1/* inflate.c -- Not copyrighted 1992 by Mark Adler
2   version c10p1, 10 January 1993 */
3
4/* You can do whatever you like with this source file, though I would
5   prefer that if you modify it and redistribute it that you include
6   comments to that effect with your name and the date.  Thank you.
7   [The history has been moved to the file ChangeLog.]
8 */
9
10/*
11   Inflate deflated (PKZIP's method 8 compressed) data.  The compression
12   method searches for as much of the current string of bytes (up to a
13   length of 258) in the previous 32K bytes.  If it doesn't find any
14   matches (of at least length 3), it codes the next byte.  Otherwise, it
15   codes the length of the matched string and its distance backwards from
16   the current position.  There is a single Huffman code that codes both
17   single bytes (called "literals") and match lengths.  A second Huffman
18   code codes the distance information, which follows a length code.  Each
19   length or distance code actually represents a base value and a number
20   of "extra" (sometimes zero) bits to get to add to the base value.  At
21   the end of each deflated block is a special end-of-block (EOB) literal/
22   length code.  The decoding process is basically: get a literal/length
23   code; if EOB then done; if a literal, emit the decoded byte; if a
24   length then get the distance and emit the referred-to bytes from the
25   sliding window of previously emitted data.
26
27   There are (currently) three kinds of inflate blocks: stored, fixed, and
28   dynamic.  The compressor deals with some chunk of data at a time, and
29   decides which method to use on a chunk-by-chunk basis.  A chunk might
30   typically be 32K or 64K.  If the chunk is uncompressible, then the
31   "stored" method is used.  In this case, the bytes are simply stored as
32   is, eight bits per byte, with none of the above coding.  The bytes are
33   preceded by a count, since there is no longer an EOB code.
34
35   If the data is compressible, then either the fixed or dynamic methods
36   are used.  In the dynamic method, the compressed data is preceded by
37   an encoding of the literal/length and distance Huffman codes that are
38   to be used to decode this block.  The representation is itself Huffman
39   coded, and so is preceded by a description of that code.  These code
40   descriptions take up a little space, and so for small blocks, there is
41   a predefined set of codes, called the fixed codes.  The fixed method is
42   used if the block codes up smaller that way (usually for quite small
43   chunks), otherwise the dynamic method is used.  In the latter case, the
44   codes are customized to the probabilities in the current block, and so
45   can code it much better than the pre-determined fixed codes.
46
47   The Huffman codes themselves are decoded using a mutli-level table
48   lookup, in order to maximize the speed of decoding plus the speed of
49   building the decoding tables.  See the comments below that precede the
50   lbits and dbits tuning parameters.
51 */
52
53
54/*
55   Notes beyond the 1.93a appnote.txt:
56
57   1. Distance pointers never point before the beginning of the output
58      stream.
59   2. Distance pointers can point back across blocks, up to 32k away.
60   3. There is an implied maximum of 7 bits for the bit length table and
61      15 bits for the actual data.
62   4. If only one code exists, then it is encoded using one bit.  (Zero
63      would be more efficient, but perhaps a little confusing.)  If two
64      codes exist, they are coded using one bit each (0 and 1).
65   5. There is no way of sending zero distance codes--a dummy must be
66      sent if there are none.  (History: a pre 2.0 version of PKZIP would
67      store blocks with no distance codes, but this was discovered to be
68      too harsh a criterion.)  Valid only for 1.93a.  2.04c does allow
69      zero distance codes, which is sent as one code of zero bits in
70      length.
71   6. There are up to 286 literal/length codes.  Code 256 represents the
72      end-of-block.  Note however that the static length tree defines
73      288 codes just to fill out the Huffman codes.  Codes 286 and 287
74      cannot be used though, since there is no length base or extra bits
75      defined for them.  Similarly, there are up to 30 distance codes.
76      However, static trees define 32 codes (all 5 bits) to fill out the
77      Huffman codes, but the last two had better not show up in the data.
78   7. Unzip can check dynamic Huffman blocks for complete code sets.
79      The exception is that a single code would not be complete (see #4).
80   8. The five bits following the block type is really the number of
81      literal codes sent minus 257.
