_LOWSPEED: {
2189			// Convert 1ms-255ms into 3-10.
2190
2191			// Find the index of the highest set bit in "interval".
2192			uint32 temp = min_c(max_c(interval, 1), 255);
2193			for (calcInterval = 0; temp != 1; calcInterval++)
2194				temp = temp >> 1;
2195			calcInterval += 3;
2196			break;
2197		}
2198
2199		case USB_SPEED_HIGHSPEED:
2200		case USB_SPEED_SUPERSPEED:
2201		default:
2202			// Convert 1-16 into 0-15.
2203			calcInterval = min_c(max_c(interval, 1), 16) - 1;
2204			break;
2205		}
2206	}
2207	dwendpoint0 |= ENDPOINT_0_INTERVAL(calcInterval);
2208
2209	// For non-isochronous endpoints, we want the controller to retry failed
2210	// transfers, if possible. (XHCI 1.2 �� 4.10.2.3 p197.)
2211	if ((type & USB_OBJECT_ISO_PIPE) == 0)
2212		dwendpoint1 |= ENDPOINT_1_CERR(3);
2213
2214	// Assign maximum burst size. For USB3 devices this is passed in; for
2215	// all other devices we compute it. (XHCI 1.2 �� 4.8.2 p161.)
2216	if (speed == USB_SPEED_HIGHSPEED && (type & (USB_OBJECT_INTERRUPT_PIPE
2217			| USB_OBJECT_ISO_PIPE)) != 0) {
2218		maxBurst = (maxPacketSize & 0x1800) >> 11;
2219	} else if (speed != USB_SPEED_SUPERSPEED) {
2220		maxBurst = 0;
2221	}
2222	dwendpoint1 |= ENDPOINT_1_MAXBURST(maxBurst);
2223
2224	// Assign maximum packet size, set the ring address, and set the
2225	// "Dequeue Cycle State" bit. (XHCI 1.2 �� 6.2.3 Table 6-10 p453.)
2226	dwendpoint1 |= ENDPOINT_1_MAXPACKETSIZE(maxPacketSize);
2227	qwendpoint2 |= ENDPOINT_2_DCS_BIT | ep->trb_addr;
2228
2229	// The Max Burst Payload is the number of bytes moved by a
2230	// maximum sized burst. (XHCI 1.2 �� 4.11.7.1 p236.)
2231	ep->max_burst_payload = (maxBurst + 1) * maxPacketSize;
2232	if (ep->max_burst_payload == 0) {
2233		TRACE_ERROR("ConfigureEndpoint() failed invalid max_burst_payload\n");
2234		return B_BAD_VALUE;
2235	}
2236
2237	// Assign average TRB length.
2238	if ((type & USB_OBJECT_CONTROL_PIPE) != 0) {
2239		// Control pipes are a special case, as they rarely have
2240		// outbound transfers of any substantial size.
2241		dwendpoint4 |= ENDPOINT_4_AVGTRBLENGTH(8);
2242	} else if ((type & USB_OBJECT_ISO_PIPE) != 0) {
2243		// Isochronous pipes are another special case: the TRB size will be
2244		// one packet (which is normally smaller than the max packet size,
2245		// but we don't know what it is here.)
2246		dwendpoint4 |= ENDPOINT_4_AVGTRBLENGTH(maxPacketSize);
2247	} else {
2248		// Under all other circumstances, we put max_burst_payload in a TRB.
2249		dwendpoint4 |= ENDPOINT_4_AVGTRBLENGTH(ep->max_burst_payload);
2250	}
2251
2252	// Assign maximum ESIT payload. (XHCI 1.2 �� 4.14.2 p259.)
2253	if ((type & (USB_OBJECT_INTERRUPT_PIPE | USB_OBJECT_ISO_PIPE)) != 0) {
2254		// TODO: For SuperSpeedPlus endpoints, there is yet another descriptor
2255		// for isochronous endpoints that specifies the maximum ESIT payload.
2256		// We don't fetch this yet, so just fall back to the USB2 computation
2257		// method if bytesPerInterval is 0.