82   9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
83      (1+6+6).  Therefore, to output three times the length, you output
84      three codes (1+1+1), whereas to output four times the same length,
85      you only need two codes (1+3).  Hmm.
86  10. In the tree reconstruction algorithm, Code = Code + Increment
87      only if BitLength(i) is not zero.  (Pretty obvious.)
88  11. Correction: 4 Bits: # of Bit Length codes - 4     (4 - 19)
89  12. Note: length code 284 can represent 227-258, but length code 285
90      really is 258.  The last length deserves its own, short code
91      since it gets used a lot in very redundant files.  The length
92      258 is special since 258 - 3 (the min match length) is 255.
93  13. The literal/length and distance code bit lengths are read as a
94      single stream of lengths.  It is possible (and advantageous) for
95      a repeat code (16, 17, or 18) to go across the boundary between
96      the two sets of lengths.
97 */
98
99#ifdef RCSID
100static char rcsid[] = "$Id: inflate.c 3476 2003-06-11 15:56:10Z darkwyrm $";
101#endif
102
103#include <sys/types.h>
104
105#include "tailor.h"
106
107#if defined(STDC_HEADERS) || !defined(NO_STDLIB_H)
108#  include <stdlib.h>
109#endif
110
111#include "gzip.h"
112#define slide window
113
114/* Huffman code lookup table entry--this entry is four bytes for machines
115   that have 16-bit pointers (e.g. PC's in the small or medium model).
116   Valid extra bits are 0..13.  e == 15 is EOB (end of block), e == 16
117   means that v is a literal, 16 < e < 32 means that v is a pointer to
118   the next table, which codes e - 16 bits, and lastly e == 99 indicates
119   an unused code.  If a code with e == 99 is looked up, this implies an
120   error in the data. */
121struct huft {
122  uch e;                /* number of extra bits or operation */
123  uch b;                /* number of bits in this code or subcode */
124  union {
125    ush n;              /* literal, length base, or distance base */
126    struct huft *t;     /* pointer to next level of table */
127  } v;
128};
129
130
131/* Function prototypes */
132int huft_build OF((unsigned *, unsigned, unsigned, ush *, ush *,
133                   struct huft **, int *));
134int huft_free OF((struct huft *));
135int inflate_codes OF((struct huft *, struct huft *, int, int));
136int inflate_stored OF((void));
137int inflate_fixed OF((void));
138int inflate_dynamic OF((void));
139int inflate_block OF((int *));
140int inflate OF((void));
141
142
143/* The inflate algorithm uses a sliding 32K byte window on the uncompressed
144   stream to find repeated byte strings.  This is implemented here as a
145   circular buffer.  The index is updated simply by incrementing and then
146   and'ing with 0x7fff (32K-1). */
147/* It is left to other modules to supply the 32K area.  It is assumed
148   to be usable as if it were declared "uch slide[32768];" or as just
149   "uch *slide;" and then malloc'ed in the latter case.  The definition
150   must be in unzip.h, included above. */
151/* unsigned wp;             current position in slide */
152#define wp outcnt
153#define flush_output(w) (wp=(w),flush_window())
154
155/* Tables for deflate from PKZIP's appnote.txt. */
156static unsigned border[] = {    /* Order of the bit length code lengths */
157        16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
158static ush cplens[] = {         /* Copy lengths for literal codes 257..285 */
159        3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
160        35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
161        /* note: see note #13 above about the 258 in this list. */
162static ush cplext[] = {         /* Extra bits for literal codes 257..285 */
163        0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
164        3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99}; /* 99==invalid */
165static ush cpdist[] = {         /* Copy offsets for distance codes 0..29 */
166        1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
167        257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
168        8193, 12289, 16385, 24577};
169static ush cpdext[] = {         /* Extra bits for distance codes */
170        0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
171        7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
172        12, 12, 13, 13};
173
174
175
176/* Macros for inflate() bit peeking and grabbing.
177   The usage is:
178
179        NEEDBITS(j)
180        x = b & mask_bits[j];
181        DUMPBITS(j)
182
183   where NEEDBITS makes sure that b has at least j bits in it, and
184   DUMPBITS removes the bits from b.  The macros use the variable k
185   for the number of bits in b.  Normally, b and k are register
186   variables for speed, and are initialized at the beginning of a
187   routine that uses these macros from a global bit buffer and count.