2258		if (speed == USB_SPEED_SUPERSPEED && bytesPerInterval != 0)
2259			dwendpoint4 |= ENDPOINT_4_MAXESITPAYLOAD(bytesPerInterval);
2260		else if (speed >= USB_SPEED_HIGHSPEED)
2261			dwendpoint4 |= ENDPOINT_4_MAXESITPAYLOAD((maxBurst + 1) * maxPacketSize);
2262	}
2263
2264	_WriteContext(&device->input_ctx->endpoints[number].dwendpoint0,
2265		dwendpoint0);
2266	_WriteContext(&device->input_ctx->endpoints[number].dwendpoint1,
2267		dwendpoint1);
2268	_WriteContext(&device->input_ctx->endpoints[number].qwendpoint2,
2269		qwendpoint2);
2270	_WriteContext(&device->input_ctx->endpoints[number].dwendpoint4,
2271		dwendpoint4);
2272
2273	TRACE("endpoint 0x%" B_PRIx32 " 0x%" B_PRIx32 " 0x%" B_PRIx64 " 0x%"
2274		B_PRIx32 "\n",
2275		_ReadContext(&device->input_ctx->endpoints[number].dwendpoint0),
2276		_ReadContext(&device->input_ctx->endpoints[number].dwendpoint1),
2277		_ReadContext(&device->input_ctx->endpoints[number].qwendpoint2),
2278		_ReadContext(&device->input_ctx->endpoints[number].dwendpoint4));
2279
2280	return B_OK;
2281}
2282
2283
2284status_t
2285XHCI::GetPortSpeed(uint8 index, usb_speed* speed)
2286{
2287	if (index >= fPortCount)
2288		return B_BAD_INDEX;
2289
2290	uint32 portStatus = ReadOpReg(XHCI_PORTSC(index));
2291
2292	switch (PS_SPEED_GET(portStatus)) {
2293	case 2:
2294		*speed = USB_SPEED_LOWSPEED;
2295		break;
2296	case 1:
2297		*speed = USB_SPEED_FULLSPEED;
2298		break;
2299	case 3:
2300		*speed = USB_SPEED_HIGHSPEED;
2301		break;
2302	case 4:
2303		*speed = USB_SPEED_SUPERSPEED;
2304		break;
2305	default:
2306		TRACE_ALWAYS("nonstandard port speed %" B_PRId32 ", assuming SuperSpeed\n",
2307			PS_SPEED_GET(portStatus));
2308		*speed = USB_SPEED_SUPERSPEED;
2309		break;
2310	}
2311
2312	return B_OK;
2313}
2314
2315
2316status_t
2317XHCI::GetPortStatus(uint8 index, usb_port_status* status)
2318{
2319	if (index >= fPortCount)
2320		return B_BAD_INDEX;
2321
2322	status->status = status->change = 0;
2323	uint32 portStatus = ReadOpReg(XHCI_PORTSC(index));
2324	TRACE("port %" B_PRId8 " status=0x%08" B_PRIx32 "\n", index, portStatus);
2325
2326	// build the status
2327	switch (PS_SPEED_GET(portStatus)) {
2328	case 3:
2329		status->status |= PORT_STATUS_HIGH_SPEED;
2330		break;
2331	case 2:
2332		status->status |= PORT_STATUS_LOW_SPEED;
2333		break;
2334	default:
2335		break;
2336	}
2337
2338	if (portStatus & PS_CCS)
2339		status->status |= PORT_STATUS_CONNECTION;
2340	if (portStatus & PS_PED)
2341		status->status |= PORT_STATUS_ENABLE;
2342	if (portStatus & PS_OCA)
2343		status->status |= PORT_STATUS_OVER_CURRENT;
2344	if (portStatus & PS_PR)
2345		status->status |= PORT_STATUS_RESET;
2346	if (portStatus & PS_PP) {
2347		if (fPortSpeeds[index] == USB_SPEED_SUPERSPEED)
2348			status->status |= PORT_STATUS_SS_POWER;
2349		else
2350			status->status |= PORT_STATUS_POWER;
2351	}
2352	if (fPortSpeeds[index] == USB_SPEED_SUPERSPEED)
2353		status->status |= portStatus & PS_PLS_MASK;
2354
2355	// build the change
2356	if (portStatus & PS_CSC)
2357		status->change |= PORT_STATUS_CONNECTION;
2358	if (portStatus & PS_PEC)
2359		status->change |= PORT_STATUS_ENABLE;
2360	if (portStatus & PS_OCC)
2361		status->change |= PORT_STATUS_OVER_CURRENT;
2362	if (portStatus & PS_PRC)
2363		status->change |= PORT_STATUS_RESET;
2364
2365	if (fPortSpeeds[index] == USB_SPEED_SUPERSPEED) {
2366		if (portStatus & PS_PLC)
2367			status->change |= PORT_CHANGE_LINK_STATE;
2368		if (portStatus & PS_WRC)
2369			status->change |= PORT_CHANGE_BH_PORT_RESET;
2370	}
2371
2372	return B_OK;
2373}
2374
2375
2376status_t
2377XHCI::SetPortFeature(uint8 index, uint16 feature)
2378{
2379	TRACE("set port feature index %u feature %u\n", index, feature);
2380	if (index >= fPortCount)
2381		return B_BAD_INDEX;
2382
2383	uint32 portRegister = XHCI_PORTSC(index);
2384	uint32 portStatus = ReadOpReg(portRegister) & ~PS_CLEAR;
2385
2386	switch (feature) {
2387	case PORT_SUSPEND:
2388		if ((portStatus & PS_PED) == 0 || (portStatus & PS_PR)
2389			|| (portStatus & PS_PLS_MASK) >= PS_XDEV_U3) {
2390			TRACE_ERROR("USB core suspending device not in U0/U1/U2.\n");
2391			return B_BAD_VALUE;
2392		}
2393		portStatus &= ~PS_PLS_MASK;
2394		WriteOpReg(portRegister, portStatus | PS_LWS | PS_XDEV_U3);
2395		break;
2396
2397	case PORT_RESET:
2398		WriteOpReg(portRegister, portStatus | PS_PR);
2399		break;
2400
2401	case PORT_POWER:
2402		WriteOpReg(portRegister, portStatus | PS_PP);
2403		break;
2404	default:
2405		return B_BAD_VALUE;
2406	}
2407	ReadOpReg(portRegister);
2408	return B_OK;
2409}
2410
2411
2412status_t
2413XHCI::ClearPortFeature(uint8 index, uint16 feature)
2414{