188
189   If we assume that EOB will be the longest code, then we will never
190   ask for bits with NEEDBITS that are beyond the end of the stream.
191   So, NEEDBITS should not read any more bytes than are needed to
192   meet the request.  Then no bytes need to be "returned" to the buffer
193   at the end of the last block.
194
195   However, this assumption is not true for fixed blocks--the EOB code
196   is 7 bits, but the other literal/length codes can be 8 or 9 bits.
197   (The EOB code is shorter than other codes because fixed blocks are
198   generally short.  So, while a block always has an EOB, many other
199   literal/length codes have a significantly lower probability of
200   showing up at all.)  However, by making the first table have a
201   lookup of seven bits, the EOB code will be found in that first
202   lookup, and so will not require that too many bits be pulled from
203   the stream.
204 */
205
206ulg bb;                         /* bit buffer */
207unsigned bk;                    /* bits in bit buffer */
208
209ush mask_bits[] = {
210    0x0000,
211    0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
212    0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
213};
214
215#ifdef CRYPT
216  uch cc;
217#  define NEXTBYTE() \
218     (decrypt ? (cc = get_byte(), zdecode(cc), cc) : get_byte())
219#else
220#  define NEXTBYTE()  (uch)get_byte()
221#endif
222#define NEEDBITS(n) {while(k<(n)){b|=((ulg)NEXTBYTE())<<k;k+=8;}}
223#define DUMPBITS(n) {b>>=(n);k-=(n);}
224
225
226/*
227   Huffman code decoding is performed using a multi-level table lookup.
228   The fastest way to decode is to simply build a lookup table whose
229   size is determined by the longest code.  However, the time it takes
230   to build this table can also be a factor if the data being decoded
231   is not very long.  The most common codes are necessarily the
232   shortest codes, so those codes dominate the decoding time, and hence
233   the speed.  The idea is you can have a shorter table that decodes the
234   shorter, more probable codes, and then point to subsidiary tables for
235   the longer codes.  The time it costs to decode the longer codes is
236   then traded against the time it takes to make longer tables.
237
238   This results of this trade are in the variables lbits and dbits
239   below.  lbits is the number of bits the first level table for literal/
240   length codes can decode in one step, and dbits is the same thing for
241   the distance codes.  Subsequent tables are also less than or equal to
242   those sizes.  These values may be adjusted either when all of the
243   codes are shorter than that, in which case the longest code length in
244   bits is used, or when the shortest code is *longer* than the requested
245   table size, in which case the length of the shortest code in bits is
246   used.
247
248   There are two different values for the two tables, since they code a
249   different number of possibilities each.  The literal/length table
250   codes 286 possible values, or in a flat code, a little over eight
251   bits.  The distance table codes 30 possible values, or a little less
252   than five bits, flat.  The optimum values for speed end up being
253   about one bit more than those, so lbits is 8+1 and dbits is 5+1.
254   The optimum values may differ though from machine to machine, and
255   possibly even between compilers.  Your mileage may vary.