2415	TRACE("clear port feature index %u feature %u\n", index, feature);
2416	if (index >= fPortCount)
2417		return B_BAD_INDEX;
2418
2419	uint32 portRegister = XHCI_PORTSC(index);
2420	uint32 portStatus = ReadOpReg(portRegister) & ~PS_CLEAR;
2421
2422	switch (feature) {
2423	case PORT_SUSPEND:
2424		portStatus = ReadOpReg(portRegister);
2425		if (portStatus & PS_PR)
2426			return B_BAD_VALUE;
2427		if (portStatus & PS_XDEV_U3) {
2428			if ((portStatus & PS_PED) == 0)
2429				return B_BAD_VALUE;
2430			portStatus &= ~PS_PLS_MASK;
2431			WriteOpReg(portRegister, portStatus | PS_XDEV_U0 | PS_LWS);
2432		}
2433		break;
2434	case PORT_ENABLE:
2435		WriteOpReg(portRegister, portStatus | PS_PED);
2436		break;
2437	case PORT_POWER:
2438		WriteOpReg(portRegister, portStatus & ~PS_PP);
2439		break;
2440	case C_PORT_CONNECTION:
2441		WriteOpReg(portRegister, portStatus | PS_CSC);
2442		break;
2443	case C_PORT_ENABLE:
2444		WriteOpReg(portRegister, portStatus | PS_PEC);
2445		break;
2446	case C_PORT_OVER_CURRENT:
2447		WriteOpReg(portRegister, portStatus | PS_OCC);
2448		break;
2449	case C_PORT_RESET:
2450		WriteOpReg(portRegister, portStatus | PS_PRC);
2451		break;
2452	case C_PORT_BH_PORT_RESET:
2453		WriteOpReg(portRegister, portStatus | PS_WRC);
2454		break;
2455	case C_PORT_LINK_STATE:
2456		WriteOpReg(portRegister, portStatus | PS_PLC);
2457		break;
2458	default:
2459		return B_BAD_VALUE;
2460	}
2461
2462	ReadOpReg(portRegister);
2463	return B_OK;
2464}
2465
2466
2467status_t
2468XHCI::ControllerHalt()
2469{
2470	// Mask off run state
2471	WriteOpReg(XHCI_CMD, ReadOpReg(XHCI_CMD) & ~CMD_RUN);
2472
2473	// wait for shutdown state
2474	if (WaitOpBits(XHCI_STS, STS_HCH, STS_HCH) != B_OK) {
2475		TRACE_ERROR("HCH shutdown timeout\n");
2476		return B_ERROR;
2477	}
2478	return B_OK;
2479}
2480
2481
2482status_t
2483XHCI::ControllerReset()
2484{
2485	TRACE("ControllerReset() cmd: 0x%" B_PRIx32 " sts: 0x%" B_PRIx32 "\n",
2486		ReadOpReg(XHCI_CMD), ReadOpReg(XHCI_STS));
2487	WriteOpReg(XHCI_CMD, ReadOpReg(XHCI_CMD) | CMD_HCRST);
2488
2489	if (WaitOpBits(XHCI_CMD, CMD_HCRST, 0) != B_OK) {
2490		TRACE_ERROR("ControllerReset() failed CMD_HCRST\n");
2491		return B_ERROR;
2492	}
2493
2494	if (WaitOpBits(XHCI_STS, STS_CNR, 0) != B_OK) {
2495		TRACE_ERROR("ControllerReset() failed STS_CNR\n");
2496		return B_ERROR;
2497	}
2498
2499	return B_OK;
2500}
2501
2502
2503int32
2504XHCI::InterruptHandler(void* data)
2505{
2506	return ((XHCI*)data)->Interrupt();
2507}
2508
2509
2510int32
2511XHCI::Interrupt()
2512{
2513	SpinLocker _(&fSpinlock);
2514
2515	uint32 status = ReadOpReg(XHCI_STS);
2516	uint32 temp = ReadRunReg32(XHCI_IMAN(0));
2517	WriteOpReg(XHCI_STS, status);
2518	WriteRunReg32(XHCI_IMAN(0), temp);
2519
2520	int32 result = B_HANDLED_INTERRUPT;
2521
2522	if ((status & STS_HCH) != 0) {
2523		TRACE_ERROR("Host Controller halted\n");
2524		return result;
2525	}
2526	if ((status & STS_HSE) != 0) {
2527		TRACE_ERROR("Host System Error\n");
2528		return result;
2529	}
2530	if ((status & STS_HCE) != 0) {
2531		TRACE_ERROR("Host Controller Error\n");
2532		return result;
2533	}
2534
2535	if ((status & STS_EINT) == 0) {
2536		TRACE("STS: 0x%" B_PRIx32 " IRQ_PENDING: 0x%" B_PRIx32 "\n",
2537			status, temp);
2538		return B_UNHANDLED_INTERRUPT;
2539	}
2540
2541	TRACE("Event Interrupt\n");
2542	release_sem_etc(fEventSem, 1, B_DO_NOT_RESCHEDULE);
2543	return B_INVOKE_SCHEDULER;
2544}
2545
2546
2547void
2548XHCI::Ring(uint8 slot, uint8 endpoint)
2549{
2550	TRACE("Ding Dong! slot:%d endpoint %d\n", slot, endpoint)
2551	if ((slot == 0 && endpoint > 0) || (slot > 0 && endpoint == 0))
2552		panic("Ring() invalid slot/endpoint combination\n");
2553	if (slot > fSlotCount || endpoint >= XHCI_MAX_ENDPOINTS)
2554		panic("Ring() invalid slot or endpoint\n");
2555
2556	WriteDoorReg32(XHCI_DOORBELL(slot), XHCI_DOORBELL_TARGET(endpoint)
2557		| XHCI_DOORBELL_STREAMID(0));
2558	ReadDoorReg32(XHCI_DOORBELL(slot));
2559		// Flush PCI writes
2560}
2561
2562
2563void
2564XHCI::QueueCommand(xhci_trb* trb)
2565{
2566	uint8 i, j;
2567	uint32 temp;
2568
2569	i = fCmdIdx;
2570	j = fCmdCcs;
2571
2572	TRACE("command[%u] = %" B_PRId32 " (0x%016" B_PRIx64 ", 0x%08" B_PRIx32
2573		", 0x%08" B_PRIx32 ")\n", i, TRB_3_TYPE_GET(trb->flags), trb->address,
2574		trb->status, trb->flags);
2575
2576	fCmdRing[i].address = trb->address;
2577	fCmdRing[i].status = trb->status;
2578	temp = trb->flags;
2579
2580	if (j)
2581		temp |= TRB_3_CYCLE_BIT;
2582	else
2583		temp &= ~TRB_3_CYCLE_BIT;
2584	temp &= ~TRB_3_TC_BIT;
2585	fCmdRing[i].flags = B_HOST_TO_LENDIAN_INT32(temp);
2586
2587	fCmdAddr = fErst->rs_addr + (XHCI_MAX_EVENTS + i) * sizeof(xhci_trb);
2588
2589	i++;