256 */
257
258
259int lbits = 9;          /* bits in base literal/length lookup table */
260int dbits = 6;          /* bits in base distance lookup table */
261
262
263/* If BMAX needs to be larger than 16, then h and x[] should be ulg. */
264#define BMAX 16         /* maximum bit length of any code (16 for explode) */
265#define N_MAX 288       /* maximum number of codes in any set */
266
267
268unsigned hufts;         /* track memory usage */
269
270
271int huft_build(b, n, s, d, e, t, m)
272unsigned *b;            /* code lengths in bits (all assumed <= BMAX) */
273unsigned n;             /* number of codes (assumed <= N_MAX) */
274unsigned s;             /* number of simple-valued codes (0..s-1) */
275ush *d;                 /* list of base values for non-simple codes */
276ush *e;                 /* list of extra bits for non-simple codes */
277struct huft **t;        /* result: starting table */
278int *m;                 /* maximum lookup bits, returns actual */
279/* Given a list of code lengths and a maximum table size, make a set of
280   tables to decode that set of codes.  Return zero on success, one if
281   the given code set is incomplete (the tables are still built in this
282   case), two if the input is invalid (all zero length codes or an
283   oversubscribed set of lengths), and three if not enough memory. */
284{
285  unsigned a;                   /* counter for codes of length k */
286  unsigned c[BMAX+1];           /* bit length count table */
287  unsigned f;                   /* i repeats in table every f entries */
288  int g;                        /* maximum code length */
289  int h;                        /* table level */
290  register unsigned i;          /* counter, current code */
291  register unsigned j;          /* counter */
292  register int k;               /* number of bits in current code */
293  int l;                        /* bits per table (returned in m) */
294  register unsigned *p;         /* pointer into c[], b[], or v[] */
295  register struct huft *q;      /* points to current table */
296  struct huft r;                /* table entry for structure assignment */
297  struct huft *u[BMAX];         /* table stack */
298  unsigned v[N_MAX];            /* values in order of bit length */
299  register int w;               /* bits before this table == (l * h) */
300  unsigned x[BMAX+1];           /* bit offsets, then code stack */
301  unsigned *xp;                 /* pointer into x */
302  int y;                        /* number of dummy codes added */
303  unsigned z;                   /* number of entries in current table */
304
305
306  /* Generate counts for each bit length */
307  memzero(c, sizeof(c));
308  p = b;  i = n;
309  do {
310    Tracecv(*p, (stderr, (n-i >= ' ' && n-i <= '~' ? "%c %d\n" : "0x%x %d\n"),
311	    n-i, *p));
312    c[*p]++;                    /* assume all entries <= BMAX */
313    p++;                      /* Can't combine with above line (Solaris bug) */
314  } while (--i);
315  if (c[0] == n)                /* null input--all zero length codes */
316  {
317    *t = (struct huft *)NULL;
318    *m = 0;
319    return 0;
320  }
321
322
323  /* Find minimum and maximum length, bound *m by those */
324  l = *m;
325  for (j = 1; j <= BMAX; j++)
326    if (c[j])
327      break;
328  k = j;                        /* minimum code length */
329  if ((unsigned)l < j)
330    l = j;
331  for (i = BMAX; i; i--)
332    if (c[i])
333      break;
334  g = i;                        /* maximum code length */
335  if ((unsigned)l > i)
336    l = i;
337  *m = l;
338
339
340  /* Adjust last length count to fill out codes, if needed */
341  for (y = 1 << j; j < i; j++, y <<= 1)
342    if ((y -= c[j]) < 0)
343      return 2;                 /* bad input: more codes than bits */
344  if ((y -= c[i]) < 0)
345    return 2;
346  c[i] += y;
347
348
349  /* Generate starting offsets into the value table for each length */
350  x[1] = j = 0;
351  p = c + 1;  xp = x + 2;
352  while (--i) {                 /* note that i == g from above */
353    *xp++ = (j += *p++);
354  }
355
356
357  /* Make a table of values in order of bit lengths */
358  p = b;  i = 0;
359  do {
360    if ((j = *p++) != 0)
361      v[x[j]++] = i;
362  } while (++i < n);
363
364
365  /* Generate the Huffman codes and for each, make the table entries */
366  x[0] = i = 0;                 /* first Huffman code is zero */
367  p = v;                        /* grab values in bit order */
368  h = -1;                       /* no tables yet--level -1 */
369  w = -l;                       /* bits decoded == (l * h) */
370  u[0] = (struct huft *)NULL;   /* just to keep compilers happy */
371  q = (struct huft *)NULL;      /* ditto */
372  z = 0;                        /* ditto */
373
374  /* go through the bit lengths (k already is bits in shortest code) */
375  for (; k <= g; k++)
376  {
377    a = c[k];
378    while (a--)
379    {
380      /* here i is the Huffman code of length k bits for value *p */
381      /* make tables up to required level */
382      while (k > w + l)
383      {
384        h++;
385        w += l;                 /* previous table always l bits */
386
387        /* compute minimum size table less than or equal to l bits */
388        z = (z = g - w) > (unsigned)l ? l : z;  /* upper limit on table size */
389        if ((f = 1 << (j = k - w)) > a + 1)     /* try a k-w bit table */
390        {                       /* too few codes for k-w bit table */
391          f -= a + 1;           /* deduct codes from patterns left */
392          xp = c + k;
393          while (++j < z)       /* try smaller tables up to z bits */
394          {
395            if ((f <<= 1) <= *++xp)
396              break;            /* enough codes to use up j bits */
397            f -= *xp;           /* else deduct codes from patterns */
398          }
399        }
400        z = 1 << j;             /* table entries for j-bit table */
401
402        /* allocate and link in new table */
403        if ((q = (struct huft *)malloc((z + 1)*sizeof(struct huft))) ==
404            (struct huft *)NULL)
405        {
406          if (h)
407            huft_free(u[0]);
408          return 3;             /* not enough memory */
409        }
410        hufts += z + 1;         /* track memory usage */
411        *t = q + 1;             /* link to list for huft_free() */
412        *(t = &(q->v.t)) = (struct huft *)NULL;
413        u[h] = ++q;             /* table starts after link */
414
415        /* connect to last table, if there is one */
416        if (h)
417        {
418          x[h] = i;             /* save pattern for backing up */
419          r.b = (uch)l;         /* bits to dump before this table */
420          r.e = (uch)(16 + j);  /* bits in this table */
421          r.v.t = q;            /* pointer to this table */
422          j = i >> (w - l);     /* (get around Turbo C bug) */
423          u[h-1][j] = r;        /* connect to last table */
424        }
425      }
426
427      /* set up table entry in r */
428      r.b = (uch)(k - w);
429      if (p >= v + n)
430        r.e = 99;               /* out of values--invalid code */
431      else if (*p < s)
432      {
433        r.e = (uch)(*p < 256 ? 16 : 15);    /* 256 is end-of-block code */
434        r.v.n = (ush)(*p);             /* simple code is just the value */
435	p++;                           /* one compiler does not like *p++ */
436      }
437      else
438      {
439        r.e = (uch)e[*p - s];   /* non-simple--look up in lists */
440        r.v.n = d[*p++ - s];
441      }
442
443      /* fill code-like entries with r */
444      f = 1 << (k - w);
445      for (j = i >> w; j < z; j += f)
446        q[j] = r;
447
448      /* backwards increment the k-bit code i */
449      for (j = 1 << (k - 1); i & j; j >>= 1)
450        i ^= j;
451      i ^= j;
452
453      /* backup over finished tables */
454      while ((i & ((1 << w) - 1)) != x[h])
455      {
456        h--;                    /* don't need to update q */
457        w -= l;
458      }
459    }
460  }
461
462
463  /* Return true (1) if we were given an incomplete table */
464  return y != 0 && g != 1;
465}
466
467
468
469int huft_free(t)
470struct huft *t;         /* table to free */
471/* Free the malloc'ed tables built by huft_build(), which makes a linked
472   list of the tables it made, with the links in a dummy first entry of
473   each table. */
474{
475  register struct huft *p, *q;
476
477
478  /* Go through linked list, freeing from the malloced (t[-1]) address. */
479  p = t;
480  while (p != (struct huft *)NULL)
481  {
482    q = (--p)->v.t;
483    free((char*)p);
484    p = q;
485  }
486  return 0;
487}
488
489
490int inflate_codes(tl, td, bl, bd)
491struct huft *tl, *td;   /* literal/length and distance decoder tables */
492int bl, bd;             /* number of bits decoded by tl[] and td[] */
493/* inflate (decompress) the codes in a deflated (compressed) block.