2590
2591	if (i == (XHCI_MAX_COMMANDS - 1)) {
2592		temp = TRB_3_TYPE(TRB_TYPE_LINK) | TRB_3_TC_BIT;
2593		if (j)
2594			temp |= TRB_3_CYCLE_BIT;
2595		fCmdRing[i].flags = B_HOST_TO_LENDIAN_INT32(temp);
2596
2597		i = 0;
2598		j ^= 1;
2599	}
2600
2601	fCmdIdx = i;
2602	fCmdCcs = j;
2603}
2604
2605
2606void
2607XHCI::HandleCmdComplete(xhci_trb* trb)
2608{
2609	if (fCmdAddr == trb->address) {
2610		TRACE("Received command event\n");
2611		fCmdResult[0] = trb->status;
2612		fCmdResult[1] = B_LENDIAN_TO_HOST_INT32(trb->flags);
2613		release_sem_etc(fCmdCompSem, 1, B_DO_NOT_RESCHEDULE);
2614	} else
2615		TRACE_ERROR("received command event for unknown command!\n")
2616}
2617
2618
2619void
2620XHCI::HandleTransferComplete(xhci_trb* trb)
2621{
2622	const uint32 flags = B_LENDIAN_TO_HOST_INT32(trb->flags);
2623	const uint8 endpointNumber = TRB_3_ENDPOINT_GET(flags),
2624		slot = TRB_3_SLOT_GET(flags);
2625
2626	if (slot > fSlotCount)
2627		TRACE_ERROR("invalid slot\n");
2628	if (endpointNumber == 0 || endpointNumber >= XHCI_MAX_ENDPOINTS) {
2629		TRACE_ERROR("invalid endpoint\n");
2630		return;
2631	}
2632
2633	xhci_device *device = &fDevices[slot];
2634	xhci_endpoint *endpoint = &device->endpoints[endpointNumber - 1];
2635
2636	if (endpoint->trbs == NULL) {
2637		TRACE_ERROR("got TRB but endpoint is not allocated!\n");
2638		return;
2639	}
2640
2641	// Use mutex_trylock first, in case we are in KDL.
2642	MutexLocker endpointLocker(endpoint->lock, mutex_trylock(&endpoint->lock) == B_OK);
2643	if (!endpointLocker.IsLocked()) {
2644		// We failed to get the lock. Most likely it was destroyed
2645		// while we were waiting for it.
2646		return;
2647	}
2648
2649	TRACE("HandleTransferComplete: ed %" B_PRIu32 ", status %" B_PRId32 "\n",
2650		  (flags & TRB_3_EVENT_DATA_BIT), trb->status);
2651
2652	uint8 completionCode = TRB_2_COMP_CODE_GET(trb->status);
2653
2654	if (completionCode == COMP_RING_OVERRUN || completionCode == COMP_RING_UNDERRUN) {
2655		// These occur on isochronous endpoints when there is no TRB ready to be
2656		// executed at the appropriate time. (XHCI 1.2 �� 4.10.3.1 p204.)
2657		endpoint->status = completionCode;
2658		return;
2659	}
2660
2661	int32 remainder = TRB_2_REM_GET(trb->status), transferred = -1;
2662	if ((flags & TRB_3_EVENT_DATA_BIT) != 0) {
2663		// In the case of an Event Data TRB, value in the status field refers
2664		// to the actual number of bytes transferred across the whole TD.
2665		// (XHCI 1.2 �� 6.4.2.1 Table 6-38 p478.)
2666		transferred = remainder;
2667		remainder = -1;
2668	} else {
2669		// This should only occur under error conditions, or for isochronous transfers.
2670		TRACE("got transfer event for a non-Event Data TRB!\n");
2671
2672		if (completionCode == COMP_STOPPED_LENGTH_INVALID)
2673			remainder = -1;
2674	}
2675
2676	if (completionCode != COMP_SUCCESS && completionCode != COMP_SHORT_PACKET
2677			&& completionCode != COMP_STOPPED && completionCode != COMP_STOPPED_LENGTH_INVALID) {
2678		TRACE_ALWAYS("transfer error on slot %" B_PRId8 " endpoint %" B_PRId8
2679			": %s\n", slot, endpointNumber, xhci_error_string(completionCode));
2680	}
2681
2682	phys_addr_t source = B_LENDIAN_TO_HOST_INT64(trb->address);
2683	if (source >= endpoint->trb_addr
2684			&& (source - endpoint->trb_addr) < (XHCI_ENDPOINT_RING_SIZE * sizeof(xhci_trb))) {
2685		// The "source" address points to a TRB on the ring.
2686		// See if we can figure out what it really corresponds to.
2687		const int64 offset = (source - endpoint->trb_addr) / sizeof(xhci_trb);
2688		const int32 type = TRB_3_TYPE_GET(endpoint->trbs[offset].flags);
2689		if (type == TRB_TYPE_EVENT_DATA || type == TRB_TYPE_LINK)
2690			source = B_LENDIAN_TO_HOST_INT64(endpoint->trbs[offset].address);
2691	}
2692
2693	for (xhci_td *td = endpoint->td_head; td != NULL; td = td->next) {
2694		int64 offset = (source - td->trb_addr) / sizeof(xhci_trb);
2695		if (offset < 0 || offset >= td->trb_count)
2696			continue;
2697
2698		TRACE("HandleTransferComplete td %p trb %" B_PRId64 " found\n",
2699			td, offset);
2700
2701		if (td->transfer != NULL && td->transfer->IsochronousData() != NULL) {
2702			usb_isochronous_data* isochronousData = td->transfer->IsochronousData();
2703			usb_iso_packet_descriptor& descriptor = isochronousData->packet_descriptors[offset];
2704			if (transferred < 0)
2705				transferred = (TRB_2_BYTES_GET(td->trbs[offset].status) - remainder);
2706			descriptor.actual_length = transferred;
2707			descriptor.status = xhci_error_status(completionCode,
2708				(td->transfer->TransferPipe()->Direction() != Pipe::Out));
2709
2710			// Don't double-report completion status.
2711			completionCode = COMP_SUCCESS;
2712
2713			if (offset != (td->trb_used - 1)) {
2714				// We'll be sent here again.
2715				return;
2716			}
2717
2718			// Compute the real transferred length.
2719			transferred = 0;
2720			for (int32 i = 0; i < offset; i++) {
2721				usb_iso_packet_descriptor& descriptor = isochronousData->packet_descriptors[i];
2722				if (descriptor.status == B_NO_INIT) {
2723					// Assume success.
2724					descriptor.actual_length = descriptor.request_length;
2725					descriptor.status = B_OK;
2726				}
2727				transferred += descriptor.actual_length;
2728			}
2729
2730			// Report the endpoint status (if any.)
2731			if (endpoint->status != 0) {
2732				completionCode = endpoint->status;
2733				endpoint->status = 0;
2734			}
2735		} else if (completionCode == COMP_STOPPED_LENGTH_INVALID) {
2736			// To determine transferred length, sum up the lengths of all TRBs
2737			// prior to the referenced one. (XHCI 1.2 �� 4.6.9 p136.)
2738			transferred = 0;
2739			for (int32 i = 0; i < offset; i++)
2740				transferred += TRB_2_BYTES_GET(td->trbs[i].status);
2741		}
2742
2743		// The TRB at offset trb_used will be the link TRB, which we do not
2744		// care about (and should not generate an interrupt at all.) We really
2745		// care about the properly last TRB, at index "count - 1", which the
2746		// Event Data TRB that _LinkDescriptorForPipe creates points to.
2747		//
2748		// But if we have an unsuccessful completion code, the transfer
2749		// likely failed midway; so just accept it anyway.
2750		if (offset == (td->trb_used - 1) || completionCode != COMP_SUCCESS) {
2751			_UnlinkDescriptorForPipe(td, endpoint);
2752			endpointLocker.Unlock();
2753
2754			td->trb_completion_code = completionCode;
2755			td->td_transferred = transferred;
2756			td->trb_left = remainder;
2757
2758			// add descriptor to finished list
2759			if (mutex_trylock(&fFinishedLock) != B_OK)
2760				mutex_lock(&fFinishedLock);
2761			td->next = fFinishedHead;
2762			fFinishedHead = td;
2763			mutex_unlock(&fFinishedLock);
2764
2765			release_sem_etc(fFinishTransfersSem, 1, B_DO_NOT_RESCHEDULE);
2766			TRACE("HandleTransferComplete td %p done\n", td);
2767		} else {
2768			TRACE_ERROR("successful TRB 0x%" B_PRIxPHYSADDR " was found, but it wasn't "
2769				"the last in the TD!\n", source);
2770		}
2771		return;
2772	}
2773	TRACE_ERROR("TRB 0x%" B_PRIxPHYSADDR " was not found in the endpoint!\n", source);
2774}
2775
2776
2777void
2778XHCI::DumpRing(xhci_trb *trbs, uint32 size)
2779{
2780	if (!Lock()) {
2781		TRACE("Unable to get lock!\n");
2782		return;
2783	}
2784
2785	for (uint32 i = 0; i < size; i++) {
2786		TRACE("command[%" B_PRId32 "] = %" B_PRId32 " (0x%016" B_PRIx64 ","
2787			" 0x%08" B_PRIx32 ", 0x%08" B_PRIx32 ")\n", i,
2788			TRB_3_TYPE_GET(B_LENDIAN_TO_HOST_INT32(trbs[i].flags)),
2789			trbs[i].address, trbs[i].status, trbs[i].flags);
2790	}
2791
2792	Unlock();
2793}
2794
2795
2796status_t
2797XHCI::DoCommand(xhci_trb* trb)
2798{
2799	if (!Lock()) {
2800		TRACE("Unable to get lock!\n");
2801		return B_ERROR;
2802	}
2803
2804	QueueCommand(trb);
2805	Ring(0, 0);
2806
2807	// Begin with a 50ms timeout.
2808	if (acquire_sem_etc(fCmdCompSem, 1, B_RELATIVE_TIMEOUT, 50 * 1000) != B_OK) {
2809		// We've hit the timeout. In some error cases, interrupts are not
2810		// generated; so here we force the event ring to be polled once.
2811		release_sem(fEventSem);
2812
2813		// Now try again, this time with a 750ms timeout.