494   Return an error code or zero if it all goes ok. */
495{
496  register unsigned e;  /* table entry flag/number of extra bits */
497  unsigned n, d;        /* length and index for copy */
498  unsigned w;           /* current window position */
499  struct huft *t;       /* pointer to table entry */
500  unsigned ml, md;      /* masks for bl and bd bits */
501  register ulg b;       /* bit buffer */
502  register unsigned k;  /* number of bits in bit buffer */
503
504
505  /* make local copies of globals */
506  b = bb;                       /* initialize bit buffer */
507  k = bk;
508  w = wp;                       /* initialize window position */
509
510  /* inflate the coded data */
511  ml = mask_bits[bl];           /* precompute masks for speed */
512  md = mask_bits[bd];
513  for (;;)                      /* do until end of block */
514  {
515    NEEDBITS((unsigned)bl)
516    if ((e = (t = tl + ((unsigned)b & ml))->e) > 16)
517      do {
518        if (e == 99)
519          return 1;
520        DUMPBITS(t->b)
521        e -= 16;
522        NEEDBITS(e)
523      } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16);
524    DUMPBITS(t->b)
525    if (e == 16)                /* then it's a literal */
526    {
527      slide[w++] = (uch)t->v.n;
528      Tracevv((stderr, "%c", slide[w-1]));
529      if (w == WSIZE)
530      {
531        flush_output(w);
532        w = 0;
533      }
534    }
535    else                        /* it's an EOB or a length */
536    {
537      /* exit if end of block */
538      if (e == 15)
539        break;
540
541      /* get length of block to copy */
542      NEEDBITS(e)
543      n = t->v.n + ((unsigned)b & mask_bits[e]);
544      DUMPBITS(e);
545
546      /* decode distance of block to copy */
547      NEEDBITS((unsigned)bd)
548      if ((e = (t = td + ((unsigned)b & md))->e) > 16)
549        do {
550          if (e == 99)
551            return 1;
552          DUMPBITS(t->b)
553          e -= 16;
554          NEEDBITS(e)
555        } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16);
556      DUMPBITS(t->b)
557      NEEDBITS(e)
558      d = w - t->v.n - ((unsigned)b & mask_bits[e]);
559      DUMPBITS(e)
560      Tracevv((stderr,"\\[%d,%d]", w-d, n));
561
562      /* do the copy */
563      do {
564        n -= (e = (e = WSIZE - ((d &= WSIZE-1) > w ? d : w)) > n ? n : e);
565#if !defined(NOMEMCPY) && !defined(DEBUG)
566        if (w - d >= e)         /* (this test assumes unsigned comparison) */
567        {
568          memcpy(slide + w, slide + d, e);
569          w += e;
570          d += e;
571        }
572        else                      /* do it slow to avoid memcpy() overlap */
573#endif /* !NOMEMCPY */
574          do {
575            slide[w++] = slide[d++];
576	    Tracevv((stderr, "%c", slide[w-1]));
577          } while (--e);
578        if (w == WSIZE)
579        {
580          flush_output(w);
581          w = 0;
582        }
583      } while (n);
584    }
585  }
586
587
588  /* restore the globals from the locals */
589  wp = w;                       /* restore global window pointer */
590  bb = b;                       /* restore global bit buffer */
591  bk = k;
592
593  /* done */
594  return 0;
595}
596
597
598
599int inflate_stored()
600/* "decompress" an inflated type 0 (stored) block. */
601{
602  unsigned n;           /* number of bytes in block */
603  unsigned w;           /* current window position */
604  register ulg b;       /* bit buffer */
605  register unsigned k;  /* number of bits in bit buffer */
606
607
608  /* make local copies of globals */
609  b = bb;                       /* initialize bit buffer */
610  k = bk;
611  w = wp;                       /* initialize window position */
612
613
614  /* go to byte boundary */
615  n = k & 7;
616  DUMPBITS(n);
617
618
619  /* get the length and its complement */
620  NEEDBITS(16)
621  n = ((unsigned)b & 0xffff);
622  DUMPBITS(16)
623  NEEDBITS(16)
624  if (n != (unsigned)((~b) & 0xffff))
625    return 1;                   /* error in compressed data */
626  DUMPBITS(16)
627
628
629  /* read and output the compressed data */
630  while (n--)
631  {
632    NEEDBITS(8)
633    slide[w++] = (uch)b;
634    if (w == WSIZE)
635    {
636      flush_output(w);
637      w = 0;
638    }
639    DUMPBITS(8)
640  }
641
642
643  /* restore the globals from the locals */
644  wp = w;                       /* restore global window pointer */
645  bb = b;                       /* restore global bit buffer */
646  bk = k;
647  return 0;
648}
649
650
651
652int inflate_fixed()
653/* decompress an inflated type 1 (fixed Huffman codes) block.  We should
654   either replace this with a custom decoder, or at least precompute the
655   Huffman tables. */
656{
657  int i;                /* temporary variable */
658  struct huft *tl;      /* literal/length code table */
659  struct huft *td;      /* distance code table */
660  int bl;               /* lookup bits for tl */
661  int bd;               /* lookup bits for td */
662  unsigned l[288];      /* length list for huft_build */
663
664
665  /* set up literal table */
666  for (i = 0; i < 144; i++)
667    l[i] = 8;
668  for (; i < 256; i++)
669    l[i] = 9;
670  for (; i < 280; i++)
671    l[i] = 7;
672  for (; i < 288; i++)          /* make a complete, but wrong code set */
673    l[i] = 8;
674  bl = 7;
675  if ((i = huft_build(l, 288, 257, cplens, cplext, &tl, &bl)) != 0)
676    return i;
677
678
679  /* set up distance table */
680  for (i = 0; i < 30; i++)      /* make an incomplete code set */
681    l[i] = 5;
682  bd = 5;
683  if ((i = huft_build(l, 30, 0, cpdist, cpdext, &td, &bd)) > 1)
684  {
685    huft_free(tl);
686    return i;
687  }
688
689
690  /* decompress until an end-of-block code */
691  if (inflate_codes(tl, td, bl, bd))
692    return 1;
693
694
695  /* free the decoding tables, return */
696  huft_free(tl);
697  huft_free(td);
698  return 0;
699}
700
701
702
703int inflate_dynamic()
704/* decompress an inflated type 2 (dynamic Huffman codes) block. */
705{
706  int i;                /* temporary variables */
707  unsigned j;
708  unsigned l;           /* last length */
709  unsigned m;           /* mask for bit lengths table */
710  unsigned n;           /* number of lengths to get */
711  struct huft *tl;      /* literal/length code table */
712  struct huft *td;      /* distance code table */
713  int bl;               /* lookup bits for tl */
714  int bd;               /* lookup bits for td */
715  unsigned nb;          /* number of bit length codes */
716  unsigned nl;          /* number of literal/length codes */
717  unsigned nd;          /* number of distance codes */
718#ifdef PKZIP_BUG_WORKAROUND
719  unsigned ll[288+32];  /* literal/length and distance code lengths */
720#else
721  unsigned ll[286+30];  /* literal/length and distance code lengths */
722#endif
723  register ulg b;       /* bit buffer */
724  register unsigned k;  /* number of bits in bit buffer */
725
726
727  /* make local bit buffer */
728  b = bb;
729  k = bk;
730
731
732  /* read in table lengths */
733  NEEDBITS(5)
734  nl = 257 + ((unsigned)b & 0x1f);      /* number of literal/length codes */
735  DUMPBITS(5)
736  NEEDBITS(5)
737  nd = 1 + ((unsigned)b & 0x1f);        /* number of distance codes */
738  DUMPBITS(5)
739  NEEDBITS(4)
740  nb = 4 + ((unsigned)b & 0xf);         /* number of bit length codes */
741  DUMPBITS(4)
742#ifdef PKZIP_BUG_WORKAROUND
743  if (nl > 288 || nd > 32)
744#else
745  if (nl > 286 || nd > 30)
746#endif
747    return 1;                   /* bad lengths */
748
749
750  /* read in bit-length-code lengths */
751  for (j = 0; j < nb; j++)
752  {
753    NEEDBITS(3)
754    ll[border[j]] = (unsigned)b & 7;
755    DUMPBITS(3)
756  }
757  for (; j < 19; j++)
758    ll[border[j]] = 0;
759
760
761  /* build decoding table for trees--single level, 7 bit lookup */
762  bl = 7;
763  if ((i = huft_build(ll, 19, 19, NULL, NULL, &tl, &bl)) != 0)
764  {
765    if (i == 1)
766      huft_free(tl);
767    return i;                   /* incomplete code set */
768  }
769
770
771  /* read in literal and distance code lengths */