2814		if (acquire_sem_etc(fCmdCompSem, 1, B_RELATIVE_TIMEOUT,
2815				750 * 1000) != B_OK) {
2816			TRACE("Unable to obtain fCmdCompSem!\n");
2817			fCmdAddr = 0;
2818			Unlock();
2819			return B_TIMED_OUT;
2820		}
2821	}
2822
2823	// eat up sems that have been released by multiple interrupts
2824	int32 semCount = 0;
2825	get_sem_count(fCmdCompSem, &semCount);
2826	if (semCount > 0)
2827		acquire_sem_etc(fCmdCompSem, semCount, B_RELATIVE_TIMEOUT, 0);
2828
2829	status_t status = B_OK;
2830	uint32 completionCode = TRB_2_COMP_CODE_GET(fCmdResult[0]);
2831	TRACE("command complete\n");
2832	if (completionCode != COMP_SUCCESS) {
2833		TRACE_ERROR("unsuccessful command %" B_PRId32 ", error %s (%" B_PRId32 ")\n",
2834			TRB_3_TYPE_GET(trb->flags), xhci_error_string(completionCode),
2835			completionCode);
2836		status = B_IO_ERROR;
2837	}
2838
2839	trb->status = fCmdResult[0];
2840	trb->flags = fCmdResult[1];
2841
2842	fCmdAddr = 0;
2843	Unlock();
2844	return status;
2845}
2846
2847
2848status_t
2849XHCI::Noop()
2850{
2851	TRACE("Issue No-Op\n");
2852	xhci_trb trb;
2853	trb.address = 0;
2854	trb.status = 0;
2855	trb.flags = TRB_3_TYPE(TRB_TYPE_CMD_NOOP);
2856
2857	return DoCommand(&trb);
2858}
2859
2860
2861status_t
2862XHCI::EnableSlot(uint8* slot)
2863{
2864	TRACE("Enable Slot\n");
2865	xhci_trb trb;
2866	trb.address = 0;
2867	trb.status = 0;
2868	trb.flags = TRB_3_TYPE(TRB_TYPE_ENABLE_SLOT);
2869
2870	status_t status = DoCommand(&trb);
2871	if (status != B_OK)
2872		return status;
2873
2874	*slot = TRB_3_SLOT_GET(trb.flags);
2875	return *slot != 0 ? B_OK : B_BAD_VALUE;
2876}
2877
2878
2879status_t
2880XHCI::DisableSlot(uint8 slot)
2881{
2882	TRACE("Disable Slot\n");
2883	xhci_trb trb;
2884	trb.address = 0;
2885	trb.status = 0;
2886	trb.flags = TRB_3_TYPE(TRB_TYPE_DISABLE_SLOT) | TRB_3_SLOT(slot);
2887
2888	return DoCommand(&trb);
2889}
2890
2891
2892status_t
2893XHCI::SetAddress(uint64 inputContext, bool bsr, uint8 slot)
2894{
2895	TRACE("Set Address\n");
2896	xhci_trb trb;
2897	trb.address = inputContext;
2898	trb.status = 0;
2899	trb.flags = TRB_3_TYPE(TRB_TYPE_ADDRESS_DEVICE) | TRB_3_SLOT(slot);
2900
2901	if (bsr)
2902		trb.flags |= TRB_3_BSR_BIT;
2903
2904	return DoCommand(&trb);
2905}
2906
2907
2908status_t
2909XHCI::ConfigureEndpoint(uint64 inputContext, bool deconfigure, uint8 slot)
2910{
2911	TRACE("Configure Endpoint\n");
2912	xhci_trb trb;
2913	trb.address = inputContext;
2914	trb.status = 0;
2915	trb.flags = TRB_3_TYPE(TRB_TYPE_CONFIGURE_ENDPOINT) | TRB_3_SLOT(slot);
2916
2917	if (deconfigure)
2918		trb.flags |= TRB_3_DCEP_BIT;
2919
2920	return DoCommand(&trb);
2921}
2922
2923
2924status_t
2925XHCI::EvaluateContext(uint64 inputContext, uint8 slot)
2926{
2927	TRACE("Evaluate Context\n");
2928	xhci_trb trb;
2929	trb.address = inputContext;
2930	trb.status = 0;
2931	trb.flags = TRB_3_TYPE(TRB_TYPE_EVALUATE_CONTEXT) | TRB_3_SLOT(slot);
2932
2933	return DoCommand(&trb);
2934}
2935
2936
2937status_t
2938XHCI::ResetEndpoint(bool preserve, xhci_endpoint* endpoint)
2939{
2940	TRACE("Reset Endpoint\n");
2941
2942	switch (_GetEndpointState(endpoint)) {
2943		case ENDPOINT_STATE_STOPPED:
2944			TRACE("Reset Endpoint: already stopped");
2945			return B_OK;
2946		case ENDPOINT_STATE_HALTED:
2947			TRACE("Reset Endpoint: warning, weird state!");
2948		default:
2949			break;
2950	}
2951
2952	xhci_trb trb;
2953	trb.address = 0;
2954	trb.status = 0;
2955	trb.flags = TRB_3_TYPE(TRB_TYPE_RESET_ENDPOINT)
2956		| TRB_3_SLOT(endpoint->device->slot) | TRB_3_ENDPOINT(endpoint->id + 1);
2957	if (preserve)
2958		trb.flags |= TRB_3_PRSV_BIT;
2959
2960	return DoCommand(&trb);
2961}
2962
2963
2964status_t
2965XHCI::StopEndpoint(bool suspend, xhci_endpoint* endpoint)
2966{
2967	TRACE("Stop Endpoint\n");
2968
2969	switch (_GetEndpointState(endpoint)) {
2970		case ENDPOINT_STATE_HALTED:
2971			TRACE("Stop Endpoint: error, halted");
2972			return B_DEV_STALLED;
2973		case ENDPOINT_STATE_STOPPED:
2974			TRACE("Stop Endpoint: already stopped");
2975			return B_OK;
2976		default:
2977			break;
2978	}
2979
2980	xhci_trb trb;
2981	trb.address = 0;
2982	trb.status = 0;
2983	trb.flags = TRB_3_TYPE(TRB_TYPE_STOP_ENDPOINT)
2984		| TRB_3_SLOT(endpoint->device->slot) | TRB_3_ENDPOINT(endpoint->id + 1);
2985	if (suspend)
2986		trb.flags |= TRB_3_SUSPEND_ENDPOINT_BIT;
2987
2988	return DoCommand(&trb);
2989}
2990
2991
2992status_t
2993XHCI::SetTRDequeue(uint64 dequeue, uint16 stream, uint8 endpoint, uint8 slot)
2994{
2995	TRACE("Set TR Dequeue\n");
2996	xhci_trb trb;
2997	trb.address = dequeue | ENDPOINT_2_DCS_BIT;
2998		// The DCS bit is copied from the address field as in ConfigureEndpoint.
2999		// (XHCI 1.2 �� 4.6.10 p142.)
3000	trb.status = TRB_2_STREAM(stream);
3001	trb.flags = TRB_3_TYPE(TRB_TYPE_SET_TR_DEQUEUE)
3002		| TRB_3_SLOT(slot) | TRB_3_ENDPOINT(endpoint);
3003
3004	return DoCommand(&trb);
3005}
3006
3007
3008status_t
3009XHCI::ResetDevice(uint8 slot)
3010{
3011	TRACE("Reset Device\n");
3012	xhci_trb trb;
3013	trb.address = 0;
3014	trb.status = 0;
3015	trb.flags = TRB_3_TYPE(TRB_TYPE_RESET_DEVICE) | TRB_3_SLOT(slot);
3016
3017	return DoCommand(&trb);
3018}
3019
3020
3021int32
3022XHCI::EventThread(void* data)
3023{
3024	((XHCI *)data)->CompleteEvents();
3025	return B_OK;
3026}
3027
3028
3029void
3030XHCI::CompleteEvents()
3031{
3032	while (!fStopThreads) {
3033		if (acquire_sem(fEventSem) < B_OK)
3034			continue;
3035
3036		// eat up sems that have been released by multiple interrupts
3037		int32 semCount = 0;
3038		get_sem_count(fEventSem, &semCount);
3039		if (semCount > 0)
3040			acquire_sem_etc(fEventSem, semCount, B_RELATIVE_TIMEOUT, 0);
3041
3042		ProcessEvents();
3043	}
3044}
3045
3046
3047void
3048XHCI::ProcessEvents()
3049{
3050	// Use mutex_trylock first, in case we are in KDL.
3051	MutexLocker locker(fEventLock, mutex_trylock(&fEventLock) == B_OK);
3052	if (!locker.IsLocked()) {
3053		// We failed to get the lock. This really should not happen.
3054		TRACE_ERROR("failed to acquire event lock!\n");
3055		return;
3056	}
3057
3058	uint16 i = fEventIdx;
3059	uint8 j = fEventCcs;
3060	uint8 t = 2;
3061
3062	while (1) {
3063		uint32 temp = B_LENDIAN_TO_HOST_INT32(fEventRing[i].flags);
3064		uint8 event = TRB_3_TYPE_GET(temp);
3065		TRACE("event[%u] = %u (0x%016" B_PRIx64 " 0x%08" B_PRIx32 " 0x%08"
3066			B_PRIx32 ")\n", i, event, fEventRing[i].address,
3067			fEventRing[i].status, B_LENDIAN_TO_HOST_INT32(fEventRing[i].flags));
3068		uint8 k = (temp & TRB_3_CYCLE_BIT) ? 1 : 0;
3069		if (j != k)
3070			break;
3071
3072		switch (event) {
3073		case TRB_TYPE_COMMAND_COMPLETION:
3074			HandleCmdComplete(&fEventRing[i]);
3075			break;
3076		case TRB_TYPE_TRANSFER:
3077			HandleTransferComplete(&fEventRing[i]);
3078			break;
3079		case TRB_TYPE_PORT_STATUS_CHANGE:
3080			TRACE("port change detected\n");
3081			break;
3082		default:
3083			TRACE_ERROR("Unhandled event = %u\n", event);
3084			break;
3085		}
3086
3087		i++;
3088		if (i == XHCI_MAX_EVENTS) {
3089			i = 0;
3090			j ^= 1;
3091			if (!--t)
3092				break;
3093		}
3094	}
3095
3096	fEventIdx = i;
3097	fEventCcs = j;
3098
3099	uint64 addr = fErst->rs_addr + i * sizeof(xhci_trb);
3100	WriteRunReg32(XHCI_ERDP_LO(0), (uint32)addr | ERDP_BUSY);
3101	WriteRunReg32(XHCI_ERDP_HI(0), (uint32)(addr >> 32));
3102}
3103
3104
3105int32
3106XHCI::FinishThread(void* data)
3107{
3108	((XHCI *)data)->FinishTransfers();
3109	return B_OK;
3110}
3111
3112
3113void
3114XHCI::FinishTransfers()
3115{
3116	while (!fStopThreads) {
3117		if (acquire_sem(fFinishTransfersSem) < B_OK)
3118			continue;
3119
3120		// eat up sems that have been released by multiple interrupts
3121		int32 semCount = 0;
3122		get_sem_count(fFinishTransfersSem, &semCount);
3123		if (semCount > 0)
3124			acquire_sem_etc(fFinishTransfersSem, semCount, B_RELATIVE_TIMEOUT, 0);
3125
3126		mutex_lock(&fFinishedLock);
3127		TRACE("finishing transfers\n");
3128		while (fFinishedHead != NULL) {
3129			xhci_td* td = fFinishedHead;
3130			fFinishedHead = td->next;
3131			td->next = NULL;
3132			mutex_unlock(&fFinishedLock);
3133
3134			TRACE("finishing transfer td %p\n", td);
3135
3136			Transfer* transfer = td->transfer;
3137			if (transfer == NULL) {
3138				// No transfer? Quick way out.