772  n = nl + nd;
773  m = mask_bits[bl];
774  i = l = 0;
775  while ((unsigned)i < n)
776  {
777    NEEDBITS((unsigned)bl)
778    j = (td = tl + ((unsigned)b & m))->b;
779    DUMPBITS(j)
780    j = td->v.n;
781    if (j < 16)                 /* length of code in bits (0..15) */
782      ll[i++] = l = j;          /* save last length in l */
783    else if (j == 16)           /* repeat last length 3 to 6 times */
784    {
785      NEEDBITS(2)
786      j = 3 + ((unsigned)b & 3);
787      DUMPBITS(2)
788      if ((unsigned)i + j > n)
789        return 1;
790      while (j--)
791        ll[i++] = l;
792    }
793    else if (j == 17)           /* 3 to 10 zero length codes */
794    {
795      NEEDBITS(3)
796      j = 3 + ((unsigned)b & 7);
797      DUMPBITS(3)
798      if ((unsigned)i + j > n)
799        return 1;
800      while (j--)
801        ll[i++] = 0;
802      l = 0;
803    }
804    else                        /* j == 18: 11 to 138 zero length codes */
805    {
806      NEEDBITS(7)
807      j = 11 + ((unsigned)b & 0x7f);
808      DUMPBITS(7)
809      if ((unsigned)i + j > n)
810        return 1;
811      while (j--)
812        ll[i++] = 0;
813      l = 0;
814    }
815  }
816
817
818  /* free decoding table for trees */
819  huft_free(tl);
820
821
822  /* restore the global bit buffer */
823  bb = b;
824  bk = k;
825
826
827  /* build the decoding tables for literal/length and distance codes */
828  bl = lbits;
829  if ((i = huft_build(ll, nl, 257, cplens, cplext, &tl, &bl)) != 0)
830  {
831    if (i == 1) {
832      fprintf(stderr, " incomplete literal tree\n");
833      huft_free(tl);
834    }
835    return i;                   /* incomplete code set */
836  }
837  bd = dbits;
838  if ((i = huft_build(ll + nl, nd, 0, cpdist, cpdext, &td, &bd)) != 0)
839  {
840    if (i == 1) {
841      fprintf(stderr, " incomplete distance tree\n");
842#ifdef PKZIP_BUG_WORKAROUND
843      i = 0;
844    }
845#else
846      huft_free(td);
847    }
848    huft_free(tl);
849    return i;                   /* incomplete code set */
850#endif
851  }
852
853
854  /* decompress until an end-of-block code */
855  if (inflate_codes(tl, td, bl, bd))
856    return 1;
857
858
859  /* free the decoding tables, return */
860  huft_free(tl);
861  huft_free(td);
862  return 0;
863}
864
865
866
867int inflate_block(e)
868int *e;                 /* last block flag */
869/* decompress an inflated block */
870{
871  unsigned t;           /* block type */
872  register ulg b;       /* bit buffer */
873  register unsigned k;  /* number of bits in bit buffer */
874
875
876  /* make local bit buffer */
877  b = bb;
878  k = bk;
879
880
881  /* read in last block bit */
882  NEEDBITS(1)
883  *e = (int)b & 1;
884  DUMPBITS(1)
885
886
887  /* read in block type */
888  NEEDBITS(2)
889  t = (unsigned)b & 3;
890  DUMPBITS(2)
891
892
893  /* restore the global bit buffer */
894  bb = b;
895  bk = k;
896
897
898  /* inflate that block type */
899  if (t == 2)
900    return inflate_dynamic();
901  if (t == 0)
902    return inflate_stored();
903  if (t == 1)
904    return inflate_fixed();
905
906
907  /* bad block type */
908  return 2;
909}
910
911
912
913int inflate()
914/* decompress an inflated entry */
915{
916  int e;                /* last block flag */
917  int r;                /* result code */
918  unsigned h;           /* maximum struct huft's malloc'ed */
919
920
921  /* initialize window, bit buffer */
922  wp = 0;
923  bk = 0;
924  bb = 0;
925
926
927  /* decompress until the last block */
928  h = 0;
929  do {
930    hufts = 0;
931    if ((r = inflate_block(&e)) != 0)
932      return r;
933    if (hufts > h)
934      h = hufts;
935  } while (!e);
936
937  /* Undo too much lookahead. The next read will be byte aligned so we
938   * can discard unused bits in the last meaningful byte.
939   */
940  while (bk >= 8) {
941    bk -= 8;
942    inptr--;
943  }
944
945  /* flush out slide */
946  flush_output(wp);
947
948
949  /* return success */
950#ifdef DEBUG
951  fprintf(stderr, "<%u> ", h);
952#endif /* DEBUG */
953  return 0;
954}
955