3139				FreeDescriptor(td);
3140				mutex_lock(&fFinishedLock);
3141				continue;
3142			}
3143
3144			bool directionIn = (transfer->TransferPipe()->Direction() != Pipe::Out);
3145
3146			const uint8 completionCode = td->trb_completion_code;
3147			status_t callbackStatus = xhci_error_status(completionCode, directionIn);
3148
3149			size_t actualLength = transfer->FragmentLength();
3150			if (completionCode != COMP_SUCCESS) {
3151				actualLength = td->td_transferred;
3152				if (td->td_transferred == -1)
3153					actualLength = transfer->FragmentLength() - td->trb_left;
3154				TRACE("transfer not successful, actualLength=%" B_PRIuSIZE "\n",
3155					actualLength);
3156			}
3157
3158			if (directionIn && actualLength > 0) {
3159				TRACE("copying in iov count %ld\n", transfer->VectorCount());
3160				status_t status = transfer->PrepareKernelAccess();
3161				if (status == B_OK) {
3162					ReadDescriptor(td, transfer->Vector(),
3163						transfer->VectorCount(), transfer->IsPhysical());
3164				} else {
3165					callbackStatus = status;
3166				}
3167			}
3168
3169			FreeDescriptor(td);
3170
3171			// this transfer may still have data left
3172			bool finished = true;
3173			transfer->AdvanceByFragment(actualLength);
3174			if (completionCode == COMP_SUCCESS
3175					&& transfer->FragmentLength() > 0) {
3176				TRACE("still %" B_PRIuSIZE " bytes left on transfer\n",
3177					transfer->FragmentLength());
3178				callbackStatus = SubmitTransfer(transfer);
3179				finished = (callbackStatus != B_OK);
3180			}
3181			if (finished) {
3182				// The actualLength was already handled in AdvanceByFragment.
3183				transfer->Finished(callbackStatus, 0);
3184				delete transfer;
3185			}
3186
3187			mutex_lock(&fFinishedLock);
3188		}
3189		mutex_unlock(&fFinishedLock);
3190	}
3191}
3192
3193
3194inline void
3195XHCI::WriteOpReg(uint32 reg, uint32 value)
3196{
3197	*(volatile uint32 *)(fRegisters + fOperationalRegisterOffset + reg) = value;
3198}
3199
3200
3201inline uint32
3202XHCI::ReadOpReg(uint32 reg)
3203{
3204	return *(volatile uint32 *)(fRegisters + fOperationalRegisterOffset + reg);
3205}
3206
3207
3208inline status_t
3209XHCI::WaitOpBits(uint32 reg, uint32 mask, uint32 expected)
3210{
3211	int loops = 0;
3212	uint32 value = ReadOpReg(reg);
3213	while ((value & mask) != expected) {
3214		snooze(1000);
3215		value = ReadOpReg(reg);
3216		if (loops == 100) {
3217			TRACE("delay waiting on reg 0x%" B_PRIX32 " match 0x%" B_PRIX32
3218				" (0x%" B_PRIX32 ")\n",	reg, expected, mask);
3219		} else if (loops > 250) {
3220			TRACE_ERROR("timeout waiting on reg 0x%" B_PRIX32
3221				" match 0x%" B_PRIX32 " (0x%" B_PRIX32 ")\n", reg, expected,
3222				mask);
3223			return B_ERROR;
3224		}
3225		loops++;
3226	}
3227	return B_OK;
3228}
3229
3230
3231inline uint32
3232XHCI::ReadCapReg32(uint32 reg)
3233{
3234	return *(volatile uint32 *)(fRegisters + fCapabilityRegisterOffset + reg);
3235}
3236
3237
3238inline void
3239XHCI::WriteCapReg32(uint32 reg, uint32 value)
3240{
3241	*(volatile uint32 *)(fRegisters + fCapabilityRegisterOffset + reg) = value;
3242}
3243
3244
3245inline uint32
3246XHCI::ReadRunReg32(uint32 reg)
3247{
3248	return *(volatile uint32 *)(fRegisters + fRuntimeRegisterOffset + reg);
3249}
3250
3251
3252inline void
3253XHCI::WriteRunReg32(uint32 reg, uint32 value)
3254{
3255	*(volatile uint32 *)(fRegisters + fRuntimeRegisterOffset + reg) = value;
3256}
3257
3258
3259inline uint32
3260XHCI::ReadDoorReg32(uint32 reg)
3261{
3262	return *(volatile uint32 *)(fRegisters + fDoorbellRegisterOffset + reg);
3263}
3264
3265
3266inline void
3267XHCI::WriteDoorReg32(uint32 reg, uint32 value)
3268{
3269	*(volatile uint32 *)(fRegisters + fDoorbellRegisterOffset + reg) = value;
3270}
3271
3272
3273inline addr_t
3274XHCI::_OffsetContextAddr(addr_t p)
3275{
3276	if (fContextSizeShift == 1) {
3277		// each structure is page aligned, each pointer is 32 bits aligned
3278		uint32 offset = p & ((B_PAGE_SIZE - 1) & ~31U);
3279		p += offset;
3280	}
3281	return p;
3282}
3283
3284inline uint32
3285XHCI::_ReadContext(uint32* p)
3286{
3287	p = (uint32*)_OffsetContextAddr((addr_t)p);
3288	return *p;
3289}
3290
3291
3292inline void
3293XHCI::_WriteContext(uint32* p, uint32 value)
3294{
3295	p = (uint32*)_OffsetContextAddr((addr_t)p);
3296	*p = value;
3297}
3298
3299
3300inline uint64
3301XHCI::_ReadContext(uint64* p)
3302{
3303	p = (uint64*)_OffsetContextAddr((addr_t)p);
3304	return *p;
3305}
3306
3307
3308inline void
3309XHCI::_WriteContext(uint64* p, uint64 value)
3310{
3311	p = (uint64*)_OffsetContextAddr((addr_t)p);
3312	*p = value;
3313}
3314